
An Algorithm for Counting the Number of 2n-Periodic Binary Sequences
with Fixed k-Error Linear Complexity

Wenlun Pan1,2(�), Zhenzhen Bao3, Dongdai Lin1, and Feng Liu1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing
100093, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Shanghai Jiao Tong University, Shanghai 200240, China

{wylbpwl,baozhenzhen10}@gmail.com, {ddlin, liufeng}@iie.ac.cn

Abstract. The linear complexity and k-error linear complexity of sequences are important measures of the strength
of key-streams generated by stream ciphers. The counting function of a sequence complexity measure gives the
number of sequences with given complexity measure value and it is useful to determine the expected value and
variance of a given complexity measure of a family of sequences. Fu et al. studied the distribution of 2n-periodic
binary sequences with 1-error linear complexity in their SETA 2006 paper and peoples have strenuously promoted
the solving of this problem from k = 2 to k = 4 step by step. Unfortunately, it still remains difficult to obtain the
solutions for larger k and the counting functions become extremely complex when k become large. In this paper, we
define an equivalent relation on error sequences. We use a concept of cube fragment as basic modules to construct
classes of error sequences with specific structures. Error sequences with the same specific structures can be repre-
sented by a single symbolic representation. We introduce concepts of trace, weight trace and orbit of sets to build
quantitative relations between different classes. Based on these quantitative relations, we propose an algorithm
to automatically generate symbolic representations of classes of error sequences, calculate coefficients from one
class to another and compute multiplicity of classes defined based on specific equivalence on error sequences. This
algorithm can efficiently get the number of sequences with given k-error linear complexity. The time complexity
of this algorithm is O(2k logk) in the worst case which does not depend on the period 2n.

Keywords: Sequence; Linear Complexity; k-Error Linear Complexity; Counting Function; Cube Theory

1 Introduction

The linear complexity and k-error linear complexity of sequences are important measures of the strength of key-
streams generated by stream ciphers. Let S = (s0s1 · · ·sN−1)

∞ be an N-periodic sequence with the terms in finite field
F2. And we denote SN the set of all N-periodic binary sequences. The linear complexity of S, denoted by LC(S), is
defined as the length of the shortest linear feedback shift register (LFSR) that can generate S which is given by [1]

LC(S) = N−deg(gcd(1− xN ,S(x)))

where S(x) = s0 + s1x+ s2x2 + ...+ sN−1xN−1 and is called the corresponding polynomial to S. According to this
formula, it can easily get the following two lemmas:

Lemma 1 ([6]). Let S be a 2n-periodic binary sequence. Then LC(S) = 2n if and only if the Hamming weight of the
sequence S is odd.

Lemma 2 ([6]). Let S and S′ be two 2n-periodic binary sequences. Then we have LC(S+S′) = max{LC(S), LC(S′)}
if LC(S) 6= LC(S′), and LC(S+S′)< LC(S) for otherwise.

For a cryptographically strong sequence, the linear complexity should not decrease drastically if a few symbols are
changed. That means the linear complexity should be stable when we change some bits of the stream. This observation
gives rise to the concept of k-error linear complexity of sequences which is introduced in [1,9].

Definition 1 ([1,9]). For any sequence S ∈ SN , where 0≤ k < N, denote the k-error linear complexity of S by LCk(S)
which is given by

LCk(S) = min
E∈SN , wH (E)≤k

LC(S+E)

where wH(E) denote the Hamming weight of the sequence E in one period and E is called the error sequence.

For a given sequence S ∈ SN , denote merr(S) = min{k : LCk(S)< LC(S)} which indicates the minimum value k such
that LCk < LC(S), and which is called the first descend point of linear complexity of S. Kurosawa et.al.in [5] derived
a formula for the exact value of merr(S).

2 Wenlun Pan et al.

Lemma 3 ([5]). Let S be a nonzero 2n-periodic binary sequence, then merr(S) = 2wH (2n−LC(S)).

The counting function of a sequence complexity measure gives the number of sequences with a given complexity
measure value. It is useful to determine the expected value and variance of a given complexity measure of a family of
sequences. Besides, the exact number of available good sequences with high complexity measure value in a family of
sequences can be known. Rueppel [8] determined the counting function of linear complexity for 2n-periodic binary
sequences as follow:

Lemma 4 ([8]). Let N (L) and A(L) respectively denote the number of and the set of 2n-periodic binary sequences
with given linear complexity L, where 0≤ L≤ 2n. Then

N (0) = 1, A(0) = {(00 · · ·0)}, and

N (L) = 2L−1, A(L) = {S ∈ S2n
: S(x) = (1− x)2n−La(x), a(1) 6= 0} f or 1≤ L≤ 2n.

In this paper, we study the counting function for the number of 2n-binary sequences with given k-error linear
complexity. Following the notation in [2,3,12], we denote by Ak(L) and Nk(L) the set of and the number of the
sequences in S2n

of which the k-error linear complexity being L, that is

Ak(L) := {S ∈ S2n
: LCk(S) = L} and Nk(L) :=

∣∣Ak(L)
∣∣.

When k = 0, Ak(L) and Nk(L) degenerated to A(L) and N (L).
According to the definition of k-error linear complexity of sequence, we can get the following trivial cases:

Ak(2n) = /0, Nk(2n) = 0 for k ≥ 1,

Ak(0) = {S ∈ S2n
: wH(S)≤ k} Nk(0) =

k

∑
j=0

(
2n

j

)
, for k ≥ 1,

Ak(1) = {S ∈ S2n
: wH(S)> 2n− k}, Nk(1) =

2n

∑
j=2n−k

(
2n

j

)
=

k

∑
j=0

(
2n

j

)
for k < 2n−1,

Ak(1) = {S ∈ S2n
: wH(S)> k}, Nk(1) =

2n

∑
j=k+1

(
2n

j

)
for k ≥ 2n−1,

Ak(L) = /0, Nk(L) = 0 for k ≥ 2n−1 , L 6= 0 and 1.

Henceforth, we need only consider the cases when 1 < L < 2n and k < 2n−1. By using algebraic and combinato-
rial methods, Fu et al. [2] derived the counting function for the 1-error linear complexity in their SETA 2006 paper.
Kavuluru [3,4] characterized 2n-periodic binary sequences with given 2-error or 3-error linear complexity and ob-
tained the counting functions. Unfortunately, those results in [3,4] on the counting function of 3-error linear com-
plexity are not completely correct [10]. After that, Jianqin Zhou et al. use sieve method of combinations to sieve
sequences S+E with LCk(S+E) = L in S+E where S = {S ∈ SN : LC(S) = L}, E = {E ∈ SN : wH(E) ≤ k} and
S+E = {S+E : S ∈ S and E ∈ E}. And they obtained the complete counting functions for k = 2, 3 [12]. In the
informal publication paper [11], Jianqin Zhou et al. also study the counting functions for k = 4, 5. In the paper [7],
Ming Su proposes a novel decomposing approach to study the complete set of error sequences and get the counting
function for k ≤ 4. However, those methods will become very complex when k becomes larger.

In this paper, we define an equivalence relationship on the error sequences set E based on the observation as the
follows.

Lemma 5 ([3]). Let E and E ′ be two error sequences in E. Then

A(L)+E =A(L)+E ′ or (A(L)+E)
⋂
(A(L)+E ′) = /0.

Corollary 1. Let E be an error sequence in E, then we have

A(L)+E ⊆Ak(L) or (A(L)+E)
⋂
Ak(L) = /0.

Proof. Assume there exists S ∈ A(L) such that LCk(S+E) = L. On account of LCk(S+E) = minE ′∈E LC(S+E +
E ′), it follows that LC(E +E ′) 6= L for any E ′ ∈ E, otherwise LCk(S+E) < L. Thus for any S′ ∈ A(L), we have
LCk(S′+E) = minE ′∈E LC(S′+E +E ′) = minE ′∈E max{LC(S′),LC(E +E ′)} ≥ L. Considering that LCk(S′+E) ≤
LC(S′+E +E) = LC(S′) = L, so LCk(S′+E) = L, that is A(L) +E ⊆ Ak(L). So for any E ∈ E, we have either
A(L)+E ⊆Ak(L) or (A(L)+E)

⋂
Ak(L) = /0. �

Corollary 2. Let E and E ′ be two error sequences in E. We have thatA(L)+E =A(L)+E ′ if and only if there exists
S, S′ ∈ A(L) such that S+E = S′+E ′.

An Algorithm for Counting the Number of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity 3

Proof. Assume there exists S,S′ ∈ A(L) such that S+E = S′+E ′. And suppose the corresponding polynomials of S
and S′ are S(x)= (1+x)2n−La(x), S′(x)= (1+x)2n−Lb(x) respectively where a(1)= b(1)= 1 and deg(a(x)),deg(b(x))<
L. For any sequence S′′ inA(L), suppose the corresponding polynomial of S′′ is S′′(x) = (1+x)2n−Lc(x) where c(1) =
1 and deg(c(x))< L, we have S′′+E = S′′+S+S′+E ′. Because (S′′+S+S′)(x) = (1+ x)2n−L(a(x)+b(x)+ c(x)),
denote d(x) = a(x) + b(x) + c(x), and d(1) = 1, deg(d(x)) < L, we have S′′+ S + S′ ∈ A(L). Therefore we have
S′′+E ∈ A(L)+E ′. Similarly, we have S+E ′ ∈ A(L)+E for any S in A(L). Thus we have A(L)+E =A(L)+E ′.
The backward direction is obvious. �

From the above, we can know that for a given error sequence E, either all of the sequences in A(L)+E are in Ak(L)
or none of them is inAk(L). It follows that to get the value ofNk(L), we can figure out how many equivalence classes
the set E is split into, and in how many of them an element E leads all of the sequences in A(L)+E to be in Ak(L).
Thus, we define an equivalent relation as follow.

Definition 2. Let E and E ′ be two error sequences in E. We call E and E ′ equivalent if A(L)+E =A(L)+E ′. And
we denote this by E ∼ E ′.

Remark, this equivalence relation is defined under a given linear complexity L. According to Lemma 1, the Hamming
weight of equivalent error sequences have the same odd or even parity.

Theorem 1. Let E and E ′ be two error sequences in E. We have E ∼ E ′ if and only if LC(E +E ′)< L.

Proof. Assume E ∼ E ′, then there exist two sequences S,S′ ∈A(L) such that S+E = S′+E ′. Then we have LC(E +
E ′) = LC(S+S′)< L.

Assume LC(E+E ′)< L, suppose E(x)+E ′(x) = (E+E ′)(x) = (1−x)2n−lb(x), where l < L and b(1) = 1. For any
sequence S∈A(L), suppose S(x) = (1−x)2n−La(x), where a(1) = 1. We have E(x)+S(x) =E ′(x)+(1−x)2n−la(x)+
S(x) = E ′(x)+(1−x)2n−L(a(x)+(1−x)L−lb(x)). Because a(x)+(1−x)L−lb(x) = 1 when x = 1, we have S′ ∈A(L)
where S′(x) = (1−x)2n−L(a(x)+(1−x)L−lb(x)). According to Corollary 2, we haveA(L)+E =A(L)+E ′, thus we
get E ∼ E ′. �

Different from the sieve method in [12] or decomposing approach in [7], in this paper we only sieve the error
sequences in set E =

⋃k
j=0 E j where E j = {E ∈ S2n

: wH(E) = j} to get the maximum subset of E in which elements
are non-equivalent with each other and satisfy that LCk(S+E) = L when plus the error sequence E to any sequence
S ∈ A(L). And different from [13] in which the cube concepts are introduced to compute the stable k-error linear
complexity of periodic sequences, in this paper to get counting functions we first use a concept of cube fragment as
basic modules to construct classes of error sequences with specific structures. Error sequences with the same specific
structures can be represented by a single symbolic representation. We then introduce concepts of trace, weight trace
and orbit of sets to build quantitative relations between different classes. Based on these quantitative relations, we
propose an algorithm to automatically generate symbolic representations of classes of error sequences, calculate
coefficients from one class to another and compute multiplicity of classes defined based on specific equivalence on
error sequences. This algorithm can efficiently get the number of sequences with given k-error linear complexity at
last. The time complexity of this algorithm is O(2k logk) in the worst case which does not depend on the period 2n.
Experiment results got by the implementation of the algorithm are shown in Table 1. To get this table, it only cost a
few minutes in a personal computer and notice that it is unfeasible to get these results by other methods or by native
exhaustive method.

2 Cube Class, Cube Fragment and Classes of Error Sequences with Special Structures

In this section we extend the concept of Cubes[13] to cube classes and cube fragments and decompose sequences to
specific cubes and cube fragments.

For a given sequence S ∈ SN , denote the support set of S by supp(S), which is the set of positions of the nonzero
elements in S, that is, supp(S) = {i : si 6= 0, 0 ≤ i < N}. Let Zm = {0,1,2, · · · ,m−1} and denote P(Zm) the power
set of Zm which is the set of all subsets of Zm, that is P(Zm) = {U : U ⊆ Zm}. Notice that the set P(ZN) is one to
one corresponding to SN . Especially, the empty set in P(ZN) corresponds to the all-zero sequence in SN . In [13], the
authors use cube theorem to study the stable k-error linear complexity of periodic sequences. In this paper we use
support set to define a cube which will be convenient for us to propose the concept of cube fragment and to study the
counting functions.

Definition 3. Let U = {u1,u2, ...,um} be a subset of ZN , we call the elements in U as points. For two points ui,u j ∈U,
define the distance between the two points as 2t , if |ui−u j|= 2tb and 2 6 | b. And denote it by d(ui,u j) = 2t .

According to the definition of distance, it can easily be verified that for any u1,u2,u3 ∈U , if d(u1,u2) = d(u1,u3),
then d(u2,u3)> d(u1,u2), otherwise d(u2,u3) = min{d(u1,u2),d(u1,u3)}.

4 Wenlun Pan et al.

Definition 4. Let U,V be two nonempty subsets of ZN , define the distance of U and the distance between U and V
as:

d(U) =

{
min{d(u,u′) : u,u′ ∈U}, |U |> 1
+∞ otherwise

, d(U,V) =

{
min{d(u,v) : u ∈U,v ∈V}, U

⋂
V = /0

0 otherwise
.

Lemma 6. Let U and V be two subsets of ZN . If 0 < d(U,V) < min{d(U), d(V)}, then U
⋂

V = /0 and d(u,v) =
d(U,V) for any u ∈U, v ∈V.

Proof. Because d(U,V) > 0, then U
⋂

V = /0. Suppose d(U,V) = d(u0,v0) where u0 ∈ U,v0 ∈ V . Then for any
u∈U, v∈V , according to Definition 3 and 4, we have d(u,v0) = min{d(u,u0),d(u0,v0)}= d(u0,v0). Then d(u,v) =
min{d(u,v0),d(v0,v)}= d(u0,v0) = d(U,V). �

Definition 5 (Cube). Let U = {u1,u2, ...,u2T } be a subset of ZN .

– In the case of T = 0, there is only one point in U and we call U as a 0-cube with sides of length +∞. Denote the
set of all 0-cubes by Cube+∞.

– In the case of T = 1, there are two points in U and we call U as a 1-cube. If the distance between the two points
in U is 2i1 , then we say U is a 1-cube with sides of length {2i1}. We denote the set of all 1-cubes with sides of
length 2i1 by Cube2i1 .

– In the case of T = 2, there are four points in U. If U can be decomposed into two disjoint 1-cubes U ′ and U ′′, such
that U ′,U ′′ ∈Cube2i1 and d(U ′,U ′′) = 2i2 (i1 > i2), then we call U as a 2-cube with sides of length {2i1 ,2i2}. We
denote the set of all 2-cubes with sides of length {2i1 ,2i2} by Cube2i1 ,2i2 .

– Generally, in the case of T > 2, U has 2T points. Recursively, if U can be decomposed into two disjoint (T −1)-
cubes U ′ and U ′′, such that U ′,U ′′ ∈Cube2i1 ,2i2 ,...,2iT−1 and d(U ′,U ′′) = 2iT (i1 > i2 > · · ·> iT) , then we call U
as a T -cube. We denote the set of all T-cubes with sides length of {2i1 ,2i2 , · · · ,2iT } by Cube2i1 ,2i2 ,...,2iT .

We remark that, a cube represents a subset of ZN with a special structure and “Cube” represents a class of subsets of
ZN with the same structure. Because the linear complexity can be get by LC(S) = 2n−deg(gcd(1−x2n

,S(x))), we can
easily know that the linear complexity of a cube with sides of length {2i1 ,2i2 , · · · ,2iT } is 2n− (2i1 +2i2 + · · ·+2iT).

For a given L= 2n−(2n−r1 +2n−r2 + ...+2n−rT), where 0< r1 < r2 < ... < rT ≤ n, T =wH(2n−L) and 1≤ T < n,
we define the following cube classes:

C2 :=
r1−1⋃
t=1

Cube2n−t , C2 :=Cube2n−r1 ,

C4 :=
r2−1⋃

t=r1+1

Cube2n−r1 ,2n−t , C4 :=Cube2n−r1 ,2n−r2 ,

...
...

C2T :=
rT−1⋃

t=rT−1+1

Cube2n−r1 ,2n−r2 ,...,2n−rT−1 ,2n−t . C2T :=Cube2n−r1 ,2n−r2 ,··· ,2n−rT ,

and

C :=
T⋃

i=1

C2i , C := C2T .

Furthermore, we denote:
C(p) := {U ⊆ Z2n : |U |= p, ∃V ∈ C, s.t U ⊆V}, for 1≤ p≤ 2T ,

C2i(p) := {U ⊆ Z2n : |U |= p, ∃V ∈ C2i , s.t U ⊆V}, for 1≤ p≤ 2i and 1≤ i≤ T,

C2i(p) := {U ⊆ Z2n : |U |= p, ∃V ∈ C2i , s.t U ⊆V}, for 1≤ p≤ 2i and 1≤ i≤ T.

Remark, we define C1 :=Cube+∞ which represents the set of all sets with only one point. The concepts C2i and C2i

represent classes of cubes with specific sides of length. And the concepts C2i(p) and C2i(p) represent the sets of all
specific fragments of cubes in the cube classes C2i and C2i , where those cube fragments are all of size p. And we
define C2i(p) = /0, C2i(p) = /0 if p > 2i.

From the definition of cube fragment, we can easily get the property as follow which means we can splice small
cube fragments into larger cube fragments in cube class C or cube class C.

Theorem 2. For any U ∈ C(i) and V ∈ C(j), if d(U,V) = 2n−rs < min{d(U),d(V)}, then U
⋃

V ∈ C(i+ j), where
i+ j ≤ 2T and 1 < s≤ T .

An Algorithm for Counting the Number of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity 5

Proof. According to Lemma 6, it is clear that U
⋂

V = /0. Thus we need only to prove that there exists W ∈ C such
that U

⋃
V ⊆W . Observe that d(U) > 2n−rs , we can add (2s−1− i) points to U to construct an (s−1)-cube W1 with

sides of length {2n−r1 ,2n−r2 , · · · ,2n−rs−1}. Similarly, we can also add (2s−1− j) points to construct an (s− 1)-cube
W2 with sides of the same length with that of cube W1. If W1

⋂
W2 6= /0, suppose w ∈W1

⋂
W2, u ∈ U , v ∈ V , then

we have d(u,v)≥min{d(w,u),d(w,v)} ≥ 2n−rs−1 which is contrary to d(U,V) = 2n−rs . Thus W1
⋂

W2 = /0. Then the
distance of the two cubes W1 and W2 is 2n−rs and the two cubes can be combined into an s-cube with sides of length
{2n−r1 ,2n−r2 , · · · ,2n−rs} and we denote this cube by W . Since U

⋃
V ⊆W , it follows U

⋃
V ∈ C(i+ j). �

Note that (2s−1− i) and (2s−1− j) are both larger than or equal to 0, otherwise it will contradict the fact that d(U,V) =
2n−rs < min{d(U),d(V)}.

Using the similar argument as in the proof of Theorem 2, we can easily carry out the following corollary. Thus,
similarly, we can splice small fragments of cubes into larger fragments of cube in cube class C.

Corollary 3. Let U ∈ C(i) and V ∈ C(j), if d(U,V) = 2n−t < min{d(U),d(V)}, then U
⋃

V ∈ C2s+1(i+ j), where
rs < t < rs+1, 1≤ s < T, and i+ j ≤ 2s+1.

In the paper [13], the authors decompose a sequences to some cubes as follows:

Lemma 7 ([13]). Let S be a binary sequence with period 2n, and with linear complexity LC(S) = L = 2n− (2n−r1 +
2n−r2 + · · ·+ 2n−rT), where 0 < r1 < r2 < · · · < rT ≤ n. Then the support set of sequence S can be decomposed into
several disjoint cubes, and only one cube has linear complexity L, other cubes possess distinct linear complexity which
are all less than L.

We extend this decomposition as follows which are proved in Appendix A:

Corollary 4. Let E and E ′ be two error sequences. We have E ∼ E ′ if and only if there exist pairwise disjoint cubes
U1, U2, · · · , Ud and V1, V2, · · · , Vd′ such that supp(E +E ′) = (

⋃d
j=1 U j)

⋃
(
⋃d′

j=1 Vj), where U j ∈ C, Vj ∈ C, d′ ≥ 0
and d′ is even.

If E ∼ E ′ and supp(E +E ′) =
⋃d

j=1 U j where all U j are cubes in C2i , then we say that E is C2i -equivalent to E ′

and denote this by E
C2i∼ E ′, and for ease of notations we denote this by E i∼ E ′.

Corollary 5. Let S ∈ A(L) be a 2n-periodic binary sequence with linear complexity L, and E ∈ E be an error se-
quence. We have LC(S+E)< L if and only if there exist pairwise disjoint cubes U1, U2, · · · , Ud and V1, V2, . . . , Vd′

such that supp(E) = (
⋃d

j=1 U j)
⋃
(
⋃d′

j=1 Vj), where U j ∈ C, Vj′ ∈ C for 1≤ j ≤ d and 1≤ j′ ≤ d′.

We regard the cube fragment C2i(p) as the basic modules and use it to construct classes of error sequences with
special structures as follows and then we introduce the concept of “trace” and “weight trace” of a set which will be
used to count the number of sequences with special structures.

riB
d
p := {

d⋃
j=1

U j : U j ∈ C2i−1(p) and 0 < d(U j′ ,U j′′)≤ 2n−ri for 1≤ j′ < j′′ ≤ d},

riB
dl
pl

Bdl−1
pl−1 · · ·B

d1
p1

:= {
l⋃

j=1

U j : U j ∈ riB
d j
p j and 0 < d(U j′ ,U j′′)≤ 2n−ri for 1≤ j′ < j′′ ≤ l},

riBp[d] := {
d⋃

j=1

U j : U j ∈ C2i−1(p) and 2n−ri < d(U j′ ,U j′′)< 2n−ri−1 for 1≤ j′ < j′′ ≤ d},

riBp
[dl]
l p

[dl−1]
l−1 ···p[d1]

1
:= {

l⋃
j=1

U j : U j ∈ riBp j
[d j] and 2n−ri < d(U j′ ,U j′′)< 2n−ri−1 for 1≤ j′ < j′′ ≤ l},

riB
h
Q := {

h⋃
j=1

U j : U j ∈ riBQ and 0 < d(U j′ ,U j′′)≤ 2n−ri for 1≤ j′ < j′′ ≤ h},

riB
ht
Qt

Bht−1
Qt−1
· · ·Bh1

Q1
:= {

t⋃
j=1

U j : U j ∈ riB
h j
Q j

and 0 < d(U j′ ,U j′′)≤ 2n−ri for 1≤ j′ < j′′ ≤ t},

r′i
Bd

p := {
d⋃

j=1

U j : U j ∈ C2i(p) and 0 < d(U j′ ,U j′′)< 2n−ri for 1≤ j′ < j′′ ≤ d},

r′i
Bdl

pl
Bdl−1

pl−1 · · ·B
d1
p1

:= {
l⋃

j=1

U j : U j ∈ r′i
B

d j
p j and 0 < d(U j′ ,U j′′)< 2n−ri for 1≤ j′ < j′′ ≤ l},

6 Wenlun Pan et al.

where the notation p[d] is symbolic representation of the multiset {p, p, . . . , p}︸ ︷︷ ︸
d

. And p[dl]
l p[dl−1]

l−1 · · · p
[d1]
1 in riBp[d]

and riBp
[dl]
l p

[dl−1]
l−1 ···p[d1]

1
is symbolic representation of the union multisets

⊎l
j=1 p

[d j]
j . We denote the set of all those

multisets by Q = {p[dl]
l p[dl−1]

l−1 · · · p
[d1]
1 : pl > pl−1 > · · · > p1 ≥ 1, d j ≥ 1, 1 ≤ j ≤ l}. And in the above definitions,

Q, Q1, Q2, · · · , Qt are mulisets in Q, and Q j′ 6= Q j′′ for 1 ≤ j′ < j′′ ≤ t. The notation
⊎

denotes the union of
multisets, for example {1,1,2,3}

⊎
{1,2} = {1,1,1,2,2,3}. The symbol Q appeared in the rest of the paper always

takes the meaning define here.
For a given ri, where 1≤ i≤ T , we divide Z2n to the subsets as follows:

riU j := { j, j+2n−ri+1, j+2 ·2n−ri+1, · · · , j+(2ri−1−1) ·2n−ri+1}, for 0≤ j < 2n−ri+1.

For any set U ⊆ Z2n , we define the trace of U in subsets Z2n−ri+1 as

riTr(U) := { j : U
⋂

riU j 6= /0}.

Further more, if U ∈ C2i−1(p), we have d(u,v)> 2n−ri for any u,v ∈U , then there exists j such that U ⊆ riU j, where
0≤ j < 2n−ri+1. We define the weight trace of U which belongs to C2i−1(p) in subsets Z2n−ri+1 as the following:

riwTr(U) := {(j)p}.

As the elements in set riB
d
p, in set riB

dl
pl B

dl−1
pl−1 · · ·B

d1
p1 , in set riBp[d] , in set riBp

[dl]
l p

[dl−1]
l−1 ···p[d1]

1
, in set riB

h
Q and in set

riB
ht
Qt

Bht−1
Qt−1
· · ·Bh1

Q1
can all be decomposed into union set of some cube fragments subset to C2i−1 , therefore we can

define the weight trace in Z2n−ri+1 of those elements as follows:

riwTr(U) :=
d⋃

j=1
riwTr(U j), for U =

d⋃
j=1

U j ∈ riB
d
p and U j ∈ riBp;

riwTr(U) :=
l⋃

j=1
riwTr(U j), for U =

l⋃
j=1

U j ∈ riB
dl
pl

Bdl−1
pl−1 · · ·B

d1
p1

and U j ∈ riB
d j
p j ;

riwTr(V) :=
d⊎

j=1
riwTr(Vj), for V =

d⋃
j=1

Vj ∈ riBp[d] and Vj ∈ riBp;

riwTr(V) :=
l⊎

j=1
riwTr(V j), for V =

l⋃
j=1

V j ∈ riBp
[dl]
l p

[dl−1]
l−1 ···p[d1]

1
and V j ∈ riBp j

[d j] ;

riwTr(W) :=
h⊎

j=1
riwTr(Wj), for W =

h⋃
j=1

Wj ∈ riB
h
Q and Wj ∈ riBQ;

riwTr(W) :=
t⊎

j=1
riwTr(W j), for W =

t⋃
j=1

W j ∈ riB
ht
Qt

Bht−1
Qt−1
· · ·Bh1

Q1
and W j ∈ riB

h j
Q j
.

Remark 1, from the above definitions of traces and weight traces, riB
d
p is actually a class of union sets of d cube

fragments in C2i−1(p) with disjoint traces and weight traces in Z2n−ri+1 . And riBp[d] is a class of union sets of d

cube fragments in C2i−1(p) with same trace in Z2n−ri+1 . According to Corollary 3, for any U =
⋃d

j=1 U j ∈ri Bp[d] ,
U j′
⋃

U j′′ ∈ C2i(2p) for 1≤ j′ < j′′ ≤ d. Especially, riBp := riB
1
p = riBp[1] = C2i−1(p).

Remark 2, it can also be checked that riB
dl
pl B

dl−1
pl−1 · · ·B

d1
p1 is actually a class of union set of l elements with different

traces in Z2n−ri+1 , which respectively comes from riB
dl
pl , riB

dl−1
pl−1 , · · · , riB

d1
p1 . And riBp

[dl]
l p

[dl−1]
l−1 ···p[d1]

1
is a class of union

set of l elements with same trace in Z2n−ri+1 , which respectively comes from riBpl
[dl] , riBpl−1

[dl−1] , · · · , riBp1
[d1] .

Remark 3, similarly, riB
h
Q is a class of union of h elements in riBQ with pairwise disjoint traces. And riB

ht
Qt

Bht−1
Qt−1
· · ·Bh1

Q1
is a class of union set of t elements with pairwise disjoint weight traces in Z2n−ri+1 , which respectively comes from

riB
ht
Qt
, riB

ht−1
Qt−1

, · · · , riB
h1
Q1

.

Example 1. Let L = 2n− (2n−r1 +2n−r2) where n = 6, r1 = 1 and r2 = 4.

1. Let U = {1,11,18,33,43,50}, which is a union of the following sets: U1 = {1,33}, U2 = {18,50}, U3 = {11,43}
and U1,U2,U3 ∈C2(2). Then r2wTr(U1) = {(1)2}, r2wTr(U2) = {(2)2}, r2wTr(U3) = {(3)2}, therefore U ∈ r2B3

2.

An Algorithm for Counting the Number of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity 7

2. Let U= {1,11,18,33,50,60}, which is a unoin of the following sets: U1 = {1,18,33,50}∈ r2B2
2, U2 = {11,60}∈

r2B2
1. Then r2wTr(U1) = {(1)2,(2)2}, r2wTr(U2) = {(3)1,(4)1}, therefore U ∈ r2B2

2B2
1.

3. Let V = {1,9,17,33,41,49}, which is a union of the following sets: V1 = {1,33}, V2 = {17,49}, V3 = {9,41}
and V1,V2,V3 ∈ r2B2. Then r2wTr(V1) = r2wTr(V2) = r2wTr(V3) = {(1)2}, therefore V ∈ r2B2[3] .

4. Let V = {1,9,17,33,49,57}, which is a union of the following sets: V1 = {1,17,33,49}, V2 = {9,57}, and
r2wTr(V1) = {(1)2,(1)2}, r2wTr(V2) = {(1)1,(1)1}, therefore V ∈ r2B2[2]1[2] .

5. Let W = {1,10,17,33,50,58}, which is a union of the following sets: W1 = {1,17,33}, W2 = {10,50,58} and
W1,W2 ∈ r2B2[1]1[1] , then r2wTr(W1){(1)2,(1)1}, r2wTr(W2) = {(2)2,(2)1}, therefore W ∈ r2B2

2[1]1[1]
.

6. Let W = {1,2,17,18,33,35,49,59}, which is a union of the following sets: W1 = {1,17,33} ∈ r2B2[2] , W2 =
{2,18,35,59}∈ r2B2

1[2]
then r2wTr(W1)= {(1)2,(1)1}, r2wTr(W2)= {(2)1,(2)1,(3)1,(3)1}, thus W∈ r2B2[2]B

2
1[2]

.

We denote r′i = ri +1. For a given r′i, where 1≤ i≤ T , we divide Z2n to the subsets as follows:

r′i
U j := { j, j+2n−ri , j+2 ·2n−ri , · · · , j+(2ri −1) ·2n−ri}, for 0≤ j < 2n−ri .

Similarly ,we define the trace of U ⊆ Z2n in subsets Z2n−ri as

r′i
Tr(U) := { j : U

⋂
r′i

U j 6= /0}.

And for any U ∈ C2i(p), there exists j such that U ⊆ r′i
U j, where 0 ≤ j < 2n−ri . We define the weight trace of

U ∈ C2i(p) in subsets Z2n−ri as

r′i
wTr(U) := {(j)p}.

Considering that the elements in sets r′i
Bd

p and r′i
Bdl

pl B
dl−1
pl−1 · · ·B

d1
p1 can all be decomposed into union of some frag-

ments of cubes in C2i , we define the weight trace of those elements in Z2n−ri as follows:

r′i
wTr(U) :=

d⋃
j=1

r′i
wTr(U j) and r′i

wTr(U) :=
l⋃

j=1
r′i

wTr(U j)

where U =
⋃d

j=1 U j ∈ r′i
Bd

p, U j ∈ r′i
Bp and, U =

⋃l
j=1 U j ∈ r′i

Bdl
pl B

dl−1
pl−1 · · ·B

d1
p1 , U j ∈ r′i

B
d j
p j .

Particularly, we denote the trivial class r′0
Bm

1 := {U ⊆ Z2n : |U | = m}, which is the set of all support sets of the
sequences in Em. Note that, r0 is defined for the sake of achieving a unified form with notations through the paper.

For convenience of description, we use notations riB, riB′ and r′i
B to denote sets of all classes as follows:

riB := {riB
ht
Qt

Bht−1
Qt−1
· · ·Bh1

Q1
: Q j ∈Q, Q j′ 6= Q j′′ and h j ≥ 1 for 1≤ j ≤ t},

riB
′ := {riB

dl
pl

Bdl−1
pl−1 · · ·B

d1
p1

: pl > pl−1 > · · ·> p1 ≥ 1 and d j ≥ 1 for 1≤ j ≤ l},

r′i
B := {r′i

Bdl
pl

Bdl−1
pl−1 · · ·B

d1
p1

: pl > pl−1 > · · ·> p1 ≥ 1 and d j ≥ 1 for 1≤ j ≤ l}.

Remark that riB′ is a special subset of riB.
And for a class B ∈ riB

⋃
riB′

⋃
r′i
B, we define the trace and weight trace of the class in subsets Z2n−ri+1 or Z2n−ri

as:
rTr(B) := {rTr(U) : U ∈ B} and rwTr(B) := {rwTr(U) : U ∈ B} for r ∈ {ri,r′i}.

Based on the notations defined above, we can get many relationships between different classes. For example,
let U ∈ riBQ where Q = q[es]

s q[es−1]
s−1 · · ·q

[e1]
1 , and suppose riTr(U) = {u}. Then riwTr(U) = {(u)qs ,(u)qs , · · · ,(u)q1 ,

· · · ,(u)q1} in which the number of (u)q j is e j. And the weight trace of U in subset Z2n−ri−1 can be express as

r′i−1
wTr(U) = {(us,1)qs , (us,2)qs , · · · , (us,es)qs , · · · ,(u1,1)q1 , · · · ,(u1,e1)q1} in which uk, j ∈ {u+ l · 2n−ri+1 : 0 ≤ l <

2ri−ri−1−1} and uk, j 6= uk′, j′ for any (k, j) 6= (k′, j′), where 1 ≤ k ≤ k′ ≤ s and 1 ≤ j ≤ e j, 1 ≤ j′ ≤ e j′ . In the next
subsection we will focus on those relationships between different classes and after that we can get the algorithm for
counting the number of sequences with given k-error linear complexity which can also get the counting function for
small k.

3 Quantitative Relations Between Different Classes of Error Sequences

We first consider the relations between classes in r′i−1
B and ri

B where 1≤ i≤ T .

8 Wenlun Pan et al.

Definition 6. Let U be a set in class B, where B ∈ r′i−1
B. We define the orbit of U in Z2n−ri+1 as

riOU := {U ′ ∈ B : riwTr(U ′) = riwTr(U)}.

And we denote
r′i−1

wTr(riOU) := {r′i−1
wTr(U ′) : U ′ ∈ riOU}.

Given a multiset Q = q[es]
s q[es−1]

s−1 · · ·q
[e1]
1 ∈Q, we define Index(Q) = {es,es−1, · · · ,e1} which is also a multiset. And

given a positive integer N and a multiset U = {u1,u2, · · · ,um} ∈ Q, we define
(N

U

)
=
(N

u1

)
·∏m−1

j=1

(N−∑
j
k=1 uk

u j+1

)
.

Lemma 8. Let U be a set in class B, where B ∈ r′i−1
B. If U is also in class B1, where B1 = riBQ, then the size of the

weight trace set of the orbit of U is ∣∣
r′i−1

wTr(riOU)
∣∣= (2ri−ri−1−1

Index(Q)

)
,

where the multiset Q ∈Q.

Proof. Suppose Q= q[es]
s q[es−1]

s−1 · · ·q
[e1]
1 and riTr(U)= {u}. We have riwTr(U)= {(u)qs , · · · ,(u)qs , · · · ,(u)q1 , · · · ,(u)q1}

in which the number of (u)q j is e j. Then r′i−1
wTr(U) = {(us,1)qs , (us,2)qs , · · · , (us,es)qs , · · · ,(u1,1)q1 , · · · ,(u1,e1)q1} in

which u j,k ∈ {u+ l · 2n−ri+1 : 0 ≤ l < 2ri−ri−1−1} and u j,k 6= u j′,k′ for any (j,k) 6= (j′,k′) where 1 ≤ j ≤ j′ ≤ s and

1≤ k ≤ e j, 1≤ k′ ≤ e j′ . Then we get
∣∣
r′i−1

wTr(riOU)
∣∣= (2ri−ri−1−1

Index(Q)

)
by combinations theorem. �

Generally, we have the following theorem:

Theorem 3. Let U be a set in class B, where B ∈ r′i−1
B. If U is also in class B1, where B1 = riB

ht
Qt

Bht−1
Qt−1
· · ·Bh1

Q1
∈ riB,

then the size of the weight trace set of the orbit of U is

∣∣
r′i−1

wTr(riOU)
∣∣= t

∏
j=1

(
2ri−ri−1−1

Index(Q j)

)h j

.

Proof. Suppose U =
⋃t

j=1 U j where U j =
⋃h j

k=1 U j,k ∈ riB
h j
Q j

and U j,k ∈ riBQ j . Suppose riTr(U j,k) = {u j,k}, then

riTr(U) =
⋃t

j=1
⋃h j

k=1 riTr(U j,k) = {u j,k : 1 ≤ j ≤ t, 1 ≤ k ≤ h j} and u j,k 6= u j′,k′ for any (j,k) 6= (j′,k′) where
1≤ j ≤ j′ ≤ t and 1≤ k ≤ h j, 1≤ k′ ≤ h j′ . According to Lemma 8, each r′i−1

wTr(U j,k) corresponds to |Q j| elements

in the set {u j,k, u j,k+2n−ri+1, · · · , u j,k+(2ri−ri−1−1−1) ·2n−ri+1}, where 0≤ u j,k < 2n−ri+1, and there are
(2ri−ri−1−1

Index(Q j)

)
possibilities. As a result, we have

∣∣
r′i−1

wTr(riOU)
∣∣= ∏

t
j=1
(2ri−ri−1−1

Index(Q j)

)h j
. �

According to Theorem 3, the size of the weight trace of the orbit of U only relate to B and B1, i.e. for any U,V ∈ B,
if U,V ∈ B1, then

∣∣
r′i−1

wTr(riOU)
∣∣= ∣∣r′i−1

wTr(riOV)
∣∣. Therefore, we define a coefficient from class B to B1 as :

Coe f (B1 | B) :=
∣∣
r′i−1

wTr(riOU)
∣∣, where U ∈ B and U ∈ B1.

Theorem 4. Let class B ∈ r′i−1
B. We denote riGen(B) = {B′ ∈ riB : ∃U ∈ B s.t. U ∈ B′}. Then we have∣∣

r′i−1
wTr(B)

∣∣= ∑
B′∈ri Gen(B)

Coe f (B′ | B) ·
∣∣riwTr(B′)

∣∣.
Proof. By Theorem 3, we have that for a given B′ ∈ riGen(B), for all elements in riwTr(B′), there are Coe f (B′ | B)
elements in r′i−1

wTr(B′) corresponding to it. As B =
⋃

B′∈ri Gen(B) B′ and it is easy to know that riwTr(B′)
⋂

riwTr(B′′)
= /0 for any B′,B′′ ∈ riGen(B) and B′ 6= B′′, then we have derived the theorem.

Example 2. Let L = 2n− (2n−r1 +2n−r2 +2n−r3) where n = 6, r1 = 1, r2 = 3 and r3 = 6.
Let U = {1,5,9} ∈ r′2

B2B1. Then r3wTr(U) = {(1)2,(1)1}, so U ∈ r3B2[1]1[1] . And r′2
wTr(r3OU) = {{(1)2,(3)1},

{(1)2,(5)1}, {(1)2,(7)1}, {(3)2,(1)1}, {(3)2,(5)1}, {(3)2,(7)1}, {(5)2,(1)1}, {(5)2,(3)1}, {(5)2,(7)1},
{(7)2,(1)1}, {(7)2,(3)1}, {(7)2,(5)1}}.

Let V = {1,5,8} ∈ r′2
B2B1. Then r3wTr(V) = {(0)1,(1)2}, so V ∈ r3B2B1. And r′2

wTr(r3OV) = {{(1)2,(0)1},
{(1)2,(2)1}, {(1)2,(4)1}, {(1)2,(6)1}, {(3)2,(0)1}, {(3)2,(2)1}, {(3)2,(4)1}, {(3)2,(6)1}, {(5)2,(0)1},
{(5)2,(2)1}, {(5)2,(4)1}, {(5)2,(6)1}, {(7)2,(0)1}, {(7)2,(2)1}, {(7)2,(4)1}, {(7)2,(6)1}}.

r3Gen(r′2
B2B1)= {r3B2[1]1[1] , r3B2B1}. Coe f (r3B2[1]1[1] | r′2B2B1)=

(4
{1,1}

)
= 12 and Coe f (r3B2B1 | r′2B2B1)=

(4
1

)(4
1

)
=

16.
∣∣
r′2

wTr(r′2
B2B1)

∣∣= (8
2

)(2
1

)
= 56, r3wTr(r3B2[1]1[1]) =

(2
1

)
= 2 and r3wTr(r3B2B1) =

(2
1

)(1
1

)
= 2. It is easy to check

that 12 ·2+16 ·2 = 56.

An Algorithm for Counting the Number of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity 9

For a given set U in class B, where B ∈ r′i−1
B, we denote the set of all U ′ ∈ B which C2i -equivalent to U by

riCE(U) := {U ′ ∈ B : U ′ i∼U}.

and we denote
r′i−1

wTr(riCE(U)) = {r′i−1
wTr(U ′) : U ′ ∈ riCE(U)}.

We define the multiplicity of U in B under C2i -equivalent as

riMult(U) :=

{
1/
∣∣
r′i−1

wTr(riCE(U))
∣∣, if @V ∈ C2i(2i−1 +1),s.t. V ⊆U,

0 otherwise.

Remark, riCE(U) includes U itself.

Lemma 9. Let U be a set in class B, if U is also in B′, where B∈ r′i−1
B, B′= riBQ ∈ riB and Q= q[et]

t q[et−1]
t−1 · · ·q

[e1]
1 ∈Q,

qt > qt−1 > · · ·> q1, then we have:

riMult(U) =

0, if et ≥ 2 and qt > 2i−2 or et = 1 and qt +qt−1 > 2i−1,

1/2et−1, if et ≥ 2 and qt = 2i−2,

1/(et−1 +1), if et = 1 and qt +qt−1 = 2i−1,

1/(2ri−ri−1−1), if t = 1, et = 1 and qt = 2i−1,

1, otherwise.

Proof. Suppose riTr(U) = {u}, then

– riwTr(U) = {(u)qt , · · · ,(u)qt , · · · ,(u)q1 , · · · ,(u)q1} where the number of (u)q j is e j.
– r′i−1

wTr(U) = {(ut,1)qt , · · · ,(ut,et)qt , · · · ,(u1,1)q1 , · · · ,(u1,e1)q1} where u j,k ∈ {u+ l ·2n−ri+1 : 0≤ l < 2ri−ri−1−1},
u j,k 6= u j′,k′ for any (j,k) 6= (j′,k′) and 1≤ j, j′ ≤ t, 1≤ k ≤ e j, 1≤ k′ ≤ e j′ .

– Let U j,k denote the subset of U , which satisfy that r′i−1
wTr(U j,k) = {(u j,k)q j}, for 1≤ j ≤ t and 1≤ k ≤ e j.

Case 1 (If et ≥ 2 and qt > 2i−2 or et = 1 and qt +qt−1 > 2i−1). As d(U j,k,U j′,k′)> 2n−ri for any (j,k) 6= (j′,k′), by
Corollary 3, it follows that Ut,k +Ut,k′ ∈ C2i(p) or Ut,1 +Ut−1,k′′ ∈ C2i(p′), where p, p′ > 2i−1, 1 ≤ k < k′ ≤ et and
1≤ k′′ ≤ et−1. Therefore, Mult(U) = 0.

Now let us consider the other cases. Suppose U ′ i∼U where U ′ ∈ B.

– r′i−1
wTr(U ′) = {(u′t,1)qt , · · · ,(u′t,et)qt , · · · ,(u′1,1)q1 , · · · ,(u′1,e1

)q1} where u′j,k 6= u′j′,k′ for any (j,k) 6= (j′,k′) and
1≤ j, j′ ≤ t, 1≤ k ≤ e j, 1≤ k′ ≤ e j′ .

– Let U ′j,k denote the subset of U ′, which satisfy that r′i−1
wTr(U ′j,k) = {(u′j,k)q j}, for 1≤ j ≤ t and 1≤ k ≤ e j.

For any V ∈ C2i , it can be decomposed into two cubes W1 and W2 which are both in C2i−1 . Since U ′ i∼U , then there
exists V1,V2, · · · ,Vd ∈ C2i such that U +U ′ = ∑

t
j=1 ∑

e j
k=1 U j,k +∑

t
j′=1 ∑

e j
k′=1 U ′j′,k′ = ∑

d
j=1 Vj. So for any U j,k, there

must exist U ′j′,k′ such that U j,k +U ′j′,k′ ∈C2i−1 or U j,k +U ′j′,k′ = /0. Based on this observation, we analysis the value of
riMult(U) for other cases as follow.

Case 2 (If et ≥ 2 and qt = 2i−2). In this case, U ′j,k = U j,k for any 1 ≤ j < t and 1 ≤ k ≤ e j. Now let us consider
Ut,1,Ut,2, · · · ,Ut,et . According to the above analysis, we can choose two sets U ′t, j and U ′t, j′ to make Ut, j +U ′t, j +Ut, j′+

U ′t, j′ be a cube in C2i and eliminate all other Ut,k, i.e. let U ′j,k = U j,k for others. Similarly, we can choose four sets
U ′t, j1 ,U

′
t, j2 ,U

′
t, j3 ,U

′
t, j4 to make Ut, j1 +U ′t, j1 +Ut, j2 +U ′t, j2 +Ut, j3 +U ′t, j3 +Ut, j4 +U ′t, j4 be the union of two disjoint

cubes in C2i and eliminate all other Ut,k. Without loss of generality, we can choose 6,8, · · · ,2 · bet/2c sets added to the
corresponding sets Ut, j and make the resulted sets be unions of 3,4, · · · ,bet/2c disjoint cubes in C2i . So, the number
of the weight trace in Z2n−ri−1 of all those U ′ is

(et
0

)
+
(et

2

)
+ · · ·+

(et
2·bet/2c

)
= 2et−1. Thus riMult(U) = 1/2et−1.

Case 3 (If et = 1 and qt +qt−1 = 2i−1). In this case, U ′j,k =U j,k for any 1≤ j < t−1 and 1≤ k ≤ e j. We need only
to consider Ut,1 ,Ut−1,1,Ut−1,2, · · · ,Ut−1,et−1 and the corresponding U ′t,1 ,U ′t−1,1,U

′
t−1,2, · · · ,U ′t−1,et−1

. According to the
above analysis, we can only add points in U ′t−1,k and U ′t,1 to Ut,1 and Ut−1,k′ and make the resulted two sets become a
cube and eliminate all other Ut−1,k. It is easy to know that the number of the weight trace in Z2n−ri−1 of all those U ′ is
et−1 +1. So riMult(U) = 1/(et−1 +1).

10 Wenlun Pan et al.

Case 4 (If t = 1,et = 1 and qt = 2i−1). Due to U ′+U ∈ C2i , it follows that d(U,U ′) > 2n−ri , i.e. u′t,1 ∈ {u+ l ·
2n−ri+1 : 0 ≤ l < 2ri−ri−1−1}. Therefore, the number of the weight trace in Z2n−ri−1 of all those U ′ is 2ri−ri−1−1 and
riMult(U) = 1/(2ri−ri−1−1).

Case 5 (Else). According to the above mentioned analysis, there does not exist a set U ′ ∈ B except U itself such that
U ′ C2i -equivalent to U . Therefore, riMult(U) = 1.

�

From Lemma 9, it can easily be seen that, for two sets U,V ∈ B, where B ∈ r′i−1
B, if U,V ∈ riBQ, we have

riMult(U) = riMult(V). This value depends only on riBQ because it does not require the knowledge of exact values of
the elements in the individual set. Therefore, we define Mult(riBQ) = riMult(U) where U ∈ riBQ. Generally, we have

Theorem 5. Let U and V be two sets in B. If U,V ∈ B′, where B ∈ r′i−1
B, B′ ∈ riB, then riMult(U) = riMult(V). And

we define Mult(B′) = riMult(U), where U ∈ B′. Further more, if B′ = riB
ht
Qt

Bht−1
Qt−1
· · ·Bh1

Q1
∈ riB, we have

Mult(B′) =
t

∏
j=1

Mult(riBQ j)
h j .

Proof. Suppose U ∈ B′ and riTr(U) = {ut,1,ut,2, · · · ,ut,ht , · · · ,u1,1,u1,2, · · · ,u1,h1}. Let U j,k denotes the subset of U ,
which satisfy that U j,k ∈ riBQ j and riTr(U j,k) = {u j,k}, for 1 ≤ j ≤ t and 1 ≤ k ≤ h j. Applying Lemma 9, we get
Mult(riBQ j) = riMult(U j,k) for each U j,k. Considering that each set of weight traces r′i−1

wTr(U j,k) only correlate

with {u j,k + l · 2n−ri+1 : 0 ≤ l < 2ri−ri−1−1}, so the multiplicity of U is riMult(U) = ∏
t
j=1 Mult(riBQ j)

h j . And this
value has nothing to do with the set U that we chose, so Mult(B′) = ∏

t
j=1 Mult(riBQ j)

h j . �

Example 3. Let L = 2n− (2n−r1 +2n−r2 +2n−r3) where n = 6, r1 = 1, r2 = 3 and r3 = 6.
Let set U1 = {1,9,17,25}, then U1 ∈ r3B4 and r3wTr(U1) = {(1)4}. r2wTr(r3CE(U1)) = {(1)4,(3)4,(5)4,(7)4}

and Mult(r3B4) = riMult(U) = 1
4 .

Let set U2 = {1,3,9,17}, then U2 ∈ r3B3[1]1[1] and r3wTr(U2) = {(1)3,(1)1}. r2wTr(r3CE(U2)) = {{(1)3,(3)1},
{(1)1,(3)3}}, so Mult(r3B3[1]1[1]) = riMult(U) = 1

2 .

Remark, the multiplicity of a class B in riB measures the multiplicity of the class in the sense of equivalence. In other
words, if Mult(B) 6= 0 then there are |B| ·Mult(B) sequences which pairwise non- C2i -equivalent, where |B| denote
the number of sequences in class B. In the next section, we will explain that if Mult(B) = 0 if and only if for any
sequence in class B there exists sequences with smaller Hamming weight which equivalent to it. Here, we highlight
that, according the proof of Lemma 9 and Theorem 5, it is evident that if U ∈ B and riMult(U) 6= 0 then U ′ ∈ B for

any U ′ i∼U and |U ′|= |U |.
For a given multiset Q = qet

t qet−1
t−1 · · ·q

e1
1 ∈Q, where qt > qt−1 > · · ·> q1, we define

Extr(Q) = qt ,

and for a given B = riBQ ∈ riB, we define

Extr(B) = riBExtr(Q) = riBqt .

In addition, for a given B = riB
ht
Qt

Bht−1
Qt−1
· · ·Bh1

Q1
∈ riB, we define

Extr(B) = riB
ht
Extr(Qt)

Bht−1
Extr(Qt−1)

· · ·Bh1
Extr(Q1)

.

Note that if Extr(Q j)=Extr(Q j′), then the two terms B
h j
Extr(Q j)

and B
h j′
Extr(Q j′)

are merge to be a single term B
h j+h j′
Extr(Q j)

for

j 6= j′. If Extr(Qi1,1)=Extr(Qi1,2)= · · ·=Extr(Qi1, j1
), Extr(Qi2,1)=Extr(Qi2,2)= · · ·=Extr(Qi2, j2

), · · · , Extr(Qit,1)=

Extr(Qit,2) = · · ·= Extr(Qit, jt), where
⋃t

u=1
⋃ ju

v=1{iu,v}= {t, t−1, · · · , 1}, we define

Coe fExtr(B) =
t

∏
u=1

(
∑

ju
v=1 hu,v

hu,1, hu,2, · · · , hu, ju

)
.

Based on the definition of Coe fExtr(B), it is clear that for any element in Extr(B), there are Coe fExtr(B) elements
in B which correspond to it. Thus, we get that:

An Algorithm for Counting the Number of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity 11

Theorem 6. Let B be a class in riB. If B′ = Extr(B), then
∣∣riwTr(B)

∣∣= ∣∣riwTr(B′)
∣∣ ·Coe fExtr(B).

For the specific sets U ∈ riBQ and V =
⋃t

j=1 Vj ∈ riB
ht
Qt

Bht−1
Qt−1
· · ·Bh1

Q1
, where Vj ∈ riB

h j
Q j

, we define

riExtr(U) :=U ′, where U ′ ⊆U and U ′ ∈ riBqt ,

riExtr(V) :=
t⋃

j=1
riExtr(Vj).

Remark, riExtr(U) is a one to many mapping but all elements in the codomain have the same weight trace in Z2n−ri+1 .
Now we consider the relations between classes of error sequences in riB′ and r′i

B. Similar to Definition 6, we
define the orbit of a set in Z2n−ri as follow:

Definition 7. Let U be a set in class B, where B ∈ riB′. We define the orbit of U in Z2n−ri as

r′i
OU := {U ′ ∈ B : r′i

wTr(U ′) = r′i
wTr(U)}.

And we define
riwTr(r′i

OU) := {riwTr(U ′) : U ′ ∈ r′i
OU}.

Lemma 10. Let U be a set in class B, where B = riB
dl
pl B

dl−1
pl−1 · · ·B

d1
p1 ∈ riB′. Suppose U is also in class B′ where

B′ = r′i
Be

q ∈ r′i
B. And suppose riTr(U) = {u1, u2, · · · , ud} and riwTr(U) = {(u1)p j1

, (u2)p j2
, · · · , (ud)p jd

}, where

0≤ u j < 2n−ri+1 and d = ∑
l
j=1 d j. We have that, for all 1≤ k ≤ d, if there exists uk′ such that d(uk,uk′) = 2n−ri then

p jk + p jk′ = q, and if there does not exist uk′ such that d(uk,uk′) = 2n−ri then p jk = q, where 1 ≤ k′ ≤ d and k 6= k′.
We then recursively decompose riTr(U) into the following sets:

1. Let V0 = {{uk,uk′} : d(uk,uk′) = 2n−ri and p jk = p jk′ =
q
2}.

2. Let V1 = {{uk} : p jk = q}. Let W1 = {(u)p : (u)p ∈ riwTr(U), @w ∈ (V0
⋃

V1), s.t.u ∈ w}.
3. Suppose we have get Vs−1, and Ws−1, Ws−1 6= /0, s > 1.
4. We then recursively generate all Vs until s = t, such that Wt = /0 by applying the following procedure: choose

an element (u)p from Ws−1, then construct Vs = {{uk,uk′} : d(uk,uk′) = 2n−ri , p jk = p}, Ws = {(u′)p′ : (u′)p′ ∈
Ws−1,@w ∈Vs s.t. u′ ∈ w}.

Then the size of the trace set of the orbit of U is∣∣
ri

wTr(r′i
OU)

∣∣= 2∑
t
s=1 ms ·

(
e

m0,m1, · · · ,mt

)
where ms = |Vs| for 0≤ s≤ t.

Proof. It is easy to see that e = ∑
t
s=0 ms. For each {uk} ∈V1, we can construct {u′k} such that d(uk,u′k) = 2n−ri . Thus,

we can construct an U ′ by substituting (uk)p jk
with (u′k)p jk

in riwTr(U). That is riwTr(U ′) = {(u1)p j1
,(u2)p j2

,

· · · ,(u′k)p jk
, · · · ,(ud)p jd

}. It is easy to check that U ′ ∈ r′i
OU . For each element {uk,uk′} ∈ Vs (2 ≤ s ≤ t), we can

also construct an U ′ by exchanging the index of element (uk)p jk
and (uk′)p jk′

in riwTr(U). That is riwTr(U ′) =
{(u1)p j1

, · · · ,(uk)p jk′
, · · · ,(uk′)p jk

, · · · ,(ud)p jd
}. It is also easy to check that U ′ ∈ r′i

OU . Hence, using the above method,

for a given U , we can construct 2∑
t
s=1 ms elements in riwTr(B) which have the same weight trace in Z2n−ri as U . Be-

sides, suppose |V0| ≥ 1, |V1| ≥ 1, with regard to elements {uk,uk′} ∈V0 and {uk1} ∈V1, we can construct U ′, such that
riwTr(U ′) = riwTr(U)−{(uk)q/2, (uk′)q/2, (uk1)q}+{(uk)q, (uk1)q/2, (u′k1

)q/2}, where d(uk1 ,u
′
k1
) = 2n−ri . It is easy

to see that U ′ ∈ r′i
O

U
. Generally, with regard to any two elements in V =

⋃t
s=0 Vs, we can construct a set U ′ ∈ r′i

O
U

in
a similar way. While, applying the above constructing process on two elements within a single set Vs will lead an U ′

with identity weight trace in Z2n−ri+1 . Thus by combination theorems, for a given set U , we can construct
(e

m0,m1,··· ,mt

)
elements in riwTr(B) which have the same weight trace in Z2n−ri as U . Therefore the size of the weight trace set of
the orbit of U is |riwTr(r′i

OU)|= 2∑
t
s=1 ms ·

(e
m0,m1,··· ,mt

)
. �

Example 4. Let L = 2n− (2n−r1 +2n−r2 +2n−r3) where n = 8, r1 = 1, r2 = 2, r3 = 3 and r4 = 4. Let set U such that
r4Tr(U) = {1,2,3,4,5,18,19,20,21} and r4wTr(U) = {(1)6,(2)5,(3)4,(4)4,(5)3,(18)1,(19)2,(20)2,(21)3}. Then
U ∈ B = r4B6B5B2

4B2
3B2

2B1 and U ∈ B′ = r′4
B5

6.
Then r4OU = {U ∈ B : r′4

wTr = {(1)6,(2)6,(3)6,(4)6,(5)6}}. Applying Lemma 10, we get V0 = {{5,21}, V1 =

{{13}}, V2 = {{2,18}, V3 = {{3,19}, {4,20}}.
With regard to element {1} in V1, we can construct U ′, s.t. r4wTr(U ′) = r4wTr(U)−{(1)6}+{(17)6}. With regard

to element {2,18} in V2, we can construct U ′, s.t. r4wTr(U ′) = r4wTr(U)−{(2)5,(18)1}+{(2)1,(18)5}. With regard
to element {1} ∈V1 and element {3,19} ∈V3, we can construct U ′, s.t. r4wTr(U ′) = r4wTr(U)−{(1)6,(3)4,(19)2}+
{(1)4,(17)2,(3)6}.

12 Wenlun Pan et al.

For any U ′ ∈ B, if U ′ ∈ B′ then we can also get the sets V ′0, V ′1, · · · , V ′t which satisfy that |V ′s | = |Vs| = ms for
0≤ s≤ t. So we have

∣∣
ri

wTr(r′i
OU ′)

∣∣= ∣∣ri
wTr(r′i

OU)
∣∣. We define Coe f (B′ | B) =

∣∣
ri

wTr(r′i
OU)

∣∣.
Corollary 6. Let U be a set in class B where B ∈ riB′. And suppose U is also in class B′ = r′i

Bes
qsB

es−1
qs−1 · · ·B

e1
q1 . Suppose

U =
⋃s

j=1 U j ∈ B′ where U j ∈ r′i
B

e j
q j , then we have

∣∣riwTr(r′i
OU)

∣∣= s

∏
j=1

∣∣riwTr(r′i
OU j)

∣∣.
Similarly, for any U ′ ∈ B, if U ′ ∈ B′ then we can also get |riwTr(r′i

OU ′)|= |riwTr(r′i
OU)|. Denote U j ∈ B j where B j

is a class in riB′, we define Coe f (B′ | B) = ∏
s
j=1 Coe f (r′i

B
e j
q j |B j). Then we have

Theorem 7. Let B be a class in riB′, we denote r′i
Gen(B) = {B′ ∈ r′i

B : ∃U ∈ B s.t U ∈ B′}. Then the size of the
weight trace in Z2n−ri of all elements in B is∣∣

ri
wTr(B)

∣∣= ∑
B′∈r′i

Gen(B)
Coe f (B′ | B) ·

∣∣
r′i

wTr(B′)
∣∣.

Remark that, given B= riB
dl
pl B

dl−1
pl−1 · · ·B

d1
p1 ∈ riB′ and B′= r′i

Bes
qsB

es−1
qs−1 · · ·B

e1
q1 ∈ r′i

Gen(B), we have that each q j is equal to
the sum of p j′ and p j′′ or equal to p j′ where p j′ , p j′′ ∈ {pl , pl−1, · · · , p1} and j′ ≤ j′′. If we know all the decompose of
each q j, then we can directly compute the value of Coe f (B′ | B). For instance, for two given classes B = riB

2
4B3

3B2
2B1

and B′ = r′i
B7B6B5B4, the decomposition of those q are 7 = 4+ 3, 6 = 3+ 3, 5 = 4+ 1, 4 = 2+ 2, then we have

Coe f (B′ | B) = 2 ·1 ·2 ·1 = 4.

Example 5. Let L = 2n− (2n−r1 +2n−r2 +2n−r3) where n = 6, r1 = 1, r2 = 3 and r3 = 6.
Let set U = {1,9,19,33,51} ∈ r2B2

2B1. Then r2wTr(U) = {(1)2,(3)2,(9)1} and r′2
wTr(U) = {(1)3,(3)2}, so U ∈

r′2
B3B2. r2wTr(r′2

OU)= {{(1)2,(3)2,(9)1}, {(1)1,(3)2,(9)2}, {(1)2,(11)2,(9)1}, {(1)1,(11)2,(9)2}}. Coe f (r2′B3B2 |
r2B2

2B1) = 4.

r′2
Gen(r2B2

2B1) = {r′2
B4B1, r′2

B3B2, r′2
B2

2B1}. We have
∣∣r2wTr(r2B2

2B1)
∣∣ = (16

2,1

)
= 1680 and

∣∣
r′2

wTr(r′2
B4B1)

∣∣ =(8
1,1

)
= 56,

∣∣
r′2

wTr(r′2
B3B2)

∣∣= (8
1,1

)
= 56,

∣∣
r′2

wTr(r′2
B2

2B1)
∣∣= (8

2,1

)
= 168.

Coe f (r′2
B4B1 | r2B2

2B1) = 2, Coe f (r′2
B3B2 | r2B2

2B1) = 4, Coe f (r′2
B2

2B1 | r2B2
2B1) = 8. It is evident to check that

1680 = 56 ·2+56 ·4+168 ·8.

In the next section, we will use the quantitative relations between different classes of error sequences above to get
the number of sequences with given k-error linear complexity.

4 The Algorithm for Computing Nk(L)

For each error sequences set Em, we denote ER
m the maximum subset of Em in which the error sequences are pairwise

non-equivalent and there does not exist error sequence with Hamming weight not larger than m equivalent with it and
A(L)+E ⊆Ak(L) for any E ∈ ER

m, that is,

ER
m := {E ∈ Em :A(L)+E ⊆A′k(L) and @E ′ ∈ Em′ , m′ ≤ m, s.t. E ′ ∼ E where E ′ 6= E},0 < m≤ k.

Consequently, we have

Ak(L) =
k⋃

m=0

(A(L)+ER
m) and (A(L)+ER

m)
⋂
(A(L)+ER

m′) = /0, for 0≤ m < m′ ≤ k.

Denote by NEm(k, T) the size of ER
m when the errors is k and T = wH(2n− L) where L is the k-error linear

complexity. Then we have that the number of sequences with k-error linear complexity L is

Nk(L) = (
k

∑
m=0

NEm(k, T)) ·2L−1.

In the following we will use those quantitative relations in the last section to construct an algorithm for computing
the value of NE2m(k, T) for giving k and L.

For a given set U ∈ r′0
Bm

1 , we define a mapping

F(U) := (U ′′0 , U1, U ′1, U ′′1 , . . . , UT , U ′T , U ′′T)

An Algorithm for Counting the Number of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity 13

where U ′′0 =U , and Ui =U ′′i−1, U ′i = riExtr(Ui), U ′′i =U ′i , for 1≤ i≤ T . And we define:

Gen(r′0
Bm

1) = {(B′′0 , B1, B′1, B′′1 , · · · , BT , B′T , B′′T) : ∃U ∈ r′0
Bm

1 , s.t. F(U) ∈ (B′′0 , B1, B′1, B′′1 , · · · , BT , B′T , B′′T)}.

Where B′′0 = r′0
Bm

1 , Bi ∈ riB, B′i ∈ riB′, and B′′i ∈ r′i
B. Note that F(U) ∈ (B′′0 , B1, B′1, B′′1 , · · · , BT , B′T , B′′T) means

that U ′′0 ∈ B′′0 and Ui ∈ Bi, U ′i ∈ B′i and U ′′i ∈ B′′i for 1≤ i≤ T .

Theorem 8. For giving errors k and k-error linear complexity L, then the size of ER
m (1≤ m≤ k) is

Num(ER
m) = ∑

B∈Gen(r′0
Bm

1)

∣∣
r′T

wTr(B′′T)
∣∣ · T

∏
j=1

Imp(B′′j) ·Coe f (B′′j | B′j) ·Coe fExtr(B j) ·Mult(B j) ·Coe f (B j | B′′j−1).

Note that B= (B′′0 , B1, B′1, B′′1 , · · · , BT , B′T , B′′T)∈Gen(r′0
Bm

1). And for a given B in r′i
B where B=r′i

Bes
qsB

es−1
qs−1 · · ·B

e1
q1 ,

Imp(B) is defined as follow:

Imp(B) :=

{
1, if qs < Impvalue
0, otherwise

, where Impvalue =
⌈

2T +m− k
2

⌉
.

Especially, Num(ER
0) = 1 if Impvalue > 0 and Num(ER

0) = 0 for else.

We need to provide some lemmas before proceeding the proof of Theorem 8.

Lemma 11. All of the elements in r′0
Bm

1 can be decomposed into pairwise disjoint subsets U j, such that for any
U ∈ U j, F(U) belong to the same B, where B ∈ Gen(r′0

Bm
1). And we have that the number of sets in r′0

Bm
1 is

∣∣
r′0

Bm
1
∣∣= (2n

m

)
= ∑

B∈Gen(r′0
Bm

1)

∣∣
r′i

wTr(B′′T)
∣∣ · T

∏
j=1

Coe f (B′′j | B′j) ·Coe fExtr(B j) ·Coe f (B j | B′′j−1).

Proof. For a given B ∈ Gen(r′0
Bm

1), combining Theorem 4, 6 and 7, we obtain that the number of U ∈ r′0
Bm

1 which
satisfy F(U) ∈ B is

∣∣
r′i

wTr(B′′T)
∣∣ ·∏T

j=1 Coe f (B′′j | B′j) ·Coe fExtr(B j) ·Coe f (B j | B′′j−1). Then the lemma will be
proved by showing that for any U ∈ r′0

Bm
1 , there only exists one B ∈Gen(r′0

Bm
1) such that F(U) ∈ B. Suppose F(U) =

(U ′′0 , U1, U ′1, U ′′1 , · · · , UT , U ′T , U ′′T). Recall that Ui = U′′i−1, U ′i = riExtr(Ui), and U ′′i = U′i, for 1≤ i≤ T . According
to the definition of riExtr(U), no matter which U ′i we choose, they are all in the same B′i. Thus the choice of U ′i has
nothing with B′i. Then, it is evident to see that the lemma holds. �

Lemma 12. Let B = (B′′0 , B1, B′1, B′′1 , · · · , BT , B′T , B′′T) ∈ Gen(r′0
Bm

1), for any set U ∈ r′0
Bm

1 , F(U) ∈ B, there
exists V ∈ C2t (2t−1 +1) such that V ⊆U, if and only if there exists j such that Mult(B j) = 0. Where 0 ≤ t < T and
1≤ j ≤ T .

Proof. Assume there exists j such that Mult(B j) = 0, where 1 ≤ j ≤ T . Suppose B j = riB
es
Qs

Bes−1
Qs−1
· · ·Be1

Q1
. From

Theorem 5, we have that there exists t such that Mult(riBQt) = 0, where 1 ≤ t ≤ s. It follows that, there exists
V ∈ C2t (2t−1 +1) such that V ⊆U , where 1≤ t ≤ T .

Assume there exists V ∈C2t (2t−1+1) such that V ⊆U where 0≤ t < T . Denote the smallest t by t0. Then we have
Mult(B j) 6= 0 for 1≤ j < t0 otherwise there exists V ′ ∈C2t′ (2t ′−1+1) such that V ′ ⊆U where t ′ < t0 which contradict
with t0 is the smallest number. Suppose Bt0 = rt0

Bes
Qs

Bes−1
Qs−1
· · ·Be1

Q1
, if Mult(Bt0) 6= 0, then we have Mult(rt0

BQ j) 6= 0
for 1 ≤ j ≤ s. So there does not exist V ∈ C2t0 (2t0−1 +1) such that V ⊆Ut0 . As Extr(Ut0−1) =U ′t0−1 =U ′′t0−1 =Ut0 ,
so there does not exist V ∈ C2t0 (2t0−1 +1) such that V ⊆Ut0−1 as well. By that analogy, we have that there does not
exist V ∈ C2t0 (2t0−1 +1) such that V ⊆U1 which contradict the condition. Thus Mult(Bt0) = 0. �

Lemma 13. Let E be an error sequence in set Em. Then there exists E ′ ∈ Em′ , such that E ′ ∼ E, if and only if there
exists a set U ∈ C2t (2t−1 +1), such that U ⊆ supp(E), where m′ < m and 1≤ t ≤ T .

Proof. Assume there exists a set U ∈ C2t (2t−1 +1), such that U ⊆ supp(E), where 1 ≤ t ≤ T . Suppose supp(E) =
U0
⋃

U where U0
⋂

U = /0. We choose a set Ū from {V ⊆ Z2n : |V | = 2t−1− 1, V
⋃

U ∈ C2t}. And then construct a
sequence E ′ based on U0 and Ū , such that supp(E ′) = U0

⋃
Ū . As wH(E ′) = |U0

⋃
Ū | ≤ |U0|+ |Ū | < |U0|+ |U | =

wH(E) and LC(E +E ′) = LC(U +Ū) < L. According to Theorem 1, we have E ∼ E ′. Therefore, we conclude that
there exists E ′ ∈ Em′ where m′ < m, such that E ∼ E ′.

Next, assume E ′ ∼ E. From Theorem 4, there exists pairwise disjoint cubes U1,U2, · · · ,Ud ∈ C and V1, V2, · · · ,
Vd′ ∈ C such that supp(E +E ′) =

⋃d
j=1 U j, where d′ is even. If |supp(E)

⋂
W | ≤ 2t−1 for all W ∈ C2t , where 1 ≤

t ≤ T , then the number of elements of any set U j which comes from supp(E) will be at most half of |U j|. Because
Impvalue = m− k/2+ 2T−1 ≤ 2T−1, the number of elements of each cube Vj which comes from E is also at most
half of |Vj|. Thus |supp(E)| ≤ |supp(E ′)|, which is contrary to the fact that m′ < m. Therefore, there exists a set
U ∈ C2t (2t−1 +1) such that U ⊆ supp(E). �

14 Wenlun Pan et al.

Lemma 14. Let B = (B′′0 , B1, B′1, B′′1 , · · · , BT , B′T , B′′T) ∈ Gen(r′0
B2m

1). For any set U ∈ r′0
B2m

1 , which satisfy that
F(U) ∈ B, there exists set V ∈ C(Impvalue) such that V ⊆U, if and only if there exists j such that Imp(B′′j) = 0,
where 1≤ j ≤ T .

For the proof of this lemma please refer to Appendix A.

Lemma 15. Let E be an error sequence in the set of remaining sequences in Em and there does not exist error
sequence E ′ with lower Hamming weight equivalent to it. We have that (A(L)+E)

⋂
A′k(L) = /0, if and only if there

exists a set U ∈C(Impvalue) such that U ⊆ supp(E), where Impvalue = m− k/2+2T−1 and 1 < Impvalue≤ m.

Proof. The sufficiency is same as Lemma ??. Here, we only prove the necessity. Assume (A(L)+E)
⋂
A′k(L) = /0,

then there exist E ′ ∈E such that LC(E+E ′)=L. From Theorem 5, there exist pairwise disjoint cubes U,U1,U2, · · · ,Ud ∈
C and V1, V2, · · · , Vd′ ∈C such that supp(E+E ′)= (

⋃d
j=1 U j)

⋃
(
⋃d′

j=1 Vj), where d′ is odd. Let W = supp(E)
⋂

supp(E ′)

and W1 = (supp(E)−W)
⋂
(
⋃d′

j=1 Vj), W2 = (supp(E)−W)
⋂
(
⋃d

j=1 U j), W ′1 = (supp(E ′)−W)
⋂
(
⋃d′

j=1 Vj), W2 =

(supp(E ′)−W)
⋂
(
⋃d

j=1 U j). Then W1
⋃

W ′1 =
⋃d′

j=1 Vj, W2
⋃

W ′2 =
⋃d

j=1 U j. According to the proof of Theorem 13,
the number of elements of any cube U j, which come from E, is at most half of |U j|, thus |W2| ≤ |W ′2|. Therefore
2m− |W1| − |W | ≤ |supp(E ′)| − |W ′1| − |W |, it follows that 2m− |W1| ≤ |supp(E ′)| − (d′ · 2T − |W1|) and |W1| ≥
m−|supp(E ′)|/2+ d′ · 2T−1 ≥ d′ · (m− k/2+ 2T−1). This implies that there exists U ′ ⊆ V1 and U ′ ∈C(Impvalue)
such that U ′ ⊆ supp(E). �

Combing Lemma 11, 12 and 14, we can get the value Num(ER
m) when m and k are both even. The other cases of the

proof value Num(ER
m) are all similar with this case and we omit the proof. In Appendix ?, we use a simple example to

illustrate the process of computing Num(ER
m).

Therefore, the main difficult of computing the value Num(ER
2m) lies in how to generate all elements in Gen(r′0

B2m
1)

which lead to nonzero terms in the function of Num(ER
2m), i.e. those B ∈ Gen(r′0

B2m
1) which lead Imp(B′′i) 6= 0 and

Mult(Bi) 6= 0 (for 1 ≤ i ≤ T). According to the analysis in Section ??, the problem of generating B can be reduced
into the following two problems:

1. For a given B ∈ r′i−1
B, how to generate set riGen(B),

2. For a given B ∈ riB, how to generate set r′i
Gen(B).

In the first problem, considering that for any B ∈ r′i−1
B, the class riExtr(B) is uniquely determined, thus it is natural

to begin with generating riExtr(B) from B. For a given B = r′i−1
Bdl

pl · · ·B
d1
p1 ∈ r′i−1

B, we denote Extr(riGen(B)) =
{riExtr(B′) : B′ ∈ riGen(B)}, which can be given by the following enumeration description:

Extr(riGen(B)) = {riB
el
pl
· · ·Be1

p1
:

e j = d j, if p j > 2i−2

0≤ e j ≤ d j, if ∃ j′ > j, s.t. p j′ + p j ≤ 2i−1

1≤ e j ≤ d j, otherwise
, for all 1≤ j ≤ l}.

Note that if e j = 0, then the corresponding term B
e j
p j is moved out.

For any B′ = riB
el
pl · · ·B

e1
p1 ∈ Extr(riGen(B)), denote ExtrGen(B′,B) = {B′′ : B′′ ∈ riGen(B), and Extr(B′′) = B′}.

We define
Coe f (B′ | B) = ∑

B′′∈ExtrGen(B′,B)
Coe f (B′′ | B) ·Coe fExtr(B′′) ·Mult(B′′).

Then problem 1 turns into how to fast compute the value of Coe f (B′ | B). For a B′ = riB
el
pl · · ·B

e1
p1 ∈ Extr(riGen(B)),

we denote ∆ = riB
fl
pl · · ·B

f1
p1 where f j = d j − e j for 1 ≤ j ≤ l. Then, each B′′ ∈ ExtrGen(B′|B) can be regarded

as a kind of assignment which assigns a cube fragment of riBp j in ∆ to B′. And the set ExtrGen(B′,B) can be
regarded as all possible assignment. For instance, let B = r′i−1

B2
3B3

1, B′ = riB3B1, then ∆ = riB3B2
1. We inverse the

operation ‘Extr’ by assigning cubes fragments riB3, riB1, and riB1 in ∆ to B′, that is, ExtrGen(riB3B1, r′i−1
B2

3B3
1) =

{riB3[2]1[2]B1, riB3[2]1B1[2] , riB3[2]B1[3]}. The specific procedure of assigning ∆ to B′ to generate ExtrGen(B′,B) and
then return the value of Coe f (B′ | B) is shown as Algorithm 2 in Appendix B.

As for problem 2, for a given class B = riB
dl
pl B

dl−1
pl−1 · · ·B

d1
p1 ∈ riB′, we need to generate all elements in r′i

Gen(B).
This problem can be regard as generating all sets V from a given multiset U, where U = {riBpl , · · · , riBpl , · · · , riBp1 ,
· · · , riBp1}, in which the number of riBp j is d j for 1≤ j ≤ l. And where the set V satisfy that the element in it equals
to one in U or equal to the “sum” of two elements in U. For example, let B =ri B2

3B2, then U = {riB3, riB3, riB2}.
From U, we can generate {riB3, riB3, riB2}, {riB6, riB2}, {riB5, riB3} in which riB6 and riB5 are respectively regarded
as the “sum” of riB3 and riB3 and the “sum” of riB3 and riB2. Algorithm 3 in Appendix B shows the specific procedure
to generate r′i

Gen(B) for a given class B ∈ri B′.

An Algorithm for Counting the Number of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity 15

Considering that different B in Gen(r′0
B2m

1) can have same prefix and start to be different from a particular class B,
we actually organize those B in Gen(r′0

B2m
1) by a prefix tree structure to automatically compute the value of Num(ER

2m).
Fig. 1 depicts how the elements in Gen(r′0

B2
1) and Gen(r′0

B4
1) under various Impvalue are organized by trees.

For a given class B in r′i−1
B, similar to the definition of Gen(r′0

B2m
1), we define

Gen(B) := {(B′′i−1, Bi, B′i, · · · , BT , B′T , B′′T) : ∃U ∈ B s.t. Fi−1(U) ∈ (B′′i−1, Bi, B′i, · · · ,BT , B′T , B′′T)},

where Fi−1(U) = (U ′′i−1, Ui, U ′i , · · · , UT , U ′T , U ′′T) and U ′′i−1 = U , U j = U ′′i−1, U ′j =r j Extr(U j) and U ′′j = U ′j for
i ≤ j ≤ T . And Fi−1(U) ∈ (B′′i−1, Bi, B′i, · · · , BT , B′T , B′′T) means U ′′i−1 ∈ B′′i−1 and U j ∈ B j, U ′j ∈ B′j, U ′′j ∈ B′′j for
i≤ j ≤ T .

And similar to the definition of Num(r′0
B2m

1), we define

r′i−1
Num(B) := ∑

B∈Gen(B)

∣∣
r′T

wTr(B′′T)
∣∣ · T

∏
j=i

Imp(B′′j) ·Coe f (B′′j | B′j) ·Coe fExtr(B j) ·Mult(B j) ·Coe f (B j | B′′j−1),

where B= (B′′i−1, Bi, B′i, · · · , BT , B′T , B′′T) ∈ Gen(B).
For a given class B in riB′, similarly, we define

Gen(B) := {(Bi, B′i, B′′i , · · · , BT , B′T , B′′T) : ∃U ∈ B s.t. Fi(U) ∈ (Bi, B′i, B′′i , · · · , BT , B′T , B′′T)}

where Fi(U) = (Ui, U ′i , U ′′i , · · · , UT , U ′T , U ′′T) and Ui =U , U ′j =r j Extr(U j), U ′′j =U ′j and U j+1 =U ′′j for i≤ j < T .
And Fi(U) ∈ (Bi, B′i, B′′i , · · · , BT , B′T , B′′T) means U j ∈ B j , U ′j ∈ B′j and U ′′j ∈ B′′j for i≤ j ≤ T .

And for a given class B in riB′, we define

riNum(B) :=

∑
B∈Gen(B)

Coe f (B′i | Bi) ·
∣∣
r′T

wTr(B′′T)
∣∣ · T

∏
j=i+1

Imp(B′′j) ·Coe f (B′′j | B′j) ·Coe fExtr(B j) ·Mult(B j) ·Coe f (B j | B′′j−1),

where B= (Bi, B′i, B′′i , · · · , BT , B′T , B′′T) ∈ Gen(B).

Theorem 9. The recursive Algorithm 1 can compute the value of r′i−1
Num(B) for any class B in r′i−1

B and the value
of riNum(B) for any class B in riB′.

Proof. According to Theorem 5 and Lemma 9, for a given class B in r′i−1
B, if Max2 < 2i−1, then for any B =

(B′′i−1, Bi, B′i, · · · , BT , B′T , B′′T) in Gen(B), we have that Mult(B j) = 1 for i≤ j ≤ T .
For a given class B in riB′, if Max4 < 2i, then Max2 < 2i for any B′ in r′i

Gen(B). Therefore for a given class B in

riB′, if Max4 < 2i, then for any B= (B′i, B′′i , · · · , BT , B′T , B′′T) ∈ Gen(B), we have that Mult(B j) = 1 for i < j ≤ T .
If Max2T−i < Impvalue for a given class B in riB′, then for any B = (B′i, B′′i , · · · , BT , B′T , B′′T) ∈ Gen(B), we

have that Imp(B′′j) = 1 for i≤ j ≤ T .
If Max2T−i−1 < Impvalue for a given class B in r′i

B, then for any B= (B′′i , · · · , BT , B′T , B′′T) ∈ Gen(B), we have
that Imp(B′′j) = 1 for i < j ≤ T .

Thus, for a given class B in riB′, if ri ISEND = 1, then we have riNum(B) =
(2n−ri+1

Index(B)
)
.

Similarly, for a given class B in r′i
B if r′i

ISEND = 1, then we have r′i
Num(B) =

(2n−ri
Index(B)

)
.

Therefore, according to the definition of r′i−1
Num(B) for class B in r′i−1

B and riNum(B) for class B in riB′, Algo-
rithm 1 can compute the value of r′i−1

Num(B) and the value of riNum(B). �

According to Theorem 9, once input r′0
B2m

1 to procedure r′0
NUM(B) in Algorithm 1, i.e. call procedure r′0

NUM(r′0
B2m

1),
we will get the value of Num(ER

2m). Since in many cases, values of Coe f (B′ | B) are zero and ri ISEND(B′) are 1 for
given B in r′i−1

B and B′ in Extr(riGen(B)), the execution of procedure r′0
NUM(r′0

B2m
1) is very fast, and thus it is very

efficient to get the value of Num(ER
2m). In Appendix D, we present the experiment results on N ′k(L) when k is even

and the periodic 2n is 64 using algorithms in this paper. The entire experiment costs only a few minutes.

16 Wenlun Pan et al.

Algorithm 1 Compute r′i−1
Num(B) for B in r′i−1

B and riNum(B) for B in riB

1: procedure r′i−1
NUM(B)

2: Input: B ∈ r′i−1
B

3: Output: r′i−1
Num(B)

4: num← 0
5: while ∃B′ ∈ Extr(ri Gen(B)) and Coe f (B′ | B) 6= 0 do
6: if ri ISEND(B′)=1 then
7: num← num+Coe f (B′ | B) ·

(2n−ri+1

Index(B′)
)

8: else
9: num← num+Coe f (B′ | B)· ri NUM(B′)

10: end if
11: end while
12: return num
13: end procedure

14: function ri ISEND(B)
15: Input: B ∈ riB′
16: Output: 0 or 1
17: if Max2T−i < Impvalue and Max4 < 2i then
18: return 1
19: else
20: return 0
21: end if
22: end function

23: procedure ri NUM(B)
24: Input: B ∈ riB
25: Output: ri Num(B)
26: num← 0
27: while ∃B′ ∈ ri Gen(B) and Coe f (B′ | B) 6= 0 do
28: if r′i ISEND(B′)=1 then
29: num← num+Coe f (B′ | B) ·

(2n−ri

Index(B)
)

30: else
31: num← num+Coe f (B′ | B)· r′i NUM(B′)
32: end if
33: end while
34: return num
35: end procedure

36: function r′i ISEND(B)
37: Input: B ∈ r′iB
38: Output: 0 or 1
39: if Max2T−i−1 < Impvalue and Max2 < 2i then
40: return 1
41: else
42: return 0
43: end if
44: end function

. Here, Max j is the sum of the maximal j elements in the multiset p[dl]
l p[dl−1]

l−1 · · · p
[d1]
1 where pl > pl−1 > · · · > p1 ≥ 1

in B = ri B
dl
pl B

dl−1
pl−1 · · ·B

d1
p1 . Note that, there may be duplicate among the maximal j elements, for example Max4 is 4 · pl when

dl > 4 .
. Index(B) denote the set {dl ,dl−1, · · · ,d1} for B = ri B

dl
pl B

dl−1
pl−1 · · ·B

d1
p1 ∈ri B′ or B = r′i B

dl
pl B

dl−1
pl−1 · · ·B

d1
p1 ∈r′i B.

5 Conclusions

In this paper, we propose an algorithm to automatically get the number of 2n-periodic binary sequences with given
k-error linear complexity. The time complexity of this algorithm is O(2k logk) in the worst case which does not depend
on the period 2n.

We build an equivalence relationship on set of error sequences. Thus, only error sequences are need to be consid-
ered, instead of the sequences plus error sequences, that leads to the simplicity of the resulted procedure. We use the
cube fragment and cube classes, which are concept tools extended from the concept of a cube, to characterize error
sequences. Thus we can use those cube fragment as basic modules to construct classes of error sequences with specific
structures. Error sequences with the same specific structures can be represented by a single symbolic representation.
We introduce concepts of trace, weight trace and orbit of sets to build quantitative relations between different classes
of error sequences. Based on these quantitative relations, we propose an algorithm to automatically generate those
symbolic representations of classes of error sequences, calculate coefficients from one class to another and compute
multiplicity of classes defined based on the specific equivalence we build on error sequences.

This algorithm can efficiently get the number of sequences with given k-error linear complexity. Experiment
results got by the implementation of the algorithm are shown in Table 1. To get this table, it only cost a few minutes
in a personal computer and notice that it is unfeasible to get these results by other methods or by native exhaustive
method. Compared with [11,12,7], it can be seen that new results can be automatically and efficiently obtained using
the proposed algorithm. Actually if manually performs the algorithm and doing symbolic computation on n, we can
easily get the analytical expression of the counting function for small k. We would like to make our source codes
available in public web site such as gitHub later. We believe this method can be used to settle the problem for some
other special periodic sequences.

References

1. Ding, C., Xiao, G., Shan, W.: The stability theory of stream ciphers, vol. 561. Springer Science & Business Media (1991)
2. Fu, F.W., Niederreiter, H., Su, M.: The characterization of 2n-periodic binary sequences with fixed 1-error linear complexity.

In: Sequences and Their Applications–SETA 2006, pp. 88–103. Springer (2006)

An Algorithm for Counting the Number of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity 17

3. Kavuluru, R.: 2n-periodic binary sequences with fixed k-error linear complexity for k = 2 or 3. In: Sequences and Their
Applications-SETA 2008, pp. 252–265. Springer (2008)

4. Kavuluru, R.: Characterization of 2n-periodic binary sequences with fixed 2-error or 3-error linear complexity. Designs, Codes
and Cryptography 53(2), 75–97 (2009)

5. Kurosawa, K., Sato, F., Sakata, T., Kishimoto, W.: A relationship between linear complexity and k-error linear complexity.
Information Theory, IEEE Transactions on 46(2), 694–698 (2000)

6. Meidl, W.: On the stability of 2n-periodic binary sequences. Information Theory, IEEE Transactions on 51(3), 1151–1155
(2005)

7. Ming, S.: Decomposing approach for error vectors of k-error linear complexity of certain periodic sequences. IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer Sciences 97(7), 1542–1555 (2014)

8. Rueppel, R.A.: Analysis and design of stream ciphers. Springer Science & Business Media (2012)
9. Stamp, M., Martin, C.F.: An algorithm for the k-error linear complexity of binary sequences with period 2n. Information

Theory, IEEE Transactions on 39(4), 1398–1401 (1993)
10. Zhou, J.: A counterexample concerning the 3-error linear complexity of 2n-periodic binary sequences. Designs, Codes and

Cryptography 64(3), 285–286 (2012)
11. Zhou, J., Liu, J., Liu, W.: The 4-error linear complexity distribution for 2n-periodic binary sequences. CoRR abs/1310.0132

(2013), http://arxiv.org/abs/1310.0132
12. Zhou, J., Liu, W.: The k-error linear complexity distribution for 2n-periodic binary sequences. Designs, Codes and Cryptogra-

phy 73(1), 55–75 (2014)
13. Zhou, J., Liu, W., Zhou, G.: Cube theory and stable k-error linear complexity for periodic sequences. In: Information Security

and Cryptology. pp. 70–85. Springer (2014)

A Proof of Corollaries and Lemmas

Corollary 4. Let E and E ′ be two error sequences. We have E ∼ E ′ if and only if there exist pairwise disjoint cubes
U1, U2, · · · , Ud and V1, V2, · · · , Vd′ such that supp(E +E ′) = (

⋃d
j=1 U j)

⋃
(
⋃d′

j=1 Vj), where U j ∈ C, Vj ∈ C, d′ ≥ 0
and d′ is even.

Proof. Assume E ∼ E ′, according to Theorem 1, we have LC(E +E ′) < L. Now, we use a sequential construction
procedure to prove the forward direction. Suppose V = supp(E +E ′) = {e1,e2, · · · ,et} where t = wH(E +E ′).

1. Sequentially take pair U1 = {ei,e j} out from V and put them into a set U1, where d(ei,e j) > 2n−r1 . Denote the
set of the remaining elements by V ′1. Note that pairs are chosen step by step without replacement.
(a) We know that all those pairs U1 = {ei,e j} in U1 are cubes in C2 and LC(U1)< L, thus LC(V ′1)< L.
(b) We can prove that V ′1 can be expressed in a form that V ′1 =

⋃d1
j=1 W1, j where d1 = |V ′1|/2 and W1, j ∈ C2.

Proof. i. For any v,v′ ∈V ′1, we have d(v,v′)≤ 2n−r1 .
ii. Sequentially take pair U ′1 = {ei,e j} out from V ′1 and put them into a set U′1, where d(ei,e j) = 2n−r1 .

Denote the set of the remaining elements by V ′′1 .
iii. We know that for all U ′1 in U′1, LC(U ′1) = 2n−2n−r1 , thus U ′1 ∈ C2 and LC(U′1)≤ 2n−2n−r1 .
iv. We can prove that V ′′1 = /0. If V ′′1 6= /0, as d(v,v′) < 2n−r1 for any v,v′ ∈ V ′′1 then LC(V ′′1) > 2n− 2n−r1

which leads to LC(V ′1) = LC(U′1 +V ′′1) = max{LC(U′1 +V ′′1)} > 2n− 2n−r1 > L which contradict with
LC(V ′1)< L.

v. Thus we have derived 1b.

2. Sequentially take pair U2 = {W1,i,W1, j} out from V1 and put them into a set U2, where d(W1,i,W1, j) > 2n−r2 .
Denote the set of the remaining elements by V ′2.
(a) We know that all U2 = {W1,i,W1, j} in U2 are union set of some disjoint cubes in C4 and LC(U2) < L, thus

LC(V ′2)< L.
(b) We can prove that V ′2 can be expressed in a form that V ′2 =

⋃d2
j=1 W2, j where d2 = |V ′2|/2 and W2, j ∈ C4.

Proof. i. For any 1≤ i < j ≤ d2, d(W2,i,W2, j)≤ 2n−r2

ii. Sequentially take pair U ′2 = {W2,i,W2, j} out from V ′2 and put them into a set U′2, where d(W2,i,W2, j) =
2n−r2 . Denote the set of remaining elements by V ′′2 .

iii. Similar to the reason why V ′′1 = /0, we can know V ′′2 is also an empty set.
iv. Thus we have derived 2b.

3. Recursively, if we sequentially take elements out from V to form U1, U2, · · · , UT step by step like above, where
Ui is union set of some pairwise disjoint cubes in C and Ui

⋂
U j = /0 for i 6= j, and denote the set of remaining

elements as V ′T , then V ′T is an empty set or a union set of some pairwise disjoint cubes in C2T and LC(V ′T) < L.
Assume V ′T =

⋃d′
j=1 Vj where V1, V2, · · · , Vd′ are pairwise disjoint cubes in C. According to Corollary ??, we

have that d′ is even. Consequently, we arrive at the conclusion that supp(E +E ′) can be expressed as a union of
pairwise disjoint cubes of which some are in cube class C and some are in cube class C. Besides, the number of
cubes in cube class C is even.

http://arxiv.org/abs/1310.0132

18 Wenlun Pan et al.

The backward direction of the theorem can easily be proven as following: Assume there exists pairwise disjoint
cubes U1,U2, · · · ,Ud ∈ C and V1, V2, · · · Vd′ such that supp(E +E ′) = (

⋃d
j=1 U j)

⋃
(
⋃d′

j=1 Vj) where d′ is even. Con-

sidering LC(U j)< L for any 1≤ j ≤ d and LC(
⋃d′

j=1 Vj)< L, we have LC(E +E ′)< L, therefore E ∼ E ′. �

Corollary 5. Let S ∈ A(L) be a 2n-periodic binary sequence with linear complexity L, and E ∈ E be an error se-
quence. We have LC(S+E)< L if and only if there exist pairwise disjoint cubes U1, U2, · · · , Ud and V1, V2, . . . , Vd′

such that supp(E) = (
⋃d

j=1 U j)
⋃
(
⋃d′

j=1 Vj), where U j ∈ C, Vj′ ∈ C for 1≤ j ≤ d and 1≤ j′ ≤ d′.

Proof. We shall adopt the same procedure as the proof of Corollary 4 to proof this corollary. If LC(S + E) < L,
then LC(E) = L. Suppose V = supp(E), then we can sequentially take U1,U2, · · · ,UT out from V step by step and
denote the set of remaining elements in V by V ′T where Ui are pairwise disjoint cubes in C2i and V ′T is a union set
of some pairwise disjoint cubes in C2T . Suppose V ′T =

⋃d′
j=1 Vj where Vj are pairwise disjoint cubes in C. Because

LC(
⋃T

j=1U j)< L, then LC(V ′T) = L. According to Lemma ??, we have that d′ is odd.

In the backward direction, supp(E) = (
⋃d

j=1 U j)
⋃
(
⋃d′

j=1 Vj). Because LC(
⋃d

j=1 U j)< L and LC(
⋃d′

j=1 Vj) = L, we
have LC(E) = L, thus LC(S+E)< L. Note that set in {U1, U2, · · · , UT} maybe empty set. �

Lemma 14. Let B = (B′′0 , B1, B′1, B′′1 , · · · , BT , B′T , B′′T) ∈ Gen(r′0
B2m

1). For any set U ∈ r′0
B2m

1 , which satisfy that
F(U) ∈ B, there exists set V ∈ C(Impvalue) such that V ⊆U, if and only if there exists j such that Imp(B′′j) = 0,
where 1≤ j ≤ T .

Proof. For the backward direction, suppose B′′j = r′j
Bes

qs B
es−1
qs−1 · · ·B

e1
q1 where qs > qs−1 > · · · > q1. According to the

definition of the function Imp, if Imp(B′′j) = 0 then qs ≥ Impvalue. Recall that U ∈ B′′j = r′j
Bes

qsB
es−1
qs−1 · · ·B

e1
q1 , thus there

exists U ′ ⊆U such that U ′ ∈ r′j
Bqs , therefore U ′ ∈C2 j(qs). By the remark after the the definition of the function Imp,

there exists V ∈ C(Impvalue) such that V ⊆U ′ ⊆U .
For the forward direction, the proof is as follows:

Assume: There exist a set V ∈ C(Impvalue), such that V ⊆U ,
Prove: There exists j such that Imp(B′′j) = 0, where 1≤ j ≤ T .
Proof: Let d(V) = 2n−rl , F(U) = (U ′′0 ,U1,U ′1,U

′′
1 , . . . ,UT ,U ′T ,U

′′
T). We prove Imp(B′′l) = 0 by constructing a set V ′

from the set V , which satisfy that V ′ ⊆U ′′l and V ′ ∈ C2l (Impvalue).
1. Because V ∈ C2l (Impvalue), we have d(v,v′) = 2r j for any v,v′ ∈V , where 1≤ j ≤ l

(a) For any ri or r′i, we have
i. V

⋂
riU j ∈ C2i−1(|V

⋂
riU j|)

ii. V
⋂

r′i
U j ∈ C2i(|V

⋂
r′i

U j|) where 1≤ i≤ l.
(b) Thus we can suppose

i. riTr(V) = {vi, j : 1≤ j ≤ di} and r′i
Tr(V) = {v′i, j : 1≤ j ≤ d′i} for 1≤ i≤ l

ii. d(vi, j1 ,vi, j′1
) = 2n−rt1 , d(v′i, j2 ,v

′
i, j′2

) = 2n−rt2 for 1 ≤ j1 < j′1 ≤ di and 1 ≤ j2 < j′2 ≤ d′i , where
1≤ i≤ l, i≤ t1 ≤ l, and t2 > i.

2. Suppose:
(a) B1 = r1Bht

Qt
Bht−1

Qt−1
· · ·Bh1

Q1
(b) r1Tr(U1) = {u j,k : 1≤ j ≤ t and 1≤ k ≤ h j},
(c) U j,k ⊆U1, where U j,k ∈ r1BQ j and r1Tr(U j,k) = {u j,k} for 1≤ j ≤ t and 1≤ k ≤ h j.
for a p, where 1 < p≤ T

(a) Bp = rpB
h′t′
Q′

t′
B

h′t′−1
Q′

t′−1
· · ·Bh′1

Q′1
,

(b) rpTr(Up) = {u′j,k : 1≤ j ≤ t ′ and 1≤ k ≤ h′j},
(c) U ′j,k ⊆Up, where U ′j,k ∈ rpBQ′j

and rpTr(U ′j,k) = {u′j,k} for 1≤ j ≤ t ′ and 1≤ k ≤ h′j.
3. Construction:

(a) Initially, let V ′′0 =V .
(b) Firstly, let V1 =V ′′0 . Since V1 =V ⊆U =U1, we have r1Tr(V1)⊆ r1Tr(U1). For all U j,k, if r1Tr(U j,k) ∈

r1Tr(V1), then we replace the points in V1
⋂

U j,k by (U ′1
⋂

U j,k) in V1. We denote the resulted set by
V ′1 after the replacing process on V1. Considering that U ′1

⋂
U j,k ∈ C20(1) and V1

⋂
U j,k ∈ C20(1), in

addition, r1Tr(U ′1
⋂

U j,k) = r1Tr(V1
⋂

U j,k), we get that r1Tr(V ′1) = r1Tr(V1) and |V ′1| ≥ |V1|, V ′1 ⊆U ′1
and V ′1 ∈C2l (|V ′1|). Let V ′′1 =V ′1.

(c) Now, for 1 < p ≤ l, suppose we have got V ′′p−1 which satisfy that V ′′p−1 ⊆U ′′p−1 and V ′′p−1 ∈C(|V ′′p−1|)
and |V ′′p−1| ≥ |V |. Similar to the construction of (V1, V ′1, V ′′1), we construct (Vp, V ′p, V ′′p) inductively.
Let Vp =V ′′p−1. Since Vp =V ′′p−1⊆U ′′p−1 =Up, we have rpTr(Vp)⊆ rpTr(Up). For all U ′j,k, if rpTr(U ′j,k)∈
rpTr(Vp), then we replace the points in Vp

⋂
U ′j,k by (U ′p

⋂
U ′j,k) in Vp. We denote the resulted set by V ′p

An Algorithm for Counting the Number of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity 19

after the replacing process on Vp. Considering that U ′p
⋂

U ′j,k ∈C2p−1(I1) and Vp
⋂

U ′j,k ∈C2p−1(I2), in
addition, rpTr(U ′p

⋂
U ′j,k) = rpTr(Vp

⋂
U ′j,k), where I1 = |U ′p

⋂
U ′j,k| and I2 = |Vp

⋂
U ′j,k|, and obviously

I1 ≥ I2, we get that rpTr(V ′p) = rpTr(Vp) and |V ′p| ≥ |Vp|, V ′p ⊆U ′p and V ′p ∈C2l (|V ′p|). Let V ′′p =V ′p.
(d) When p = l, the construction process terminate. According to the construction process, we have V ′′l ⊆

U ′′l and V ′′l ∈C2l (I), where I = |V ′′l | ≥ |V |= Impvalue.
4. By the remark after the the definition of the function Imp, we have Imp(B′′l) = 0. �

20 Wenlun Pan et al.

B Algorithms

Algorithm 2 Preliminary and Algorithm to Compute Coe f (B′ | B) for B ∈r′i−1
B and B′ ∈ Extr(riGen(B))

1: . Denote class B= r′i B
dm
pm · · ·B

d1
p1 ∈ r′iB or B= ri B

dm
pm · · ·B

d1
p1 ∈

riB′ by a mixed-radix matrix: B=

[
dm · · · d1
pm · · · p1

]
, where pm >

pm−1 > · · · > p1. Denote a single term in B by B
[

d j
p j

]
,

where 1 ≤ j ≤ m. We say that the maximal term in B is

B
[

dm
pm

]
, and denote it by B

[
dmax
pmax

]
. The minimal term in

B is B
[

d1
p1

]
, and we denote it by B

[
dmin
pmin

]
. We denote the

number of terms in B by |B|.

2: . For B1 = ri B
dm
pm · · ·B

d1
p1 and B2 = ri B

em
pm · · ·B

e1
p1 , we say that

B2 ⊆ B1 if 0 ≤ e j ≤ d j for all j, where 1 ≤ j ≤ l. In other
words, B2 ⊆B1 if for any U2 ∈ B2 there exists U1 ∈ B1 such
that U2 ⊆U1.

3: . Define a cube fragments set for B1 = ri B
dm
pm · · ·B

d1
p1 and

B2 = ri B
e
q, which represents the set of all possibilities to as-

sign cube fragments in B1 to B2, as follows:
Assign(B1→ B2) := {ri B

es
Qs
· · ·Be1

Q1
: ∑

s
i=1 ei =

e,
⊎s

j=1(
⊎e j

k=1 Q j) = (
⊎e

j=1 p[d j]
j)

⊎
q[e] and q ∈ Q j for 1≤

j ≤ s}.

4: . Define a “+” operator between B1 =

[
dm · · · d1
pm · · · p1

]
and B2 =

[
es · · · e1
qs · · · q1

]
as: B1 + B2 =

[
vt · · · v1
ut · · · u1

]
, where

{ut , · · · ,u1}= {pm, · · · , p1}
⋃
{qs, · · · ,q1} and

v j =

d j′ if u j = p j′ and @q j′′ s.t. q j′′ = u j

e j′ if u j = q j′ and @p j′′ s.t. p j′′ = u j

d j′ + e j′′ if u j = p j′ = q j′′

.

5: . Define a “−” operator between B1 and B2 where

B2 ⊆ B1 as: B1−B2 =

[
dm− em · · · d1− e1

pm · · · p1

]
, where B1 =[

dm · · · d1
pm · · · p1

]
and B2 =

[
em · · · e1
pm · · · p1

]
. Note that since B2 ⊆

B1, it follows that 0≤ e j ≤ d j, and terms
[

e
p

]
will be moved

out if e = 0.

6: procedure PUSH(x)
7: Store a copy of x to the top of the stack memory
8: end procedure
9: procedure POP(x)

10: Restore a copy of x from top of the stack memory
11: end procedure
12: procedure COEF(B′, B)

13: Input: B = r′i−1
Bdl

pl · · ·B
d1
p1 ∈ r′i−1

B, and B′ =

ri B
el
pl · · ·B

e1
p1 ∈ Extr(ri Gen(B))

14: Output: Coe f (B′ | B)

15: ς ← 0, ∆ ← B−B′, B′′← B′, AssFree← /0
16: COMPUTECOEF

17: Output ς

18: . We assign cube fragments in ∆ to B′. We use AssFree
to store cube fragments in ∆ which can be freely assigned.
After initiate those variables, we call the main procedure
COMPUTECOEF, which recursively call itself. When it ter-
minate, variable ς turns to be the value of Coe f (B′ | B).

19: end procedure

20: procedure COMPUTECOEF

21: if B′ = /0 then
22: ς ← ς +Coe f (B′′ | B) ·Coe fExtr(B′′) ·Mult(B′′)
23: else
24:

[
α

β

]
← B′

[
dmax
pmax

]
,
[

γ

δ

]
← ∆

[
dmin
pmin

]
25: PUSH(∆), PUSH(AssFree)
26: while β +δ ≤ 2i−1 do

27: AssFree← AssFree+
[

γ

δ

]
,

28: ∆ ← ∆ −
[

γ

δ

]
,
[

γ

δ

]
← ∆

[
dmin
pmin

]
29: end while
30: if |B′|= 1 then
31: for all Ass ∈ Assign(AssFree→ B′) do
32: PUSH(B′′), PUSH(B′)
33: B′′← B′′−B′+Ass, B′← /0
34: COMPUTECOEF

35: POP(B′), POP(B′′)
36: end for
37: else
38: for all T mp⊆ AssFree do
39: for all Ass ∈ Assign(T mp→ ri B

α

β
) do

40: PUSH(B′′), PUSH(B′), PUSH(AssFree)

41: B′′← B′′−
[

α

β

]
+Ass, B′← B′−

[
α

β

]
42: AssFree← AssFree−T mp
43: COMPUTECOEF

44: POP(AssFree), POP(B′), POP(B′′)
45: end for
46: end for
47: end if
48: POP(AssFree), POP(∆)
49: end if
50: end procedure

An Algorithm for Counting the Number of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity 21

Algorithm 3 Algorithm to Generate set r′i
Gen(B) for class B ∈ri B′

1: procedure GEN(B)
2: Input: B = ri B

dl
pl · · ·B

d1
p1 ∈ riB′

3: Output: r′i Gen(B)

4: B′← /0, GenSet← /0
5: MAINGEN

6: Output GenSet

7: . MAINGEN is the main generation procedure which

handle the maximal terms
[

dmax
pmax

]
in B and determine

whether class B′ ∈ri Gen(B) has been generated. It recur-
sively call itself and the subroutine SUBGEN. When it ter-
minate, GenSet turns to be r′i Gen(B).

8: end procedure

9: procedure MAINGEN

10: if |B|= /0 then . a class B′ has been generated
11: GenSet←add B′
12: else
13:

[
α

β

]
← B

[
dmax
pmax

]
14: if α ≥ 2 then
15: if 2×β < Impvalue then
16: for t← bα/2c to 1 do

17: B′← B′+
[

t
2×β

]
, B← B−

[
2× t

β

]
18: if α−2× t = 0 then
19: MAINGEN

20: else
21: if |B|= 1 then

22:
[

γ

δ

]
←
[

α−2× t
β

]
23: B′← B′+

[
γ

δ

]
, B← B−

[
γ

δ

]
24: MAINGEN

25: B′← B′−
[

γ

δ

]
, B← B+

[
γ

δ

]
26: else
27: SUBGEN(|B|−1)
28: end if
29: end if
30: B′← B′−

[
t

2×β

]
, B← B+

[
2× t

β

]
31: end for
32: end if
33: SUBGEN(|B|−1)
34: else if α = 1 then
35: B′← B′+

[
α

β

]
, B← B−

[
α

β

]
36: MAINGEN

37: B′← B′−
[

α

β

]
, B← B+

[
α

β

]

38: SUBGEN(|B|−1)
39: end if
40: end if
41: end procedure

42: procedure SUBGEN(m′)

43:
[

α

β

]
← B

[
dmax
pmax

]
44: if m′ = 0 then
45: B′← B′+

[
α

β

]
, B← B−

[
α

β

]
46: MAINGEN

47: B′← B′−
[

α

β

]
, B← B+

[
α

β

]
48: else
49: for j← m′ to 1 do

50:
[

ν

µ

]
← B

[
d j
p j

]
51: if β +µ < Impvalue then
52: for s←min(α,ν) to 1 do

53: B′← B′+
[

s
β +µ

]
54: B← B−

[
s
β

]
−
[

s
µ

]
55: if α− s = 0 then
56: MAINGEN

57: else
58: if |B|= 1 then

59:
[

γ

δ

]
←
[

α− s
β

]
60: B′← B′+

[
γ

δ

]
61: B← B−

[
γ

δ

]
62: MAINGEN

63: B′← B′−
[

γ

δ

]
64: B← B+

[
γ

δ

]
65: else
66: SUBGEN(j−1)
67: end if
68: end if
69: B← B+

[
s
β

]
+

[
s
µ

]
70: B′← B′−

[
s

β +µ

]
71: end for
72: end if
73: end for
74: end if
75: end procedure

22 Wenlun Pan et al.

C Trees to Organize Symbolic Representations of Class of Error Sequences

r1B2
1

r′1
B2

1

r2B2
1

r2B2
1 ⊥

1

r2B1[2]

r2B1 ⊥

1

c12
2 c2

11

r′1
B2

r2B2

r2B2 ⊥

1

1

1 4

(a) Tree of Gen(r′0 B2
1) when Impvalue> 2

r1B2
1

r′1
B2

1

r2B2
1

r2B2
1

r′2
B2

1 ⊥

4

1

r2B1[2]

r2B1 ⊥

1

c12
2 c2

11

4

In edge labels

ci j denotes
(2ri+1−ri−1

j

)
.

(b) Tree of Gen(r′0 B2
1) when Impvalue = 2

r1B4
1

r′1
B4

1

r2B4
1

r2B4
1

r′2
B4

1

r3B4
1

r3B4
1

r′3
B4

1 ⊥

16

1

r3B1[2]B
2
1

r3B3
1

r′3
B3

1 ⊥

8

3

r3B2
1[2]

r3B2
1

r′3
B2

1 ⊥

4

1

r3B1[3]B1

r3B2
1

r′3
B2

1 ⊥

4

2

r3B1[4]

r3B1 ⊥

1

c24 c23c21
c2

22 c22c2
21 c4

21

16

1

r2B1[2]B
2
1

r2B3
1

r′2
B3

1

r3B3
1

r3B3
1

r′3
B3

1 ⊥

8

1

r3B1[2]B1

r3B2
1

r′3
B2

1 ⊥

4

2

r3B1[3]

r3B1 ⊥

1

c23 c22c21 c3
21

8

3

r2B2
1[2]

r2B2
1

1

r2B1[3]B1

r2B2
1

r′2
B2

1

r3B2
1

r3B2
1

r′3
B2

1 ⊥

4

1

r3B1[2]

r3B1 ⊥

1

c22 c2
11

4

2

r2B1[4]

r2B1 ⊥

1

c14
8

c13c11
4

c2
12
4

c12c2
11

2
c4

11

16

(c) Tree of Gen(r′0 B4
1) when Impvalue = 2

Note, A path from root node to leaf node represents an element B in Gen(r′0 B2
1) or in Gen(r0 B4

1). Red leaf node with a stop character

⊥ indicates that Mult(Bk) = 1 and Impvalue(B′′k) = 1, for all Bk and B′′k after this element in B. And the meaning of black leaf
node is that there exists another node being the same as it and thus we omit its descendant nodes. The numbers on edge between
two nodes represent Coe f (B2 | B1), Coe f (B3 | B2) ·Mult(B3) or Coe fExtr(B3) where B1 ∈ riB′,B2 ∈ r′iB and B3 ∈ ri+1B.

Fig. 1: Trees of Gen(r′0
B2

1) and Gen(r′0
B4

1) under various Impvalue

D Experiment Results

An Algorithm for Counting the Number of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity 23

Table 1: Part of the results on N ′k(L) for n = 6
L wH k = 6 k = 8 · · · k = 26 k = 28 k = 30
· · · ≤ 1 0 0 0 0 0
16 2 32800768 843448320 0 0 0
24 2 12361216 105334272 0 0 0
28 2 1364608 2915424 0 0 0
30 2 127456 205896 0 0 0
31 2 32032 51480 0 0 0
40 2 114688 65536 0 0 0
44 2 6400 256 0 0 0
46 2 448 16 0 0 0
47 2 112 4 0 0 0
52 2 0 0 0 0 0
54 2 0 0 0 0 0
55 2 0 0 0 0 0
58 2 0 0 0 0 0
59 2 0 0 0 0 0
61 2 0 0 0 0 0
8 3 74698177 4269895680 0 0 0
12 3 73495057 4000596704 0 0 0
14 3 71447441 3611187752 0 0 0
15 3 68356625 3111545144 0 0 0
20 3 49468513 1797161728 0 0 0
22 3 46577129 1420375632 0 0 0
23 3 41906633 993236724 0 0 0
26 3 22363121 292078272 0 0 0
27 3 15385637 133105152 0 0 0
29 3 3774849 22800792 0 0 0
36 3 854113 7480320 0 0 0
38 3 753929 4554704 0 0 0
39 3 618185 2459764 · · · 0 0 0
42 3 274577 361600 0 0 0
43 3 154997 122304 0 0 0
45 3 29265 16448 0 0 0
50 3 3985 0 0 0 0
51 3 901 0 0 0 0
53 3 65 0 0 0 0
57 3 1 0 0 0 0
4 4 75611761 4501725649 80627405461098496 17127899176960000 0
6 4 75611761 4501648441 7325469431074816 236126248960000 0
7 4 75611761 4501494025 2073916240700416 59031562240000 0
10 4 75154969 4385391113 19048518337536 139314069504 0
11 4 75154969 4384858301 4936272171264 34828517376 0
13 4 74325013 4190250125 609858701856 4353564672 0
18 4 51711097 2174133193 399572992 1048576 0
19 4 51711097 2172898813 101072896 262144 0
21 4 50589805 1979144701 12535808 32768 0
25 4 28803133 693096413 388864 1024 0
34 4 942649 11435209 0 0 0
35 4 942649 11396605 0 0 0
37 4 898381 9273725 0 0 0
41 4 418429 1975901 0 0 0
49 4 9949 9949 0 0 0
2 5 75611761 4501777129 765884877961138529 1149125482916201841 735663252850019217
3 5 75611761 4501777129 549379354729134933 488415562254909925 83465513150235525
5 5 75611761 4501751389 127414035703583729 39208852967342625 1678693908850625
9 5 75154969 4385746325 1928380228863833 175169988640833 2240855430049
17 5 51711097 2174956117 296601473321 9419426161 42981185
33 5 942649 11460949 36457 497 1
1 6 75611761 4501777129 956315644440505325 2075085937425745213 3695373947956092637

In the 2nd column, wH indicates the value of T = wH(2n−L).
Note that N ′k(L) = Numk(L) ·2L−1, and for each column, it can be verified that N ′k(0)+∑

63
L=1 Numk(L) ·2L−1 = 263.

	An Algorithm for Counting the Number of 2n-Periodic Binary Sequences with Fixed k-Error Linear Complexity

