
1

Randomized Mixed-Radix Scalar Multiplication
Eleonora Guerrini, Laurent Imbert, and Théo Winterhalter

Abstract—A set of congruence relations is a Z-covering if each integer belongs to at least one congruence class from that set. In this
paper, we first show that most existing scalar multiplication algorithms can be formulated in terms of covering systems of congruences.
Then, using a special form of covering systems called exact n-covers, we present a novel uniformly randomized scalar multiplication
algorithm with built-in protections against most passive side-channel attacks. Our algorithm randomizes the addition chain using a
mixed-radix representation of the scalar. Its reduced overhead and purposeful robustness could make it a sound replacement to several
conventional countermeasures. In particular, it is significantly faster than Coron’s scalar blinding technique for elliptic curves when the
choice of a particular finite field tailored for speed compels to double the size of the scalar, hence the cost of the scalar multiplication.

Index Terms—Scalar multiplication, side-channel attacks, randomized algorithms, covering systems of congruences, mixed-radix
number system

F

1 Introduction

Exponentiation in multiplicative subgroups of finite
fields and jacobians of low genus hyperelliptic curves is

a crucial operation for many public key cryptosystems. For
instance, it is used extensively in the generation/verification of
electronic signatures (e.g. using DSA/ECDSA) and in the en-
cryption/decryption phases of RSA or DL-based algorithms.
In general, data manipulated during these computations
should absolutely be kept secret as even a small amount of
information may be maliciously exploited by an attacker, e.g.
for forging one’s signature or for acquiring some confidential
information. This constraint appears to be much harder to
satisfy than one might expect. For the past twenty years,
following the pioneer work of Kocher [1] on Side-Channel
Attacks (SCA), it has been a designer’s nightmare and an
extraordinary playground for researchers.

Side-channel attacks come in many different flavours and
constitute nowadays a vast arsenal for the attackers. At the
higher level, one usually considers distinctly active attacks and
passive attacks. Those of the first kind are usually invasive and
require physical access to the cryptographic device. They try
to modify the behaviour of a cryptographic algorithm using
various sources of perturbation such as laser beams, clock
jitters or disturbance voltage. The usual countermeasures
consist in checking the cryptographic protocols for faults [2].
The second kind of attacks may or may not require physical
access to the device. They aim at measuring some well-chosen
physical information (power consumption, electromagnetic
emanations, computation time, etc.) that leak from the device
during sensitive computations in the hope that these observa-
tions will reveal (part of) some secret data. In turn, this large
family of passive attacks splits into: simple attacks which only
require one or a small number of executions in order to recover
the secret (e.g. Simple Power Analysis [1]), and advanced
attacks which need a very large number of observations and
the use of statistical tools (e.g. Timing attacks [1], Differential

• E. Guerrini and L. Imbert are with the LIRMM, CNRS, Univer-
sité de Montpellier, France.

• T. Winterhalter is with the ENS Cachan, Université Paris-
Saclay, France.

Manuscript received October 28, 2016.

Power Analysis [3], template attacks [4]). Simple attacks are
usually defeated using highly regular algorithms, whereas
advanced attacks may be thwarted using various random-
ization techniques. Advanced statistics are also at the core
of Horizontal attacks [5], [6] but unlike the above-mentioned
advanced attacks, they only require a unique trace, making
classical randomization techniques ineffective.

In parallel to the discovery of these attacks, a lot of
research has been conducted towards designing clever and
efficient countermeasures at various levels. As a result, most
of today’s publicly known SCA can be counteracted, at least
when considered individually. However, in order to safeguard
implementations against all known attacks, several counter-
measures must be carefully stacked together, while ensuring
that this combination of independent, yet good countermea-
sures does not weaken the overall implementation. Inevitably,
each of these protection layers implies some overhead, e.g.
computation time, circuit area, etc. Hence, low-cost solutions
and protections which impede several attacks at once should
be considered with great interest. The ultimate, all-in-one,
protection is yet to be discovered!

The main contribution of this work is a novel elliptic
curve scalar multiplication algorithm with built-in protections
against differential and correlation attacks, attacks based on
the hidden Markov model, timing attacks, SPA-type attacks
and horizontal collision correlation attacks. It offers, by de-
sign, a high level of randomization thanks to the proper use
of exact covering systems of congruences. To the best of our
knowledge, this is the first algorithm which hindes so many
different types of attacks at once. As a side contribution,
we show that many algorithms from the literature can be
expressed in the same framework. We assess the robustness
of our solution by showing that all known relevant attacks
remain unsuccessful.

1.1 Randomization as a countermeasure
As stated above, the vast majority of advanced attacks require
multiple executions of the algorithm. They can be circum-
vented using various randomization techniques. In the context
of elliptic curves for example, several randomization options

2

(scalar randomization, base point blinding, random projective
coordinates) were proposed by Coron in [7]. These techniques
are commonly used to counteract differential power/EM anal-
ysis, refined power analysis, zero-value analysis and other
types of advanced attacks. For a good survey on securing ECC
implementations, see [8], [9].

A less frequent alternative to Coron’s countermeasures
is the randomization of the scalar multiplication algorithm
itself. This can be achieved by taking random decisions in the
course of the algorithm. This approach is not new ; the MIST
algorithm by Walter [10] or the Leak Resistant Arithmetic
(LRA) concept by Bajard et al. [11] are two examples of
such randomized algorithms proposed in the RSA context.
In the elliptic curve setting, Oswald and Aigner proposed
the use of randomized addition-subtraction chains [12]. Their
solution was broken using the so-called hidden Markov Model
(HMM) cryptanalysis by Karlof and Wagner [13]. Another
randomization approach of the same kind was proposed by
Ha and Moon [14]. Their solution based on Binary Signed
Digit (BSD) recodings [15] was broken in [16]. More recently,
Méloni and Hasan generalized the fractional w-NAF method
by allowing random choices for the expansion digits [17].

Most of these randomization strategies were rather ele-
mentary and have logically been broken. Nevertheless, we
believe that there are still good reasons to pursue investi-
gations on robust randomized algorithms. Quite surprisingly,
a first motivation concerns practical efficiency. In the most
prominent randomization technique proposed by Coron, the
private scalar k is masked by adding a random multiple of
the group order. Thus, instead of computing [k]P for a point
P on the elliptic curve E, one evaluates [k + rN]P , where
r is a random integer and N is the order of E. The bits of
k are thus masked using a different random value at each
execution. In [7], Coron suggested a nowadays far too small
20-bit random value. The question regarding the “good” size
for r is crucial and deserves some thought. For the sake of
efficiency, many elliptic curves are defined over special finite
fields, for example modulo primes that are very close to a
power of two. In this case, due to the Hasse bound, the order
N of the curve is also close to that same power of two. Thus,
in order to blind all the bits of k, the size of r should not be
too small.

As an example, consider curve25519, a record-breaking
elliptic curve in Montgomery form proposed by Bernstein
in [18]. It is defined by the equation y2 = x3 + 486662x2 + x,
over the 255-bit prime field with 2255−19 elements. The binary
expansion of the order N of curve25519 reveals a sequence of
127 consecutive zeros:

N = 0x10000000000000000000000000000000 . . .

. . . 14def9dea2f79cd65812631a5cf5d3ed

Let r = 0xa3787bb9c16b2b7d, be a 64-bit random integer.
The binary expansion of rN also contains a long sequence of
zeros:
rN = 0xa3787bb9c16b2b7d0000000000000000d53cbb . . .

. . . 429156e3da99b82c008afa3bcec4b0646efb049b9

Thus, when a secret scalar, say

k = 0x9db98047d18f8e8505b55abad0ea873a . . .

. . . 1080c69a3ab0755b2e8dfb1e939b3fd

is added to rN , the binary expansion of the result discloses
both the bits of r and the most significant bits of k:

k + rN = 0xa3787bb9c16b2b7d|9db98047d18f8e85| . . .
. . . daf215fd62416b14aa38f29ac5aab129f33e5f8d8e9fdb6

Observe that even if r was chosen twice as large, although
rN would not contain a sequence of consecutive zeros, the
binary expansion of r could entirely be revealed by a simple
analysis, rendering the randomization ineffective.

For that reason, Bernstein recommends a 256-bit random
value, for curve25519. The same guidance holds for many
other elliptic curves, in particular most of the curves meeting
all SafeCurves requirements [19]: M-221, E-222, curve1174,
E-382, M-383, curve383187, curve41417, M-511, E-521 . It
also applies to the elliptic curves in the Weierstrass and
Edwards models recently introduced by Bos, Costello, Longa
and Naehrig in [20]. Both those defined modulo pseudo-
Mersenne primes, called w-xxx-mers and ed-xxx-mers for
xxx ∈ {255, 256, 383, 384, 511, 512} and those defined modulo
primes of the form 2α(2β − γ) − 1 denoted w-xxx-mont
and ed-xxx-mont for xxx ∈ {254, 256, 382, 384, 510, 512} are
concerned.

For all those curves, choosing a random value r of size the
size of p yields a 100% overhead for the scalar multiplication!
With this in mind, sturdy solutions based on randomizing the
addition chain may provide efficient, acceptable alternatives.

A second good reason to investigate novel alternative so-
lutions is dictated by the history of cryptography. How many
algorithms have eventually been broken after being advocated
as perfectly secure? In the recent years, quite a few very pow-
erful attacks were introduced which broke implementations
that were thought unscathed thanks to widely acknowledged
countermeasures. In [6] for example, Bauer et al. introduced
the so-called horizontal collision correlation analysis and de-
feated ECC implementations that were considered secure until
then. In particular, their attack is effective against various
atomic schemes [21], [22], [23] and unified formulae [24], [25],
two well established countermeasures against SPA. What is
worth noticing about this attack, is that it refutes one of
the most established claim that both atomicity and unified
formula do prevent from differentiating a point addition from
a point doubling. Even more recently, Nascimento et al. [26]
presented a powerful attack against a constant-time Mont-
gomery ladder implementation with projective point random-
ization. Their attack directly targets the cmov (conditional
move) operation and only requires a single trace. Once again,
a well-known assumption has been turned down.

2 A new randomized scalar multiplication
In this section, we present a novel randomized mixed-radix
scalar multiplication algorithm. It is based on some nice
properties of so-called covering systems of congruences.

2.1 Covering systems of congruences
A covering system of congruences (CSC) is a finite set

S = {r1 (modm1), . . . , rt (modmt)}

such that every integer satisfies at least one congruence rela-
tions from S. In general, such covering sets are not difficult

3

to construct. A simple, non-trivial example of a distinct (all
moduli are different) covering system is given by the set:

{0 (mod 2); 0 (mod 3); 1 (mod 4); 1 (mod 6); 11 (mod 12)}.

In the following, we shall conveniently use the compact
expressions r (m) or (r,m) to denote the congruence relation
r (modm). And when a CSC contains several congruence rela-
tions modulo the same modulusm, we shall use r0, . . . , rw (m)
in place of r0 (modm), . . . , rw (modm).

A covering system is called an n-cover if each integer is
covered at least n times ; it is called an exact n-cover if each
integer is covered exactly n times. For example, the set:

{1 (2); 2, 3 (4); 0, 2, 4 (6); 0, 1, 4, 5 (8)} (1)

form an exact 2-cover. It is illustrated in Fig. 1.
It is easy to prove that the covering property is guaranteed

as soon as all the integers modulo ` = lcm(m1, . . . ,mt) are
covered. In the example given in (1), ` = lcm(2, 4, 6, 8) = 24.

1 3 5 7 9 11 13 15 17 19 21 23
0 2 4 6 8 10 12 14 16 18 20 22

1 (2)
2 (4)
3 (4)
0 (6)
2 (6)
4 (6)
0 (8)
1 (8)
4 (8)
5 (8)

Figure 1. The set {1 (2); 2, 3 (4); 0, 2, 4 (6); 0, 1, 4, 5 (8)} is an exact
2-cover. Each row corresponds to a congruence class. The dots indicate
which integers are covered by each class. The number of dots in
each column indicates the number of congruence classes covering the
corresponding integer. One may observe that there are exactly 2 dots
per column.

Problems concerning covering systems of congruences were
among Erdős’ favorites. One of his conjectures, the minimum
modulus problem, was only solved negatively by Hough in
2013 using the Lovász local lemma [27]. The non-existence of
a distinct covering system whose moduli are all odd is still an
open problem.

2.2 CSC-based scalar multiplication
The link between covering systems and scalar multiplication
algorithms is immediate. Let E an elliptic curve, P a point on
E, and k ∈ Z. Then it is clear that

k ≡ r (modm)⇒ [k]P = [r]P + [m]([(k − r)/m]P). (2)

For example, the right-to-left double-and-add algorithm fol-
lows directly from the exact 1-cover given by the trivial
covering set {0 (mod 2); 1 (mod 2)}:

[k]P =

{
[k/2]([2]P) if k is even
[(k − 1)/2]([2]P) + P if k is odd

In the world of (hyper)elliptic curves, many scalar multi-
plication algorithms have been proposed (m-ary, NAF, win-
dow methods, multi-base, etc.). Interestingly, many of them
can be expressed using covering system of congruences. We list
a few and the corresponding covering systems of congruences
in Table 1.

Table 1
Scalar multiplication algorithms and their corresponding covering

system of congruences

Algorithm Covering System of Congruences

m-ary {0, . . . , m− 1 (m)}
NAF {0 (2); 1,−1 (4)}
w-NAF [28] {0 (2); 1,−1, 3,−3, . . . , 2w−1 − 1,−2w−1 + 1 (2w)}
frac. win. [29] {0 (2); 1,−1, 3,−3, . . . , 2w + m,−2w −m (2w+1)}
wmbNAF [30] {0 (a1); . . . ; 0 (ak); 1,−1, 3,−3, . . . , (a1 − 1)/2 (aw

1)}
w-HBTF [31] {0 (2); 0 (3); 1,−1, . . . , w/2− 1,−w/2 + 1 (w)}

2.2.1 A generic algorithm:
Let S be a covering system of congruences. For all k ∈ Z, we
denote by S(k) the set of all the congruence classes covering k,
i.e. the set of all the congruences relations r (modm) ∈ S such
that k ≡ r (mod m). A generic CSC-based scalar multiplica-
tion is given in Fig. 2.

Input: S, k ∈ Z, P ∈ E
Output: [k]P ∈ E
1: if k = 0 then
2: return P∞
3: Let r (modm) ∈ S(k)
4: Compute Q := [(k − r)/m]P recursively
5: return [m]Q+ [r]P

Figure 2. Generic CSC-based scalar multiplication

The validity of the generic algorithm in Fig. 2 is based on
the fact that, for any covering system S, we have

[m]Q+ [r]P = [m(k − r)/m]P + [r]P = [k]P. (3)

2.2.2 A specialized version with built-in SC protections:
Clearly, equation (3) is true regardless of how the congruence
class (r,m) ∈ S(k) is selected in line 3. Note that when
|S(k)| > 1, i.e. when integer k is covered by strictly more
than one congruence class, several algorithms can be deduced
depending on which class is chosen. Therefore, the generic
algorithm presented in Fig. 2 may be specialized in various
ways. The main characteristics of our randomized version are
twofold:
• First, we require that the covering system S is an exact
n-cover (with n ≥ 2). By doing so, we ensure that there
are exactly n congruence classes r (mod m) in S(k) for
every k.

• Second, in line 3 of Fig. 2, we select the congruence class
r (mod m) ∈ S(k) uniformly at random among the n
different options. In practice, these n congruence classes
in S(k) are easily determined by computing k mod `,
where ` = lcm(m1, . . . ,m|S|). In Section 3.1 we shall see
that this leads to exponentially many ways to compute Q
in line 4.

4

An exact covering system S may be represented using a
convenient data structure very close to the graphical repre-
sentation shown in Fig. 1. More precisely, if

S = {r1 (modm1); r2 (modm2); . . . ; rt (modmt)}

is an exact n-cover, it may be described as a two-dimensional
array of size ` × n, where ` = lcm(m1, . . . ,mt). For each i ∈
{1, . . . , `}, the entry S[i] is a one-dimensional array, of length
exactly n, whose elements are the congruence classes (r,m)
covering the subset i+ `Z. An example is given in Table 2.

Table 2
The array representation of the covering system {1 (mod 2);

2, 3 (mod 4); 0, 2, 4 (mod 6); 0, 1, 4, 5 (mod 8)}.

i S[i][0] S[i][1] i S[i][0] S[i][1]

0 (0, 8) (0, 6) 12 (4, 8) (0, 6)

1 (1, 8) (1, 2) 13 (5, 8) (1, 2)

2 (2, 4) (2, 6) 14 (2, 4) (2, 6)

3 (1, 2) (3, 4) 15 (1, 2) (3, 4)

4 (4, 8) (4, 6) 16 (0, 8) (4, 6)

5 (5, 8) (1, 2) 17 (1, 8) (1, 2)

6 (2, 4) (0, 6) 18 (2, 4) (0, 6)

7 (1, 2) (3, 4) 19 (1, 2) (3, 4)

8 (0, 8) (2, 6) 20 (4, 8) (2, 6)

9 (1, 8) (1, 2) 21 (5, 8) (1, 2)

10 (2, 4) (4, 6) 22 (2, 4) (4, 6)

11 (1, 2) (3, 4) 23 (1, 2) (3, 4)

We use this data structure in the description of the exact
n-cover scalar multiplication presented in Fig. 3.

Input: S as described above, ` = lcm(m1, . . . ,m|S|), k ∈
N, P ∈ E

Output: [k]P ∈ E
1: if k = 0 then
2: return P∞
3: else if k = 1 then
4: return P
5: i := k mod `
6: Select j uniformly at random in {0, . . . , n− 1}
7: (r,m) := S[i][j]
8: compute R := [r]P
9: compute Q := [(k − r)/m]P recursively

10: return [m]Q+R

Figure 3. Exact n-cover scalar multiplication

For convenience, we presented a recursive version of our
algorithm in Fig. 3. However this recursion can easily be
reformulated iteratively. It can thus be implemented on small
embedded devices which may not support recursion. To do
so, first compute a sequence (ri,mi) for k using the covering
system of your choice such that

k = r0 +m0(r1 +m1(r2 + · · ·+ (rs−1 +ms−1rs) . . .)). (4)

The above representation of k is known as a mixed-radix
representation. Once k is converted in that form, computing

[k]P simply consists of traversing this sequence (ri,mi)i≥0 in
reverse order. Initialize Q := P∞, then for each pair (ri,mi),
set Q := [mi]Q + [ri]P . Note that the elements [ri]P may
be precomputed. Generating the sequence (ri,mi)i≥0 from k
only requires integer arithmetic (see Section 2.4).

2.3 Complexity analysis
In this section, we analyze the asymptotic average complexity
of our randomized mixed-radix algorithm presented in Fig. 3
using a first order Markov chain. Let S = {s1, . . . , st} with
si := ri (modmi) and let ` = lcm(m1, . . . ,mt). We define the
transition graph of the Markov chain as follows:
• the set of vertices V = {v0, . . . , v`−1} is the set of
congruence classes modulo `. By convention, vi denotes
the class of i (mod `).

• the edges (vri , vrj) ∈ V 2 are oriented and labeled with
probabilities: for every k > 0, there are exactly1 n
congruence classes si := ri (mod mi) in S(k) such that
k ≡ ri (mod mi). In line 9 of Fig. 3 (or line 4 of Fig. 2),
the algorithm is called recursively with k′ = (k − ri)/mi

as input. In turn, if k′ > 0, we select a congruence class
sj := rj (mod mj) ∈ S(k′). The edge (vri , vrj) is labeled
with the conditional probability P (k′ ≡ rj (modmj)|k ≡
ri (modmi)).
The following lemma will come handy in the following.

Lemma 1. The Markov chain associated to a covering set S
is irreducible and aperiodic.

Proof: For every 0 ≤ k < `, our algorithm terminates.
Thus, for each vi ∈ V , there is a path from vi to v0. Let
T denote the transformation T : k 7→ (k − r)/m for k ≡
r (modm). Let k ≡ 0 (mod `). After one step of the algorithm,
i.e. after a division bym, we have P (T (k) ≡ 0(mod`/m)) > 0.
Thus, after a finite number of steps, there exists j such that
T (j)(k) ≡ 0 (mod m) for m ∈ S. Hence, ∀i ∈ {0, . . . , ` − 1},
P (T (j+1)(k) ≡ i (mod `)) = 1/` > 0. The Markov chain is
thus irreducible. For every k > 0, P (k′ ≡ 0 (mod `)|k ≡ 0
(mod `)) > 0. Therefore, the Markov chain contains at least
one cycle of length 1, given by the edge (v0, v0).

In the general case we need to compute the transition ma-
trix, say A, associated to S, and then evaluate its stationary
probability, i.e. the vector π∞ such that π∞A = π∞. (Note
that the uniqueness of π∞ is a consequence of Lemma 1.)
When S is an exact n-cover however, neither A nor π∞ need
be computed. The following theorem holds.

Theorem 1. The stationary probability obtained for an exact
n-cover is uniform:

π∞ = (1/`, . . . , 1/`).

The proof, given for completeness below, is a direct con-
sequence of the following Lemma. Indeed, when A is doubly
stochastic, 1A = 1. Thus, the uniform probability distribu-
tion π = (1/`)1 satisfies πA = π.

Lemma 2. The transition matrix associated to an exact n-
cover is doubly stochastic, i.e. each row and column adds up to
1.

1. Note that when S is a covering set but not an exact n-cover, there
still exists at least one such class.

5

Proof: Let S be an exact n-cover and A its transi-
tion matrix. We want to show that

∑
iAi,j = 1 for all

j = 0, . . . , ` − 1. We will do so by showing that for all
j = 0, . . . , `− 1∑

i

Ai,j =
∑

(r,m)∈S

1
nm

= 1
n

∑
(r,m)∈S

1
m
. (5)

Indeed, since each integer is covered exactly n times and
each covering class covers exactly `/m integers, we get that∑

(r,m)∈S
1
m = n.

Now, in order to prove (5), observe that for each con-
gruence class (r,m) ∈ S, there are exactly `/m integers
i in {0, . . . , ` − 1} that are covered by (r,m). For each of
those, there are exactly m integers j in {0, . . . , ` − 1} such
that j ≡ (i − r)/m (mod `/m). Thus, each (r,m) ∈ S
contributes to exactly ` columns (not necessarily distinct) of
A. To prove that there are no zero-column, observe that for
(r,m) ∈ S, letting i = (r+m(j mod `/m)) mod `, we get that
i ∈ (r,m), 0 ≤ i < ` and j ≡ (i − r)/m (mod `/m) for all
j ∈ {0, . . . , ` − 1}. This confirms that each congruence class
(r,m) ∈ S contributes to each column exactly once. Finally,
since S is an exact n-cover, |S(i)| = n for all i = 0, . . . , `− 1 so
that each contribution amounts to 1/nm.

Let us now explain how this uniform stationary probability
can be turned into an average operation count per bit. We
shall first compute the average number of point doublings,
triplings, quintuplings, etc., as well as the average number of
point additions per iteration; then per bit. We will then put
together these numbers with the cost of each curve operation
to get the average number of field operations per bit.

Let σ = ((ri,mi))i=0...s, be a precomputed sequence for
the given scalar k. The iterative version of Algorithm 3
rewrites: set Q = P∞ and repeat Q = [mi]Q + [ri]P , for
i ranging from s down to 0. For each iteration, we aim at
computing the average number of point additions, and for
each m in S, the average number of scalar multiplications by
m. More precisely, for the later we seek the average number
of multiplications by p for each prime factor p in the prime
decomposition of m.

First, observe that at each step, i.e. for each (ri,mi) ∈ σ,
a point addition is performed exactly when ri 6= 0. For each
congruence class (r,m) ∈ S, there are exactly `/m integers in
{0, . . . , `−1} which belong to that class. Thus, the probability
to perform a point addition is

P1 = 1/`n

 ∑
(r,m)∈S,r 6=0

`/m

 = 1/n

 ∑
(r,m)∈S,r 6=0

1/m

 .

For the scalar multiplication [mi]Q, several options are possi-
ble. Here, we consider the prime decomposition of mi. For ex-
ample, we compute [12]Q = [22 ·3]Q using two point doublings
and one point tripling. For each (r,m) ∈ S, let m =

∏
i p
αi

i

be the prime decomposition of m, so that αi = νpi(m) is
the pi-valuation of m for all i. We denote by Npi the average
number of scalar multiplications by pi. Then, using the same
arguments as above we get

Npi = 1/n
∑

(r,m)∈S

νpi(m)/m.

In order to convert these values to an average number of
point operations per bit, one needs to evaluate the average

number of iterations. A slight difficulty here comes from the
fact that the scalar is not divided by the same integer at
every step. If ` =

∏
i p
αi

i , the scalar is divided by the average
value β =

∏
i p
Npi

i so that the average number of iterations is
obtained by multiplying the bitlength of k by ρ = log 2/ log β.
The above values P1, Npi may be scaled accordingly to get
an average number of point operations (addition, doubling,
tripling, etc.) per bit. Finally, by plugging in the cost of each
curve operation, we get an average number of field operations
per bit.

As an example, let us consider the following covering
system, denoted u3c-48-24 for n = 3, ` = 48, |S| = 24.
(We give more details on the terminology in Section 4).

S = {0 (mod 2);
−1, 0 (mod 4);
−1, 1, 3 (mod 6);

−2,−1, 0, 1 (mod 8);
−3,−2, 1, 2, 5, 6 (mod 12);

−6,−5,−4,−3, 2, 3, 4, 5 (mod 16)}

We have P1 = 17/24, N2 = 13/6, N3 = 1/3, and thus
β = 213/6 × 31/3 ≈ 6.47548. According to the explicit formula
database [32], the smallest multiplication counts for a point
addition, a point doubling and a point tripling on a short
Weierstrass curve (assuming a = −3, S = 0.8M) are 10.2M
(with Z2 = 1), 7M and 12.6M respectively. The average
cost is thus (10.2P1 + 7N2 + 12.6N3) × logβ(2) ≈ 9.87M
per bit. Note that u3c-48-24 only requires two precomputed
points, namely 3P and 5P . If these precomputed points are
not converted to affine coordinates, the point addition costs
15M and average cost increases to ≈ 11.13M per bit.

In Table 3, we give the average operation counts for short
Weierstrass curves. In comparison, the Montgomery ladder on
Weierstrass curves, using the differential co-Z addition-and-
doubling algorithm reported in [33, Algo. 5] costs 10M+5S '
14M per bit; the NAF, 3-NAF and 4-NAF algorithms: 10.4M ,
9.55M and 9.04M per bit respectively. The number of pre-
computations corresponds to the number of different group
elements [r]P that may appear. In order to save some precom-
putations, observe that when computing [m]Q+ [r]P , bothm
and r can be divided by h = gcd(m, r); the computation thus
becomes [h]([m/h]Q+ [r/h]P). As usual, only one of any pair
of opposite points is required. For u3c-48-24, the only points
that needs to be precomputed are thus 3P and 5P .

2.4 Integer arithmetic
Our theoretical analysis does not take into account the cost
of integer arithmetic. Other classical algorithms like double-
and-add, fixed- and sliding-windowmethods, the Montgomery
ladder etc. process the scalar bit-by-bit or in blocks of bits.
Conversely, our algorithm needs integer division with remain-
der where the divisor is not a power of two.

In Algorithm 3, two operations deserve some attention:
the integer division with remainder k mod ` in line 5 and
the exact division by m in line 9. Although it is possible
to build a covering system of congruences such that ` =
lcm(m1, . . . ,m|S|) factors into many different primes, it seems
more advantageous—at least in the context of elliptic curve for
which there exists efficient explicit formula for point doubling

6

Table 3
Average operation counts per bit and number of precomputed points
for short Weierstrass curves. The second column gives the average cost
when 3P is computed using the best known tripling operation; the

third column gives that same average cost when no tripling operation
is available, i.e. 3P is computed as 2P + P with a doubling and a full
addition (mixed add does not apply). The CSC are listed from faster to

slower according to the 2nd column.

CSC mult./bit mult./bit #Pw/ Tpl. w/o Tpl.

u12c-2304-3315 8.84 10.38 355

u8c-432-600 9.33 12.22 66

cs3-48-48 9.84 11.48 8

u3c-48-24 9.87 11.03 2

cs3-48-38 9.95 11.66 7

cs6-72-103 9.95 12.91 12

u4c-48-60 9.96 11.38 7

cs3-54-47 10.61 15.54 8

cs4-24-37 10.64 12.95 4

cs3-24-23 10.93 13.4 2

u6c-120-168 11.09 12.28 19

u2c-24-10 11.23 12.33 1

cs5-60-73 12.32 14.26 8

cs2-30-19 12.7 14.64 4

and tripling—to consider moduli that only contain powers of
2 and 3 (maybe 5). In that case, the operation k mod ` can
be greatly sped up. For example, by independently computing
the remainders modulo the largest powers of 2 and 3 (possibly
5) in ` and by Chinese remaindering. We point the interested
reader to the very fast mod3 implementation based on historic
Pascal’s tapes proposed in [34]. The exact division bym in line
9 can also be implemented very efficiently, for example using
Jebelean’s exact division [35]. (See for example GMP’s exact
division by 3 in mpn_divexact_by3.)

For security reasons, the moduli which compose the CSC
should all have the same word length ; in practice they will
most probably fit into a single word. Hence, the exact divisions
reduce to divisions of an n-word integer by a 1-word integer
and should be indistinguishable from one another.

In total, the extra cost implied by the integer arithmetic
remains negligible compared to the overall scalar multiplica-
tion. As an example, converting k to a randomized mixed-
radix form with our proof-of-concept implementation repre-
sents less than 2% of the total time for a 256-bit scalar.

3 Resistance to side-channel attacks
Assessing the level of resistance of an algorithmic countermea-
sure against the constantly growing variety of side-channel
attacks is a difficult task. In the next sections, we provide solid
arguments to support the robustness of our randomized algo-
rithm against the most prominent attacks. We assume that
the goal of the attacker is to recover some fixed or ephemeral
secret by observing leakage during a scalar multiplication
[k]P . Following Kerckhoffs’ principle, we consider that the
attacker knows precisely the instance of Algorithm 3 she is

trying to break, in particular she knows everything about S,
the covering system of congruences.

As stated in Section 2, our algorithm processes the bits of
k in an indirect manner. Instead, it operates on a randomized
mixed-radix representation of k:

k = r0 +
s∑
i=1

ri

i−1∏
j=0

mj

Therefore, unlike classical attacks which aim at recovering
the bits (digits) of k assuming that the base is known (2 or a
small power of 2 in general), unveiling k in our case requires
to uncover both the sequence of digits (r0, . . . , rs) and the
sequence of bases (m0, . . . ,ms).

Note that for HMM attacks, and simple/horizontal at-
tacks, we only consider traces that do not include triplings.
We show that scrutinizing traces composed of doublings and
additions only seems impracticable. Of course, the use of
triplings is possible, but one has to ensure that it does not
introduce weaknesses.

3.1 Differential and correlation attacks
In [7], Coron generalized Kocher et al. [3] DPA attack to
elliptic curve cryptosystems. The attack is based on the fact
that there exists a correlation between the bits of k and some
intermediate values computed during the scalar multiplication
algorithm, and the fact that this correlation may be easily
found using classical DPA techniques. As an example, Coron
shows that the point 4P is computed if and only if the second
most significant bit of k is 0. Extending the attack to any
addition-subtraction chain can be done in O((log k)2). The
countermeasures proposed by Coron consist in introducing
random numbers during the computation of [k]P , so that
finding correlation between (bits of) k and some intermediate
quantities becomes impractical.

Instead of randomizing the input values (secret exponent
or base point), our algorithm randomizes the sequence of
operations used to compute [k]P . Hence, finding correlation
between k and some intermediate quantity should remain
unfeasible. Algorithms of that sort are rather scarce. In the
context of elliptic curves, a first attempt was suggested by
Oswald and Agnier in 2001. In [12], they rediscovered Booth’s
recoding techniques for integers [36], and proposed to ran-
domize the addition-subtraction chain using an elementary
randomization of the binary signed-digit (BSD) expansion
of k. Their approach was broken in 2003 using the hidden
Markov model [13]. (We consider this very powerful attack in
Section 3.2.) In 2002, Ha and Moon proposed an almost iden-
tical randomization strategy [14] which only differs from [12]
in the way the signed-digit representation of k is computed.
Logically, the entropy produced by the randomization remains
unchanged and the security of the algorithm remains insuffi-
cient. A different attack by Fouque et al. was presented in [16].
In that paper Fouque et al. presented a collision attack using
the fact that the probabilities of the j-th BSD digit (trit) when
kj = kj+1 can be distinguished from the probabilities of that
same digit when kj 6= kj+1. Although a given scalar k may
have many different BSD representations, the authors of [16]
proved that the number of internal states remain very small.
At each step of computation, at most two intermediate values
can be reached. (This is illustrated in Fig. 4 for k = 10273.)

7

0

1

-1

-31

33

-3

-7

-15 -95

-2015

2081-223

-479

-991
-6111

10273

Figure 4. The graph of internal states of the BSD randomized scalar multiplication for k = 10273.

17 2 1 0

53
3

4

8

26

13

80
10

40 20

5

107

6642

321

214
1712

856
428

1284

10273

Figure 5. The graph of internal states of an exact 3-cover for k = 10273.

As pointed out in their conclusion: “Any reasonable coun-
termeasure based on randomizing the multiplication algorithm
should guarantee locally a large number of possible internal
states and a large number of possible transitions from each
state”.

Our algorithm does satisfy both conditions. From each
internal state, there exists exactly n transitions2 given by the
n congruence classes which cover that integer. By choosing
one of these n possible transitions uniformly at random, i.e.
with probability 1/n, our algorithm is locally robust. An
execution trace of the algorithm corresponds to a path from
k to 0 in a direct acyclic (multi)graph. In Fig. 5, we give the
transition graph for k = 10273 obtained with an exact 3-cover.
It should be compared to the graph in Fig. 4 obtained for
the same scalar using the BSD randomization. The Markov
analysis from Section 2.3 provides some insight into the global
randomness aspects of the algorithm.

In Lemma 1, we proved the ergodicity of the Markov chain.
In this case, it is known that the stationary distribution is
unique and satisfies π∞ = limn→∞ πAn for any probability
distribution π. Notably, the stationary distribution is indepen-
dent from the initial distribution. A corollary of Theorem 1 is
that any random walk (of sufficiently many steps) across the
transition graph of the Markov chain ends on any congruence
class modulo ` with equal probability 1/` and independently
from the starting value k.

2. For small values, although an integer, say j, is still covered by
exactly n congruence classes, there might be fewer transitions (see
Fig. 5 for the states 1, 2, 3, 5, 6, 10, 17). This is because when k is
small, it happens that k = r for some (m, r) ∈ S(j).

The level of randomization of a given covering system can
be evaluated by counting the number of paths from k to 0 in
the transition graph corresponding to k. It is equal to Bk,0,
where B = A + A2 + · · · + Av, and where v is the length of
the longest path in that direct acyclic graph (easily obtained
by topological ordering). Our numerical experiments suggest
that this number of paths grows exponentially in both k and
the degree n of the covering system. For example, an exact
4-cover produces roughly 244 paths for a 64-bit scalar and 289

paths for a 128-bit scalar, whereas an exact 8-cover leads to
249 and 2101 paths respectively for scalars of the same sizes.
Even for small values of n, the number of paths seems large
enough to guarantee a high level of randomization: an exact
2-cover produces 261 paths for a 128-bit scalar and 2121 paths
for a 256-bit scalar.

We think that the above analysis gives solid arguments in
favour of the robustness of our randomized algorithm against
differential attacks.

3.2 HMM attacks
Finite state stochastic processes may be analyzed using Hid-
den Markov Models (HMMs) [37], [38]. An execution of an
HMM consists of a sequence of hidden, unobserved states
and a corresponding sequence of related, observable outputs.
HMM cryptanalysis [13], [39] aims at solving the so-called
inference problem, i.e. infering the sequence of hidden states
given only the sequence of, possibly noisy, observable outputs.
This problem may be solved efficiently using the Viterbi
algorithm [40]. Since our algorithm rewrites trivially as a

8

finite state stochastic process, it seemed natural to analyze
its robustness regarding HMM attacks. To do so, we adapted
and implemented the attacks from [13] and [39].

As seen in Section 2.2, an execution of our algorithm
consists of s computations of the form Q := [mi]Q + [ri]P ,
where the loop-length s and the symbols (ri,mi) are given by
a randomly generated mixed-radix representation of k. Given
such a representation of k, the execution of the algorithm runs
through a sequence (q0, q1, . . . , qs−1) of internal state. In the
following, the set of all internal states of the HMM is denoted
by S.

On each state qi ∈ S, the algorithm performs a computa-
tion denoted C(qi) and outputs a value O(qi), so that O(q0) =
[m0]P∞ + [r0]P = [r0]P and O(qi) = [mi]O(qi−1) + [ri]P for
i > 0. Note that the transition from state qi−1 to state qi is
uniquely determined by the pair (ri,mi).

A trace is a sequence of observations (y0, y1, . . . , ys−1),
where each yi belongs to a finite set O of so-called observables;
a finite set of symbols that represent operations observable
over the side-channel. For example, for the right-to-left binary
scalar multiplication considered in [13], O = {D,AD}, where
D denotes a point doubling and A a point addition. Each
element ofO is in one-to-one correspondence with the internal
states of the algorithm and with the bits of k. Improving upon
the attack from [13], Green at al [39] let O be a set of finite
words over the alphabet {D,A, ∅,⊥}, where ∅ and ⊥ denote
a zero-length observable and an unknown respectively. This
generalization allows the authors of [39] to handle observables
outputs that are not in one-to-one correspondence with the
internal states ; in particular, to deal with errors in the
sequence of observations. In both [13] and [39], the elements
from O are probabilistically distinguishable from each other
and each trace of the side-channel can be uniquely written as
(y0, y1, . . . , ys−1) with yi ∈ O for all i ∈ {0, . . . , s − 1}. We
shall see later that this represents a major difference with our
algorithm.

We illustrate an implementation of an HMM attack on
our algorithm through an example. Let us consider the simple
covering set u2c-24-10:

S = {1 (mod 2);−1, 2 (mod 4);
− 2, 0, 2 (mod 6);−3, 0, 1, 4 (mod 8)}

(6)

For now, we assume that the set of internal states S is
equal to the set of congruence classes from S. In order to
abbreviate notations, the elements of S are given by the pairs
(r,m) in place of the congruence classes r (modm) from S.

Our algorithm rewrites trivially into a probabilistic state
machine. The vertices are the hidden states q0, . . . , q|S|. The
edges (qi, qj) are labeled with the transition probabilities pi,j
and the input terms of the form (r,m). As in [13], we con-
verted this edge-annotated state machine into a semantically
equivalent state-annotated one. For each edge (qi, qj) labeled
with pi,j : (r,m), a new state qj,(r,m) is created so that the
output are observed on the states instead of the edges.

The elements of O are easily deduced from the (low level)
description of the algorithm. For each internal state (r,m) ∈
S, the observed operations are derived from the computation
Q := h([m/h]Q + [r/h]P) where h = gcd(r,m). We assume
that [m/h]Q is evaluated using a left-to-right binary addition
chain and that [r/h]P is precomputed. For example, for the
internal state (1, 2), which corresponds to the congruence class

1 (mod 2), the attacker should observe the trace leaked from
the computation Q := 2Q + P , i.e. a doubling followed by an
addition. Hence O ⊃ {DA}. For the covering set u2c-24-10
given in (6), the resulting set of observable is given by:

O = {DA,DDA,DAD,DAAD,DDD,DDDA,DADD}.

Let µ : S 7→ O the mapping from the set of internal states
of the HMM to the set O, such that µ(S) = O. Unlike the
attacks from [13] and [39], a first obstruction for an attacker is
that µ is not injective in our case. Indeed, for u2c-24-10, we
have µ((2, 4)) = µ((0, 6)) = DAD; µ((−2, 6)) = µ((2, 6)) =
DAAD ; µ((−3, 8)) = µ((1, 8)) = DDDA.

The inference problem may be solved rather efficiently
using the Viterbi algorithm. For a given trace (y0, . . . , ys−1),
this algorithm outputs the most likely execution sequence
(q0, . . . , qs−1) together with the likelihood of the result, i.e. the
probability of that particular sequence among all possible ex-
ecution sequences matching the observed trace (y0, . . . , ys−1).

We implemented this version of an HMM attack on various
covering systems of congruences. In all cases, we were unable
to recover the execution sequences correctly. The Viterbi
algorithm was able to guess correctly the internal states in
one-to-one correspondence with the elements of O but was
unable to recover with better probability than a random draw
those states for which µ cannot be inverted uniquely. As a
consequence, we observed very small likelihood scores.

At this point, it is important to notice that the attack
failed even though the setting was extremely favorable to the
attacker. Indeed, not only we considered that the trace was
acquired without any error, but also that the attacker was
able to break it up properly. However, contrary to the sets
of observables from [13] and [39], a second major stumbling
block is that a trace of the side-channel cannot always be
written uniquely as (y0, . . . , ys−1) with yi ∈ O. For exam-
ple, the sequence DADDDA can be observed from different
execution sequences. It could come fromDA|DDDA obtained
by (1, 2) followed by either (−3, 8) or (1, 8); from DADD|DA
corresponding uniquely to the sequence of internal states
((4, 8), (1, 2)); or from DAD|DDA complying with either
(2, 4) or (0, 6) followed by (−1, 4).

In order to better reflect the conditions of a more real-
istic attack, we modified the previously constructed state-
annotated probabilistic state machine so that the observable
output for each internal state was either a doubling or an
addition. Each state qj,(r,m) was split into exactly t states
qj0,(r,m),s0 , . . . , qjt,(r,m),st

, where s0s1 . . . st = µ((r,m)) and
si ∈ {D,A}. We set to 1 the transition probabilities between
those newly created states and adjusted the input and out-
put ones with the initial probabilities. This transformation
allowed us to run the Viterbi algorithm on any observed
sequence, without any knowledge on its decomposition into
words from O. Here again, we set the attacker in ideal condi-
tions by assuming that the observed traces contain no errors.

As an example of an HMM execution, we give the outputs
of our Sage implementation of the Viterbi algorithm for the
covering set u3c-48-24 and a random 256-bit scalar in Fig. 6.

In order to measure the difference between the real se-
quence and the most likely sequence returned by the Viterbi
algorithm, we considered the Levensthein distance (aka edit
distance). Informally, the Levenshtein distance between two
words is the minimum number of single-character edits (i.e.

9

sage: viterbi (256, ’../csc/u3c-48-24’)
Reading CSC... [Done]
Computing HMM matrices... [Done]
Generating the discrete HMM... [Done]
Collecting an execution trace for k [Done]
k = 113280982734524645135658082899406751332655632772245315887318249972569794866207
[’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’,
’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’,
’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’,
’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’,
’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’,
’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’,
’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’,
’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’,
’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’,
’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’,
’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’,
’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’,
’A’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’D’, ’D’, ’D’, ’D’, ’D’, ’A’, ’D’, ’D’,
’A’, ’D’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’D’, ’A’, ’D’, ’A’,
’D’, ’D’, ’D’, ’D’, ’D’, ’A’]
Running Viterbi on HMM... [Done]
Real sequence: [(-1, 4), (0, 4), (2, 16), (0, 2), (-2, 12), (2, 12), (-2, 8), (1, 12), (0, 2), (-1, 6), (-6, 16), (-1,
4), (0, 2), (0, 2), (3, 16), (0, 2), (0, 2), (1, 8), (3, 6), (2, 12), (5, 12), (-2, 8), (0, 2), (2, 16), (-1, 4), (-1,
4), (3, 6), (0, 2), (0, 2), (0, 2), (-1, 4), (3, 6), (-3, 12), (0, 2), (-3, 12), (-4, 16), (-2, 12), (1, 8), (-1, 4),
(-1, 8), (-1, 4), (-1, 6), (0, 2), (2, 16), (0, 2), (5, 12), (0, 2), (0, 8), (0, 4), (0, 2), (2, 12), (-1, 8), (-2, 12),
(-1, 6), (-2, 8), (-3, 16), (0, 2), (0, 2), (0, 2), (6, 12), (0, 2), (-1, 6), (-1, 6), (-1, 8), (3, 6), (-3, 16), (-6,
16), (0, 2), (-3, 12), (5, 12), (6, 12), (0, 8), (-6, 16), (0, 4), (-1, 8), (1, 6), (-4, 16), (-1, 6), (4, 16), (-1, 6),
(-2, 12), (0, 4), (1, 12), (0, 2), (3, 6), (0, 2), (1, 8), (1, 8), (-2, 12), (0, 4), (5, 16), (-2, 8), (0, 2), (1, 6),
(0, 2), (1, 6), (3, 6), (-2, 8), (-2, 12), (3, 16)]
length: 100
Most likely sequence: [(4, 16), (2, 16), (-3, 12), (-3, 12), (2, 16), (1, 12), (-3, 12), (1, 8), (2, 16), (0, 4), (2,
16), (3, 16), (1, 6), (2, 12), (1, 12), (-2, 8), (3, 16), (1, 8), (-1, 4), (2, 12), (3, 16), (2, 12), (2, 12), (-3, 12),
(4, 16), (2, 12), (1, 8), (4, 16), (1, 12), (1, 6), (3, 16), (1, 8), (4, 16), (0, 8), (0, 4), (2, 12), (1, 8), (1, 6),
(-3, 12), (4, 16), (2, 16), (0, 4), (2, 12), (-3, 12), (2, 12), (-1, 4), (2, 12), (2, 16), (4, 16), (-3, 12), (1, 12),
(2, 12), (0, 8), (2, 16), (0, 8), (-1, 4), (1, 6), (-2, 8), (-3, 12), (4, 16), (1, 6), (1, 6), (3, 16), (-2, 8), (2, 12),
(2, 16), (-1, 4), (2, 12), (0, 8), (1, 8), (-2, 8), (-3, 12), (-3, 12), (1, 6), (-2, 8), (2, 12), (3, 16)]
length: 77
Log likelyhood: -266.526042707
Levensthein dist: 81

Figure 6. Execution of the Viterbi algorithm in the context of an HMM attack on u3c-48-24 for a random 256-bit scalar.

insertions, deletions or substitutions) required to change one
word into the other. In the example above, the Levensthein
distance between the two sequences is 81. It is thus impossible
to recover the real sequence from the one returned by the
Viterbi algorithm. The Log likelihood value expresses the log-
arithm of the probability of that particular returned sequence
among all sequences compatible with the observed trace. In
the example, it tells us that the probability of recovering k
from the returned sequence is smaller than that of guessing k
by selecting each bit at random!

The results observed for the above example are not iso-
lated. In Fig. 7, we give the distribution of the Levensthein
distance and the Log likelihood values obtained over 1000
HMM simulations on u3c-48-24 for 256-bit random scalars.

3.3 Timing attacks
Timing attacks require multiple executions of the algorithm.
They exploit dependencies between the execution time of
the algorithm and some secret data processed through its
running. These attacks may be prevented by ensuring that
the computation time is independent from this secret value;
a property commonly guaranteed using constant time algo-
rithms. Clearly, in the present form, our algorithm does not

run in constant time as the time for computing [k]P may vary
depending on the randomly selected mixed radix representa-
tion of k. Therefore, the fundamental question is: how much
information can be deduced from the varying running time of
our algorithm?

To the best of our knowledge, the only publicly known tim-
ing attack on ECC is due to Brumley and Tuveri [41]. In 2011,
they presented a successful timing attack on an OpenSSL im-
plementation of the signature phase of ECDSA, in particular a
scalar multiplication [k]P , where nonce k is selected uniformly
at random. Their attack exploits the dependency between
the computation time and the bitlength of k. It is effective
because of the loop optimization strategy implemented (at the
time) in OpenSSL. The attack operates in two phases: first,
using the time dependency, a certain amount of signatures
coming from “short” scalars are collected. Then, a lattice
attack using the set of signatures filtered in the collection
phase is mounted to recover the secret key used to generate the
ECDSA signatures. As pointed out by the authors, the attack
is successful when the first phase is effective, i.e. when the
filtered signatures actually correspond to scalars shorter than
some fixed threshold with very high probability. Logically, the
attack success rate decreases dramatically with the increase of

10

(a) Levensthein dist.

(b) Log. likelihood

Figure 7. Distribution of Levensthein distances (top) and log likelihood
(bottom) over 1000 HMM attacks on u3c-48-24 for 256-bit scalars.

false positives.
The countermeasure proposed by Brumley and Tuveri con-

sists in replacing k by an equivalent value k̂ of fixed bitlength.
This can be achieved by adding independently ord(P) and
2ord(P) to k and choosing for k̂ that result of bitlength
1 + size(ord(P)). Obviously, the same countermeasure does
apply to any scalar multiplication algorithm. Thus, the above
question becomes: how much information can be deduced
from the running time of our algorithm for scalars of the same
size?

As seen in Section 3.1, for any given scalar k, the execution
trace of the algorithm corresponds to a path of maximal length
from k to 0 in a direct acyclic graph. For any given covering
system, the DAG which represents all possible executions of
the algorithm for all possible input values of fixed bitlength is
a multi-source DAG with single-sink 0. (In Fig 5, we presented
a sub-graph of that DAG whose single source is the node
10273.)

In order to simulate timing measurements, we considered
weighted DAGs, where the weight w(ri,mi) given to the edge
(ri,mi) corresponds to the cost for computing [mi]Q + [ri]P .
This costw(ri,mi) could be anything meaningful, e.g. a number
of curve operations or a number of field operations or even
a number of clock cycles. For our experiments, we consid-
ered the number of field multiplications. Observe that for
a given covering set there are only finitely many different
weights that may appear in the associated DAG. For example,
with u3c-48-24, and assuming that the points [ri]P are
precomputed, there are only 13 different sequences of curve

operations. These sequences are listed in Table 4 together with
the corresponding number of field multiplications. (We refer
the reader back to Section 3.2 for details on how the sequences
of curve operations are obtained. For the “#mult” columns,
we used the best operation counts for short Weierstrass
curves from Bernstein and Lange’s compilation of Explicit-
Formulas [32] assuming a4 = −3 and S = 0.8M ; that is
A = 10.2, D = 7.)

LetWS = {ws1 , . . . , wst} denote the set of possible weights
for the covering set S = {s1, . . . , st}. Clearly, any possible
running time wk→0 for computing [k]P is equal to the sum
of the weights along a randomly chosen path from k to 0. It
can also be expressed as wk→0 =

∑|WS |
i=1 αiwi, where each αi

corresponds to the number of times an edge of weight wi was
encountered. For a given k, there are many possible values
for wk→0. Counting the exact number of possible values for
wk→0 is a difficult combinatorial problem. And counting the
cardinal of the set of all possible wk→0 for all possible sources
k of fixed bitlength is even harder.

Therefore, in order to asses the applicability of a potential
timing attack on our randomized algorithm, we simulated the
execution of our algorithm on 100000 different random 256-bit
scalars and bucket-sorted these scalars based on the (theoret-
ical) running times (using the number of field multiplications
from Table 4). The results given in the next paragraphs
have been obtained with the exact 3-cover u3c-48-24. Our
simulations resulted in 469 buckets, ranging from 2487 to
2915.6 multiplications.

3.3.1 Long sequences of 0 and 1 and common patterns:
Brumley and Tuveri’s attack [41] is successful when the fil-
tered signatures correspond to short scalars, i.e. scalars whose
leading bits are all zeros. With the proposed countermeasure,
all nonce k used in the first phase of ECDSA have the same
bitlength, namely k ∈ [2j−1, 2j − 1]. However, we believe that
the lattice attack exploited by Brumley and Tuveri may still
be effective if the filtered signatures correspond to scalars with
identified patterns, e.g. long sequences of zeros (resp. ones).
Hence, we checked whether any such pattern was leaking from
the timing variations of our algorithm. To do so, we drawn
t scalars, one-by-one, from the smaller buckets, i.e. those
containing the scalars that had led to the smallest costs, and
bitwise ORed them together until reaching 2j − 1. Indeed,
if two scalars share a common zero-pattern such as a long
sequence of zeros, then this pattern/sequence will still appear
after a bitwise OR operation.

In our experiment, the value 2256 − 1 was reached after
only 9 scalars; the last one picked in the bucket of cost 2497.8.
We performed the same computations with scalars picked in
the larger buckets. The value 2256 − 1 was reached after only
8 scalars; the last one picked in the bucket of cost 2881.8.
For completeness, we ran several similar computations with
scalars picked randomly. On average, the value 2256 − 1 was
reached with only 9 scalars.

Similarly, we checked the presence of common one-
patterns (e.g. long sequences of ones) using a bitwise AND
strategy. The minimal value (2255) was reached after 9 scalars
for the smallest buckets, 8 scalars for the largest ones and for
8 scalars on average for scalars picked at random.

Therefore, we can safely conclude that the time variations
of our algorithm do not provide any information on potential

11

Table 4
Sequences of curve operations and associated number of field multiplications (on short Weierstrass curves with a4 = −3) for each congruence

class of the exact 3-cover u3c-48-24. Observe that the “#mult” column only contains 8 different values

r (mod m) Curve ops. #mult r (mod m) Curve ops. #mult r (mod m) Curve ops. #mult

0 (mod 2) D 7.0 0 (mod 8) DDD 21.0 −6 (mod 16) DDDAD 38.2
−1 (mod 4) DDA 24.2 1 (mod 8) DDDA 31.2 −5 (mod 16) DDDDA 38.2

0 (mod 4) DD 14.0 −3 (mod 12) DDADA 41.4 −4 (mod 16) DDADD 38.2
−1 (mod 6) DADA 34.4 −2 (mod 12) DADAD 41.4 −3 (mod 16) DDDDA 38.2

1 (mod 6) DADA 34.4 1 (mod 12) DADDA 41.4 2 (mod 16) DDDAD 38.2
3 (mod 6) DADA 34.4 2 (mod 12) DADAD 41.4 3 (mod 16) DDDDA 38.2
−2 (mod 8) DDAD 31.2 5 (mod 12) DADDA 41.4 4 (mod 16) DDADD 38.2
−1 (mod 8) DDDA 31.2 6 (mod 12) DADAD 41.4 5 (mod 16) DDDDA 38.2

patterns of identical bits. Therefore, the filtering phase does
not allow to reduce the size of the lattice used in the second
phase of the attack. Hence, we claim that the timing attack
proposed in [41] does not apply.

3.3.2 Hamming weight:

We also checked whether the Hamming weight of k was leaking
from the time variations of our algorithm. To do so, we
collected the Hamming weights of t = 1000 scalars picked from
the smaller buckets and we compared them to the Hamming
weights of 1000 scalars picked at random. In Fig. 8, we show
the distributions of these Hamming weights in both cases.

(a) “faster” scalars

(b) random scalars

Figure 8. Distribution of Hamming weights of 1000 scalars from the
smaller buckets (top) and randomly among all buckets (bottom)

Our conclusion is that, unlike the double-and-add or w-
NAF algorithms, the time variations do not reveal any in-
formation on the Hamming weight of the scalar k. Neither
the span, nor the distribution seem to provide any useful
information to an attacker.

3.4 Horizontal and simple attacks

In the previous sections, we proved that advanced attacks
which require several execution of the algorithm are defeated
by our randomization strategy. Let us now focus on horizontal
and simple attacks.

In order to protect an algorithm against SPA-type attacks,
one needs to guarantee that the observation of a single trace
does not provide any hint to an attacker. For example, double-
and-add algorithms are vulnerable to SPA when the execution
trace allows to distinguish point doublings from general addi-
tions.

Several implementation options have been proposed to
thwart simple attacks. Until recently, the atomicity princi-
ple [21], [23], [22], or the use of complete/unified group laws
were both considered efficient and robust against SPA since
an attacker could not distinguish a point doubling from a
point addition. In [6], Bauer et al. presented a novel horizontal
attack which defeats all these celebrated countermeasures.
Their attack exploits the fact that point additions and point
doublings may still be identified if the adversary can detect
when two field multiplications have at least one operand in
common (Assumption 1 in [6]). They show that their attack
indeed applies to different atomic implementations and to the
unified formula on Edward’s curves from [42]. They evaluate
the soundness of their attack and provide some experimental
results showing convincing success rates. As in [43], their dis-
tinguisher targets the operands of long integer multiplications.

The overall philosophy of their attack is based on the
fact that, if the adversary can guess the entire sequence of
operations (Ci) without any error, then she can immediately
read all the bits of the secret scalar k from that sequence since
the order of those operations in the sequence is a one-to-one
function of k.

With our randomized algorithm, even if the attacker was
in this very favorable situation, Bauer et al. horizontal attack
does not apply because the order of the operations Ci is not
in one-to-one correspondence with the secret scalar k. Indeed,
as stated in Section 2, a CSC-based algorithm reduces to a
sequence of operations of the form [mi]Q + [ri]P , where the
set of possible values (ri,mi) depends on the covering system.
For example, with the exact 3-cover used to produce Fig. 5, a
possible sequence for k = 10273 is:

(1 (mod 12), 0 (mod 4), 10 (mod 12), 5 (mod 12), 1 (mod 12)),

12

which corresponds to the following path in the above men-
tioned DAG:

10273→ 856→ 214→ 17→ 1→ 0.

The recursion can easily be rewritten as: 10273 = 1 + 12(0 +
4(10 + 12(5 + 12(1 + 12.0)))) so that:

[10273]P = P+[12]([4]([10]P+[12]([5]P+[12](P+[12]P∞))))

If one assumes that the points [ri]P are precomputed and if
one uses a left-to-right double-and-add algorithm to evaluate
the terms [mi]Q, the execution trace Tr(k) looks like:

Tr(10273) = D A D D A D A D D A D A D D A D D D A D D A. (7)

Clearly, the mapping Tr from MRS(Z) to (D|A)* is not
injective. For example, with the same exact 3-cover, the above
pattern could be attained starting from

43455 = 3 + 4(7 + 8(1 + 12(5 + 12(9 + 12.0)))),

or

14649 = 9 + 12(0 + 4(5 + 12(1 + 12(2 + 12.0)))),

and many other scalars. (Checking that the above expressions
map to the trace given in (7) is immediate.)

In general, a given trace can be produced by very many
different scalars. Counting the exact number of those scalars
seems to be a difficult, yet interesting combinatorial question
that we will not tackle in this work. However, in order to assess
the robustness of our algorithm, we tried to determine that
number of different scalars experimentally. We processed as
follow: for a given length (i.e. number of symbols), we first
computed all the possible traces of that length. Then, for each
of these traces we computed its preimage, i.e. the subset of Z of
all integers that maps to that trace. Finally, we computed the
average size of these preimage subsets over all traces of that
given length. Obviously, this brute-force strategy did not allow
us to reach cryptographic sizes. However, as the trace size
grows, we observed (using u3c-48-24) that the sequence of
these average values, is in geometric progression with common
ratio ' 1.28. It was therefore possible to derive an estimate
for that number of possible integers that correspond to a given
trace of length 335, which corresponds to the average length of
a trace produced by a 256-bit integer. It is greater than 1035 >
2116, which is quite an encouraging result. We acknowledge
that this is a preliminary analysis, but given this experimental
results we are hopeful that our scalar multiplication protects
the circuit against horizontal attacks and simple attacks.

4 Covering systems generation
In order to run our numerical experiments, we had to generate
exact n-covers. For that purpose we chose to generate them
randomly. Given a set of predefined moduli {m1, . . . ,mt} and
a covering degree n, the problem consists of assigning integer
values to r1, . . . , rt such that all the following conditions are
fulfilled:
• ri ∈ {0, . . . ,mi − 1} for all i ∈ {1, . . . , t};
• mi = mj ⇒ ri 6= rj for all i, j ∈ {1, . . . , t};
• for all k ∈ {0, . . . , `}, |S(k)| = n.

We used a very elementary greedy approach. Starting with
the smallest moduli, we selected values ri at random until

a solution is found. When the value assigned to a residue
produces an integer in {0, . . . , `} that is covered by more
than n congruence classes, we backtrack by selecting another
value for the most recently assigned residue. To speed up the
process, we use a restart heuristic after a small number of
backtrack steps. The resulting covering systems such as those
listed in Table 3 are denoted csn-`-t, where n stands for the
covering degree, ` = lcm(m1, . . . ,mt) and t = |S|.

In order to simplify the generation of exact n-covers, we
may require that each modulo should cover the same pro-
portion of integers. We called the resulting covering systems
“uniform” and named them unc-`-t. In our experiments,
all the uniform covering systems contain exactly 2n moduli,
all of which are even, so that each modulo covers exactly
half of the integers as illustrated in Fig. 9. This way, we

1 3 5 7 9 11 13 15 17 19 21 23
0 2 4 6 8 10 12 14 16 18 20 22

1 (2)
2, 3 (4)

0, 2, 4 (6)
0, 1, 4, 5 (8)

Figure 9. {1 (mod 2); 2, 3 (mod 4); 0, 2, 4 (mod 6); 0, 1, 4, 5 (mod 8)}
is a uniform exact 2-cover. Each modulo covers exactly 12 integers out
of 24.

also ensure that our covering systems do not contain the
whole set of congruence classes for a given modulo such as
0 (mod 2); 1 (mod 2). We acknowledge that this generation
strategy is pretty basic. It proved sufficient to generate exact
n-covers of reasonably large covering degree3 but can certainly
be improved using more sophisticated tools, for example using
efficient CSP4 heuristics.

Determining the main characteristics of a “good” CSC is
clearly an important direction for future work. At this stage,
our observations are very preliminary. For efficiency, a good
CSC would take advantage of fast tripling operations. But on
the other hand, one has to ensure that it does not significantly
simplify the identification of patterns in the collected traces.
The list of moduli should not contain powers of 2 only as a
clever horizontal splitting of the trace would reveal informa-
tions on the bits of k. The choice of which congruence classes
cover 0 may also affect the robustness of a system regrading
simple attacks. It seems that covering degrees as small as 2
or 3 could suffice. However, a basic recommendation would
be to choose n as large as possible depending on the memory
available (both for precomputations5 and code size). There
are certainly many more questions behind the choice of a good
CSC. We leave these open for now.

5 Conclusions
In this paper, we proposed a new randomized scalar multi-
plication algorithm with built-in protection against various
side-channel attacks. It is an efficient alternative to Coron’s
scalar randomization method, in particular for curves defined
modulo primes that are close to powers of two. Compared to

3. Our largest covering system is an exact 12-cover comprised of
more than 3000 congruence classes.

4. constraint satisfaction problem
5. See Section 2.3.

13

classical addition chains (D&A, wNAF, etc.) the extra cost
implied by integer arithmetic remains negligible.

Going from this theoretical description to efficient and
secure implementations, both in hardware and in software,
will be the subject of future research. Many questions will
have to be addressed, such as securing the inner random-
ization steps, designing an efficient yet robust overall control
(HW) and instruction decoding (SW), protecting the memory
addressing, etc.

Our algorithm is purposely designed to inhibit several
side-channel attacks at once. Contrary to previous solutions
aiming at randomizing the addition chain [12], [14], differen-
tial attacks are defeated by the proper randomization of our
algorithm following the requirements given in [16], i.e. a very
large number of possible internal states and a large number
of possible transitions from each state. Despite some fitting
adjustments to the previously published HMM attacks on fi-
nite state stochastic processes [13], [39], our simulation results
also demonstrated the robustness of our algorithm against this
eminently relevant class of attacks. Likewise, we proved that
simple attacks and the recent horizontal collision correlation
attack from Bauer et al. [6] remain worthless, even when
the adversary were able to distinguish, without any error, a
point doubling from a general addition. Finally, although our
algorithm does not run in constant time, we presented some
experimental results assessing the inapplicability of Brumley
and Tuveri’s timing attack on an OpenSSL implementation of
ECDSA [41]. We showed that the timing variations implied
by the randomization do not provide any useful information
on the bits of k.

Nevertheless, past and recent advances in side-channel
attacks imply a close attentiveness. The fact that none of the
previously published attacks seem to operate does not mean
that our randomized algorithm will remain unscathed forever.
In fact, we hope that side-channel experts and cryptanalysts
will consider the challenging questions behind our proposal.
Sound side-channel attacks may exist but, at this point, are
still to be discovered.

Acknowledgments
We would like to thank the anonymous reviewers for their
careful reading and constructive comments. We also express
our gratitude to Benoîte De-Saporta and Alain Jean-Marie
for answering our questions, as well as Cyril Bouvier, Peter
Schwabe, Damien Vergnaud and the ECo group at LIRMM
for their invaluable feedback and support.

References
[1] P. C. Kocher, “Timing attacks on implementations of Diffie-

Hellman, RSA, DSS, and other systems,” in Advances in Cryp-
tology, CRYPTO 1996, ser. Lecture Notes in Computer Science,
vol. 1109. Springer, 1996, pp. 104–113.

[2] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults,” in Advances in
Cryptology, EUROCRYPT 1997, ser. Lecture Notes in Com-
puter Science, vol. 1233. Springer, 1997, pp. 37–51.

[3] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
in Advances in Cryptology, CRYPTO 1999, ser. Lecture Notes
in Computer Science, vol. 1666. Springer, 1999, pp. 388–397.

[4] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in
Cryptographic Hardware and Embedded Systems, CHES 2002,
ser. Lecture Notes in Computer Science, vol. 2523. Springer,
2002, pp. 13–28.

[5] C. Clavier, B. Feix, G. Gagnerot, C. Giraud, M. Roussellet, and
V. Verneuil, “ROSETTA for single trace analysis,” in Progress in
Cryptology - INDOCRYPT 2012, 13th International Conference
on Cryptology in India, Proceedings, 2012, pp. 140–155.

[6] A. Bauer, E. Jaulmes, E. Prouff, and J. Wild, “Horizontal
collision correlation attack on elliptic curves,” in Selected Areas
in Cryptography - SAC 2013 - 20th International Conference,
Revised Selected Papers, 2013, pp. 553–570.

[7] J.-S. Coron, “Resistance against differential power analysis for
elliptic curve cryptography,” in Cryptographic Hardware and
Embedded Systems, CHES 1999, ser. Lecture Notes in Computer
Science, Ç. K. Koç and C. Paar, Eds., vol. 1717. Springer, 1999,
pp. 292–302.

[8] J. Fan, X. Guo, E. D. Mulder, P. Schaumont, B. Preneel, and
I. Verbauwhede, “State-of-the-art of secure ECC implementa-
tions: a survey on known side-channel attacks and countermea-
sures,” in Proceedings of the 2010 IEEE International Sympo-
sium on Hardware-Oriented Security and Trust, HOST 2010.
IEEE, 2010, pp. 76–87.

[9] J. Fan and I. Verbauwhede, “An updated survey on secure
ECC implementations: Attacks, countermeasures and cost,” in
Cryptography and Security: From Theory to Applications, ser.
Lecture Notes in Computer Science. Springer, 2012, vol. 6805,
pp. 265–282.

[10] C. D. Walter, “MIST: An efficient, randomized exponentiation
algorithm for resisting power analysis,” in Topics in Cryptol-
ogy – CT-RSA 2002, ser. Lecture Notes in Computer Science,
B. Preenel, Ed., vol. 2271. Springer, 2002, pp. 53–66.

[11] J.-C. Bajard, L. Imbert, P.-Y. Liardet, and Y. Teglia, “Leak
resistant arithmetic,” in Cryptographic Hardware and Embedded
Systems, CHES 2004, ser. Lecture Notes in Computer Science,
vol. 3156. Springer, 2004, pp. 62–75.

[12] E. Oswald and M. Aigner, “Randomized addition-subtraction
chains as a countermeasure against power attacks,” in Crypro-
graphic Hardware and Embedded Systems, CHES 2001, ser.
Lecture Notes in Computer Science, no. 2162. Springer, 2001,
pp. 39–50.

[13] C. Karlof and D. Wagner, “Hidden markov model crypt-
analysis,” in Cryptographic Hardware and Embedded Systems,
CHES 2003, ser. Lecture Notes in Computer Science, no. 2779.
Springer, 2003, pp. 17–34.

[14] J. Ha and S.-J. Moon, “Randomized signed-scalar multiplication
of ECC to resist power attacks,” in Cryptographic Hardware and
Embedded Systems, CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,
vol. 2523, 2002, pp. 551–563.

[15] N. Ebeid and M. A. Hasan, “On binary signed digit represen-
tations of integers,” Designs, Codes and Cryptography, vol. 42,
no. 1, pp. 43–65, 2007.

[16] P.-A. Fouque, F. Muller, G. Poupard, and F. Valette, “Defeating
countermeasures based on randomized BSD representations,” in
Cryptographic hardware and Embedded Systems, CHES 2004,
ser. Lecture Notes in Computer Science, no. 3156. Springer,
2004, pp. 312–327.

[17] N. Méloni and M. A. Hasan, “Random digit representation
of integers,” in Proceedings of the 23rd IEEE Symposium on
Computer Arithmetic, ARITH23. IEEE Computer Society,
2016, pp. 118–125.

[18] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed
records,” in Proceedings of Public Key Cryptography, PKC 2006,
ser. Lecture Notes in Computer Science, vol. 3958. Springer,
2006, pp. 207–228.

[19] D. J. Bernstein and T. Lange, “SafeCurves: choosing safe curves
for elliptic-curve cryptography,” http://safecurves.cr.yp.to.

[20] J. W. Bos, C. Costello, P. Longa, and M. Naehrig, “Selecting
elliptic curves for cryptography: an efficiency and security anal-
ysis,” Journal of Cryptographic Engineering, vol. 6, no. 4, pp.
259–286, 2015.

[21] B. Chevalier-Mames, M. Ciet, and M. Joye, “Low-cost solutions
for preventing simple side-channel analysis: Side-channel atom-
icity,” IEEE Transactions on Computers, vol. 53, no. 6, pp. 760–
768, Jun. 2004.

[22] C. Giraud and V. Verneuil, “Atomicity improvements for ellip-
tic curve scalar multiplication,” in Smart Card Research and
Advanced Applications, CARDIS 2010, ser. Lecture Notes in
Computer Science, no. 6035. Springer, 2010, pp. 80–101.

http://safecurves.cr.yp.to

14

[23] P. Longa, “Accelerating the scalar multiplication on elliptic
curve cryptosystems over prime fields,” Master’s thesis, School of
Information Technology and Engineering, University of Ottawa,
Canada, 2007.

[24] D. J. Bernstein and T. Lange, “Analysis and optimization of
elliptic-curve single-scalar multiplication,” Cryptology ePrint
Archive, Report 2007/455, 2007, http://eprint.iacr.org/.

[25] E. Brier and M. Joye, “Weierstras elliptic curves and side-
channel attacks,” in Public Key Cryptography, PKC 2002, ser.
Lecture Notes in Computer Science, D. Naccache and P. Paillier,
Eds., vol. 2274. Springer, 2002, pp. 335–345.

[26] E. Nascimento, L. Chmielewski, D. Oswald, and P. Schwabe,
“Attacking embedded ECC implementations through cmov side
channels,” Cryptology ePrint Archive, Report 2016/923, 2016,
http://eprint.iacr.org/2016/923.

[27] B. Hough, “Solution of the minimum modulus problem for
covering systems,” arXiv:1307.0874v2 [math.NT], 2014, http:
//arxiv.org/abs/1307.0874.

[28] J. A. Solinas, “Efficient arithmetic on Koblitz curves,” Designs,
Codes and Cryptography, vol. 19, no. 2–3, pp. 195–249, 2000.

[29] B. Möller, “Improved techniques for fast exponentiation,” in
Information Security and Cryptology, ICISC 2002, ser. Lecture
Notes in Computer Science, vol. 2587. Springer, 2003, pp. 298–
312.

[30] P. Longa and A. Miri, “New multibase non-adjacent form scalar
multiplication and its application to elliptic curve cryptosys-
tems (extended version),” Cryptology ePrint Archive, Report
2008/052, 2008, http://eprint.iacr.org/.

[31] J. Adikari, V. Dimitrov, and L. Imbert, “Hybrid binary-ternary
number system for elliptic curve cryptosystems,” IEEE Trans-
actions on Computers, vol. 60, no. 2, pp. 254–265, 2011.

[32] D. J. Bernstein and T. Lange, “Explicit-formulas database,”
URL: http://www.hyperelliptic.org/EFD/, joint work by Daniel
J. Bernstein and Tanja Lange, building on work by many au-
thors.

[33] M. Hutter, M. Joye, and Y. Sierra, “Memory-constrained im-
plementations of elliptic curve cryptography in Co-Z coordinate
representation,” in Progress in Cryptology, AFRICACRYPT
2011, ser. Lecture Notes in Computer Science, vol. 6737.
Springer, 2011, pp. 170–187.

[34] T. Chabrier and A. Tisserand, “On-the-fly multi-base recoding
for ECC scalar multiplication without pre-computations,” in
21st IEEE Symposium on Computer Arithmetic, ARITH21.
IEEE Computer Society, 2013, pp. 219–228.

[35] T. Jebelean, “An algorithm for exact division,” Journal of Sym-
bolic Computation, vol. 15, no. 2, pp. 169–180, 1993.

[36] A. D. Booth, “A signed binary multiplication technique,” Quar-
terly Journal of Mechanics and Applied Mathematics, vol. 4,
no. 2, pp. 236–240, 1951, reprinted in E. E. Swartzlander, Com-
puter Arithmetic, Vol. 1, IEEE Computer Society Press Tutorial,
Los Alamitos, CA, 1990.

[37] R. L. Stratonovich, “Conditional markov processes,” Theory of
Probability and its Applications, vol. 5, no. 2, pp. 156–178, 1960.

[38] L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state markov chains,” The Annals of Mathe-
matical Statistics, vol. 37, no. 6, pp. 1554–1563, 1966.

[39] P. J. Green, R. Noad, and N. P. Smart, “Further hidden markov
model cryptanalysis,” in Cryptographic Hardware and Embedded
Systems, CHES 2005, ser. Lecture Notes in Computer Science,
no. 3659. Springer, 2005, pp. 61–74.

[40] A. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” IEEE Transactions on
Information Theory, vol. 13, no. 2, pp. 260–269, 1967.

[41] B. B. Brumley and N. Tuveri, “Remote timing attacks are still
practical,” in Computer Security, ESORICS 2011, ser. Lecture
Notes in Computer Science, vol. 6879. Springer, 2011, pp. 355–
371.

[42] D. J. Bernstein and T. Lange, “Faster addition and doubling on
elliptic curves,” in Advances in cryptology, ASIACRYPT 2007,
ser. Lecture Notes in Computer Science, vol. 4833. Springer,
2007, pp. 29–50.

[43] C. D. Walter, “Sliding windows succumbs to Big Mac attack,” in
Cryptographic Hardware and Embedded Systems, CHES 2001,
ser. Lecture Notes in Computer Science, vol. 2162. Springer,
2001, pp. 286–299.

Eleonora Guerrini Eleonora Guerrini received the
M.S. degree in 2005 from the university of Pisa,
Pisa, Italy, and the PhD degree in 2009 from the
University of Trento, Trento, Italy. From 2009 to
2012 she has been a postdoc research associate
in the Graph Theory team of the Laboratory
of Computer Science of Grenoble and Bordeaux
(France) and in the Algorithm and Cryptography
team of the laboratory of Computer Science of
Caen (France). She is currently an Assistant Pro-
fessor at the University of Montpellier, working in

the Laboratory of Computer science LIRMM of Montpellier, Montpellier,
France. Her research interests are both in combinatorial and computer
algebra aspect of coding theory.

Laurent Imbert received the PhD degree in
Computer sciences from the University of Mar-
seille in 2000, and the “habilitation” degree from
the University of Montpellier in 2008. He is
a senior researcher at the Centre National de
la Recherche Scientifique (CNRS), France and
a member of the Laboratoire d’Informatique,
Robotique et Microélectronique de Montpellier
(LIRMM). Since July 2013, he has also been an
adjunct professor at the University of Calgary,
Canada. His research interests concern the de-

sign and analysis of arithmetic algorithms, modular and finite field arith-
metic, foundations of number systems, computational number theory,
elliptic curves and applications in public key cryptography, side-channel
attacks of cryptographic devices and countermeasures.

Theo Winterhalter received the M.S. degree in
theoretical computer sciences in 2016 from the
École Normale Supérieure Paris-Saclay. He is
currently a PhD student at the Institut Mines-
Télécom (IMT) of Nantes, France. His research
focuses on Universes and Higher Inductive Types
in Homotopy Type Theory.

http://eprint.iacr.org/
http://eprint.iacr.org/2016/923
http://arxiv.org/abs/1307.0874
http://arxiv.org/abs/1307.0874
http://eprint.iacr.org/
http://www.hyperelliptic.org/EFD/

	Introduction
	Randomization as a countermeasure

	A new randomized scalar multiplication
	Covering systems of congruences
	CSC-based scalar multiplication
	A generic algorithm:
	A specialized version with built-in SC protections:

	Complexity analysis
	Integer arithmetic

	Resistance to side-channel attacks
	Differential and correlation attacks
	HMM attacks
	Timing attacks
	Long sequences of 0 and 1 and common patterns:
	Hamming weight:

	Horizontal and simple attacks

	Covering systems generation
	Conclusions
	References
	Biographies
	Eleonora Guerrini
	Laurent Imbert
	Theo Winterhalter

