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Abstract. Man-in-the-middle attacks in TLS due to compromised CAs
have been mitigated by log-based PKI enhancements such as Certifi-
cate Transparency. However, these log-based schemes do not offer suffi-
cient incentives to logs and monitors, and do not offer any actions that
domains can take in response to CA misbehavior. We propose IKP, a
blockchain-based PKI enhancement that offers automatic responses to
CA misbehavior and incentives for those who help detect misbehavior.
IKP’s decentralized nature and smart contract system allows open par-
ticipation, offers incentives for vigilance over CAs, and enables financial
recourse against misbehavior. We demonstrate through a game theoretic
model and through an Ethereum prototype implementation that the in-
centives and increased deterrence offered by IKP are technically and
economically viable.

1 Introduction

Encrypted client-server communications in the Internet are secured using Trans-
port Layer Security (TLS) [27] and have become increasingly common. This in-
crease is in part due to the growth in sensitive information shared between users
and services, the disclosure of global state-level surveillance [19, 35, 38], and the
advent of services such as Let’s Encrypt [31], which has issued over 5 million
TLS certificates in the first 7 months since its launch in December 2015 [11].
The security of the TLS public-key infrastructure (PKI) largely relies on certifi-
cate authorities (CAs), who make a business out of certifying the authenticity
of sites’ public keys.

However, the CA ecosystem is fragile and prone to compromises and oper-
ational errors. These failures have occurred all around the world, including the
US [24, 58], France [48], the Netherlands [41], Turkey [47], and China [49]. Even
Symantec, which has almost a quarter of the TLS certificate market share [10],
issued unauthorized certificates for Google and almost 2,500 unauthorized cer-
tificates for both real and unregistered domains as part of a test [73, 77]. Thus
while CAs play a critical role to the security of the TLS ecosystem, they have
failed in this role time and again, issuing unauthorized certificates by mistake
or even as a business [68]. Some of these failures have led to man-in-the-middle
(MitM) attacks, allowing the interception of communication with popular sites
such as Google, Microsoft Live, Skype, and Yahoo [59, 60].



To address the problem of misbehaving CAs, log-based PKIs have proposed
to use highly-available public log servers that monitor and publicize the certifi-
cates issued by CAs. The certificates are not considered valid until they have
been logged in this way, thus quickly exposing and thus deterring the issuance
of unauthorized certificates. Google’s Certificate Transparency (CT) [51] is the
most widely deployed log-based PKI, currently available in both Chrome and
Firefox. Other proposals add features like support for revocation [42, 71], error
handling [78], and formally verified security guarantees [16] to log-based PKI.
Unfortunately, despite these benefits, log-based PKIs suffer from several prob-
lems.

First, log-based PKIs require a centralized, consistent source of in-
formation to operate securely. Several log-based PKIs require each domain
name to be associated with a single certificate or policy, and thus require all logs
to periodically synchronize [42, 78], but do not describe a protocol for doing so se-
curely. Without this synchronization, these PKIs could not determine whether or
not a certificate was authorized for a particular domain. In CT, Google specifies
a list of authorized logs [2], which must conform to certain operational standards
such as availability and consistency [1]. Logs in violation of this policy have been
removed for security and efficiency purposes [74–76]. However, without this list
of logs and gossiping [23, 36], logs can remain unavailable, violate consistency,
or equivocate to clients, undermining security.

Second, log-based PKIs do not sufficiently incentivize recording or
monitoring CA behavior. The cost of operating a log seems to outweigh the
benefits for the log operator, as indicated by a low willingness among CAs to
deploy a log [37], the fact that several CA-operated logs were required to deploy
logs in response to security incidents [49, 73], and the fact that one public log run
by an individual ceased operation due to the costs of maintaining the server [57].
We note that logs are not financially compensated for contributing to the security
of any log-based PKI despite their crucial role.

No compensation is given to those who discover unauthorized certificates,
either. As a result, domains benefit from monitoring the logs for their own
unauthorized certificates, but benefit little from reporting other unauthorized
certificates. In particular, we observe that Google’s incident reports in CT al-
ways include an unauthorized certificate for a Google product. To our knowledge,
few other domains monitor the logs in this way, which diminishes the logs’ use-
fulness [67].

Finally, responding to CA misbehavior takes time and requires man-
ual effort. When a CA misbehaves, a domain has three options. First, the do-
main can contact the misbehaving CA to have the certificate revoked, until which
MitM attacks against the domain are possible. However, while the domain suffers
the risk of MitM attacks, the CA is the only one who can revoke the certificate,
and if the CA is malicious, the certificate may never be revoked. Second, the
domain can contact the browser vendors, who can update client browsers such
that they do not accept the certificate [46] or in some cases, the CA itself [66].
However, this type of response only occurs if the offending certificate is for a



popular site. Third, the domain can pursue legal action against the CA. How-
ever, this process can be long, costly, and ultimately unsuccessful, due in part
to the fact that CAs are located in approximately 52 countries [30].

Therefore, in this paper we ask: how can we decentralize, incentivize,
and automate the handling of CA misbehavior? In particular, what does
it mean for a CA to misbehave? How can we check if a certificate indicates CA
misbehavior? In what ways can we automatically respond to CA misbehavior?
How can we ensure that these responses actually execute?

As a first step towards answering these questions, we present Instant Karma
PKI (IKP), an improvement to the TLS PKI. IKP relies on a decentralized entity
that handles the definition and evaluation of CA misbehavior and automatically
executes pre-defined reactions to this misbehavior. This entity provides financial
incentives to CAs operating correctly, as well as to those who report unautho-
rized certificates. In this paper, we use Ethereum [81] to instantiate IKP, as the
Ethereum blockchain is decentralized and provides natural financial incentives
and a transaction framework to participants. Moreover, Ethereum’s smart con-
tracts execute autonomously, enabling automatic reaction to CA misbehavior.
While other approaches may also be able to provide decentralization, automa-
tion, and financial incentives, we use Ethereum in the rest of the paper to provide
a easy-to-follow and concrete description of IKP, as well as an evaluation of our
realization.

In summary, we make the following contributions:
– We design and propose IKP, including frameworks for domain policies and

reactions to CA misbehavior.
– We demonstrate through a game theoretic analysis that the system incen-

tivizes good CA behavior and punishes misbehavior.
– We analyze the risk of IKP CAs using real-world data from existing CAs.
– We implement a prototype in Ethereum and discuss the present and future

technical feasibility of IKP.

2 Background

In this section, we provide the background required to understand IKP. In partic-
ular, we discuss log-based PKIs and the CA ecosystem, as well as the Ethereum
blockchain.

Log-Based PKIs. Log-based PKIs leverage high-availability servers called pub-
lic logs that maintain append-only databases of certificates issued by CAs. These
databases provide efficient proofs of a certificate’s presence in a log [51] and of
the log’s temporal consistency [26]. These proofs are sent with a domain’s certifi-
cate to prove that a log has recorded the certificate, ensuring that an adversary
attempting to use an unauthorized certificate has exposed it to the public. Mon-
itors can then watch logs for suspicious certificates and report any instances of
suspected misbehavior.

The core idea of log-based PKIs is that by ensuring that certificates are pub-
licized, misbehavior can be quickly detected, thus deterring CAs from issuing



unauthorized certificates. Such exposure can also help detect unauthorized cer-
tificates issued by accident [73]. Most log-based PKIs rely on the domain to take
action against unauthorized certificates [51], since only the domains themselves
know which certificates are authorized. Other approaches require the domain to
publicize information about which of its certificates are authorized [42, 78].

Blockchain-Based Cryptocurrencies. The advent of decentralized cryptocur-
rencies such as Bitcoin [61] has brought about a number of blockchain-based
systems that leverage a public ledger created and maintained through network
consensus. While most cryptocurrencies use the ledger solely to track financial
transactions, other proposals (e.g., Namecoin [62]) store name-value entries sim-
ilar to those of DNS. Ledgers are most commonly implemented as a blockchain,
a chain of blocks linked by hash pointers to the previous blocks.

The blockchain grows through the mining process, in which nodes in the
network race to find a value v that, when hashed with the hash of the previous
block and the transactions since that previous block, results in a hash value
of a certain form [15]. Using a cryptographically secure hash function requires
a brute-force search to find v, making mining a proof-of-work scheme [29]. A
node or miner is incentivized by the block reward, which transfers currency to
whomever extends the blockchain by recording the new transactions and finding
v, and then broadcasts the new block.

The security of blockchain-based cryptocurrencies relies on the fact that no
entity controls a majority of the hashing power of the network (called a 51%
attack). Otherwise, that adversary can gain control of the cryptocurrency net-
work, reversing its transactions to others and suppressing the transactions of
others. Blockchains make the assumption that such an attack is impossible.

Rather than storing account balances and transactions in the blockchain,
Ethereum [81] generalizes this notion to store arbitrary state in the blockchain.
Ethereum’s currency is used not only for ordinary transactions but also to ac-
tivate executable code that manipulates the blockchain state. Code is stored in
Ethereum contracts, autonomous accounts that run their code upon receiving
a transaction. Miners perform the computation and mine new blocks with the
resulting state. The language defined in Ethereum is Turing-complete, allowing
arbitrary computation in the blockchain. To prevent malicious code from wast-
ing computational resources, message senders must pay additional funds called
gas that compensate miners for their computational and storage costs.

For further details on all issues related to blockchains, we refer readers to a
more complete view of decentralized cryptocurrencies [18].

3 Problem Definition and Adversary Model

In a nutshell, our goal is to automate responses to CA misbehavior in a way
that incentivizes correct CA behavior (i.e., due diligence when issuing certifi-
cates) and does not require a centralized trusted entity. In particular, we aim to
design a system that can 1. define CA misbehavior, 2. evaluate whether a given
certificate constitutes misbehavior, 3. specify reactions that will occur in response



to CA misbehavior, and 4. execute a reaction after a CA has misbehaved. The
automation of this process thus deters CA misbehavior. In addition, being able
to define and evaluate CA misbehavior provides a framework to protect clients
from accepting unauthorized certificates, as in existing log-based PKIs.

We additionally require our system to 1. record CA behavior (though not
necessarily on the blockchain), 2. report misbehavior using information from en-
tities monitoring the recorded information, and 3. reward entities that record or
report CA misbehavior. Rewarding entities for recording CA operations and re-
porting misbehavior provides incentives for such actions, increasing the number
of entities monitoring CAs and thus the probability that an unauthorized certifi-
cate is quickly detected. Decentralizing and automating this process guarantees
that these entities will easily obtain their reward.

By providing the above functions, a decentralized, automated, and incentive-
driven system can provide comparable security to that of log-based PKIs and
further offer incentives for CAs to behave correctly, as well as for other entities
to monitor CAs to ensure correct behavior.

3.1 Desired Properties

A system addressing the above problems should have at least the following prop-
erties:
– Auditability: all information required to detect an unauthorized certificate

is publicly accessible.
– Efficiency: once CA misbehavior has been detected, reactions should auto-

matically proceed without additional action.
– Incentivization: entities that behave correctly are financially rewarded.
– Deterrence: any misbehaving entity or set of entities faces financial penal-

ties.
Achieving auditability ensures that any entity who wants to review CA opera-
tions and detect CA misbehavior can access the necessary information to do so.
By opening detection of misbehavior to the public, then, we can provide open
deployment as well as make misbehavior detection more likely. Efficiency ensures
that reactions to misbehavior can be automatic, proceeding without any addi-
tional necessary actions. Incentivization, particularly those offered by design in
the system, ensures that entities will deploy without influence from a centralized
initiator. Finally, deterrence ensures that the rate of unauthorized certificates
decreases, thus leading to a more secure TLS PKI.

3.2 Adversary Model

Our adversary’s goal is to issue a rogue certificate while maintaining a positive
expected return on investment (ROI). The adversary controls one or more CAs
(and can thus issue arbitrary certificates from these CAs), as well as colluding
domains and logs. The adversary may take whatever actions it wants to obtain
a net positive ROI among all entities it controls. We assume that the adversary
cannot break standard cryptographic primitives, such as finding hash collisions
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Fig. 1. Overview of the entities and functions in IKP.

or forging digital signatures. The adversary also cannot compromise the private
keys of arbitrary domains. Given that our solution leverages a blockchain, we
also assume that the adversary cannot control a majority of hashing power in
the blockchain network.

4 IKP Overview

In this section, we provide an overview of the key features of IKP. We begin by
introducing the main components in the IKP architecture, and then describe the
main functions of the system.

4.1 Architecture

As shown in Figure 1, IKP extends the standard TLS architecture with the
Ethereum blockchain. As in TLS, CAs issue certificates to domains, who carry
out TLS handshakes with clients. However, CAs can also issue reaction policies
(RPs), which take effect if an unauthorized certificate for a domain is issued,
acting as a sort of “insurance policy” against CA misbehavior. Domains can
publicize criteria for their certificates through domain certificate policies (DCPs),
which provide a way to computationally determine whether a given certificate
is authorized or not for a domain.

To summarize, IKP has five main entities:
1. CAs, which issue certificates and RPs to domains. To join IKP, they register

their information in the Ethereum blockchain.
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Fig. 2. Sample interactions between entities in IKP. As in Figure 1, yellow denotes a
CA and purple denotes a domain.

2. Domains, which purchase certificates and RPs from CAs. To join IKP, they
register DCPs in the blockchain.

3. Clients, who perform TLS handshakes with domains, accepting or reject-
ing the presented public-key certificates based on information publicized by
browser vendors or in the blockchain.

4. The IKP contract, which contains the logic to carry out the functions
described in Section 4.2, including registering CAs and domains. The IKP
contract also maintains its own balance used to escrow funds and to provide
rewards. The contract exists exactly once in IKP and is responsible for all
CAs, domains, and clients.

5. Detectors, who monitor CA operations for suspicious certificates (much
like log monitors in CT) and report any certificates they deem to be unau-
thorized.

IKP also has additional entities (such as browser vendors and miners), but the
roles of these entities are identical to those of their counterparts in TLS or
Ethereum respectively and thus we do not discuss them here.

4.2 Operation

To enable the operations described above for each entity in IKP, the IKP contract
handles the various functions critical to the operation of IKP (some of which are
shown in Figure 2):

– CA registration: a CA registers its information, such as its Ethereum
address and its public key used to verify its digital signatures, with the IKP
contract.

– Domain registration: a domain registers its DCP, which includes its do-
main name, its Ethereum address, and the address of the contract whose



code is run to determine whether or not a certificate is authorized, with the
IKP contract.

– RP negotiation: a domain agrees to purchase a certain RP from a CA,
with the IKP contract acting as a facilitator and escrow mechanism.

– Certificate purchase: a domain obtains a certificate from a CA. The CA
may be the same one that issued the domain’s RP, or it may be a different
CA.

– Misbehavior report: a detector sends an unauthorized certificate (which
indicates CA misbehavior) to the IKP contract, which checks the certificate
against the domain’s DCP and triggers the appropriate RP if the certificate
is indeed unauthorized.

– Reaction: if an unauthorized certificate is detected for a domain, the IKP
contract triggers the reaction specified in the domain’s RP.

DCPs and RPs are simply contract accounts in Ethereum, allowing them to be
both expressive and extensible. As we describe in Section 5 and Section 6, DCPs
can provide features such as CA whitelisting, public key pinning, and short-
lived certificate enforcement, while RPs can provide reactions such as financial
payouts and CA revocation.

5 Domain Certificate Policies (DCPs)

In this section, we take an in-depth look at DCPs. In particular, we describe the
features and format of DCPs, and present several examples of DCPs that enable
various useful defenses against CA misbehavior.

5.1 Design Principles

We begin by describing the fundamental principles on which we base our design
for DCPs. In particular, we identify three main design principles: 1) domain-
specified information, 2) blockchain-based storage, and 3) policy expressiveness.
These principles help ensure that we can use DCPs to determine certificate
authorization (i.e., whether a certificate is considered authorized or not for a
given domain) securely and effectively.

1) Domain-specified information. The information used to determine cer-
tificate authorization is specified by that domain itself. We observe that only do-
mains know for certainty which certificates they have and have not authorized.
Therefore, domains must play the crucial role of publicizing the information re-
quired for determining certificate authorization. Whereas most log-based PKIs
publicize information to allow domains to detect unauthorized certificates, IKP
publicizes information from the domains themselves to allow any entity to detect
unauthorized certificates with certainty.

2) Blockchain-based storage. The information used to determine certificate
authorization lives in the blockchain, or can be accessed by information (e.g.,
pointers) found in the blockchain. This approach contrasts with previous pro-
posals, which store such information in public logs, in several ways. First, the



Domain Certificate Policy (DCP)
Domain Name: a.com
Valid From: 17 Aug 2016 0:00:00 UTC
Version Number: 1
Payout Address: 0xa82275ab…
Update Addresses: 0xdd8cb5a2…
Update Threshold: 2
Check Contract: 0xf4956b3e…

a.com
Addresses:
• 0xa82275ab…
• 0xdd8cb5a2…

Check Contract (0xf4956b3e…)
approved = [CA A, CA B]
def check(cert):
  issuer = parse(cert).issuer
  if issuer in approved:
    return True
  else
    return False

Fig. 3. A sample DCP with a check contract written in pseudocode.

blockchain provides consistency through Nakamoto consensus, avoiding the prob-
lem of globally synchronizing logs and resolving conflicts among them (to ensure
that a domain has one policy active at a given time). Additionally, the mining
process on the blockchain (which occurs regardless of whether IKP is deployed)
provides natural financial incentives for miners to keep up-to-date, correct infor-
mation. Finally, the peer-to-peer nature of a blockchain network can maintain
better availability than a centralized public log.

3) Policy expressiveness. The information used to determine certificate au-
thorization is able to represent a wide range of policies. While some log-based
PKIs allow domains to specify policies governing how their certificates should
be verified or how errors in the TLS handshake should be handled, these poli-
cies cannot be changed in a backwards-compatible way without upgrading all
client browsers and (for major changes) existing domain policies. IKP provides
a general format for DCPs that simply specify a contract address to determine
certificate authorization. This generality allows domains to reuse existing con-
tracts for their DCPs or define their own; the range of policies is only restricted
by the underlying blockchain language.

5.2 DCP Contents

We now describe the contents and format of DCPs. Figure 3 shows the format
of a sample DCP, and Table 1 describes the fields of a DCP. In short, a DCP
contains the basic information necessary to identify the domain, including its
DNS name and Ethereum addresses, and the specific DCP by its Valid From

and Version Number fields. A DCP also contains policy information, namely
the number of signatures required to authorize changes to the DCP and how a
certificate is deemed to be authorized or not.

The Valid From and Version Number fields of a DCP are used in part to
determine whether or not a certificate constitutes CA misbehavior. In particular,



Table 1. Explanation of DCP fields.

Field Use

Domain name identify domain for which the policy is active
Valid from specify start period of DCP’s validity
Version number identify version of this domain’s DCP
Payout address authenticate and receive payments for domain
Check Contract address of the DCP’s check contract
Update addresses (default empty) authorize DCP updates
Update threshold (default 1) threshold of payout/update addrs. for DCP updates

each RP is tied to a specific version of a domain’s DCP, and a given certificate
only triggers an RP if (1) the certificate’s validity began after the DCP’s Valid
from time, (2) the RP’s Version number field matches that of the DCP, and
(3) the check contract deems the certificate to be unauthorized (as described
below).

The check contract of a DCP is simply an Ethereum contract account that
provides a method check that takes in the serialized bytes of a public-key certifi-
cate (assumed in this paper to be X.509) and returns a boolean value representing
whether or not the certificate is authorized. Using contract accounts to perform
a certificate authorization check provides the generality necessary for domains
to specify a wide range of certificate policies.

Finally, the update addresses and update threshold protect a domain that
loses control of its payout address due to loss or compromise of its corresponding
private key. Because blockchains do not offer any mechanisms to recover a lost or
compromised private key, such an event can result in permanent loss of control
over a domain’s DCP. To prevent this lockout, we allow a domain to specify a
set of addresses (called update addresses) from which the domain can authorize
updates to its DCP. Moreover, a domain can also specify an update threshold,
a minimum number of addresses required to authorize a DCP update. The ad-
dresses updating the DCP may be the payout address or any of the update
addresses of the DCP.

We note that our recovery system is not foolproof, as the domain must main-
tain control over a threshold number of its addresses, but our approach provides
a way for a domain to recover from the loss or compromise of one or more of
its private keys, and the domain can tune this level of security to its liking. The
domain can even store some of its private keys offline or with trusted peers in
order prevent mass loss of compromise of its private keys.

5.3 Expressiveness of Check Contracts

We now present a range of possible check contracts in IKP. In particular, we
present five simple modules representing criteria that domains may use in their
check contracts and explain how each would work. We then present a modular
approach for combining multiple modules into a single check contract.



In order to specify modules based on fields of a certificate such as the issuer or
public key, we can write contract code that parses a certificate into its constituent
fields. We note that this approach allows each check contract to handle its own
certificate format or even multiple formats. Thus many certificate formats can
coexist in IKP DCPs. In this paper, we use the X.509 v3 format [25] in our check
contracts.

CA whitelisting. A check contract can enforce the use of certain CAs by ex-
tracting the Issuer Name field of the certificate and checking whether the issuer
is on a whitelist of CA names. In order to enforce a specific set of CA signing
keys, the check contract can instead extract the Authority Key Identifier ex-
tension for X.509 and check the identifier against a whitelist. While the whitelist
itself must be included in the check contract, we can take a modular approach
for checking the certificate issuer or authority key identifier against the whitelist
by encoding this logic in a contract.

Public key pinning. A check contract can implement a form of public key
pinning by extracting the Subject Public Key Info field of the certificate and
checking this key against a whitelist. Similarly to above, the checking logic itself
can be outsourced to an existing contract account, leaving the check contract to
simply specify the whitelist.

Short-lived certificates. A check contract can enforce the use of short-lived
certificates [79] by checking that a certificate’s validity period does not exceed a
given maximum value. This can be done by extracting the Not Before and Not

After fields from the certificate and calculating the time difference to determine
the length of the certificate’s validity period, and checking that this length is
less than a specified maximum allowable value.

Wildcard restrictions. A check contract can prevent the use of wildcard cer-
tificates by extracting the Subject Name field and checking that the wildcard
character * does not appear.

Certificate Transparency. A check contract can implement criteria similar
to those of Certificate Transparency by requiring proof that the certificate has
been logged. To check that a certificate has been logged, the check contract
must be able to process both SCTs (which prove that a certificate was received
by the log) and log proofs (which prove that a certificate is in the log). The
contract must also list one or more logs from which it accepts proofs, or rely on
an authenticated list of approved logs, such as that of Google.

Combining check contracts. A domain can use a combination of existing
check contracts by creating a check contract which in turn calls the check method
of each of the existing contracts. A domain can specify that all criteria in the
called check contracts must be fulfilled by using the AND Boolean relation, or
specify that some subset of the criteria must hold by using the OR relation. A
domain can thus create a check contract whose check method relies on other
contracts.



6 Reaction Policies (RPs)

In this section, we take an in-depth look at reaction policies. In particular, we
begin by explaining the principles behind the design of reaction policies. We
then describe the contents of reaction policies and present the two major types
of reaction contracts: client-facing contracts and payout contracts.

6.1 Design Principles

We begin by describing the design principles upon which we base our design of
RPs. In particular, we identify three main design principles for reaction poli-
cies: 1. certificate-independence (i.e., reactions should be defined independently
from certificates), 2. policy-adherence (i.e., reactions should be based on specific
domain policies), and 3. single-use (i.e., reactions should be executed at most
once). These principles help ensure that reactions to misbehavior do not cause
unintended incentives or consequences.

1) Certificate-independence. A reaction policy should be decoupled from
public-key certificates. Like certificates, reaction policies are negotiated between
CAs and domains. However, certificates and reaction policies are independent:
CAs issue reaction policies in addition to certificates. Reaction policies provide
a relying party with a measure of confidence in a domain’s certificates, and serve
a fundamentally different role from certificates in the IKP ecosystem.

2) Policy-adherence. A reaction policy should be bound to a specific policy
for a domain. In particular, a reaction policy should represent a reaction to
certificates that violate a set of criteria in a specific version of a domain’s DCP.
Because a DCP can change over time, binding a reaction policy to a specific DCP
version ensures consistency between the criteria for certificate authorization and
the reaction to the violation of those criteria. This principle also implies that a
domain must have a DCP before obtaining a reaction policy.

3) Single-use. A reaction policy should be limited to a single instance of CA
misbehavior. Because reaction policies may execute financial payments for which
funds must be available, enforcing single-use reaction policies helps ensure the
availability of such one-time resources for each instance of misbehavior. Thus
each time a CA issues a certificate that violates a domain’s DCP, one of the do-
main’s reaction policies is triggered and then terminated. We note that domains
can have multiple reaction policies at a given time to protect against repeated
CA misbehavior.

6.2 RP Contents

We now describe the contents and format of reaction policies. Figure 4 shows
the format of a sample reaction policy, and Table 2 describes each field of a
reaction policy. Like a DCP, a reaction policy contains identifying information
for the domain as well as for the issuing CA. A reaction policy also specifies a
validity period and identifies the version of the domain’s DCP for which it is



Reaction Policy (RP)
Domain Name: a.com
Issuer: CA C
Valid From: 18 Aug 2016 0:00:00 UTC
Valid To: 17 Aug 2017 23:59:59 UTC
DCP Version Number: 1
Reaction Contract: 0x5f8cde12…

DCP
Domain Name:
  a.com
Valid From:
  17 Aug 2016 0:00:00 UTC
Version Number:
  1
…

Reaction Contract (0x5f8cde12…)
Affected-Domain Payout: 100 ETH
Termination Payout: 10 ETH
Detection Payout: 50 ETH
Global Fund Payout: 5 ETH

Fig. 4. A sample RP with a payout reaction contract. The domain name and version
number in the RP must match those of the DCP, and the start of the RP’s validity
must be after that of the DCP.

Table 2. Explanation of RP fields.

Field Use

Domain name identify domain for which the RP is active
Issuer CA who issued the RP
Valid from specify start period of RP’s validity
Valid to specify start period of RP’s validity
Version number version of domain’s DCP used to trigger RP
Reaction Contract address of the RP’s reaction contract

active. Finally, the specific reactions that take place are specified as an address
to a contract.

Similarly to check contracts, a reaction contract is a contract account. The
contract provides a method trigger that, when called from the IKP contract,
performs a set of reactions. Reaction contracts can be financial, as described
in Section 6.3 or specify other actions to be taken against CA misbehavior. At
the end of the method, the contract destroys itself. The use of a reaction con-
tract allows domains and CAs to negotiate a wide range of reactions, providing
expressiveness.

We note that a reaction policy has a start and end time for its validity, rather
than only a start time as a DCP does. A reaction policy, like a certificate, has
a limited validity period, but can be prematurely terminated if the issuing CA
misbehaves. If a reaction policy is terminated, we split a specified amount of
funds between the domain and the issuing CA based on the validity period of
the reaction policy.

The reaction policy itself also provides two additional methods through the
IKP contract, namely terminate and expire. The terminate method can be
called by a domain if the CA issuing its reaction policy has misbehaved. The



expire method can be called by the issuer once the validity of the reaction
policy has ended.

6.3 Payout Reaction Contracts

We now provide a framework for payout reaction contracts, which specify a series
of financial payments that execute in response to CA misbehavior. Financial
payments are an important foundation to our study of automatic reactions, as
the means for exchanging them are built into blockchain-based cryptocurrencies,
they represent natural incentives, and can be concretely analyzed in contrast to
other responses, such as revoking a certificate. Our goal in designing a framework
for this class of reaction contracts is to provide a general model for who should
receive payments under different circumstances of misbehavior.

We identify four parties who should receive payments in case of CA misbe-
havior:
1. the domain, which we denote with D,
2. the issuer, which we denote with C,
3. the detector, which we denote with d, and
4. the global fund, which we denote with F .

As Figure 4 shows, a payout reaction contract specifies four payouts: 1. affected-
domain payouts, 2. termination payouts, 3. detection payouts, and 4. global fund
payouts. To ensure the availability of these funds, a fraction ε (where 0 < ε < 1)
of the total amount is escrowed in the contract itself. Though a reaction policy
specifies certain payout amounts, these values may differ if instead of a registered
CA an unregistered CA misbehaves. We call these scenarios internal misbehavior
and external misbehavior, respectively.

Affected-domain payouts. The affected-domain payout is paid to D in the
event that any CA issues an unauthorized certificate in D’s name. The payout
compensates D for the security risk it incurs by having an unauthorized cer-
tificate that could be used in a MitM attack. The reaction policy specifies the
affected-domain payout for internal misbehavior, which we denote as ai. In the
event of external misbehavior, the payout is a systemwide parameter ae.

Termination payouts. The termination payout is split between D and C if D
terminates the reaction policy. The termination payout compensates D for lost
trust in C after its misbehavior and contributes towards the costs of obtaining a
new certificate and/or RP. The split of the termination payout between D and
C is proportional to the amount of time left in the reaction policy’s validity.
To ensure that D receives some minimum amount of funds, we set a systemwide
parameter τ that D is guaranteed to receive. If we denote the termination payout
with t, the amount that the domain receives with tD, the amount that the issuer
receives with tC (thus t = tD + tC), and the fraction of the reaction policy’s
remaining validity, then

tD = τ + α(t− τ) (1)

tC = (1− α)(t− τ) (2)



Because 0 ≤ α ≤ 1, we can see that

τ ≤tD ≤ t (3)

0 ≤tC ≤ t− τ (4)

We note that although C does receive funds from the termination payout in
spite of its misbehavior, we show in Section 8 that C loses funds compared to if
it had behaved correctly.

Detection payouts. The detection payout is the amount paid to whomever re-
ports an unauthorized certificate for the domain to the IKP contract. The payout
provides an incentive for entities to monitor CA operations in search of unautho-
rized certificates. Domains can negotiate their own detection reward; high-profile
domains may choose to specify a higher detection payout than domains for which
security is less important. The reaction policy specifies the detection payout for
internal misbehavior, which we denote as δ. In the event of external misbehavior,
the payout is the reporting fee m, which we describe in Section 7.3.

Global fund payouts. The global fund payout is the amount paid to the global
fund when the reaction policy is triggered. The payout replenishes the global fund
to ensure that it has enough funds to continue its operation. As we will see in
Section 8, the payout amount is designed to compensate for any losses that the
global fund may incur, with high probability. We denote the global fund payout
by f .

6.4 Client-Facing Contracts

Client-facing contracts place specially-formatted events in the blockchain. Ap-
plications can monitor the blockchain for these events and use them to improve
client security. For example, a browser extension can look for certificates that
violate a domain’s DCP and if so, then not connect to the site based on these
events. The browser extension can also use these events to display custom error
messages to users, prompting them to check a certain public log for corroborating
evidence of the site’s certificate.

Client-facing contracts allow domains and CAs to negotiate a far wider range
of reactions that can include customized warning messages for specific users or
tailored browser behavior (stepping back in history, closing a browser tab, etc).
However, we leave a more detailed design and analysis of client-facing contracts
to future work.

7 Operational Considerations

In this section, we discuss the operation of IKP. Specifically, we describe the
processes for (1) registering a CA or DCP in the blockchain, (2) purchasing
certificates and reaction policies, and (3) reporting CA misbehavior.



Table 3. Explanation of fields in a CA registration.

Field Use

CA name identify CA
Valid from specify start period of information validity
Payout address authenticate and receive payments to CA
Public keys list of CA’s public keys
Update addresses (default empty) authorize updates to this information
Update threshold (default 1) threshold of payout/update addrs. for updates

7.1 CA and DCP Registration

CAs and domains follow similar processes to register in the blockchain. For
both CAs and domains, we want to ensure that the process of registering in the
blockchain is secure in the sense that for a given identifier such as a DNS name,
only the entity that owns the identifier in the existing Internet can claim and
maintain control of the identifier in IKP. We achieve this by requiring a proof
of control over an identifier whenever information associated with the identifier
is registered or updated.

Initial registration. A CA or a domain requests to initially register in the
blockchain by sending a transaction to the IKP contract containing the identifier
it wants to claim, the information to associate with the identifier, and a bootstrap
proof (described below). Domains simply associate a DCP with their name,
where the format of the DCP is given as described in Section 5.2. CAs associate
a registration with their name, where the fields of the registration are shown in
Table 3. In contrast to a DCP, a CA registration has no version number and
specifies a list of public keys used to issue certificates within IKP in place of a
check contract address.

Bootstrap proofs. In a nutshell, a bootstrap proof provides a way for a domain
or CA to leverage another PKI to show control over a desired identifier when
initially registering with the IKP contract. Because IKP is tied to TLS and
hence to CA and DNS names, we do not try to prevent name squatting within
a namespace unique to IKP; rather, we try to protect claims on names that
already exist today. We use a different type of bootstrap proof for CAs and for
domains.

A bootstrap proof for a CA is a chain of certificates to one of several seed
CAs. We can initialize the IKP contract with the keys of several existing root
CAs and require that any CA who wants to register a certain identifier present
a chain of certificates (up to some maximum length) rooted in a specified CA.
Among the top 5 CAs, who root the certificate chains for 92.2% of all HTTPS
sites [10], we found 33 certificates in major root certificate stores, each of whose
keys could be included in the IKP contract. Alternately, we could use the public
keys of a set of 28 root certificates which are present in a majority of popular
desktop and mobile operating systems and web browsers [69].



A bootstrap proof for a domain can be based on DNSSEC [14] or on TLS. In
the DNSSEC-based proof, a domain sends a chain of signatures within DNSSEC
leading back to ICANN’s root DNSSEC key, which can be verified in the IKP
contract. This approach allows domains to demonstrate control over their DNS
name within a PKI that has had far fewer compromises than that of TLS, and
also only requires a single root key to be stored in the IKP contract. However,
in a measurement we conducted using Censys [28] and Amazon’s Alexa Web
Information Service, we found that only 649 of the top 100,000 most popular
domains use both DNSSEC and HTTPS, comprising only 1.03% of all HTTPS
pageviews. We therefore also allow domains to register by sending a bootstrap
proof of at least three certificates from CAs that have registered in IKP, as well
as signatures with each of the private keys corresponding to these certificates.

Updates. A domain or CA can update its information by sending a transac-
tion to the IKP contract with its new DCP or registration. The domain or CA
sends this transaction from at least a threshold number of its payout and up-
date addresses. The IKP contract verifies that the information in each of these
transactions is the same, and then updates the entry in its storage. In order to
prevent minor updates of a domain’s DCPs from invalidating all of its existing
reaction policies, the IKP contract only increments the version number if the
check contract address is updated. A domain is responsible for obtaining new
reaction policies if it updates its check contract.

Funding accounts. The IKP contract maintains a balance for each CA. The
CA can deposit into and withdraw from this balance. The purpose of the funding
account is to allow CAs to escrow funds that they may need to pay out. While
escrowing some funds for payout reaction contracts is required as described be-
low, depositing into the balance allows a CA to provide potential customers with
greater confidence in its ability to pay out in case of misbehavior.

7.2 Purchasing Certificates and Reaction Policies

When a domain D wants to purchase a reaction policy or a certificate within
IKP, it first agrees upon the terms of the reaction policy or certificate, such as
the price and validity period. We want to ensure that a domain who purchases a
reaction policy or certificate in IKP obtains what it agreed on with the CA, and
conversely, we also want to ensure that the CA receives the appropriate payment
for the reaction policy or certificate that it has issued. In other words, we want
a fair exchange mechanism.

We can achieve such a fair exchange by having the IKP contract act as a third-
party escrow. Because the IKP contract’s operation is controlled entirely by its
code and is executed in a decentralized manner, we can use the IKP contract
like a third-party escrow service. In particular, a domain sends the payment for
the reaction policy or certificate to the IKP contract, along with the hash of
the reaction policy or certificate and the issuer. The issuer creates and sends
the reaction policy or certificate, along with any necessary funds, to the IKP
contract. In particular, for a payout reaction contract, let I = ai + t + δ + f .



Algorithm 1 IKP contract handling a misbehavior report.

1: procedure process report
Input: detector address d, certificate C

2: D ← get subject name from C

3: DCPD ← lookup D in DCP map
4: CC← get check contract address from DCPD
5: if CC.check(C) then
6: RPLD ← lookup reaction policy list for D
7: RP← get reaction contract address from RPLD[0]
8: RP.trigger(d)
9: delete RP from RPLD

10: end if
11: end procedure

Then the CA sends εI where 0 < ε < 1. This amount is escrowed in the payout
reaction contract. The IKP contract verifies that the reaction policy or certificate
hashes to the value provided by the client, and that the issuing CA is correct.
The funds are then transferred to the appropriate parties. In particular, the fee
ρ for the reaction policy is transferred to the issuer, and the appropriate fraction
of funds εI is transferred to the reaction contract.

The IKP contract maintains a mapping between domains and a list of their
currently-active reaction policies. When a domain purchases a new reaction pol-
icy, the IKP contract adds the new reaction policy to the domain’s corresponding
list ordered by the validity ending time. When misbehavior is reported, the IKP
contracts triggers a reaction in the first policy in the list. This scheme ensures
that the reaction to an instance of CA misbehavior is unambiguous while also
triggering the reaction policy that expires the soonest.

When choosing a CA from whom to purchase a reaction policy or certificate,
we note that a domain can query the CA’s balance and its outstanding liabilities
(the sum of all payouts in all of its payout reaction contracts). This provides
the domain with a measure of confidence of how solvent the CA is in case of
misbehavior. Moreover, the outstanding liability amount also serves to provide
the domain with a measure of the CA’s own confidence in its security of issuing
certificates.

7.3 Reporting Misbehavior

To report misbehavior, a detector needs to send an unauthorized certificate to
the IKP contract. To ensure that detectors are disincentivized from spamming
the IKP contract with spurious reports, we require each detector to pay a small
fee for reporting misbehavior, and set the constraint that all payout reaction
contracts must provide a detection payout greater than this fee. Thus any failed
report results in a net loss for a detector, discouraging detectors from, for exam-
ple, reporting every certificate to the IKP contract.

We also need to ensure that misbehavior reports (each containing an unau-
thorized certificate) cannot be stolen via frontrunning by blockchain miners. We



achieve this by using a protocol similar to the domain registration protocol of
Namecoin [63] to report misbehavior: a detector d first sends a “pre-report” con-
taining the reporting fee and a commitment hash H(C‖s) to the IKP contract,
where C is the certificate to report and s is a secret known only to d. After wait-
ing for a certain number of blocks, d opens the commitment by sending C and s
to the IKP contract. A miner or other entity that sees a pre-report does not know
s and hence cannot determine what C is until d opens the commitment. Because
reporting misbehavior required waiting for a set number of blocks, frontrunning
is not possible.

Upon receiving the detector’s report, the IKP contract checks that the certifi-
cate and secret sent by d matches the committed value sent earlier. The contract
then carries out the check shown in Algorithm 1. If the check contract returns
true for the certificate C, the IKP contract triggers the reaction contract for
the oldest of the domain’s reaction policies. We note that in addition to the
reporting fee, a detector d must also pay the gas costs for the work performed
by the IKP contract.

In some cases, a misbehaving CA may not have sufficient funds to pay out all
entities. In this case, the IKP contract divides the funds that the CA does have
and distributes them proportionally to the appropriate parties as they are in the
reaction policy. It also bans the CA from continuing to issue reaction policies
in IKP and raises an event in the blockchain that the CAdid not have sufficient
funds to pay out. The record of this event can then be used as a basis to pursue
other legal action against the misbehaving CA. We have acknowledged the prob-
lems with manually pursuing actions against misbehaving CAs; however, IKP
improves upon the existing ecosystem by providing some automatic reactions,
and only requiring manual intervention in extreme cases.

7.4 Client Lookups

We note that despite the benefits that IKP offers to domains whose certificates
are compromised, clients must also be protected from the use of unauthorized
certificates in MitM attacks. We achieve this through a lightweight browser ex-
tension that checks all certificates it receives in a TLS handshake using the
domain’s DCP. Because this check is done locally, the extension does not need
to carry out the check by sending a transaction in the blockchain; rather, it can
simply carry out the check locally, as long as it has the blockchain state. An
extension can instead use a feature such as Ethereum’s event logging to check
for specific unauthorized certificates, providing efficient proofs of misbehavior
suitable for light clients, which confirm such events without downloading the
entire blockchain at the cost of trusting other full nodes to do so. This approach
allows clients to defend against unauthorized certificates that have already been
reported. Because of the incentives offered to detectives, we anticipate that unau-
thorized certificates will be reported very soon after discovery.



Table 4. List of payments sent for each event. Note that external misbehavior can
only occur in the non-issuer scenario.

Event From To Amount

Register CA C F rC

Register domain D F rD

Issue reaction policy D F ρ+ gD
C F εI + gC
F C ρ

Expire reaction policy F C εI

Terminate reaction policy F D tD
F C εI − tD

Report false misbehavior d F m

Report internal misbehavior d F m
(issuer) F D ai + tD

F d δ
F C εI − tD − δ − f

Report internal misbehavior d F m
(non-issuer) F D ai + tD

F d δ
F R εI − tD
C F ai + δ + f

Report external misbehavior d F m
(non-issuer) F D ae + tD

F d m
F R εI − tD

8 Analysis

In this section, we analyze the design of IKP. In particular, we analyze the flow
of payments among the different entities to determine what constraints must
hold in order to guarantee that entities benefit from behaving correctly and are
punished for misbehaving.

8.1 Model

In our analysis, we consider the payments in Table 4, which shows the series
of payments that occur for each action in IKP. We then consider two major
scenarios:
1. The issuer scenario: A CA C that has issued a reaction policy to D issues a

certificate to D. In doing so, C can issue a certificate that complies with D’s
DCP or one that does not. A detector d can then choose whether to report
this certificate or not.



Table 5. Rewards for each entity in the three possible cases of the issuer scenario.

Entity Unreported Behave Misbehave

D −ρ −ρ −ρ+ ai + tD
d 0 −m −m+ δ
C ρ ρ ρ− ai − tD − δ − f
F 0 m m+ f

2. The non-issuer scenario: A CA C that is not registered in the blockchain
issues a certificate for D, who has a reaction policy issued by a different CA
R. In doing so, C can choose whether to register in IKP or not, and whether
to issue an authorized or an unauthorized certificate. After this, a detector
d can choose whether to report the certificate or not.

For each case, we consider the payments made in the series of events that must
have occurred and can determine the reward of each entity by summing the
payments it received and subtracting the sum of the payments it made. We note
that in our analysis we do not consider payments made outside of IKP, as we
cannot enforce any guarantees on these amounts.

For each scenario, we want to derive constraints for which the following is
true:
– a domain with a DCP profits from internal misbehavior,
– a CA who internally misbehaves loses money,
– a CA who externally misbehaves cannot profit, and
– a detector who reports misbehavior makes money.

In order to ensure that a misbehaving CA cannot profit from misbehavior, we
need to consider collusion attacks in IKP. In particular, we must verify that a
misbehaving C cannot collude with other entities, thus summing their rewards,
to gain a profit. We observe that C will only collude with entities that receive
a positive reward on their own, but can purposely misbehave in order to trigger
reaction policy payouts. To ensure that no possible collusion can result in a profit
for C, we sum the rewards of all positive-reward entities with those of C to find
the maximum profit that C can receive.

In our analysis both scenarios, we assume that the CA C has registered in
the blockchain, and that the domain D has registered a DCP in the blockchain.
We do not consider these in our analysis due to the fact that they occur once
and thus should not factor into the analysis of a single reaction policy’s lifetime,
which may occur (with its costs) many times.

8.2 Issuer Scenario

For the issuer scenario, we consider whether or not C misbehaves, and whether or
not d reports the misbehavior. We assume that the issuance has taken place and
the appropriate payments made. We observe that if d does not report any mis-
behavior, then the reaction policy will eventually expire, regardless of whether
C misbehaves. Thus we consider three cases: 1. d does not report misbehavior,



Table 6. Rewards for each entity in the six possible cases of the non-issuer scenario.

Entity Unrep. Behave Misbehave

Registered

D −ρ −ρ −ρ+ ai + tD
d 0 −m −m+ δ
R ρ ρ ρ− tD
C −rC −rC −rC − ai − δ − f
F rC rC +m rC +m+ f

Unregistered

D −ρ −ρ −ρ+ ae + tD
d 0 −m 0
R ρ ρ ρ− tD
C 0 0 0
F 0 m −ae

2. C behaves, but d reports the certificate, and 3. C misbehaves and d reports
the certificate.

Table 5 shows our results. We observe that in the case of reported misbe-
havior, D receives an additional ai + tD than it would otherwise. In order for
D to profit, ai + tD > ρ. Since by Equation 3 we know that τ ≤ tD, we set the
constraint ρ < ai + τ . We also observe that if d reports misbehavior correctly,
it receives −m + δ. Thus for d to make a profit, δ > m must hold. Finally, we
observe that for C to lose money due to its misbehavior, ρ < ai + tD + δ + f .
Again, since τ ≤ tD, we have the constraint ρ < ai + τ + δ + f . However, this
constraint is subsumed by the first, which sets a tighter bound on ρ.

To avoid collusion attacks in the issuer scenario, we consider the entities
besides C receiving a positive reward. In the issuer scenario we observe that
though both D and d profit in the case of misbehavior, if we sum the rewards of
D, d, and C, the result is −m− f , and thus C does not profit.

8.3 Non-Issuer Scenario

In the non-issuer scenario, we consider whether or not C registers in the blockchain,
whether or not C misbehaves, and whether or not d reports misbehavior. We
again assume that D has purchased a reaction policy; however, since C is not the
issuer of the reaction policy, we denote the issuer as R. We again observe that
if d does not report misbehavior, then the reaction policy expires and C’s mis-
behavior status does not matter. However, we need to consider C’s registration
status, and thus we analyze six cases instead of three.

Table 6 shows our results. We observe that if C has registered in the blockchain,
then D and d have the same rewards as in the issuer scenario. However, the other
rewards provide us with more constraints. We observe that R should still profit
since it has not misbehaved, and thus ρ > tD. Because tD ≤ t, we have the



constraint ρ > t. For C, there is the additional penalty of the registration cost
rC . However, C does not get ρ in this case, since it did not issue D’s reaction
policy. Thus while C faces the same penalty as for the issuer scenario, it receives
ρ+ rC less overall.

To avoid collusion attacks in the non-issuer case, we again consider the enti-
ties besides C making a positive reward. In the case that C has registered in the
blockchain, we observe that D, d, and R all have a positive reward. However,
if we sum the rewards of D, d, R, and C, we still end up with a total reward
of −rC −m − f , resulting in a negative reward for C. In the case that C does
not register in the blockchain, however, we observe that C does not need to pay
anything, and thus colluding with any entity with a positive reward results in
net profit. Colluding with R does result in a net profit, but the profit is less
than collusion would yield if C behaved, and thus this is not a viable strategy
for C. However, C can collude with D if the reward −ρ + ae + tD is positive.
To avoid this, we must set a constraint so that this reward is nonpositive, that
is, ρ ≥ ae + tD. Observing that tD ≤ t, we set the constraint ρ ≥ ae + t, which
prevents collusions attacks by C. For the same reason, we also set d’s reward to
m instead of δ in this case. While it may seem counterintuitive to penalize D for
such an incident, we observe that D still makes a higher reward than it would
without reporting the misbehavior; thus for D reporting the misbehavior is the
better strategy, even at a loss.

9 Evaluation

In this section, we investigate the technical feasibility of IKP in today’s blockchains.
In particular, we detail our prototype implementation in Ethereum and describe
the changes necessary for full deployment. We then analyze the risk of CA mis-
behavior today in an attempt to estimate the fraction ε of funds in a payout
reaction contract that should be escrowed.

9.1 Prototype Implementation

We implemented IKP in Solidity, a high-level Ethereum language that resem-
bles JavaScript. We wrote the entire IKP contract in 166 lines of Solidity code.
For comparison, we note that a simple Solidity implementation of Namecoin
in Ethereum requires fewer than 10 lines of code. Using a Solidity compiler, we
estimated the approximate computational steps (in Ethereum’s gas) and approx-
imate cost (in US dollars) for creating the IKP contract and for each operation
supported by the IKP contract. For the purposes of estimation, we assumed that
all strings representing CA identifiers and domain names were constrained to a
maximum of 32 bytes, and that all arrays were of fixed length. To convert the cost
in gas to USD, we used the current standard price of 20 Gwei ≈ 2.03×10−7 USD
per unit of gas.

Table 7 shows the costs of various operations in gas and USD. Looking at
the relative costs, we make several observations. As expected, DCP registration



Table 7. Cost of various IKP operations.

Approximate Cost Approximate Cost

Operation Gas USD Operation Gas USD

Register CA 91 400 $0.0186 Register DCP 212 581 $0.0432
Update CA 34 656 $0.0070 Update DCP 181 226 $0.0368
Order RP 40 599 $0.0082 Pre-report cert 40 639 $0.0083
Create RP 226 892 $0.0461 Report cert 149 284 $0.0303
Terminate RP 99 461 $0.0202 Send payouts 107 962 $0.0219
Expire RP 39 823 $0.0081 CA Balance 39 716 $0.0081

IKP Contract Creation 628 640 $0.1277
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Fig. 5. Distribution of 1-year certificate costs.

is more expensive than CA registration due to the size of the DCP that must
be stored in the blockchain by the IKP contract. We also note that reporting
misbehavior is comparatively expensive, since when misbehavior is detected, the
function must determine which case of misbehavior has occurred and send the
payments accordingly. We note that all costs, including creating the IKP con-
tract, are well below $1. However, several features proved to be a challenge. The
cost of parsing certificates and verifying signatures other than ECDSA signa-
tures in Ethereum is currently prohibitively expensive. In future work, we plan
to make changes to the underlying Ethereum virtual machine to build in these
types of functions, thus allowing us to deploy a production version of IKP. Be-
sides these features, we note that the cost of the other operations in Ethereum
is relatively low, making IKP a feasible solution once we have certificate parsing
and alternative signature verification algorithms.

9.2 Risk Analysis

In order to evaluate the real-world risk of CA misbehavior, we collected data
measuring a CA’s risk assessment. We examined each of the standard TLS cer-
tificate offerings of all CAs with a market share of at least 0.1%, of which there
are 20 CAs [10]. For each certificate, we noted the cost of a 1-year certificate
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(ignoring discounts for purchasing multi-year certificates) and the relying party
warranty provided with the certificate. In total, we examined 70 certificate of-
ferings across 18 CAs (Deutsche Telekom did not specify a warranty amount,
and Let’s Encrypt does not offer a warranty because its certificates are free). For
each certificate available for purchase, we also calculated the risk as the price
divided by the warranty. We note that this is an upper-bound for the actual risk
that the CAs face.

Figure 5, Figure 6, and Figure 7 show the CDF for the cost, warranty, and
calculated risk of each of these certificates, respectively. Of the certificates we ex-
amined, the prices ranged from $7 (Starfield’s Standard SSL) to $1999 (Syman-
tec’s Secure Site Wildcard), and the warranty amounts ranged from $10k to
$10M. Some of these warranties, however, had caveats; for example, IdenTrust,
who offers a $10M warranty, stipulates that each transaction is covered to a
maximum of $100k and each relying party is covered to a maximum of $250k.

As shown in Table 8, the risk assessments for each certificate varied widely,
ranging from around 0.001% up to almost 8.5%. To be conservative, we can
estimate that any CA likely to be used in practice will have a risk assessment of
at most 10%, and we can thus reasonably assume that of all certificates issued
by a CA, at most 10% will be unauthorized (if the CA is not malicious). We
thus propose using a value of 0.1 for ε.



Table 8. Risk upper-bounds inferred from CA certificate and warranty amounts (in
US dollars) from CA websites.

CA Certificate Cost Warranty Risk

Highest-Risk

GlobalSign [5] Wildcard $849 $10, 000 8.49e−2
GlobalSign DomainSSL $249 $10, 000 2.49e−2
StartCom [9, 65] Ext. Validation $199 $10, 000 1.99e−2
StartCom Org. Validation $119 $10, 000 1.19e−2
Entrust [7] Wildcard $699 $100, 000 6.99e−3
. . . . . . . . . . . . . . .
Certum [3] Commercial SSL $25 $222, 000 1.13e−4
Starfield [8] Standard SSL $7 $100, 000 7.00e−5
Comodo [4] EV SSL $99 $1, 750, 000 5.66e−5
IdenTrust Multi Domain SSL $299 $10, 000, 000 2.99e−5
IdenTrust [6] Standard SSL $99 $10, 000, 000 9.90e−6

Lowest-Risk

10 Discussion

In this section, we discuss various limitations and future work of IKP. We also
clarify several points that the attentive reader may have raised.

Blockchain Weaknesses. Blockchains have several weaknesses which have
been demonstrated in practice. For example, large pools of miners have at times
controlled a majority of hashing power in the network [20], allowing double-
spending attacks, suppression of selected transactions, and other subversion of
blockchain consensus. As discussed in Section 11, these attacks can also take
place with miners that control less than half of the network’s hashrate. Another
weakness is that the IKP contract has not been verified, which may result in
code vulnerabilities such as the one that plagued the Decentralized Autonomous
Organization (DAO) in Ethereum [21]. These vulnerabilities may result in hard
forks that perform otherwise invalid transactions based on community consen-
sus, as the DAO exploit did [22]. These weaknesses is particularly relevant due
to the large amount of funds that may be stored in the IKP contract. In this
paper, we considered both of these weaknesses out-of-scope.

Compelled certificates. In this work, we did not explicitly attempt to defend
against nation-states who can compel CAs to issue unauthorized certificates.
This type of adversary will likely not worry about cost, and in any case the CA
will bear the brunt of responsibility. However, this adversary will still be unlikely
to mount such an attack due to the browser extension that protects IKP clients
from MitM attacks, irrespective of the payments among other entities.

Deployment Incentives. In addition to detectors and miners, all domains,
CAs, and logs have incentives to adopt IKP. A domain receives compensation or
any misbehavior that affects its own security, and due to the blockchain’s high



availability is quickly alerted of any such misbehavior. The deterrence provided
by IKP’s automatic handling of misbehavior reduces the risk of attacks and
provides the domain with greater confidence in its CA, particularly IKP CAs
with good reputations.

CAs, particularly the majority of CAs who have never misbehaved, can prove
their good reputation using the public nature of the blockchain. CAs receive the
added benefit of the profits from RPs in case of good behavior. Moreover, RPs
provide a value-added service for CAs to compete with free certificate efforts
like Let’s Encrypt [31]. Although Let’s Encrypt does not offer EV certificates
or extra services as other CAs do, RPs provide an additional extra service that
unlike EV verification or customer support can be completely automated.

Logs, like any entity, can can act as detectors or miners, submitting or pro-
cessing information that proves CA misbehavior. However, public logs have the
advantage that the necessary information is locally available, though at the cost
of maintaining high availability and large databases for the security of the sys-
tem. In IKP, however, they can receive financial rewards for doing so. The ad-
vantage of logs for detection also incentivizes the creation of more logs, thus
mitigating the effect of a single misbehaving log.

Clients can use the browser extension to protect themselves against malicious
certificates. Because DCPs can handle a general class of policies, we can provide
protection as good as existing log-based systems with the additional advantage of
financial incentives. Additionally, clients can develop additional extensions that
for example will automatically report any detected unauthorized certificates.

Complementing Log-based PKIs. Using IKP in conjunction with log-based
PKIs such as CT [51], ARPKI [16] and PoliCert [78] offers a multi-layer PKIs
defense: log-based PKIs provide provable security guarantees and a foothold in
current deployment, while IKP offsets the cost of the visibility of CA behavior
by incentivizing log operation and usage. Components of IKP can also improve
existing log-based PKIs: the blockchain can be used to provide globally unique
and consistent domain policies (needed in PoliCert) or to confirm the latest state
of a log’s database (needed in ARPKI).

Future Work. We next plan to explore the following improvements to IKP.
First, we plan to develop further reaction policies to explore what other reactions
are effective against CA misbehavior. In conjunction with this effort, we also plan
to conduct usability testing with our browser extension to see which reactions
are most helpful to users. Finally, we believe that incentivizing logs in systems
like Certificate Transparency provide a nice complement to our work and hope
to bring that to fruition.

11 Related Work

In this section, we discuss work related to IKP. In particular, we cover four main
areas: log-based PKIs, alternatives to CA-based PKIs, incentives on blockchains,
and insurance schemes. We do not describe the workings of log-based PKIs here;
instead, we refer the reader to Section 2 for an overview.



Log-based PKIs. CT [51] was the first to propose the use of public logs in their
current form, though earlier proposals such as Sovereign Keys [30] used similar
entities. CT, however, provides no support for revocation, nor does it provide
any information as to whether the logged certificates are authentic. Revocation
Transparency [50] and CIRT [71] both provide mechanisms to enable revocation
checking in public logs. AKI [42] embeds policies into certificates that enable
recovery from private key loss or compromise, and uses a checks and balances
system among clients, domains, CAs, logs, and validators (who monitor logs) to
detect and report misbehavior. ARPKI [16] presents a formally-verified exten-
sion of AKI that provides stronger security guarantees. PoliCert [78] separates
policies from certificates and supports multiple certificates per domain, hier-
archical policies that apply to all subdomain certificates, and domain-specified
error handling. While the idea of policies inspired DCPs in IKP, no log-based
PKI offers incentives for correct behavior or enables automatic response even if
misbehavior is detected.

Alternatives to CA-based PKIs. Some previous approaches have also sought
to diminish or eliminate the role of CAs by providing authenticity through other
sources. For example, DANE [40] allows domains to place public keys or cer-
tificates in DNSSEC [14], but does not preclude CAs. Additionally, the secu-
rity of DNSSEC inherently relies on a PKI of its own roots at ICANN, which
is a single point of failure for the system and has not been widely deployed.
Public key pinning schemes such as Chrome’s HTTPS pin [45], HPKP [32], or
TACK [53] store information about a domain’s public key at the client browser.
Perspectives [80] and Convergence [52] leverage the public keys observed by no-
tary servers throughout the Internet to detect targets MitM attacks. However,
in both of these approaches, it is difficult to determine whether a domain has
legitimately changed its key or if a MitM attack is taking place, since the do-
main does not provide any other information such as a DCP to characterize its
certificates.

Other work has sought to move PKI functionality onto the blockchain. For
example, Blockstack [12] (formerly OneName) leverages the Bitcoin blockchain
to provide a name registration service that also allows entities to bind public
keys to their names. However, Blockstack uses its own namespace and a pricing
rule based on the name length and the presence of nonalphabetic characters,
and does not attempt to secure names that exist in today’s DNS. Certcoin [34]
leverages Namecoin [62] to implement a blockchain-based PKI, storing identity
information in a Merkle hash tree and using the Kademlia DHT [55] for fast
lookup. However, Certcoin does not protect existing names, and does not pro-
vide any recoverability for identities that are falsely claimed on the blockchain.
EthIKS [17] does not implement a PKI on its own, but rather uses the Ethereum
blockchain to audit a centralized key servers for CONIKS [56]. However, neither
EthIKS nor CONIKS provides any means for responding to equivocation or other
misbehavior by key servers.

Blockchain-based incentives. Most previous studies of incentives in blockchains
have been concerned with the incentives of mining. In particular, the selfish min-



ing attack [33] shows that mining in the Bitcoin network is not incentive com-
patible. Subsequent work shows further improvements on the strategy [72] and
how selfish mining can be composed with network attacks such as the eclipse at-
tack [39] to increase the revenue of selfish mining [64]. Other work has examined
incentives that can be built on top of the blockchain. For example, Andrychow-
icz et al. examined incentives to ensure the security of multi-party computation
in the Bitcoin blockchain [13]. They showcase the feasibility of timed commit-
ments in Bitcoin as well as a lottery protocol. Kumaresan and Bentov examined
incentivization for verifiable computation and proposed a mechanism to non-
interactively reward bounties for solving hard problems [43]. The presented ap-
proach, however, is impractical as it suffers from the limitations of Bitcoin’s lan-
guage script and from the hybrid model that relies on ideal functionalities, which
are implemented through costly garbled circuits and zero-knowledge proofs.

Insurance schemes. Even before cryptocurrencies, the idea of electronic in-
surance policies were used to evaluate services in distributed systems [44]. The
idea of insurance was also proposed as an example of an authentication met-
ric that followed good design principles [70]. However, both of these proposals
offer little accountability and cannot be effectively realized without cryptocur-
rencies. Certificates-as-an-Insurance (CaaI) was the first to propose the idea of
integrating insurance into TLS certificates as a means of balancing CA control
and liability, but only presented challenges and principles for desgning such a
system [54]. Our work on IKP adds a cryptocurrency-based instantiation of their
model as well as proofs of incentivization compared to log-based PKIs.

12 Conclusions

In this paper, we proposed IKP: smart contracts for detecting, publicizing, and
automatically responding to CA misbehavior. We described the full process from
registering a CA to claiming reaction payouts. We developed a model describing
reaction payouts, which helped us discover the constraints to guide the nego-
tiation of reasonable reaction policies. Finally, we discussed the deployability
incentives in today’s Internet and help guide such a realization of IKP. Our
work does not stop all misbehaving CAs, nor does it always enforce account-
ability on CAs that are misbehaving. We observe, however, an urgent need to
incentivize good CA behavior in this way in order to make TLS more secure,
and we argue that IKP is a first concrete step towards that goal.
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