
A Fiat-Shamir Implementation Note

Simon Cogliani, Rémi Géraud, and David Naccache

École normale supérieure,
PSL Research University, Paris, France.

given_name.family_name@ens.fr

Abstract. In the Micali-Shamir paper [7] improving the efficiency of the
original Fiat-Shamir protocol [5,6,9], the authors state that

“(. . .) not all of the vi’s will be quadratic residues mod n. We
overcome this technical difficulty with an appropriate perturbation
technique (. . .)”

This perturbation technique is made more explicit in the associated patent
application [8]:

“Each entity is allowed to modify the standard vj which are
QNRs. A particularly simple way to achieve this is to pick a
modulus n = pq where p = 3 mod 8 and q = 7 mod 8, since then
exactly one of vj , −vj , 2vj , −2vj is a QR mod n for any vj . The
appropriate variant of each vj can be (. . .) deduced by the verifier
himself during the verification of given signatures.”

In this short note we clarify the way in which the verifier can infer by
himself the appropriate variant of each vj during verification.

1 Introduction

The increased popularity of lightweight implementations invigorates the interest
in the resource-preserving protocols of the late 1980s initially designed for smart-
cards. By then, cryptoprocessors were expensive and cumbersome, hence the
research community started looking for astute ways to identity and sign with
scarce resources.

One such particularly elegant procedure is the the Fiat-Shamir protocol [5]
(that we do not fully restate here). In the original procedure, the public-keys are
derived as follows [6,9]:

(. . .) the center (. . .) chooses and makes public (. . .) a PRF f which

maps arbitrary strings to the range [0, n). (. . .) The center then performs

the following steps:

1. Compute the values vj = f(I, j) for small values of j.

2. Pick distinct k values of j for which vj is a QR mod n and compute

the smallest square root sj of v−1
j .

3. Issue a smart card which contains I, the k sj values, and their indices.

given_name.family_name@ens.fr

In a follow-up paper by Micali and Shamir [7], the authors propose a way to
reduce the verifier’s work factor by selecting small public-keys. In this version,
the vj ’s are the first small primes1. However, as noted in [7], doing so does not
yield only QRs:

“(. . .) not all of the vi’s will be quadratic residues mod n. We overcome

this technical difficulty with an appropriate perturbation technique (. . .)”

The associated patent [8] describes further the idea:

“Each entity is allowed to modify the standard vj which are QNRs. A

particularly simple way to achieve this is to pick a modulus n = pq where

p = 3 mod 8 and q = 7 mod 8, since then exactly one of vj ,−vj , 2vj ,−2vj

is a QR mod n for any vj . The appropriate variant of each vj can be (. . .)

deduced by the verifier himself during the verification of given signatures.”

Indeed, we have the following well-known result:

Lemma 1. For n = pq where p = 3 mod 8 and q = 7 mod 8 (such moduli are

sometimes known as Williams numbers), −1 and 2 are both quadratic non-residues

modulo n.

Proof. For −1 to be a quadratic residue mod n, it has to be a quadratic residue
modulo every prime that divides n, i.e. it has to be a QR modulo p and q. One
easily checks that(

−1
p

)
= (−1)(p−1)/2 = −1 and

(
−1
q

)
= (−1)(q−1)/2 = −1

because both p and q are equal to −1 modulo 4. Similarly,(
2
n

)
= (−1)(n2−1)/8 = −1

because n = pq = −3 mod 8. Thus both −1 and 2 are QNR mod n. ut

However there is no indication, in the paper nor in the associated patent, as
to how exactly the verifier can deduce which or the four possibilities should be
considered.

1.1 Existing approaches

Besides leaving the verifier to determine which vj are QR, [8] mentions providing
this information explicitly to the verifier, either alongside the public key material,
or during the protocol. It also points out that using d = 3 and n such that

1 The choice of the vj as the first k primes is motivated by the fact that large values
make the scheme less efficient, and the observation that multiplicatively related values
can make the scheme less secure. More generally, the vj can be relatively prime small
integers with small Hamming weight.

2

φ(n) - 3 so that every vj has a cubic root mod n. However the choice of such a d
exposes the participants to Wiener’s attack [2–4, 11], and in any case requires an
additional modular multiplication during the generation and the verification of
signatures.

When the Micali-Shamir scheme is considered, the question of the QNR is
usually evacuated by making sure that only vj that are QR are part of the public
key (see e.g. [1]). The downside of such an approach is that many values of vj

cannot be chosen, and since the vj are prime this causes an increase in the public
key size, and an overall loss of efficiency.

2 Compensating coefficients

The way in which the verifier can deduce which εvj (where ε ∈ {−2,−1, 1, 2})
to use is left unexplicited in [8], but explicited in [10]. But it can be done as
follows. We use the equivalent values vj ,−vj , vj/2,−vj/2 for the sake of faster
calculations.

Denote by εi ∈ {−1/2,−1, 1, 1/2} the value such that εivi is a QR mod n.
The prover keeps two binary strings α, β defined as follows:

αi =
{

0 if |εi| = 1
1 if |εi| = 1/2

βi =
{

0 if the sign of εi is +
1 if the sign of εi is −

For a given challenge e we define:

u =
k−1∑
i=0

αiei and w =
k−1∑
i=0

βiei mod 2

and u = u div 2 and u = u mod 2 (so that in particular u = 2u+ u).
We now describe three approaches that allow the verifier to perform its task.

2.1 Version 1: The prover sends u and w

Because not all the vj are QR, when computing directly with vj the verification
algorithm must check that:

y2

k−1∏
i=0

v
ej

j = (−1)w2ux mod n.

This is easy to verify, provided that the prover has sent u and w alongside their
response. This requires the transmission of a few bits (u and w can typically be
encoded using a single byte). Note that u and w are computed from the (public)
values of the vj and of e, so that there is no information leaked in sharing these
numbers.

3

2.2 Version 2: No correction

In fact, it is not necessary to transmit u or w. Indeed, from

y2

k−1∏
i=0

v
ej

j = (−1)w2ux mod n.

The verifier can compute:

∆ = x−1y2

k−1∏
i=0

v
ej

j mod n

because 2u < 2k < n. The verifier therefore only needs to check that either ∆
or n−∆ is of the form 2u in Z, for some u. This of course can be checked very
efficiently. While minimizing the prover’s effort, note that this variant requires
from the verifier an extra modular inversion.

Note also that the tolerance concerning extra −1 and 2 in the verification
formula cannot be confused with the use of vj equal to these values as both −1
and 2 are QNRs. Therefore we do not impact the protocol’s soundness.

2.3 Version 3: The prover compensates u

In this approach, we alter the definition of y, which is now:

y = 2ur

k−1∏
i=0

s
ej

j .

We call this operation “compensating u”. The computation of y is performed by
the prover. Then the verifier can check that:

Γ = 2y2

k−1∏
i=0

v
ej

j

= 2
(

2ur

k−1∏
i=0

s
ej

j

)2

×
k−1∏
i=0

v
ej

j

= (−1)w2¬ux mod n.

In other words, all the verifier has to do is check if

Γ ∈ {x, n− x, 2x mod n,−2x mod n}.

This verification is quick and easy: Start by comparing to x or n− x. One of the
values x, n − x is a number ` by one bit shorter than n. A simple shift to the
right of ` therefore allows to continue comparing (subtract n again if needed).

Alternatively, the two bits ¬u,w can be sent to the verifier to further speed-
up verification. Note here again that these quantity do not leak any secret
information.

4

3 Security analysis

In the constructions of Sections 2.1 and 2.2 only the verifier’s algorithm is
modified, and it is straightforward to see that the verifier will not accept with our
modifications a response that they would not have accepted using the original
Fiat-Shamir verification algorithm.

However the variant of Section 2.3 proposes a different definition of y, and we
must show that this does not impact the scheme’s security. Note that soundness
is guaranteed from the observation that −1 and 2 are QNR mod n, so that no
new valid response is introduced by altering the verification procedure in the way
we did. There remains to show that the honest-verifier zero-knowledge property
still holds, by expliciting a simulator. This is straightforward when u is public
(just multiply by 2u the output y of a Fiat-Shamir simulator). When u is not
public, the simulator can do the same after drawing a value u at random.

Nevertheless, these arguments only show that our modifications do not impact
the security of the Micali-Shamir variant of the Fiat-Shamir protocol, not that
it is secure in the first place. The discussion in [7] gives a heuristic argument,
and refers to a full version of the paper that, to the best of our knowledge,
never appeared. Bellare and Ristov [1] call this claim the “square roots of prime
products” assumption.

4 Toy Examples

The following notebook (written in Sage version 7.2) demonstrates the three
techniques on a toy example.
Initialization processus
Number of elements to check
k = 10

Williams numbers with primes with 24 bits each.
p = 32452759
q = 32452843
n = p*q

def setup_public_key(v, s, alpha , beta , inverse_modular=True):
coeff = [-2, -1, 1, 2]

for i in range(k):
val = random_prime (2^24-1, False , 2^23)
v += [val%n]

Jacobi symbol for checking if val is a QR
if not , we try the perturbation technique
for j in range(len(coeff)):

sigma = coeff[j]
if kronecker_symbol(sigma*val , p) == 1 and kronecker_symbol(sigma*val , q) == 1:

break

if abs(sigma) == 1:
alpha += [0]

else:
alpha += [1]

if sigma > 0:
beta += [0]

5

else:
beta += [1]

if inverse_modular:
if abs(sigma) == 2:

sigma = inverse_mod(sigma , n)

val *= sigma

Lagrange tricks and Chinese Remainder Theorem for finding the square root modulo n
s2 = inverse_mod(val , n)
s += [crt(s2^((p+1)/4) , s2^((q+1)/4) , p, q)]

The prover sends u and w
def version1 ():

v = []
s = []
alpha = []
beta = []

setup_public_key(v, s, alpha , beta)

Fiat -Shamir Sigma Protocol
Commitment
r = randint(1,n)
x = mod(r^2, n)

Challenge
e = [randint (0,1) for i in range(k)]

Response
y = r*prod((s[j])^e[j] for j in range(k))
u = sum(alpha[i]*e[i] for i in range(k))
w = mod(sum(beta[i]*e[i] for i in range(k)), 2)

Verifier Checking
print y^2* prod(v[i]^e[i] for i in range(k)) == x*(-1)^(w)*(2)^(u)

No correction
def version2 ():

v = []
s = []
alpha = []
beta = []

setup_public_key(v, s, alpha , beta)

Fiat -Shamir Sigma Protocol
Commitment
r = randint(1,n)
x = r^(2)%n

Challenge
e = [randint (0,1) for i in range(k)]

Response
y = r*prod((s[j])^e[j] for j in range(k))
u = sum(alpha[i]*e[i] for i in range(k))
w = mod(sum(beta[i]*e[i] for i in range(k)), 2)

Verifier Checking
delta = mod(inverse_mod(x, n)*y^2* prod(v[i]^e[i] for i in range(k)), n)

try:
print log(delta , 2) in ZZ

except ValueError:
print log(n-delta , 2) in ZZ

6

The prover compensates \overline{u}
def version3 ():

v = []
s = []
alpha = []
beta = []

setup_public_key(v, s, alpha , beta)

Fiat -Shamir Sigma Protocol
Commitment
r = randint(1,n)
x = mod(r^(2), n)

Challenge
e = [randint (0,1) for i in range(k)]

Response
u = sum(alpha[i]*e[i] for i in range(k))
w = mod(sum(beta[i]*e[i] for i in range(k)), 2)
u_overline = u >> 1
u_underline = u % 2

y = 2^(u_overline)*r*prod((s[j])^e[j] for j in range(k))

Gamma = mod(-1^w * 2^(u_underline.__xor__ (1)) * x, n)

print Gamma == x or Gamma == n-x or Gamma == mod(2*x, n) or Gamma == mod(-2*x, n)

References

1. Bellare, M., Ristov, T.: Hash functions from sigma protocols and improvements to
VSH. In: Pieprzyk, J. (ed.) Advances in Cryptology – ASIACRYPT 2008. Lecture
Notes in Computer Science, vol. 5350, pp. 125–142. Springer, Heidelberg, Germany,
Melbourne, Australia (Dec 7–11, 2008)

2. Blömer, J., May, A.: A generalized wiener attack on RSA. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004: 7th International Workshop on Theory and Practice in
Public Key Cryptography. Lecture Notes in Computer Science, vol. 2947, pp. 1–13.
Springer, Heidelberg, Germany, Singapore (Mar 1–4, 2004)

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than n0.292.
In: Stern, J. (ed.) Advances in Cryptology – EUROCRYPT’99. Lecture Notes in
Computer Science, vol. 1592, pp. 1–11. Springer, Heidelberg, Germany, Prague,
Czech Republic (May 2–6, 1999)

4. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

5. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of
Cryptology 1(2), 77–94 (1988)

6. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology – CRYPTO’86.
Lecture Notes in Computer Science, vol. 263, pp. 186–194. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 1987)

7. Micali, S., Shamir, A.: An improvement of the Fiat-Shamir identification and
signature scheme. In: Goldwasser, S. (ed.) Advances in Cryptology – CRYPTO’88.
Lecture Notes in Computer Science, vol. 403, pp. 244–247. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 21–25, 1990)

7

8. Shamir, A.: Variants of the Fiat-Shamir identification and signature scheme (Jun 12
1990), https://www.google.ch/patents/US4933970, US Patent 4,933,970

9. Shamir, A., Fiat, A.: Method, apparatus and article for identification and signature
(May 31 1988), https://www.google.com/patents/US4748668, US Patent 4,748,668

10. Simmons, G.J., Purdy, G.B.: Zero-knowledge proofs of identity and veracity of trans-
action receipts. In: Workshop on the Theory and Application of of Cryptographic
Techniques. pp. 35–49. Springer (1988)

11. Wiener, M.J.: Cryptanalysis of short RSA secret exponents (abstract). In:
Quisquater, J.J., Vandewalle, J. (eds.) Advances in Cryptology – EUROCRYPT’89.
Lecture Notes in Computer Science, vol. 434, p. 372. Springer, Heidelberg, Germany,
Houthalen, Belgium (Apr 10–13, 1990)

8

https://www.google.ch/patents/US4933970
https://www.google.com/patents/US4748668

	A Fiat-Shamir Implementation Note

