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Abstract. F-Related-Key Attacks (RKA) on cryptographic systems consider adversaries who can ob-
serve the outcome of a system under not only the original key, say k, but also related keys f(k), with f
adaptively chosen from F by the adversary.

In this paper, we define new RKA security notions for several cryptographic primitives including
message authentication code (MAC), public-key encryption (PKE) and symmetric encryption (SE). This
new kind of RKA notions are called super-strong RKA securities, which stipulate minimal restrictions
on the adversary’s forgery or oracle access, thus turn out to be the strongest ones among existing RKA
security requirements. We present paradigms for constructing super-strong RKA secure MAC, PKE
and SE from a common ingredient, namely Tag-based Hash Proof System (THPS). We also present
constructions for THPS based on the k-Linear and the DCR assumptions.

When instantiating our paradigms with concrete THPS constructions, we obtain super-strong RKA
secure MAC, PKE and SE schemes for the class of restricted affine functions Fraff, of which the class
of linear functions Flin is a subset. To the best of our knowledge, our MACs, PKEs and SEs are the
first ones possessing super-strong RKA securities for a non-claw-free function class Fraff in the standard
model and under standard assumptions. Our constructions are free of pairing and are as efficient as those
proposed in previous works. In particular, the keys, tags of MAC and ciphertexts of PKE & SE all consist
of only a constant number of group elements.

Keywords: related-key attack, hash proof system, message authentication code, public-key encryption,
symmetric encryption

1 Introduction

Traditional security model assumes that cryptographic algorithms are black boxes to adversaries,
so an adversary only sees (or controls) some input and obtains the outcome of the algorithm. In
reality, the development of tampering and fault injection techniques [BDL97, BS97, GLM+04] enables
the adversary to modify or influence the keys stored in the system, thus observe the input/output
behavior of the system under the modified keys. Such attacks were first formalized as Related-Key
Attacks (RKAs) by Bellare and Kohno [BK03]. In practice, the key subject to RKAs might be an
authentication/verification key of a message authentication code (MAC), a signing key of a digital
signature (Sig) scheme, a secret key of a public-key encryption (PKE) or an encryption/decryption
key of a symmetric encryption (SE). RKA security studies how to maintain security of the system
even if the adversary is able to modify the underlying key to some extent. Requirements for RKA
security go across a variety of primitives, like block cipher [Knu92, Bih93], pseudorandom function and
permutation (PRF and PRP) [BC10, ABPP14], MAC [Xag13, BR13], PKE [BCM11, BPT12, Wee12],
SE [BCM11, BPT12], etc.

In the formulation of RKA security, a class of functions F : K −→ K must be specified, which
characterizes the ability of adversaries to modify the key k ∈ K, where K is the key space of the



underlying cryptographic primitive. The function class F was referred to as a class of related-key
deriving functions (RKDFs) in [BK03]. In the RKA security model of a system, an adversary is
allowed to choose a function f ∈ F and access the input and output of the system under not only
the original key k, but also modified keys f(k). Typical classes of RKDFs include the class of linear
functions Flin, the class of affine functions Faff and the class of polynomial functions Fdpoly of bounded
degree d.

1.1 Related Works

(Strong) RKA secure MAC. The standard security notion for MAC is existential unforgeabil-
ity under chosen-message attacks (EU-CMA), where the adversary has access to a tag generation
oracle Tag and aims to generate a valid tag for a message never queried in Tag. A stronger notion
called existential unforgeability under chosen-message and chosen-verification attacks (EU-CMVA)
was proposed in [DKPW12], where the adversary has also access to a verification oracle Vrfy.

Xagawa [Xag13] initialized the theoretical study on RKA security for MAC, and defined two
RKA security notions for MAC, namely EU-F-RK-CMVA and strong EU-F-RK-CMVA. EU-F-RK-
CMVA security captures the EU-CMVA security under F-related-key attacks, where the adversary
can query Tag and Vrfy oracles under any F-related authentication/verification key. Strong EU-
F-RK-CMVA security also guarantees that, even for a message m already queried in Tag, it is still
hard for the adversary to generate a new valid tag for m.

Two general frameworks were proposed to construct EU-Flin-RK-CMVA secure MACs in [Xag13],
one is from an extended Hash Proof System (HPS) [CS02], another one is from a tag-based adap-
tive trapdoor relation [KMO10] and a strong one-time secure signature scheme. The frameworks
can be instantiated under a number of standard assumptions, such as the factoring (FAC), the
decisional Diffie-Hellman (DDH) and the decisional bilinear Diffie-Hellman (DBDH) assumptions.
Xagawa [Xag13] also showed that the resulting MACs can be transformed to strong EU-Flin-RK-
CMVA secure ones with the help of a strong one-time secure signature scheme.

Note that a PRF itself is a (deterministic) MAC. In particular, for a claw-free1 function class F
(such as Flin), an F-RKA secure PRF itself is a strong EU-F-RK-CMVA secure MAC. Then the
DDH-based Flin-RKA secure PRF in [BC10] also gives a strong EU-Flin-RK-CMVA secure MAC.

(Strong) RKA secure PKE and SE. The traditional security requirement for PKE and SE is
indistinguishability under chosen-plaintext and chosen-ciphertext attacks (IND-CCA2). IND-CCA2
security under F-related-key attacks, called IND-F-RK-CCA2, was defined for PKE and SE in
[BCM11]. IND-F-RK-CCA2 security for PKE allows the adversary to make decryption queries under
any F-related secret key, while IND-F-RK-CCA2 security for SE allows the adversary to make both
encryption and decryption queries under any F-related encryption/decryption key.

For canonical PKE, a stronger version of IND-F-RK-CCA2 security, namely strong IND-F-
RK-CCA2, was defined by Bellare et al. [BPT12]. By canonical, we mean that the key generation
algorithm of PKE first samples a secret key sk randomly and then computes the public key pk as a
deterministic function of sk, i.e., pk = PKE.PK(sk). Strong IND-F-RK-CCA2 for (canonical) PKE
also allows the adversary to make encryption queries and obtain a challenge ciphertext encrypted
under any public key deriving from F-related secret key, i.e., pk′ = PKE.PK(f(sk)).

1 A function class F from K to K is called claw-free [BC10], if for all f 6= f ′ ∈ F and all k ∈ K, f(k) 6= f ′(k). Note
that Flin is claw-free, while Faff and Fdpoly are not.
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Wee [Wee12] presented a general framework for constructing IND-F-RK-CCA2 secure PKE from
a tag-based adaptive trapdoor relation [KMO10] and a strong one-time secure signature scheme.
When instantiated under the FAC and the DBDH assumptions, IND-Flin-RK-CCA2 secure PKE
schemes were obtained. Wee [Wee12] also gave two PKE constructions based on the DDH and the
learning with errors (LWE) assumptions, but the schemes only achieve a weak version of IND-Flin-
RK-CCA2 security, where the adversary is prohibited to submit the challenge ciphertext to the
decryption oracle.

Bellare et al. [BCM11] studied the relations between various RKA secure primitives, and in
particular, showed that F-RKA secure PRF enables transformations from (traditional) IND-CCA2
secure PKE and SE to strong IND-F-RK-CCA2 secure PKE and IND-F-RK-CCA2 secure SE re-
spectively. Their work immediately implies (strong) IND-Flin/Faff/Fdpoly-RK-CCA2 secure PKEs
and SEs, when instantiating the transformations with (1) the DDH-based Flin-RKA secure PRF in
[BC10], (2) the DDH-based Faff-RKA secure PRF but with an exponential-time security reduction or
(3) the non-standard decisional d-Diffie-Hellman inversion (d-DDHI)-based Fdpoly-RKA secure PRF
in [ABPP14].

Bellare et al. [BPT12] showed that the CHK transformation [CHK04] converts a strong F-RKA
secure IBE and a strong one-time secure signature scheme to a strong IND-F-RK-CCA2 secure PKE,
and showed that the natural transformation converting (canonical) PKE to SE turns a strong IND-
F-RK-CCA2 secure PKE to an IND-F-RK-CCA2 secure SE. Bellare et al. [BPT12] also constructed
a strong Faff-RKA secure IBE based on the DBDH assumption and a strong Fdpoly-RKA secure IBE
based on the non-standard d-extended DBDH (d-EDBDH) assumption. Consequently, they obtained
(strong) IND-Faff/Fdpoly-RK-CCA2 secure PKEs and SEs.

Another work by Damg̊ard et al. [DFMV13] presented a PKE construction which is RKA secure
against arbitrary key relations and thus goes beyond the algebraic barrier inherent in previous works.
However, the RKA security they achieved is only in a bounded form, i.e., the number of RKA queries
made by the adversary is restricted.

Recently, Jia et al. [JLLM13, JLLM14] proposed a general framework for constructing IND-F-
RK-CCA2 secure PKE from HPS [CS02] and a 4-wise independent hash function [KPSY09], and
instantiated their framework for the class of affine functions Faff under a collection of standard
assumptions, including the DDH, the quadratic residuosity (QR) and the decisional composite resid-
uosity (DCR) assumptions. Lu et al. [LLJ14] constructed IND-F-RK-CCA2 secure PKE following
the key encapsulation mechanism (KEM) + data encapsulation mechanism (DEM) paradigm [CS04].
Specifically, they combined a KEM enjoying the properties of F-key malleability and F-key finger-
print with a tag-based DEM. The F-key malleability for KEM is rather strong to achieve, and there
were only instantiations for the class of linear functions Flin in [LLJ14] under the DDH and the FAC
assumptions.

1.2 Motivation and Observation

If we take a closer look at RKA security notions considered in previous works, we will find that some
unrealistic and artificial restrictions are imposed on adversary’s forgeries or tampering queries.

As an example, let us see the strong EU-F-RK-CMVA security for MAC defined by Xagawa
[Xag13]. An adversary may obtain a cryptographic device from a user and implement RKAs via tam-
pering or fault injection. In particular, the adversary does not see the target authentication/verification
key k stored in the hardware device, but might have the ability to tamper with the target key k by
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specifying functions f , and consequently observe the input/output behavior of the device under (not
only the original target key k but also) related keys f(k). Specifically, the adversary might implement
two kinds of RKAs in the context of MAC.

– Tag(f,m): The adversary can specify a function f , which transforms the target key k stored
in the device to a related key f(k), submit a message m to the device, and obtain a tag σ of m
under f(k). We refer to this as a tag generation query, denoted by Tag(f,m).

– Vrfy(f,m, σ): The adversary can specify a function f , which transforms the target key k stored
in the device to a related key f(k), submit a message m together with a tag σ to the device, and
obtain a verification bit indicating whether or not σ is a valid tag for m under f(k). We refer to
this as a verification query, denoted by Vrfy(f,m, σ).

Finally, the adversary outputs a message-tag pair (m′, σ′) as a forgery.

• Winning condition. ([Xag13]) The adversary wins, if the forgery (m′, σ′) is fresh and valid
under the original target key k.

The above formalization of strong EU-F-RK-CMVA security reflects some RKAs to some extent.
However, the requirements for the adversary to be successful is too restricted to capture the scenario
of real life. More specifically, it does not consider the ability of the adversary to modify the target key
in the forgery. The adversary might use f ′ to tamper with the target key k stored in the hardware
device and return the device back to the owner. The owner might not realize that the key k stored in
the device has been modified. After that, the adversary might forge (m′, σ′) hoping that the tampered
device verifies (m′, σ′) w.r.t. f ′(k).

As such, a more reasonable winning condition for an adversary to be successful is that:

• Relaxed winning condition. The adversary can also designate a function f ′ for its forgery
(m′, σ′). The adversary wins if the forgery (m′, σ′) is fresh and valid under the related key f ′(k).

We improve the strong EU-F-RK-CMVA to super-strong EU-F-RK-CMVA security by relaxing the
winning condition. This super-strong RKA security provides more security guarantees against RKAs
for MAC and is closer to reality than the strong EU-F-RK-CMVA considered in [Xag13].

Similarly, in the (strong) IND-F-RK-CCA2 security model for PKE and SE [BCM11, BPT12],
an adversary can make (tampering) decryption queries, but only in a restricted way. The restrictions
are rather artificial and do not capture the realistic scenario. We refer to Subsection 5.1 for a detailed
discussion about the restrictions on oracle access in the (strong) IND-F-RK-CCA2 security model.
We would also like to define super-strong IND-F-RK-CCA2 security for PKE and SE by relaxing
those restrictions.

An interesting and natural question is:

Can we construct cryptographic primitives possessing the “super-strong” RKA

securities for an RKDF class F as large as possible?

1.3 Our Contributions

In this paper, we answer the above question affirmatively, and dedicate to formalizations of super-
strong RKA security notions and constructions of super-strong RKA secure cryptographic primitives
(MAC, PKE and SE), in the standard model and under standard assumptions.
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• We formalize super-strong EU-RK-F-CMVA for MAC, and super-strong IND-F-RK-CCA2 for
PKE and SE. These securities remove some artificial restrictions (and only pose minimal restric-
tions) on the adversary’s forgery or oracle access, and turn out to be the strongest ones among
existing RKA security requirements for MAC, PKE and SE.

• To construct cryptographic primitives satisfying our super-strong RKA securities, we resort to a
common underlying building block, i.e., Tag-based Hash Proof System (THPS) [CS02, QLC15].

– We define for THPS new statistical properties, including F-Public-Key-Homomorphism and
F-Poly-Bounded Collisions.

– We introduce for THPS a new computational problem called Public-Key Collision Problem.

THPS equipped with these new properties is termed as F-tailored THPS.

• We show that F-tailored THPS is quite useful in constructing super-strong RKA secure crypto-
graphic primitives.

– We present a paradigm for constructing super-strong EU-RK-F-CMVA secure MAC from
F-tailored THPS.

– We present a paradigm for constructing super-strong IND-RK-F-CCA2 secure PKE from
F-tailored THPS with the help of an authenticated encryption scheme.

– We apply the natural transformation converting PKE to SE to our super-strong IND-RK-F-
CCA2 secure PKE and get a super-strong IND-RK-F-CCA2 secure SE. Thus the latter can
also be constructed from F-tailored THPS.

• We give instantiations of Fraff-tailored THPS based on the Matrix DDH assumption (including
the DDH and the k-Linear assumptions) [EHK+13] and the DCR assumption [DJ01] respectively,
where Fraff is the class of restricted affine functions. Typically, for a key space K which is a vector
space, a function f(a,b) in Fraff is parameterized by a ∈ Z and b = (bi) ∈ K, and maps k = (ki) ∈ K
to f(a,b)(k) = (a ·ki+bi) ∈ K. Different from Flin, the class Fraff is not claw-free2 and lies between
Flin and Faff, i.e., Flin ( Fraff ⊆ Faff.

• When instantiating our paradigms with our concrete Fraff-tailored THPSs, we immediately obtain
MACs, PKEs and SEs possessing the super-strong Fraff-RKA securities from the Matrix DDH
and the DCR assumptions.

– Our MACs, PKEs and SEs are the first ones achieving super-strong RKA securities for a
non-claw-free function class Fraff (larger than Flin).

– Our MACs, PKEs and SEs are free of pairing and are as efficient as those proposed in previous
works. In particular, the keys, tags of MAC and ciphertexts of PKE & SE all consist of only
a constant number of group elements.

In Table 1, we compare our MACs, PKEs and SEs with known RKA secure schemes which are
both under standard assumptions and in the standard model.

2 We note that our super-strong IND-F-RK-CCA2 for PKE and SE is reduced to the (strong) IND-F-RK-CCA2
security when the function class F is claw-free.
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Table 1. Top: comparison among known MACs with EU-F-RK-CMVA security under standard assumptions in the
standard model; Middle and Bottom: comparison among known PKEs and SEs with IND-F-RK-CCA2 security under
standard assumptions in the standard model. “strong OT-Sig” stands for strong one-time secure signature scheme.
Flin, Faff and Fraff denote the class of linear functions, the class of affine functions and the class of restricted affine
functions, respectively. “sup-str” is short for super-strong. |pk| and |sk| show the size of public key and secret key for
PKE, |k| the size of key for MAC & SE, |tag| the size of tag for MAC and |ct| the size of ciphertext for PKE & SE. Here
the size means the number of group elements in the underlying groups. ` denotes the security parameter. “FAC” and
“k-LIN” (k ≥ 1) are short for the factoring and the k-Linear assumption respectively. 1-LIN is the DDH assumption

Scheme Set RKA Security
|pk|

for PKE

|k| for MAC & SE,

|sk| for PKE

|tag| for MAC,

|ct| for PKE & SE
Assumption

M
A

C

[Xag13] Flin EU-RK-CMVA − O(1) O(1) FAC/DDH/DBDH

[Xag13] + strong OT-Sig Flin strong EU-RK-CMVA − O(1) O(1) FAC/DDH/DBDH

[BC10] Flin sup-str EU-RK-CMVA∗ − O(`) O(1) DDH

− O(1) O(1) DDH/DCR
Ours Fraff sup-str EU-RK-CMVA

− O(k) O(k) k-LIN

P
K

E

[Wee12] Flin IND-RK-CCA2 O(1) O(1) O(1) FAC/DBDH

[BCM11] + [BC10] + [KD04] Flin sup-str IND-RK-CCA2∗∗ O(1) O(`) O(1) DDH

[LLJ14] Flin IND-RK-CCA2 O(1) O(1) O(1) DDH/FAC

[BPT12] + strong OT-Sig Faff strong IND-RK-CCA2 O(1) O(1) O(1) DBDH

O(1) O(1) O(1) DDH/DCR
[JLLM13, JLLM14] Faff IND-RK-CCA2

O(`) O(`) O(1) QR

O(1) O(1) O(1) DDH/DCR
Ours Fraff sup-str IND-RK-CCA2

O(k) O(k) O(k) k-LIN

S
E

[BCM11] + [BC10] + [KD04] Flin sup-str IND-RK-CCA2∗∗ − O(`) O(1) DDH

[BPT12] + strong OT-Sig Faff IND-RK-CCA2 − O(1) O(1) DBDH

− O(1) O(1) DDH/DCR
Ours Fraff sup-str IND-RK-CCA2

− O(k) O(k) k-LIN

∗ We observe that the Flin-RKA secure PRF proposed in [BC10] is actually a (deterministic) MAC possessing our super-strong

security.
∗∗ We note that our super-strong IND-F-RK-CCA2 for PKE and SE is reduced to the (strong) IND-F-RK-CCA2 security when

the function class F is claw-free [BC10]. Recall that Flin is claw-free, while Faff is not.

1.4 Organization

The rest of the paper is organized as follows. After a brief preliminaries section, we formalize the
concept of F-tailored THPS in Section 3. In Section 4, we introduce the super-strong EU-F-RK-
CMVA security for MAC and present a paradigm for constructing super-strong secure MAC from
F-tailored THPS. In Section 5, we introduce the super-strong IND-F-RK-CCA2 security for PKE
and SE, and propose paradigms for constructing super-strong RKA secure PKE and SE from F-
tailored THPS, respectively. In Sections 6 and 7, we give instantiations of Fraff-tailored THPS from
the MDDH and the DCR assumptions respectively, and consequently, we obtain MDDH-based and
DCR-based MACs, PKEs and SEs with super-strong RKA securities for the class of restricted affine
functions Fraff.

2 Preliminaries

Let ` ∈ N denote the security parameter. For i, j ∈ N with i < j, define [i, j] := {i, i+ 1, · · · , j} and
[j] := {1, 2, · · · , j}. Let |S| denote the size of set S. Denote by s ←$ S the operation of picking an
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element s from set S uniformly at random. For an algorithm A, denote by y ←$ A(x; r), or simply
y ←$ A(x), the operation of running A with input x and randomness r and assigning output to y.
Denote by US the uniform distribution over set S. Let ε denote the empty string. For a primitive XX
and a security notion YY, we typically denote the advantage of a PPT adversary A by AdvYY

XX,A(`)

and define AdvYY
XX(`) := maxPPTA AdvYY

XX,A(`). ‘PPT’ is short for Probabilistic Polynomial-Time and
‘DPT’ Deterministic Polynomial-Time. For random variables X and Y over set X , the guessing
probability of X is defined as maxx∈X Pr[X = x], and the statistical distance between X and Y is
defined as ∆(X,Y ) := 1

2 ·
∑

x∈X |Pr[X = x]− Pr[Y = x]| .

Games. Our security proof will be game-based security reductions. A game G starts with an
Initialize procedure and ends with a Finalize procedure. There are also some optional procedures
Proc1, · · · ,Procn performing as oracles. All procedures are described using pseudo-code, where
initially all variables are empty strings ε and all sets are empty. An adversary A is executed in game
G suggests the following procedure: A first calls Initialize, obtaining the corresponding output;
then it may make arbitrary oracle-queries to procedures Proci according to their specification, and
obtain their outputs; finally it makes one single call to Finalize. By GA ⇒ b we mean that the game

G outputs b after interacting with A, and b is in fact the output of Finalize. By a
G
= b we mean

that a equals b or is computed as b in G.

2.1 Message Authentication Code

A message authentication code (MAC) is made up of four PPT algorithms MAC = (MAC.Setup,
MAC.Gen,MAC.Tag,MAC.Vrfy): MAC.Setup(1`) generates a system parameter prm, which implicitly
defines a key space KMAC and a message spaceM; MAC.Gen(prm) takes as input the parameter prm
and outputs a key k ∈ KMAC; MAC.Tag(k,m) is a probabilistic algorithm, it takes as input a key
k ∈ KMAC and a message m ∈ M, and outputs a tag σ; MAC.Vrfy(k,m, σ) takes as input a key
k ∈ KMAC, a message m ∈ M and a tag σ, and outputs a verification bit β ∈ {0, 1}. Correctness
of MAC requires that, for all possible prm ←$ MAC.Setup(1`), k ←$ MAC.Gen(prm) and m ∈ M, it
holds that MAC.Vrfy(k,m,MAC.Tag(k,m)) = 1.

The standard security notion for MAC is existential unforgeability under chosen-message attacks
(EU-CMA), where the adversary has access to a tag generation oracle Tag and aims to generate
a valid tag for a message never queried in Tag. A stronger security notion, namely existential
unforgeability under chosen-message and chosen-verification attacks (EU-CMVA), was defined in
[DKPW12], where the adversary has also access to a verification oracle Vrfy.

Let F be a class of functions from KMAC to KMAC, which was referred to as a class of related-
key deriving functions in [BK03] to characterize the ability of an adversary to modify the key. Two
RKA-security notions for MAC, i.e., EU-F-RK-CMVA and strong EU-F-RK-CMVA, were defined
in [Xag13]. The EU-F-RK-CMVA security extends the EU-CMVA security under F-related-key
attacks, where the adversary can query Tag and Vrfy oracles under any F-related key. The strong
EU-F-RK-CMVA security requires more than EU-F-RK-CMVA, and it stipulates that it is hard for
the adversary to generate a new valid tag even for a message already queried in Tag. Formally, we
define the strong EU-F-RK-CMVA via the security game in Fig. 1 according to [Xag13].

Definition 1 (Strong EU-F-RK-CMVA Security for MAC). MAC is strong EU-F-RK-CMVA
secure, if for any PPT adversary A, the advantage Advstr-eu-rk-cmva

MAC,F ,A (`) := Pr[strong-EU-F-RK-CMVAA

⇒ 1] is negligible in `, where game strong-EU-F-RK-CMVA is specified in Fig. 1.
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Procedure Initialize:

prm←$ MAC.Setup(1`).

k←$ MAC.Gen(prm).

Return prm.

Procedure Tag(f ∈ F ,m):

k′ := f(k) ∈ KMAC.

σ ←$ MAC.Tag(k′,m).

QTAG := QTAG ∪ {(k′,m, σ)}.
Return σ.

Proc. Vrfy(f ∈ F ,m, σ):

k′ := f(k) ∈ KMAC.

β ← MAC.Vrfy(k′,m, σ).

Return β.

Procedure Finalize(m,σ):

β ← MAC.Vrfy(k,m, σ).

If β = 1 ∧ (k,m, σ) /∈ QTAG ,

Set forge := true.

Return forge.

Fig. 1. strong-EU-F-RK-CMVA security game for MAC.

2.2 Public-Key Encryption

A public-key encryption (PKE) scheme consists of four PPT algorithms PKE = (PKE.Setup,PKE.Gen,
PKE.Enc,PKE.Dec): PKE.Setup(1`) outputs a system parameter prm, which implicitly defines a public
key space PK, a secret key space SK and a message space M; PKE.Gen(prm) takes as input the
parameter prm, and outputs a public/secret key pair (pk, sk) ∈ PK × SK; PKE.Enc(pk,m) takes as
input a public key pk ∈ PK and a message m ∈M, and outputs a ciphertext c; PKE.Dec(sk, c) takes
as input a secret key sk ∈ SK and a ciphertext c, and outputs a message m ∈M or a rejection symbol
⊥. Correctness of PKE requires that, for all prm ←$ PKE.Setup(1`), (pk, sk) ←$ PKE.Gen(prm) and
m ∈M, we have that PKE.Dec(sk,PKE.Enc(pk,m)) = m.

Let F be a class of functions from SK to SK. In [BCM11], the indistinguishability under F-
related-key chosen-ciphertext attacks (IND-F-RK-CCA2) was defined and studied. It captures the
IND-CCA2 security under F-related-key attacks, and allows the adversary to make decryption queries
under any F-related secret key. For canonical PKE, a stronger version of IND-F-RK-CCA2 se-
curity, namely strong IND-F-RK-CCA2, was defined in [BPT12]. By canonical, we require that
PKE.Gen(prm) first samples sk from SK via a PPT algorithm sk ←$ PKE.SK(prm), then computes
pk as a deterministic function of sk via a DPT algorithm pk := PKE.PK(sk) ∈ PK. The strong IND-
F-RK-CCA2 also allows the adversary to make encryption queries under any F-related public key,
i.e., pk′ = PKE.PK(f(sk)), and obtain a challenge ciphertext encrypted under any F-related public
key. We formalize the strong IND-F-RK-CCA2 security via the security game in Fig. 2.

Procedure Initialize:

prm←$ PKE.Setup(1`).

sk←$ PKE.SK(prm).

pk := PKE.PK(sk) ∈ PK.

b←$ {0, 1}.
Return (prm, pk).

Proc. LR(f∗ ∈ F ,m0,m1):

// one query

sk′∗ := f∗(sk) ∈ SK.

pk′∗ := PKE.PK(sk′∗) ∈ PK.

c∗ ←$ PKE.Enc(pk′∗,mb).

QENC := {(sk′∗, c∗)}.
Return c∗.

Proc. Enc(f ∈ F ,m):

sk′ := f(sk) ∈ SK.

pk′ := PKE.PK(sk′) ∈ PK.

c←$ PKE.Enc(pk′,m).

Return c.

Procedure Dec(f ∈ F , c):
sk′ := f(sk) ∈ SK.

If (sk′, c) ∈ QENC , Return ⊥.

Return PKE.Dec(sk′, c).

Procedure Finalize(b′):

Return (b′ = b).

Fig. 2. strong-IND-F-RK-CCA2 security game for PKE.

Definition 2 (Strong IND-F-RK-CCA2 Security for PKE). PKE is strong IND-F-RK-CCA2
secure, if for any PPT adversary A, the advantage Advstr-ind-rk-cca2

PKE,F ,A (`) :=
∣∣Pr[strong-IND-F-RK-CCA2A

⇒ 1]− 1
2

∣∣ is negligible in `, where game strong-IND-F-RK-CCA2 is specified in Fig. 2.
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2.3 Tag-based Hash Proof System

Hash proof system (HPS) and extended HPS (a.k.a. labeled HPS) were introduced by Cramer and
Shoup [CS02]. In [QLC15], a useful variant, namely tag-based HPS (THPS), was defined and studied.
Here we recall its definition.

Definition 3 (Tag-based Hash Proof System). A tag-based hash proof system THPS = (THPS.
Setup,THPS.Pub,THPS.Priv) consists of three PPT algorithms:

• The parameter generation algorithm THPS.Setup(1`) outputs parameterized instances prmTHPS,
which implicitly defines (K, C,V, T ,SK,PK, Λ(·), µ), where K, C,V, T ,SK,PK are all finite sets
with V ⊆ C, Λ(·) : C × T −→ K is a family of hash functions indexed by a hashing key sk ∈ SK
and µ : SK −→ PK is a function. We assume that µ is efficiently computable, and there are PPT
algorithms sampling sk ∈ SK uniformly, sampling C ∈ V uniformly together with a witness w,
sampling C ∈ C uniformly, and checking membership in C.

We require THPS to be projective in the sense that for every sk ∈ SK, every (C, t) ∈ V × T ,
Λsk(C, t) is determined by pk = µ(sk) and (C, t) completely.
• The public evaluation algorithm THPS.Pub(pk, C, w, t) takes as input a public key pk = µ(sk) ∈
PK, an element C ∈ V together with a witness w and a tag t ∈ T , and outputs the hash value
K = Λsk(C, t) ∈ K.
• The private evaluation algorithm THPS.Priv(sk, C, t) takes as input a hashing key sk ∈ SK, an

element C ∈ C and a tag t ∈ T , and outputs the hash value K = Λsk(C, t) ∈ K without knowing
a witness.

THPS is associated with a subset membership problem. Informally speaking, the subset mem-
bership problem states that it is hard to distinguish uniform distribution over V from uniform
distribution over C \ V.

Definition 4 (Subset Membership Problem related to THPS). The subset membership prob-
lem (SMP) related to THPS is called hard, if for any PPT adversary A, the following advantage is
negligible in `:

AdvsmpTHPS,A(`) :=
∣∣Pr

[
A(prmTHPS, C) = 1

]
− Pr

[
A(prmTHPS, C

′) = 1
]∣∣,

where prmTHPS ←$ THPS.Setup(1`), C ←$ V and C ′ ←$ C \ V.

Definition 5 (Strongly-Universal1). THPS is called strongly-universal1, if for all prmTHPS ←
$ THPS.Setup(1`), the following is negligible in `:

εstr-u1
THPS (`) := max

C,t
∆
(

(pk, Λsk(C, t)) , (pk,UK )
)
,

where the maximum is over all C ∈ C \ V and all t ∈ T , and the probability is over sk ←$ SK and
pk := µ(sk).

Definition 6 (Universal2). THPS is called universal2, if for all prmTHPS ←$ THPS.Setup(1`), the
following is negligible in `:

εu2
THPS(`) := max

pk,C,C′,t,t′,K,K′
Pr
[
Λsk(C

′, t′) = K ′
∣∣ µ(sk) = pk, Λsk(C, t) = K

]
,

where the maximum is over all pk ∈ PK, all C ∈ C, all C ′ ∈ C \ V, all t, t′ ∈ T with t 6= t′ and all
K,K ′ ∈ K, and the probability is over sk←$ SK.
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Note that the key difference between THPS and extended HPS is universal2 property [QLC15].
Extended HPS requires universal2 property hold for (C, t) 6= (C ′, t′), while THPS only requires for
t 6= t′. Hence, any (universal2) extended HPS is also a (universal2) THPS, but not vice versa. THPS
is essentially a weaker variant of extended HPS, and admits more constructions.

In [DKPW12], extracting property was defined for extended HPS, and it requires the hash value
Λsk(C, t) to be uniformly distributed over K for any (C, t) ∈ C ×T , as long as sk is uniformly chosen
from SK. Here we give a relaxed version for THPS, i.e., we only require the guessing probability of
Λsk(C, t) to be negligible.

Definition 7 (Extracting). THPS is called extracting, if for all prmTHPS ←$ THPS.Setup(1`), the
following is negligible in `:

εextTHPS(`) := max
C,t,K

Pr[Λsk(C, t) = K ],

where the maximum is over all C ∈ C, all t ∈ T and all K ∈ K, and the probability is over sk←$ SK.

2.4 Collision-Resistant Hashing and Universal Hashing

Definition 8 (Collision-Resistant Hashing). A family of functions H = {H : X −→ Y} is called
collision-resistant, if for any PPT adversary A, the following advantage is negligible in `:

AdvcrH,A(`) := Pr
[
H←$ H, (x, x′)←$ A(H) : H(x) = H(x′) ∧ x 6= x′

]
.

Definition 9 (Universal Hashing [WC81]). A family of functions H = {H : X −→ Y} is called
universal, if all distinct x, x′ ∈ X , it follows that

Pr
[
H←$ H : H(x) = H(x′)

]
≤ 1/|Y|.

We recall the well-known Leftover Hash Lemma according to [HILL99].

Lemma 1 (Leftover Hash Lemma). Let H = {H : X −→ Y} be a family of universal hash
functions and let X be a random variable on X . Then for H←$ H, where H and X are independent,
it holds that

∆
(

(H,H(X)), (H,UY)
)
≤
√
|Y| ·max

x∈X
Pr[X = x],

where UY is the uniform distribution over Y and maxx∈X Pr[X = x] is the guessing probability of X.

3 F-Tailored Tag-based Hash Proof System

In this section, we introduce an enhanced version of THPS, namely F-Tailored THPS, by generalizing
the Strongly-Universal1, Universal2 and Extracting properties of THPS, and defining additional
properties for THPS, including Public-Key-Homomorphism and Poly-Bounded Collisions. We also
introduce a new computational problem for THPS, namely Public-Key Collision Problem.

Let F be a class of functions from SK to SK. We first generalize the traditional properties defined
in Subsection 2.3 (i.e., strongly-universal1, universal2 and extracting) to the following three F-related
properties, which stipulate the traditional properties hold even for any F-related hashing key.
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Definition 10 (F-Strongly-Universal1). THPS is called F-strongly-universal1, if for all prmTHPS

←$ THPS.Setup(1`), the following is negligible in `:

εstr-u1
THPS,F (`) := max

f,C,t
∆
(

(pk, Λf(sk)(C, t)) , (pk,UK )
)
, (1)

where the maximum is over all f ∈ F , all C ∈ C \ V and all t ∈ T , and the probability is over
sk←$ SK and pk := µ(sk).

Definition 11 (F-Universal2). THPS is called F-universal2, if for all prmTHPS ←$ THPS.Setup(1`),
the following is negligible in `:

εu2
THPS,F (`) := max

f,f ′,pk,C,C′,t,t′,K,K′
Pr
[
Λf ′(sk)(C

′, t′) = K ′
∣∣ µ(sk) = pk, Λf(sk)(C, t) = K

]
,

where the maximum is over all f, f ′ ∈ F , all pk ∈ PK, all C ∈ C, all C ′ ∈ C \ V, all t, t′ ∈ T with
t 6= t′ and all K,K ′ ∈ K, and the probability is over sk←$ SK.

Definition 12 (F-Extracting). THPS is called F-extracting, if for all prmTHPS ←$ THPS.Setup(1`),
the following is negligible in `:

εextTHPS,F (`) := max
f,C,t,K

Pr[Λf(sk)(C, t) = K ],

where the maximum is over all f ∈ F , all C ∈ C, all t ∈ T and all K ∈ K, and the probability is
over sk←$ SK.

We define a weaker version of F-Strongly-Universal1, namely Average-Case F-Strongly-Universal1.
Loosely speaking, it only requires the statistical distance (1) to be negligible for an overwhelming
fraction of C in C \ V, rather than for all C in C \ V. We note that F-strongly-universal1 implies
average-case F-strongly-universal1.

Definition 13 (Average-Case F-Strongly-Universal1). THPS is called average-case F-strongly-
universal1, if for all prmTHPS ←$ THPS.Setup(1`), the following is negligible in `:

εac-str-u1
THPS,F (`) := max

f,t
∆
(

(pk, C, Λf(sk)(C, t)) , (pk, C,UK )
)
,

where the maximum is over all f ∈ F and all t ∈ T , and the probability is over sk←$ SK, pk := µ(sk)
and C ←$ C \ V.

Definition 14 (F-Public-Key-Homomorphism). THPS is called F-public-key-homomorphic,
if for all prmTHPS ← $ THPS.Setup(1`), there is a DPT F-public-key transformer THPS.PKTran :
PK × F −→ PK, such that for all f ∈ F and all sk ∈ SK, it holds that

µ
(
f(sk)

)
= THPS.PKTran(µ(sk), f).

Remark 1. In [Xag13], a similar property called µ’s homomorphism was defined for extended HPS.
Our F-public-key homomorphism property can be viewed as a generalization of theirs. That is, their
requirement is dedicated to linear function class Flin, while ours is defined for a general function
class F .
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Definition 15 (F-Poly-Bounded Collisions). THPS is said to have F-poly-bounded collisions,
if for all prmTHPS ←$ THPS.Setup(1`), there is a polynomial bound p(`), such that

max
f 6=f ′∈F

∣∣{sk ∈ SK | f(sk) = f ′(sk)}
∣∣ ≤ p(`).

We refer to a THPS possessing all the F-related properties above as being an F-Tailored THPS.
It will serve as the core building block in constructing RKA secure MAC, PKE and SE later, where
the property of average-case F-strongly-universal1, rather than (worst-case) F-strongly-universal1,
is enough for the applications.

Definition 16 (F-Tailored THPS). THPS is called an F-tailored THPS, if it is (1) average-case
F-strongly-universal1, (2) F-universal2, (3) F-extracting, (4) F-public-key-homomorphic and (5)
has F-poly-bounded collisions.

Definition 17 (Public-Key Collision Problem related to THPS). The public-key collision
problem (PKCP) related to THPS is called hard, if for any PPT adversary A, the following advantage
is negligible in `:

AdvpkcpTHPS,A(`) := Pr

[
prmTHPS ←$ THPS.Setup(1`),

(sk, sk′)←$ A(prmTHPS)
: sk 6= sk′ ∧ µ(sk) = µ(sk′)

]
.

Remark 2. The PKCP essentially captures the collision-resistance of µ. In [Xag13], a similar problem
called µ’s F-collision resistance was defined for extended HPS w.r.t. a function class F , where
the adversary is given prmTHPS, sk and aims to find a function f ∈ F such that f(sk) 6= sk but
µ(f(sk)) = µ(sk). Their problem is tightly related to the function class F and is defined in a target
collision flavor, while ours is intrinsic to the THPS.

We present a simple lemma and postpone its proof in Appendix B.

Lemma 2. If THPS is F-universal2, then for all prmTHPS ← $ THPS.Setup(1`), all pk ∈ PK, the
conditional guessing probability of sk is at most εu2

THPS,F (`), i.e.,

max
sk′∈SK

Pr[sk = sk′ | µ(sk) = pk] ≤ εu2
THPS,F (`),

where the probability is over sk←$ SK.

4 Super-Strong RKA secure MAC from THPS

In this section, we present a new RKA security notion for MAC, namely super-strong EU-F-RK-
CMVA, which is even stronger than the strong EU-F-RK-CMVA security defined in [Xag13]. Then
we show a paradigm for constructing MAC from THPS. The obtained MAC satisfies our new security
when the THPS is an F-tailored one.
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4.1 Super-Strong EU-F-RK-CMVA Security for MAC

Let F be a class of functions from KMAC to KMAC. The strong EU-F-RK-CMVA security notion
for MAC (cf. Definition 1) allows the adversary to query Tag and Vrfy multiple times under F-
related keys, whilst regarding the adversary’s forgery (m′, σ′) as a successful one only if it passes the
verification algorithm under the original unmodified key k.

Now we strengthen strong EU-F-RK-CMVA to super-strong EU-F-RK-CMVA security by re-
laxing the requirements for an adversary to be successful. Specifically,

• The adversary can designate a function f ′ ∈ F for its forgery (m′, σ′) and the forgery (f ′,m′, σ′)
is valid as long as MAC.Vrfy(f ′(k),m′, σ′) = 1. Recall that strong EU-F-RK-CMVA always uses
the original key k to test the validity of forgery (m′, σ′) using MAC.Vrfy(k,m′, σ′).
• The adversary cannot submit a queried tuple (f ′,m′, σ′) with σ′ ← $ Tag(f ′, m′) as a forgery.

That is, we consider the adversary’s forgery (f ′,m′, σ′) as a successful one even if it has queried
Tag(f,m) such that (f ′(k),m′, σ′) = (f(k),m, σ), as long as (f ′,m′, σ′) 6= (f,m, σ). However,
this corner case is disallowed in the strong EU-F-RK-CMVA security. Recall that strong EU-F-
RK-CMVA requires a forgery (m′, σ′) satisfies (k,m′, σ′) 6= (f(k),m, σ) for all Tag(f,m) queries.

We stress that our super-strong EU-F-RK-CMVA is defined in a very strong flavor. In fact, it is the
strongest among all RKA security notions for MAC.

Procedure Initialize:

prm←$ MAC.Setup(1`).

k←$ MAC.Gen(prm).

Return prm.

Procedure Tag(f ∈ F ,m):

k′ := f(k) ∈ KMAC.

σ ←$ MAC.Tag(k′,m).

QTAG := QTAG ∪ {(f,m, σ)}.
Return σ.

Proc. Vrfy(f ∈ F ,m, σ):

k′ := f(k) ∈ KMAC.

β ← MAC.Vrfy(k′,m, σ).

If β = 1, Return 1.

If (f,m, σ) /∈ QTAG ,

Set forge := true.

Else, Return 0.

Procedure Finalize:

Return forge.

Fig. 3. super-strong-EU-F-RK-CMVA security game for MAC.

Definition 18 (Super-Strong EU-F-RK-CMVA Security for MAC). MAC is super-strong

EU-F-RK-CMVA secure, if for any PPT adversary A, the advantage Advsup-str-eu-rk-cmva
MAC,F ,A (`) :=

Pr[super-strong-EU-F-RK-CMVAA ⇒ 1] is negligible in `, where game super-strong-EU-F-RK-CMVA
is shown in Fig. 3.

4.2 The Construction

Let THPS = (THPS.Setup,THPS.Pub,THPS.Priv) be a tag-based hash proof system with instance
space C, tag space T , key space K, public key space PK, and hashing key space SK. Let M be an
arbitrary set, and let H =

{
H : PK ×M× C −→ T

}
be a family of hash functions. The proposed

MAC MAC[THPS] = (MAC.Setup, MAC.Gen,MAC.Tag, MAC.Vrfy) with key space KMAC := SK and
message space M is defined in Fig. 4. It is easy to check the correctness of MAC[THPS].

Remark 3. Our construction of MAC[THPS] from THPS is similar to the MAC construction from
extended HPS in [Xag13]. However, the security of our MAC[THPS] is stronger than theirs and our
RKA function class is also larger than theirs.
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prm←$ MAC.Setup(1`):

prmTHPS ←$ THPS.Setup(1`).

H←$ H.

Return prm := (prmTHPS,H).

sk←$ MAC.Gen(prm):

sk←$ SK.

Return sk.

〈C,K〉 ←$ MAC.Tag(sk,m):

pk := µ(sk) ∈ PK.

C ←$ V together with

witness w.

t := H(pk,m,C) ∈ T .

K := Λsk(C, t) ∈ K.

Return 〈C,K〉.

0/1← MAC.Vrfy
(
sk,m, 〈C,K′〉

)
:

pk := µ(sk) ∈ PK.

If C /∈ C, Return 0.

t := H(pk,m,C) ∈ T .

K := Λsk(C, t) ∈ K.

If K′ = K, Return 1;

Else, Return 0.

Fig. 4. Construction of MAC[THPS].

– The MAC from extended HPS in [Xag13] was specific to the class of linear functions Flin, and
the resulting MAC was only proved to be EU-Flin-RK-CMVA secure. To promote the security
to strong EU-Flin-RK-CMVA, the MAC needs another building block of strong one-time secure
signature, which makes the construction quite involved.

– Our MAC from THPS achieves the super-strong EU-F-RK-CMVA security directly for a general
function class F , by imposing some requirements (cf. Section 3) on THPS. We stress that those
requirements do not narrow the instantiations of THPS. In fact we can instantiate THPS from
the Matrix DDH (including DDH, k-LIN) and the DCR assumptions for the class of restricted
affine functions Fraff, of which Flin is a subset.

Theorem 1. If H is collision-resistant, THPS is an F-tailored THPS, and the SMP and PKCP
related to THPS are both hard, then the MAC[THPS] in Fig. 4 is super-strong EU-F-RK-CMVA
secure.

Proof of Theorem 1. Suppose that A is a PPT adversary against the super-strong EU-F-RK-
CMVA security of MAC[THPS], who makes at most Qt times of Tag queries and Qv times of Vrfy
queries. We prove the theorem by defining a sequence of games as shown in Fig. 5, and proving the
adjacent games indistinguishable.

– Game G0: This is the super-strong-EU-F-RK-CMVA security game (cf. Fig. 3). Let Forge denote the
event that Finalize outputs 1, i.e., the adversary A ever queries Vrfy such that (f,m, 〈C,K ′〉) /∈
QTAG and Vrfy

(
f ∈ F ,m, 〈C,K ′〉

)
= 1. Then by definition, Advsup-str-eu-rk-cmva

MAC[THPS],F ,A (`) = Pr0[Forge].

– Game G1: This game is the same as game G0, except that, the challenger changes the way it
computes pk′λ in Tag and pk′ in Vrfy.

In game G0, the challenger computes pk′λ := µ(sk′λ) with sk′λ := fλ(sk) in Tag(fλ,mλ) and
pk′ := µ(sk′) with sk′ := f(sk) in Vrfy

(
f,m, 〈C,K ′〉

)
. Now in game G1, it simply invokes the F-

public-key transformer THPS.PKTran (cf. Definition 14) to compute pk′λ := THPS.PKTran(pk, fλ)
in Tag and pk′ := THPS.PKTran(pk, f) in Vrfy.

Since THPS is F-public-key-homomorphic, this change is conceptual. Therefore G0 and G1 are
essentially the same, and Pr0[Forge] = Pr1[Forge].

Next, through the following games G2 –G5, the challenger will answer Vrfy queries
(
f,m, 〈C,K ′〉

)
in different ways (and finally avoid using the key sk), as long as t = tλ for some λ, where
t = H(pk′,m,C) and tλ = H(pk′λ,mλ, Cλ).

More precisely, we divide the event that t = tλ for some λ into four cases:
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Initialize: // G0 –G6

prmTHPS ←$ THPS.Setup(1`).

H←$ H.

sk←$ SK.

pk := µ(sk) ∈ PK.

Return prm := (prmTHPS,H).

Tag(fλ ∈ F ,mλ): // the λ-th query

// G0, G1 –G6 , G6

sk′λ := fλ(sk) ∈ SK.

pk′λ := µ(sk′λ) ∈ PK.

pk′λ := THPS.PKTran(pk, fλ) ∈ PK.

Cλ ←$ V with witness wλ.

tλ := H(pk′λ,mλ, Cλ) ∈ T .

Kλ := Λsk′
λ

(Cλ, tλ) ∈ K.

Kλ ←$ K.

QTAG := QTAG ∪ { (fλ,mλ, 〈Cλ,Kλ〉) }.
Return 〈Cλ,Kλ〉.

Finalize: // G0 –G6

Return forge.

Vrfy
(
f ∈ F ,m, 〈C,K′〉

)
:

// G0, G1 –G6 , G2 –G6 ,
�� ��G3 –G6 , G4 –G6 , G5 –G6

sk′ := f(sk) ∈ SK. pk′ := µ(sk′) ∈ PK.

pk′ := THPS.PKTran(pk, f) ∈ PK.

If C /∈ C, Return 0.

t := H(pk′,m,C) ∈ T .

If t = tλ for some λ,

If (f,m,C) = (fλ,mλ, Cλ),

K := Kλ ∈ K.�
�

�


If (m,C) 6= (mλ, Cλ) ∨
((m,C) = (mλ, Cλ) ∧ pk′ 6= pk′λ),

Return 0.

If (m,C) = (mλ, Cλ) ∧ pk′ = pk′λ ∧ sk′ 6= sk′λ,

Return 0.

If (m,C) = (mλ, Cλ) ∧ sk′ = sk′λ ∧ f 6= fλ,

Return 0.

Else t 6= tλ for all λ,

K := Λsk′(C, t) ∈ K.

If K′ = K, Return 1.

If (f,m, 〈C,K′〉) /∈ QTAG , Set forge := true.

Else, Return 0.

Fig. 5. Games G0 –G6 for super-strong EU-F-RK-CMVA security of MAC[THPS].

• Case 1: t = tλ ∧ (f,m,C) = (fλ,mλ, Cλ) for some λ
• Case 2: t = tλ ∧

(
(m,C) 6= (mλ, Cλ) ∨ ((m,C) = (mλ, Cλ) ∧ pk′ 6= pk′λ)

)
for some λ

• Case 3: t = tλ ∧ (m,C) = (mλ, Cλ) ∧ pk′ = pk′λ ∧ sk′ 6= sk′λ for some λ
• Case 4: t = tλ ∧ (m,C) = (mλ, Cλ) ∧ sk′ = sk′λ ∧ f 6= fλ for some λ

In the next four games, the challenger will handle these cases one by one.

– Game G2: This game is the same as game G1, except that, when answering Vrfy
(
f,m, 〈C,K ′〉

)
,

if Case 1 occurs, i.e., t = tλ ∧ (f,m,C) = (fλ,mλ, Cλ) for some λ, the challenger directly sets
K := Kλ instead of computing K := Λsk′(C, t).

Suppose that Case 1 holds. Clearly, f = fλ leads to sk′ = sk′λ. Thus in game G1, we have

K = Λsk′(C, t) = Λsk′λ
(Cλ, tλ) = Kλ.

Therefore in Case 1, K = Kλ holds both in G1 and G2. Then G2 is identical to G1, and
Pr1[Forge] = Pr2[Forge].

– Game G3: This game is the same as game G2, except that, when answering Vrfy
(
f,m, 〈C,K ′〉

)
,

if Case 2 occurs, i.e., t = tλ ∧
(
(m,C) 6= (mλ, Cλ)∨ ((m,C) = (mλ, Cλ)∧ pk′ 6= pk′λ)

)
for some λ,

the challenger returns 0 directly.
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Since t = H(pk′,m,C) and tλ = H(pk′λ,mλ, Cλ), any difference between G2 and G3 will imply
a collision of H. Thus

∣∣Pr2[Forge]− Pr3[Forge]
∣∣ ≤ AdvcrH(`).

– Game G4: This game is the same as game G3, except that, when answering Vrfy
(
f,m, 〈C,K ′〉

)
,

if Case 3 occurs, i.e., t = tλ∧ (m,C) = (mλ, Cλ)∧pk′ = pk′λ∧ sk′ 6= sk′λ for some λ, the challenger
simply returns 0.

Let PKColl denote the event that A ever queries Vrfy
(
f,m, 〈C,K ′〉

)
, such that pk′ = pk′λ

but sk′ 6= sk′λ for some λ. Clearly G3 and G4 are the same unless PKColl occurs. We have that∣∣Pr3[Forge]− Pr4[Forge]
∣∣ ≤ Pr4[PKColl].

Since pk′ = µ(sk′) and pk′λ = µ(sk′λ), it is straightforward to construct a PPT adversary which
can employ the occurrence of PKColl to solve the PKCP related to THPS. So Pr4[PKColl] ≤
AdvpkcpTHPS(`) and

∣∣Pr3[Forge]− Pr4[Forge]
∣∣ ≤ AdvpkcpTHPS(`).

– Game G5: This game is the same as game G4, except that, when answering Vrfy
(
f,m, 〈C,K ′〉

)
,

if Case 4 occurs, i.e., t = tλ ∧ (m,C) = (mλ, Cλ) ∧ sk′ = sk′λ ∧ f 6= fλ for some λ, the challenger
directly returns 0.

Let Guess denote the event that A ever queries Vrfy
(
f,m, 〈C,K ′〉

)
, such that sk′ = sk′λ but

f 6= fλ for some λ. Clearly G4 and G5 are the same unless Guess occurs. Therefore, we have that∣∣Pr4[Forge]− Pr5[Forge]
∣∣ ≤ Pr5[Guess]. (2)

We will give an upper bound on Pr5[Guess]. However, the analysis of Pr5[Guess] is not an easy
task, and we will defer it to the following game G′5.

– Game G′5: It is the same as game G5, except that, when answering Vrfy
(
f,m, 〈C,K ′〉

)
, if

t 6= tλ for all λ and C ∈ C \ V, the challenger returns 0 directly instead of checking whether or
not K ′ = K.

Let Bad denote the event that A ever queries Vrfy
(
f,m, 〈C,K ′〉

)
, such that C ∈ C \ V but

K ′ = K. Clearly G5 and G′5 are the same until Bad happens, thus∣∣Pr5[Guess]− Pr′5[Guess]
∣∣ ≤ Pr′5[Bad]. (3)

We give an upper bound on Pr′5[Bad] via the following lemma.

Lemma 3. Pr′5[Bad] ≤ Qv · εu2
THPS,F (`).

Proof. We consider the information about sk that A may obtain in G′5.

• For Tag(fλ,mλ), the challenger can use pk = µ(sk) to compute pk′λ and Kλ. More precisely,
pk′λ = THPS.PKTran(pk, fλ) and

Kλ = Λsk′λ
(Cλ, tλ) : Cλ ←$ V with witness wλ

= THPS.Pub(pk′λ, Cλ, wλ, tλ) : via projective property.

• For Vrfy
(
f,m, 〈C,K ′〉

)
, the challenger uses pk to compute pk′ = THPS.PKTran(pk, f).

– If t = tλ ∧ (f,m,C) = (fλ,mλ, Cλ) for some λ, i.e., Case 1 occurs, the challenger does not
use sk at all but simply sets K = Kλ.
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– If t = tλ ∧ (f,m,C) 6= (fλ,mλ, Cλ) for some λ, i.e., Case 2 or Case 3 or Case 4 occurs, the
challenger does not use sk and returns 0 directly.

– If t 6= tλ for all λ and C ∈ C \ V, the challenger returns 0 directly.
– If t 6= tλ for all λ and C ∈ V, the challenger computes K = Λsk′(C, t). Since THPS is

projective, the value of K will leak at most pk′ to A.

Thus the only information about sk that A may get in G′5 is pk = µ(sk).
The event Bad occurs in G′5 means that A ever queries Vrfy

(
f,m, 〈C,K ′〉

)
such that C ∈ C\V

but K ′ = K, where K := Λsk′(C, t) = Λf(sk)(C, t).
Since C ∈ C \ V, by the F-universal2 property of THPS, the guessing probability of K =

Λf(sk)(C, t) is at most εu2
THPS,F (`) conditioned on pk = µ(sk). Then K ′ = K will hold with

probability at most εu2
THPS,F (`).

By a union bound, Pr′5[Bad] ≤ Qv · εu2
THPS,F (`) and the lemma follows.

Finally, we analyze Pr′5[Guess]. Recall that in the proof of Lemma 3, we observe that the
only information about sk that the adversary A may get in game G′5 is pk = µ(sk). Since THPS
is F-universal2, by Lemma 2, given pk, the conditional guessing probability of sk is at most
εu2
THPS,F (`).

Because THPS has F-poly-bounded collisions, i.e.,

max
f 6=fλ∈F

∣∣{sk ∈ SK | f(sk) = fλ(sk)}
∣∣ ≤ p(`),

for some polynomial p(`), in one Vrfy query
(
f,m, 〈C,K ′〉

)
, the event sk′ = f(sk) = fλ(sk) = sk′λ

but f 6= fλ for some λ ∈ [Qt] can hold with probability at most Qt · p(`) · εu2
THPS,F (`). By a union

bound over Qv times of Vrfy queries,

Pr′5[Guess] ≤ Qv ·Qt · p(`) · εu2
THPS,F (`). (4)

By combining Eqs. (2)-(4) and Lemma 3, we get that
∣∣Pr4[Forge] − Pr5[Forge]

∣∣ ≤ Qv ·
εu2
THPS,F (`) +Qv ·Qt · p(`) · εu2

THPS,F (`).

Next, we consider a sequence of games {G5,i,0 –G5,i,4}i∈[Qt] shown in Fig. 6.

– Game G5,i,0, i ∈ [Qt + 1]: This game is the same as game G5, except that, in the λ-th (λ ∈ [i− 1])
Tag query, the challenger does not use the key sk to compute Kλ, and instead, it simply picks
Kλ from K uniformly. The challenger still answers the λ-th (λ ∈ [i, Qt]) Tag query by computing
Kλ := Λsk′λ

(Cλ, tλ) the same as in game G5.
Clearly G5,1,0 is identical to G5, thus Pr5[Forge] = Pr5,1,0[Forge].

– Game G5,i,1, i ∈ [Qt]: This game is the same as game G5,i,0, except that, in the i-th Tag query,
the challenger samples Ci uniformly from C \ V instead of V.

It is straightforward to bound the difference between G5,i,0 and G5,i,1 by constructing a PPT ad-
versary to solve the SMP related to THPS, such that

∣∣Pr5,i,0[Forge]−Pr5,i,1[Forge]
∣∣ ≤ AdvsmpTHPS(`).

– Game G5,i,2, i ∈ [Qt]: This game is the same as game G5,i,1, except that, when answering
Vrfy

(
f,m, 〈C,K ′〉

)
, if t 6= tλ for all λ and C ∈ C \ V, the challenger directly returns 0 in-

stead of checking whether or not K ′ = K.
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Tag(fλ ∈ F ,mλ): // the λ-th query

// G5,i,0, G5,i,1, G5,i,2, G5,i,3, G5,i,4

pk′λ := THPS.PKTran(pk, fλ) ∈ PK.

If 1 ≤ λ < i,

Cλ ←$ V with witness wλ.

Kλ ←$ K.

If λ = i,

Ci ←$ V with witness wi.

Ci ←$ C \ V.

ti := H(pk′i,mi, Ci) ∈ T .

Ki := Λsk′i
(Ci, ti) ∈ K.

Ki ←$ K.

If i < λ ≤ Qt,
Cλ ←$ V with witness wλ.

tλ := H(pk′λ,mλ, Cλ) ∈ T .

Kλ := Λsk′
λ

(Cλ, tλ) ∈ K.

QTAG := QTAG ∪ { (fλ,mλ, 〈Cλ,Kλ〉) }.
Return 〈Cλ,Kλ〉.

Vrfy
(
f ∈ F ,m, 〈C,K′〉

)
:

// G5,i,0, G5,i,1, G5,i,2, G5,i,3 , G5,i,4

pk′ := THPS.PKTran(pk, f) ∈ PK.

If C /∈ C, Return 0.

t := H(pk′,m,C) ∈ T .

If t = tλ for some λ,

If (f,m,C) = (fλ,mλ, Cλ),

K := Kλ ∈ K.

If (f,m,C) 6= (fλ,mλ, Cλ),

Return 0.

Else t 6= tλ for all λ,

If C ∈ C \ V, Return 0.

Else C ∈ V,

K := Λsk′(C, t) ∈ K.

If K′ = K, Return 1.

If (f,m, 〈C,K′〉) /∈ QTAG , Set forge := true.

Else, Return 0.

Initialize & Finalize. // same as in Fig. 5

Fig. 6. Games {G5,i,0 –G5,i,4}i∈[Qt], G5,Qt+1,0 for super-strong EU-F-RK-CMVA security of MAC[THPS].

Let B̃ad denote the event that A ever queries Vrfy(f,m, 〈C,K ′〉), such that t 6= tλ for all λ

and C ∈ C \ V but K ′ = K. Clearly games G5,i,1 and G5,i,2 are the same until B̃ad occurs, thus∣∣Pr5,i,1[Forge]− Pr5,i,2[Forge]
∣∣ ≤ Pr5,i,2[B̃ad].

We give an upper bound on Pr5,i,2[B̃ad] via the following lemma.

Lemma 4. For all i ∈ [Qt], Pr5,i,2[B̃ad] ≤ Qv · εu2
THPS,F (`).

Proof. It adapts a similar proofing technique used in the proof of Lemma 3. We analyze the
information about sk that A may obtain in G5,i,2.

• For Tag(fλ,mλ), the challenger uses pk = µ(sk) to compute pk′λ = THPS.PKTran(pk, fλ).
– If 1 ≤ λ < i, the challenger does not use sk to compute Kλ since Kλ is randomly chosen

from K.
– If i < λ ≤ Qt, the challenger can use pk′λ to compute Kλ:

Kλ = Λsk′λ
(Cλ, tλ) : Cλ ←$ V with witness wλ

= THPS.Pub(pk′λ, Cλ, wλ, tλ) : via projective property.

– If λ = i, the challenger may leak the value of Ki = Λsk′i
(Ci, ti) = Λfi(sk)(Ci, ti) to A, where

Ci ←$ C \ V.
• For Vrfy

(
f,m, 〈C,K ′〉

)
, the challenger uses pk to compute pk′ = THPS.PKTran(pk, f).

– If t = tλ ∧ (f,m,C) = (fλ,mλ, Cλ) for some λ, the challenger does not use sk at all but
simply sets K = Kλ.
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– If t = tλ ∧ (f,m,C) 6= (fλ,mλ, Cλ) for some λ, the challenger does not use sk and returns
0 directly.

– If t 6= tλ for all λ and C ∈ C \ V, the challenger returns 0 directly.
– If t 6= tλ for all λ and C ∈ V, the challenger computes K = Λsk′(C, t), which leaks at most

pk′ to A since THPS is projective.
Thus the only information about sk that A may get in game G5,i,2 is pk = µ(sk) and Ki =
Λfi(sk)(Ci, ti), where Ci ←$ C \ V.

The event B̃ad occurs in game G5,i,2 means that A ever queries Vrfy(f,m, 〈C,K ′〉) such that
t 6= tλ for all λ and C ∈ C \ V but K ′ = K, where K := Λsk′(C, t) = Λf(sk)(C, t).

Since C ∈ C \V and t 6= tλ for all λ, particularly t 6= ti, by the F-universal2 property of THPS,
the guessing probability of K = Λf(sk)(C, t) is at most εu2

THPS,F (`) conditioned on pk = µ(sk) and
Ki = Λfi(sk)(Ci, ti). Thus K ′ = K will hold with probability at most εu2

THPS,F (`). By a union

bound, we get that Pr5,i,2[B̃ad] ≤ Qv · εu2
THPS,F (`) and the lemma follows.

Therefore,
∣∣Pr5,i,1[Forge]− Pr5,i,2[Forge]

∣∣ ≤ Pr5,i,2[B̃ad] ≤ Qv · εu2
THPS,F (`).

– Game G5,i,3, i ∈ [Qt]: This game is the same as game G5,i,2, except that, in the i-th Tag query, the
challenger samples Ki uniformly from K instead of computing Ki := Λsk′i

(Ci, ti) = Λfi(sk)(Ci, ti).
Recall that in the proof of Lemma 4, we observe that the only information about sk that A may

get in game G5,i,2 is pk = µ(sk) and Ki = Λfi(sk)(Ci, ti), where Ci ←$ C \ V. By the average-case
F-strongly-universal1 property of THPS, the joint distribution of (pk, Ci,Ki = Λfi(sk)(Ci, ti)) in
game G5,i,2 is statistically close to (pk, Ci,Ki = UK), and the statistical distance is upper-bounded
by εac-str-u1

THPS,F (`). The latter distribution is exactly the one used in game G5,i,3.

Thus, games G5,i,2 and G5,i,3 are statistically close with statistical distance up to εac-str-u1
THPS,F (`),

i.e.,
∣∣Pr5,i,2[Forge]− Pr5,i,3[Forge]

∣∣ ≤ εac-str-u1
THPS,F (`).

– Game G5,i,4, i ∈ [Qt]: This game is the same as game G5,i,3, except that, when answering
Vrfy

(
f,m, 〈C,K ′〉

)
, if t 6= tλ for all λ and C ∈ C \ V, the challenger checks whether or not

K ′ = K again, instead of returning 0 directly. That is, the challenger will check whether or not
K ′ = K no matter C ∈ V or C ∈ C \ V.

The analysis of the difference between games G5,i,3 and G5,i,4 is analogous to that between
G5,i,1 and G5,i,2, thus we omit it here. Similarly, we can get that

∣∣Pr5,i,3[Forge]−Pr5,i,4[Forge]
∣∣ ≤

Qv · εu2
THPS,F (`).

Next we analyze the difference between games G5,i,4 and G5,i+1,0. The only divergence is the
distribution of Ci in the i-th query of Tag. In game G5,i,4, Ci is uniformly chosen from C \ V,
while in game G5,i+1,0, it is uniformly chosen from V. It is easy to construct a PPT adversary to
solve the SMP related to THPS, such that

∣∣Pr5,i,4[Forge]− Pr5,i+1,0[Forge]
∣∣ ≤ AdvsmpTHPS(`).

– Game G6: This game is the same as game G5,Qt+1,0. Then Pr5,Qt+1,0[Forge] = Pr6[Forge]. Finally
we give an upper bound on Pr6[Forge] as follows.

In game G6, each Kλ (λ ∈ [Qt]) is randomly chosen from K and the challenger does not use
sk at all in Tag, hence sk is totally uniformly random to the adversary until A makes the first
Vrfy query.

Suppose that A submits the first Vrfy query (f,m, 〈C,K ′〉), then Forge occurs if and only
if t 6= tλ for all λ, K ′ = K and (f,m, 〈C,K ′〉) /∈ QTAG, where K := Λsk′(C, t) = Λf(sk)(C, t).
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According to the F-extracting property of THPS, the guessing probability of K = Λf(sk)(C, t) is
at most εextTHPS,F (`) for sk ←$ SK. Thus K ′ = K will hold with probability at most εextTHPS,F (`).

By a hybrid argument over Qv times of Vrfy queries, Pr6[Forge] ≤ Qv · εextTHPS,F (`).

Taking all things together, we have that

Advsup-str-eu-rk-cmva
MAC[THPS],F ,A (`) ≤ AdvcrH(`) + AdvpkcpTHPS(`) + 2Qt · AdvsmpTHPS(`) +Qt · εac-str-u1

THPS,F (`)

+(Qv +Qv ·Qt · p(`) + 2Qt ·Qv) · εu2
THPS,F (`) +Qv · εextTHPS,F (`),

thus the super-strong EU-F-RK-CMVA security of MAC[THPS] follows.

5 Super-Strong RKA secure PKE and SE from THPS

In this section, we propose a new RKA security notion for (canonical) PKE, called super-strong
IND-F-RK-CCA2, which is even stronger than the strong IND-F-RK-CCA2 security defined in
[BPT12]. Then we give a paradigm for constructing PKE from THPS with the help of Authenticated
Encryption (AE). The obtained PKE possesses our new RKA security when the THPS is an F-
tailored one.

We also show that the natural transformation from PKE to Symmetric Encryption (SE) converts
a super-strong IND-F-RK-CCA2 secure PKE scheme to a SE scheme possessing a new RKA security,
which we call it super-strong IND-F-RK-CCA2. The super-strong IND-F-RK-CCA2 security for SE
is stronger than the IND-F-RK-CCA2 security defined in [BCM11].

5.1 Super-Strong IND-F-RK-CCA2 Security for PKE

Let F be a class of functions from SK to SK. The strong IND-F-RK-CCA2 security notion for
(canonical) PKE (cf. Definition 2) allows the adversary to get a challenge ciphertext c∗ through
LR(f∗,m0,m1), which encrypts mb under F-related public key pk′∗ = PKE.PK(sk′∗), where sk′∗ =
f∗(sk). However, the decryption oracle Dec(f, c) is a bit restricted: it prohibits decryption of the
challenger ciphertext c∗ under the corresponding F-related secret key sk′∗. In other words, if the
adversary queries Dec(f, c) such that (f(sk), c) = (sk′∗, c∗), the decryption oracle does not work.
But this restriction is by no means reasonable. The adversary does not own the secret key sk, thus
it might not even realize (f(sk), c) = (sk′∗, c∗).

Here we relax the decryption restriction, and define an enhanced security notion for PKE, namely
super-strong IND-F-RK-CCA2 security. That is, we allow the adversary to query Dec(f, c) even if
it has queried LR(f∗,m0,m1) such that (f(sk), c) = (f∗(sk), c∗), as long as (f, c) 6= (f∗, c∗).

Procedure Initialize:

prm←$ PKE.Setup(1`).

sk←$ PKE.SK(prm).

pk := PKE.PK(sk) ∈ PK.

b←$ {0, 1}.
Return (prm, pk).

Proc. LR(f∗ ∈ F ,m0,m1):

// one query

sk′∗ := f∗(sk) ∈ SK.

pk′∗ := PKE.PK(sk′∗) ∈ PK.

c∗ ←$ PKE.Enc(pk′∗,mb).

QENC :=
{

(f∗, c∗)
}

.

Return c∗.

Procedure Enc(f ∈ F ,m):

sk′ := f(sk) ∈ SK.

pk′ := PKE.PK(sk′) ∈ PK.

c←$ PKE.Enc(pk′,m).

Return c.

Procedure Dec(f ∈ F , c):
If (f, c) ∈ QENC , Return ⊥.

sk′ := f(sk) ∈ SK.

Return PKE.Dec(sk′, c).

Procedure Finalize(b′):

Return (b′ = b).

Fig. 7. super-strong-IND-F-RK-CCA2 security game for PKE.
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Definition 19 (Super-Strong IND-F-RK-CCA2 Security for PKE). PKE is super-strong

IND-F-RK-CCA2 secure, if for any PPT adversary A, the advantage Advsup-str-ind-rk-cca2
PKE,F ,A (`) :=∣∣Pr[super-strong-IND-F-RK-CCA2A ⇒ 1]− 1

2

∣∣ is negligible in `, where game super-strong-IND-F-RK-
CCA2 is shown in Fig. 7.

5.2 The Construction

Let THPS = (THPS.Setup,THPS.Pub,THPS.Priv) be a tag-based hash proof system with instance
space C, tag space T , key space K, public key space PK, and hashing key space SK. Let AE =
(AE.Enc,AE.Dec) be an authenticated encryption scheme with message spaceM and key space KAE

(cf. Appendix A.1). Let H1 =
{
H1 : PK×C −→ T

}
and H2 =

{
H2 : K −→ KAE

}
be families of hash

functions. The proposed PKE scheme PKE[THPS,AE] = (PKE.Setup,PKE.Gen, PKE.Enc,PKE.Dec)
with secret key space SK ad message spaceM is defined in Fig. 8. The correctness of PKE[THPS,AE]
follows from the projectiveness of THPS and the correctness of AE directly.

prm←$ PKE.Setup(1`):

prmTHPS ←$ THPS.Setup(1`).

H1 ←$ H1. H2 ←$ H2.

Return prm := (prmTHPS,H1,H2).

(pk, sk)←$ PKE.Gen(prm):

sk←$ SK. pk := µ(sk) ∈ PK.

Return (pk, sk).

〈C,χ〉 ←$ PKE.Enc(pk,m):

C ←$ V together with witness w.

t := H1(pk, C) ∈ T .

K := THPS.Pub(pk, C, w, t) ∈ K.

κ := H2(K) ∈ KAE.

χ←$ AE.Enc(κ,m).

Return 〈C,χ〉.

m/⊥ ← PKE.Dec
(
sk, 〈C,χ〉

)
:

pk := µ(sk) ∈ PK.

If C /∈ C, Return ⊥.

t := H1(pk, C) ∈ T .

K := THPS.Priv(sk, C, t) ∈ K.

κ := H2(K) ∈ KAE.

m/⊥ ← AE.Dec(κ, χ).

Return m/⊥.

Fig. 8. Construction of PKE[THPS,AE].

Obviously, PKE[THPS,AE] is canonical, where sk←$ SK and pk := µ(sk).

Theorem 2. If H1 is collision-resistant, H2 is universal, AE is OT-secure (cf. Definition 23 in
Appendix A.1), THPS is an F-tailored THPS3 such that |KAE| · εu2

THPS,F (`) and |KAE|/|K| are both
negligible in `, and the SMP and PKCP related to THPS are both hard, then the PKE[THPS,AE] in
Fig. 8 is super-strong IND-F-RK-CCA2 secure.

Proof of Theorem 2. Suppose that A is a PPT adversary against the super-strong IND-F-RK-
CCA2 security of PKE[THPS,AE], who makes at mostQd times of Dec queries. We prove the theorem
by defining a sequence of games as in Fig. 9, and proving the adjacent games indistinguishable.

– Game G0: This is the super-strong-IND-F-RK-CCA2 game (cf. Fig. 7). Let Win denote the event

that b′ = b. Then by definition, Advsup-str-ind-rk-cca2
PKE[THPS,AE],F ,A(`) =

∣∣Pr0[Win]− 1
2

∣∣.
– Games G1−G6: These games are defined similarly to that in the proof of Theorem 1. We put the

detailed description and analysis in Appendix C. Here we just sketch each game.

3 We note that the F-extracting property is not necessary here, since in the proof of the theorem, the adversary always
knows the public key pk in the scenario of PKE.
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Initialize: // G0 –G9

prmTHPS ←$ THPS.Setup(1`).

H1 ←$ H1. H2 ←$ H2.

sk←$ SK. pk := µ(sk) ∈ PK.

b←$ {0, 1}. // challenge bit

Return (prm := (prmTHPS,H1,H2), pk).

Dec
(
f ∈ F , 〈C,χ〉

)
: // G0, G1 –G9 , G2 –G9

//
�� ��G3 –G9 , G4 –G9 , G5 –G9 ,

�� ���� ��G8 –G9

If (f, 〈C,χ〉) ∈ QENC , Return ⊥.

sk′ := f(sk) ∈ SK. pk′ := µ(sk′) ∈ PK.

pk′ := THPS.PKTran(pk, f) ∈ PK.

If C /∈ C, Return ⊥.

t := H1(pk′, C) ∈ T .

If t = t∗,

If (f, C) = (f∗, C∗),

κ := κ∗ ∈ KAE.�� ���� ��Return ⊥.�



�
	If C 6= C∗ ∨ (C = C∗ ∧ pk′ 6= pk′∗),

Return ⊥.

If C = C∗ ∧ pk′ = pk′∗ ∧ sk′ 6= sk′∗,

Return ⊥.

If C = C∗ ∧ sk′ = sk′∗ ∧ f 6= f∗,

Return ⊥.

Else t 6= t∗,

K := Λsk′(C, t) ∈ K.

κ := H2(K) ∈ KAE.

Return AE.Dec(κ, χ).

LR(f∗ ∈ F ,m0,m1): // one query

// G0, G1 –G9 , G6 –G9 ,
�� ��G7 –G9 , G9

sk′∗ := f∗(sk) ∈ SK. pk′∗ := µ(sk′∗) ∈ PK.

pk′∗ := THPS.PKTran(pk, f∗) ∈ PK.

C∗ ←$ V together with witness w∗.

t∗ := H1(pk′∗, C∗) ∈ T .

K∗ := THPS.Pub(pk′∗, C∗, w∗, t∗) ∈ K.

K∗ := Λsk′∗(C
∗, t∗) ∈ K.

K∗ ←$ K.

κ∗ := H2(K∗) ∈ KAE.�� ��κ∗ ←$ KAE.

χ∗ ←$ AE.Enc(κ∗,mb).

χ∗ ←$ AE.Enc(κ∗, 0|m0|).

QENC :=
{

(f∗, 〈C∗, χ∗〉)
}

.

Return 〈C∗, χ∗〉.

Enc(f ∈ F ,m): // G0, G1 –G9

sk′ := f(sk) ∈ SK. pk′ := µ(sk′) ∈ PK.

pk′ := THPS.PKTran(pk, f) ∈ PK.

C ←$ V together with witness w.

t := H1(pk′, C) ∈ T .

K := THPS.Pub(pk′, C, w, t) ∈ K.

κ := H2(K) ∈ KAE.

χ←$ AE.Enc(κ,m).

Return 〈C,χ〉.

Finalize(b′): // G0 –G9

Return (b′ = b).

Fig. 9. Games G0 –G9 for super-strong IND-F-RK-CCA2 security of PKE[THPS,AE].

In game G1, the challenger changes the way it computes pk′∗, K∗ in LR and pk′ in Enc and
Dec. More precisely, the challenger simply invokes the F-public-key transformer THPS.PKTran
to compute pk′∗ := THPS.PKTran(pk, f∗) in LR and pk′ := THPS.PKTran(pk, f) in Enc and
Dec. Besides, it computes K∗ := Λsk′∗(C

∗, t∗) rather than K∗ := THPS.Pub(pk′∗, C∗, w∗, t∗) in
LR. By the F-public-key-homomorphic property of THPS and the projectiveness of THPS, the
change is conceptual. Then Pr0[Win] = Pr1[Win].

In game G2, when answering Dec
(
f, 〈C,χ〉

)
, if t = t∗ ∧ (f, C) = (f∗, C∗), the challenger

directly sets κ := κ∗ instead of computing κ := H2(K). Since κ (resp. κ∗) is uniquely determined
by (f, C, t) (resp. (f∗, C∗, t∗)) and sk, the change is conceptual. Then Pr1[Win] = Pr2[Win].

In game G3, when answering Dec
(
f, 〈C,χ〉

)
, if t = t∗ ∧

(
C 6= C∗ ∨ (C = C∗ ∧ pk′ 6= pk′∗)

)
, the

challenger returns ⊥ directly. Since H1 is collision-resistant,
∣∣Pr2[Win]− Pr3[Win]

∣∣ ≤ AdvcrH1
(`).
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In game G4, when answering Dec
(
f, 〈C,χ〉

)
, if t = t∗ ∧ C = C∗ ∧ pk′ = pk′∗ ∧ sk′ 6= sk′∗, the

challenger simply returns ⊥. Since the PKCP related to THPS is hard,
∣∣Pr3[Win]−Pr4[Win]

∣∣ ≤
AdvpkcpTHPS(`).

In game G5, when answering Dec
(
f, 〈C,χ〉

)
, if t = t∗ ∧ C = C∗ ∧ sk′ = sk′∗ ∧ f 6= f∗, the

challenger directly returns ⊥. Through a deferred analysis similar to that in the proof of Theorem
1, by the INT-OT security of AE and the fact that THPS has F-poly-bounded collisions, we can
get that

∣∣Pr4[Win]−Pr5[Win]
∣∣ ≤ Qd · (√|KAE| · εu2

THPS,F (`) +Advint-otAE (`)
)

+Qd · p(`) · εu2
THPS,F (`) for

some polynomial p(`).

In game G6, in LR(f∗,m0,m1), the challenger picks K∗ randomly from K. By introducing
a sequence of games {G5,1 –G5,4} between G5 and G6 a similar way as that in the proof of The-

orem 1, we can obtain that
∣∣Pr5[Win] − Pr6[Win]

∣∣ ≤ 2 · AdvsmpTHPS(`) + 2Qd ·
(√
|KAE| · εu2

THPS,F (`)

+Advint-otAE (`)
)

+ εac-str-u1
THPS,F (`).

Note that in G6, the challenger answers LR query by sampling K∗ randomly from K and can
answer Dec queries without using the secret key sk at all in the case of t = t∗.

– Game G7: This game is the same as game G6, except that, in LR(f∗,m0,m1), the challenger
simply samples κ∗ ←$ KAE randomly instead of computing κ∗ := H2(K∗) where K∗ ←$ K.

In game G6, K∗ is randomly chosen from K in LR. By the Leftover Hash Lemma (i.e., Lemma
1), since H2 is universal, κ∗ := H2(K∗) is statistically close to the uniform distribution over KAE,
with statistical distance

√
|KAE|/|K|.

Therefore G6 and G7 are statistically close with statistical distance
√
|KAE|/|K|, i.e.,

∣∣Pr6[Win]−
Pr7[Win]

∣∣ ≤ √
|KAE|/|K|.

– Game G8: This game is the same as game G7, except that, when answering Dec
(
f, 〈C,χ〉

)
, if

t = t∗ ∧ (f, C) = (f∗, C∗), the challenger outputs ⊥ directly instead of invoking AE.Dec(κ∗, χ).

Let Forge denote the event that A ever queries Dec
(
f, 〈C,χ〉

)
, such that t = t∗ ∧ (f, C) =

(f∗, C∗)∧χ 6= χ∗ but AE.Dec(κ∗, χ) 6= ⊥. Note that G7 and G8 are the same unless Forge occurs,
since Dec queries (f, 〈C,χ〉) = (f∗, 〈C∗, χ∗〉) are rejected both in G7 and G8. Then we have that∣∣Pr7[Win]− Pr8[Win]

∣∣ ≤ Pr8[Forge].

Since χ∗ ←$ AE.Enc(κ∗,mb) for κ∗ ←$ KAE, the event thatA can submit χ such that χ 6= χ∗ but
AE.Dec(κ∗, χ) 6= ⊥ directly violates the INT-OT security of AE. It is straightforward to construct
a PPT adversary against the INT-OT security of AE, such that Pr8[Forge] ≤ Qd · Advint-otAE (`).
Therefore,

∣∣Pr7[Win]− Pr8[Win]
∣∣ ≤ Qd · Advint-otAE (`).

– Game G9: This game is the same as game G8, except that, in LR(f∗,m0,m1), the challenger
encrypts a constant message 0|m0| instead of mb.

Since κ∗ is randomly distributed and independent of the other parts of the game, by the
IND-OT security of AE, the encryption χ∗ ←$ AE.Enc(κ∗, mb) is computationally indistinguish-
able from χ∗ ←$ AE.Enc(κ∗, 0|m0|). Thus we can construct a PPT adversary against the IND-OT
security of AE, such that

∣∣Pr8[Win]− Pr9[Win]
∣∣ ≤ Advind-ot

AE (`).

Finally in game G9, the challenger encrypts the constant message, thus the challenge bit b is
completely hidden. Then Pr9[Win] = 1

2 .
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Taking all things together, we have that

Advsup-str-ind-rk-cca2
PKE[THPS,AE],F ,A(`) ≤ AdvcrH1

(`) + AdvpkcpTHPS(`) + 2 · AdvsmpTHPS(`) + 4Qd · Advint-otAE (`) + Advind-ot
AE (`)

+ εac-str-u1
THPS,F (`) +Qd · p(`) · εu2

THPS,F (`) + 3Qd ·
√
|KAE| · εu2

THPS,F (`)

+
√
|KAE|/|K|,

thus the super-strong IND-F-RK-CCA2 security of PKE[THPS,AE] follows assuming that both |KAE|·
εu2
THPS,F (`) and |KAE|/|K| are negligible in `.

5.3 Super-Strong IND-F-RK-CCA2 secure SE from THPS

A (canonical) PKE can be used as a Symmetric Encryption (SE) by setting the secret key sk of PKE
as the encryption/decryption key of SE.

In [BCM11], IND-F-RK-CCA2 security was defined for SE. Strong IND-F-RK-CCA2 secure
PKE is naturally an IND-F-RK-CCA2 secure SE, as shown in [BPT12]. Given the super-strong
IND-F-RK-CCA2 secure PKE scheme PKE[THPS,AE] constructed in the previous subsection (cf.
Fig. 8), we immediately obtain an SE scheme SE[THPS,AE] with super-strong IND-F-RK-CCA2
security (cf. Fig. 16). Here we point out that the super-strongness property of SE is inherited from
PKE.

The syntax and the IND-F-RK-CCA2 security of SE are recalled in Appendix A.2. In Ap-
pendix D, we define super-strong IND-F-RK-CCA2 security for SE4 and present the paradigm for
constructing a super-strong IND-F-RK-CCA2 secure SE from any super-strong IND-F-RK-CCA2
secure (canonical) PKE. See Fig. 16 for the paradigm and Theorem 7 for the security analysis. By
combining Theorem 2 and Theroem 7, we get the following corollary which shows the super-strong
IND-F-RK-CCA2 security of the resulting SE[THPS,AE].

Corollary 1. If H1 is collision-resistant, H2 is universal, AE is OT-secure, THPS is an F-tailored
THPS such that |KAE| · εu2

THPS,F (`) and |KAE|/|K| are both negligible in `, and the SMP and PKCP
related to THPS are both hard, then the SE[THPS,AE] in Fig. 16 is super-strong IND-F-RK-CCA2
secure.

6 Instantiation of THPS from the Matrix DDH Assumption

In this section, we give an instantiation of Fraff-tailored THPS from the Matrix DDH Assumption,
where Fraff is the class of restricted affine functions. We show that the instantiation enjoys all of the
properties required in the paradigms for constructing super-strong RKA secure MAC, PKE and SE.

6.1 GenG, MDDH and KerMDH Assumptions

Let GenG(1`) be a PPT algorithm outputting G = (G, p, g), where p is a 2`-bit prime number, G is a
cyclic (multiplicative) group of order p, and g is a generator of G. We assume that the multiplication
in G is efficiently computable and there is a PPT algorithm for checking membership in G.

4 There is no strong IND-F-RK-CCA2 security defined for SE. Up to now, the IND-F-RK-CCA2 security defined in
[BCM11] is the strongest RKA security notion for SE (before our work). For consistency, we name our new RKA
security notion as super-strong IND-F-RK-CCA2.
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For a matrix A over Zp, denote by gA the matrix over G with (gA)i,j := g(A)i,j . Obviously, given
A, gB, gC and D with appropriate dimensions, we can efficiently compute gA·B, gB+C and gC·D.

Let s′, s ≥ 1 be integers with s′ > s. A probabilistic distribution Ds′,s is called a matrix distribu-
tion, if it outputs matrices in Zs′×sp of full rank s in polynomial time. Without loss of generality, we
assume that the first s rows of A←$ Ds′,s are linearly independent. We define the MDDH assumption
according to [EHK+13].

Definition 20 (Ds′,s-MDDH Assumption). The Ds′,s-Matrix DDH (Ds′,s-MDDH) Assumption
holds w.r.t. GenG, if for any PPT adversary A, the following advantage is negligible in `:

Adv
Ds′,s-mddh

GenG,A (`) :=
∣∣∣Pr

[
A
(
G, gA, gA·w) = 1

]
− Pr

[
A
(
G, gA, gr

)
= 1
] ∣∣∣,

where G = (G, p, g)←$ GenG(1`), A←$ Ds′,s, w←$ Zsp and r←$ Zs′p .

The Ds′,s-MDDH assumption covers many well-studied assumptions, such as the DDH and the
k-LIN assumptions [EHK+13].

We recall the definition of the KerMDH assumption from [MRV15], which is introduced as a
computational analogue of the MDDH assumption.

Definition 21 (Ds′,s-KerMDH Assumption). The Ds′,s-Kernel Diffie-Hellman (Ds′,s-KerMDH)
Assumption holds w.r.t. GenG, if for any PPT adversary A, the following advantage is negligible in
`:

Adv
Ds′,s-kmdh

GenG,A (`) := Pr
[
c←$ A

(
G, gA

)
: c 6= 0 ∧ A> · c = 0

]
,

where G = (G, p, g)←$ GenG(1`) and A←$ Ds′,s.

Lemma 5 (Ds′,s-MDDH ⇒ Ds′,s-KerMDH [MRV15]). If the Ds′,s-MDDH assumption holds
w.r.t. GenG, so does the Ds′,s-KerMDH assumption.

The proof is quite straightforward: given gr and a non-zero vector c in the kernel of A>, we can
efficiently test whether or not r belongs to the column space of A by checking gr>·c = g0.

6.2 THPSMDDH from the Matrix DDH Assumption

In [QLC15], THPS was constructed based on the k-LIN assumption. Let Ds′,s be a matrix distribution
that outputs matrices A in Zs′×sp . Here we present an MDDH-based construction THPSMDDH in Fig.
10, whose subset membership and public-key collision problems are hard under the Ds′,s-MDDH
assumption.

Theorem 3. The THPSMDDH in Fig. 10 is an Fraff-tailored THPS, where Fraff =
{
f(a,b) : (k1,k2) ∈

SK 7−→ (ak1 + b1, ak2 + b2) ∈ SK
∣∣ a ∈ Z∗p, b = (b1,b2) ∈ SK

}
is the class of restricted

affine functions. More precisely, it is Fraff-strongly-universal1, Fraff-universal2, Fraff-extracting, Fraff-
public-key-homomorphic and has Fraff-poly-bounded collisions.

Proof of Theorem 3.

[Projectiveness.] For all sk = (k1,k2) ∈ SK, all C = gA·w ∈ V with witness w and all t ∈ T , it
follows that

THPS.Pub(µ(sk), C,w, t) = gw>·(A>·k1+tA>·k2)

= g(A·w)>·(k1+tk2) = THPS.Priv(sk, C, t).
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prmTHPS ←$ THPS.Setup(1`):

G = (G, p, g)←$ GenG(1`). A←$ Ds′,s, where A ∈ Zs
′×s
p .

Return prmTHPS := (G, gA), which implicitly defines (K, C,V, T ,SK,PK, Λ(·), µ):

K := G. C := Gs
′
\{g0}. V :=

{
gA·w

∣∣ w ∈ Zsp\{0}
}

.

T := Zp. SK := Zs
′
p × Zs

′
p . PK := Gs ×Gs.

For sk = (k1,k2) ∈ SK, C = gr ∈ C, t ∈ T , Λsk(C, t) := gr
>·(k1+tk2) ∈ K.

For sk = (k1,k2) ∈ SK, pk = µ(sk) := ( gA
>·k1 , gA

>·k2 ) ∈ PK.

K ← THPS.Pub(pk, C,w, t):

Parse pk = (gh1 , gh2) ∈ PK.

Return K := gw
>·(h1+th2).

K ← THPS.Priv(sk, C, t):

Parse sk = (k1,k2) ∈ SK and C = gr ∈ C.
Return K := gr

>·(k1+tk2).

Fig. 10. Construction of THPSMDDH.

[Fraff-Strongly-Universal1 & Fraff-Universal2.] Suppose that f(a,b), f(a′,b′) ∈ Fraff with b =

(b1,b2) and b′ = (b′1,b
′
2), C = gr ∈ C, C ′ = gr′ ∈ C \ V and t, t′ ∈ T with t 6= t′. For

sk = (k1,k2)←$ SK, we consider the distribution of Λf(a′,b′)(sk)(C
′, t′) conditioned on pk = µ(sk)

and Λf(a,b)(sk)(C, t).

Let a⊥ ∈ Zs′p be a non-zero vector in the kernel of A>, such that A> · a⊥ = 0. Note that we
can sample sk = (k1,k2)←$ SK equivalently via

sk = (k1,k2) = (k̂1a
⊥ + k̂1, k̂2a

⊥ + k̂2)

where k̂1, k̂2 ←$ Zp and k̂1, k̂2 ←$ Zs′p .

Firstly pk = µ(sk) = ( gA>·k1 , gA>·k2 ) = ( gA>·k̂1 , gA>·k̂2 ), which may leak k̂1, k̂2, but the
values of k̂1, k̂2 are totally hidden.

Next

Λf(a,b)(sk)(C, t) = Λ(ak1+b1,ak2+b2)(C, t) = gr>·( (ak1+b1)+ t(ak2+b2) )

=
(
gr>·(k1+tk2)

)a · gr>·(b1+tb2) (5)

=
(
gr>a⊥·(k̂1+tk̂2)

)a · (gr>·(k̂1+tk̂2)
)a · gr>·(b1+tb2),

which may further leak the value of k̂1 + tk̂2.

Similarly,

Λf(a′,b′)(sk)(C
′, t′) =

(
gr′>a⊥·(k̂1+t′k̂2)

)a′ · (gr′>·(k̂1+t′k̂2)
)a′ · gr′>·(b′1+tb′2).

Since t 6= t′, it follows that k̂1 + t′k̂2 is independent of k̂1 + tk̂2 and uniformly distributed over
Zp. Also note that C ′ ∈ C \ V implies that r′>a⊥ 6= 0, and note the fact that a′ ∈ Z∗p. Thus

conditioned on pk and Λf(a,b)(sk)(C, t), the term
(
gr′>a⊥·(k̂1+t′k̂2)

)a′
is randomly distributed over

K = G, so is Λf(a′,b′)(sk)(C
′, t′).

This implies that THPSMDDH is Fraff-strongly-universal1 with εstr-u1
THPS,Fraff

(`) = 0 and Fraff-
universal2 with εu2

THPS,Fraff
(`) = 1/p, which is negligible in `.
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[Fraff-Extracting.] Suppose that f(a,b) ∈ Fraff with b = (b1,b2), C = gr ∈ C with r ∈ Zs′p \{0} and
t ∈ T . For sk = (k1,k2)←$ SK, we consider the distribution of Λf(a,b)(sk)(C, t). By Eq. (5),

Λf(a,b)(sk)(C, t) =
(
gr>·(k1+tk2)

)a · gr>·(b1+tb2).

When sk is randomly chosen from SK, k1 + tk2 is uniformly distributed over Zs′p . Since r 6= 0

and a ∈ Z∗p, the term
(
gr>·(k1+tk2)

)a
is randomly distributed over K = G, so is Λf(a,b)(sk)(C, t).

Therefore, THPSMDDH is Fraff-extracting with εextTHPS,Fraff
(`) = 1/p, which is negligible in `.

[Fraff-Public-Key-Homomorphism.] For all f(a,b) ∈ Fraff with b = (b1,b2), and all sk = (k1,k2) ∈
SK, observe that

µ
(
f(a,b)(sk)

)
= µ(ak1 + b1, ak2 + b2)

=
(
gA>·(ak1+b1) , gA>·(ak2+b2)

)
(6)

=
(

(gA>·k1)a · gA>·b1 , (gA>·k2)a · gA>·b2
)
.

We define the Fraff-public-key transformer THPS.PKTran : PK × Fraff −→ PK as follows: for
any pk = (gh1 , gh2) ∈ PK,

THPS.PKTran(pk, f(a,b)) :=
(

(gh1)a · gA>·b1 , (gh2)a · gA>·b2
)
.

Then according to Eq. (6), µ
(
f(a,b)(sk)

)
= THPS.PKTran(µ(sk), f(a,b)).

[Fraff-Poly-Bounded Collisions.] For any pair of distinct f(a,b), f(a′,b′) ∈ Fraff with b = (b1,b2)
and b′ = (b′1,b

′
2), we count the number of sk = (k1,k2) ∈ SK, such that f(a,b)(sk) = f(a′,b′)(sk),

i.e.,
(ak1 + b1, ak2 + b2) = (a′k1 + b′1, a

′k2 + b′2).

If a = a′ but b 6= b′, the equation can never be satisfied. If a 6= a′, there is exactly one sk
satisfying the equation, i.e., sk = (ki)

2
i=1 = ((b′i − bi)/(a− a′))2

i=1.
Therefore, max

f(a,b) 6=f(a′,b′)∈Fraff

∣∣{sk ∈ SK | f(a,b)(sk) = f(a′,b′)(sk)}
∣∣ ≤ 1.

Theorem 4. For the THPSMDDH in Fig. 10, the SMP and PKCP are both hard under the Ds′,s-
MDDH assumption w.r.t. GenG.

Proof of Theorem 4.

[Subset Membership Problem.] Suppose that A is a PPT adversary against the SMP related to
THPSMDDH, we construct a PPT adversary B against the Ds′,s-MDDH assumption w.r.t. GenG
by invoking A.

On input
(
G = (G, p, g), gA, gr

)
, B aims to tell whether r = A ·w or r←$ Zs′p , where w←$ Zsp.

B sets prmTHPS := (G, gA) and C := gr. Then B invokes A(prmTHPS, C) and outputs whatever A
outputs.

In the case of r = A ·w with w ←$ Zsp, C = g0 with probability of 1/ps and C is randomly

distributed over V with probability of 1− 1/ps; in the case of r←$ Zs′p , C = g0 with probability

of 1/ps
′
, C is randomly distributed over V with probability of (ps − 1)/ps

′
, and C is randomly

distributed over C\V with probability of (ps
′ − ps)/ps′ . Thus we have that

Adv
Ds′,s-mddh
GenG,B (`) ≥ (1− 1

ps′−s
) · AdvsmpTHPS,A(`)− 2

ps ≥
1
2 · Adv

smp
THPS,A(`)− 2

ps ,

and the SMP related to THPSMDDH is hard under the Ds′,s-MDDH assumption.
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[Public-Key Collision problem.] By Lemma 5, the Ds′,s-MDDH assumption implies the Ds′,s-
KerMDH assumption, thus it is sufficient to show that the PKCP is hard under the Ds′,s-KerMDH
assumption w.r.t. GenG.

Suppose that A′ is a PPT adversary against the PKCP related to THPSMDDH, we construct
a PPT adversary B′ against the Ds′,s-KerMDH assumption w.r.t. GenG by invoking A′.

On input
(
G = (G, p, g), gA

)
, B′ aims to compute a non-zero c such that A> · c = 0. B′ sets

prmTHPS := (G, gA). Then B′ feeds A′ with prmTHPS and gets back a pair of sk = (k1,k2) and
sk′ = (k′1,k

′
2).

Suppose that A′ successfully solves the PKCP, i.e., sk 6= sk′ but µ(sk) = µ(sk′), then

( gA>·k1 , gA>·k2 ) = ( gA>·k′1 , gA>·k′2 ), i.e.,

( gA>·(k1−k′1) , gA>·(k2−k′2) ) = ( g0 , g0 ).

Without loss of generality, suppose that k1 6= k′1, then B′ returns c := k1−k′1 as its final output.
Obviously, B′ succeeds, i.e., A> · c = A> · (k1 − k′1) = 0, as long as A′ succeeds. Therefore

Adv
Ds′,s-kmdh
GenG,B′ (`) ≥ AdvpkcpTHPS,A′(`),

and the PKCP related to THPSMDDH is hard under the Ds′,s-KerMDH assumption.

When plugging the THPSMDDH into the paradigms in Fig. 4, Fig. 8 and Fig. 16, we obtain a
MAC MAC[THPSMDDH], a PKE scheme PKE[THPSMDDH,AE] and a SE scheme SE[THPSMDDH,AE]
respectively. The super-strong RKA securities of the resulting MAC, PKE and SE schemes are stated
as follows.

Corollary 2. If H is collision-resistant and the Ds′,s-MDDH assumption holds w.r.t. GenG, then the
MAC[THPSMDDH] is super-strong EU-Fraff-RK-CMVA secure, where Fraff is specified in Theorem 3.

If H1 is collision-resistant, H2 is universal, AE is OT-secure with key space KAE = {0, 1}`, and the
Ds′,s-MDDH assumption holds w.r.t. GenG, then the PKE[THPSMDDH, AE] and SE[THPSMDDH,AE]
are super-strong IND-Fraff-RK-CCA2 secure, where Fraff is specified in Theorem 3.

The above corollary follows from Theorems 1, 2, 3, 4 and Corollary 1, as well as the fact that
|KAE| · εu2

THPS,Fraff
(`) = |KAE|/|K| = 2`/p are negligible in ` since p is of 2`-bit.

7 Instantiation of THPS from the DCR Assumption

In this section, we show how to construct Fraff-tailored THPS from the DCR Assumption, where
Fraff is the class of restricted affine functions. In our construction of THPS, we exploit a useful
mapping χ defined over DCR groups. We study the actions of χ on various subsets of DCR groups.
Finally we show that our DCR-based THPS enjoys all of the properties required in the paradigms
for constructing super-strong RKA secure MAC, PKE and SE.

7.1 GenN and DCR Assumption

Let GenN(1`) be a PPT algorithm outputting (N, p, q), where N = pq and p, q are safe primes of 2`
bits. Let s ≥ 2 be an integer.
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Definition 22 (DCR Assumption). The Decisional Composite Residuosity (DCR) Assumption
holds w.r.t. GenN, if for any PPT adversary A, the following advantage is negligible in `:

AdvdcrGenN,A(`) :=
∣∣Pr [A(N, u) = 1]− Pr [A(N, v) = 1]

∣∣,
where (N, p, q)←$ GenN(1`), u←$ Z∗Ns and v := uN

s−1
mod N s.

For an integer a, denote by ( aN ) the Jacobi symbol of a modulo N . We define JNs :=
{
a
∣∣ a ∈

Z∗Ns , ( aN ) = 1
}

, CRNs :=
{
aN

s−1 ∣∣ a ∈ Z∗Ns , (a
Ns−1

N ) = 1
}

, and RUNs :=
{

(1 + N)r
∣∣ r ∈ ZNs−1

}
.

These sets are subgroups of Z∗Ns , with group operation a · b := a · b mod N s. In particular, CRNs is
a cyclic group of order φ(N)/2, RUNs is a cyclic group of order N s−1, and JNs = CRNs ⊗ RUNs ,
where ⊗ denotes internal direct product.

We also define signed subgroups of Z∗Ns following the approach of [HK09, Hof16]. For a ∈ ZNs ,
we define the “absolute modular value” notation

|a|Ns :=

{
a, if 0 ≤ a ≤ (N s − 1)/2,

N s − a, if (N s − 1)/2 < a ≤ N s − 1,
(7)

so that |a|Ns ∈ {0, · · · , (N s− 1)/2} in any case. Then we define J+
Ns :=

{
|a|Ns

∣∣ a ∈ Z∗Ns , ( aN ) = 1
}

,

CR+
Ns :=

{
|aNs−1 |Ns

∣∣ a ∈ Z∗Ns , (a
Ns−1

N ) = 1
}

, and RU+
Ns :=

{
|(1 + N)r|Ns

∣∣ r ∈ ZNs−1

}
as the

corresponding subsets of Z+
Ns :=

{
|a|Ns

∣∣ a ∈ ZNs

}
= {0, · · · , (N s − 1)/2}. These subsets are also

groups, but the group operation is defined as |a|Ns · |b|Ns := |a · b|Ns . In particular, CR+
Ns is a cyclic

group of order φ(N)/4, RU+
Ns is a cyclic group of order N s−1, and J+

Ns = CR+
Ns ⊗ RU+

Ns .

7.2 The Map χ and Its Actions on Cosets of RU+
Ns, J+

Ns and CR+
Ns

Before presenting the DCR-based construction of THPS, we first define a useful map χ:

χ : ZNs −→ ZNs−1

(a+ bN mod N s) 7−→ (b mod N s−1),
(8)

where 0 ≤ a < N and 0 ≤ b < N s−1.

χ was originally introduced by Cramer and Shoup in [CS02], but our χ is a generalization of theirs,
since their χ can be viewed as a special case of s = 2. The map χ does not preserve any algebraic
structure. However, it enjoys the following nice property which again is a generalized property of
that in [CS02].

Lemma 6 (Action of χ on Cosets of RUNs). For any g ∈ JNs, define g·RUNs :=
{
g·(1+N)r

∣∣ r ∈
ZNs−1

}
as the coset of RUNs with coset leader g. Then the restriction of χ to g ·RUNs is a one-to-one

map from g · RUNs to ZNs−1.

Proof. Since both the size of g ·RUNs and ZNs−1 are N s−1, it is sufficient to show that the restriction
of χ to g · RUNs is injective. That is, for any g · (1 + N)r, g · (1 + N)r

′ ∈ g · RUNs , suppose that
χ
(
g · (1 +N)r

)
= χ

(
g · (1 +N)r

′)
, we want to show g · (1 +N)r = g · (1 +N)r

′
.
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Denote g = a+ bN mod N s ∈ JNs with 0 ≤ a < N and 0 ≤ b < N s−1. Then

g · (1 +N)r = (a+ bN) ·
(

1 +
r∑
j=1

(
r
j

)
·N j

)
= a+

(
b+ (a+ bN) ·

r∑
j=1

(
r
j

)
·N j−1

︸ ︷︷ ︸
(∗)

)
·N mod N s,

thus χ
(
g · (1 +N)r

)
= (∗) mod N s−1.

Similarly,

g · (1 +N)r
′

= a+
(
b+ (a+ bN) ·

r′∑
j=1

(
r′

j

)
·N j−1

︸ ︷︷ ︸
(∗∗)

)
·N mod N s,

and χ
(
g · (1 +N)r

′)
= (∗∗) mod N s−1.

Thus, χ
(
g · (1 +N)r

)
= χ

(
g · (1 +N)r

′)
implies that (∗) = (∗∗) mod N s−1. This in turn implies

that
g · (1 +N)r = a+ (∗) ·N = a+ (∗∗) ·N = g · (1 +N)r

′
mod N s,

as we desired. So the lemma follows.

Since the elements in Z+
Ns are integers in the set {0, · · · , (N s − 1)/2}, they can be naturally

viewed as elements in ZNs . Therefore, we can also consider the action of the map χ on the signed set
Z+
Ns . In particular, we develop the following lemmas and corollaries, which will play important roles

in our DCR-based THPS construction later, in order to achieve the average-case strongly-universal1,
universal2, and extracting properties.

Lemma 7 (Action of χ on Cosets of RU+
Ns and on J+

Ns). For any |g|Ns ∈ J+
Ns, define |g|Ns ·

RU+
Ns :=

{
|g · (1 +N)r|Ns

∣∣ r ∈ ZNs−1

}
as the coset of RU+

Ns with coset leader |g|Ns. Then (1) the
restriction of χ to |g|Ns · RU+

Ns is a two-to-one map from |g|Ns · RU+
Ns to Z+

Ns−1 = {0, · · · , (N s−1 −
1)/2} except that it maps only one element in |g|Ns ·RU+

Ns to (N s−1 − 1)/2; (2) the restriction of χ
to J+

Ns has image set Z+
Ns−1.

Proof. It is easy to see that |g|Ns · RU+
Ns =

{
|h|Ns

∣∣ h ∈ g · RUNs

}
from the definition. By

Lemma 6, χ is a bijection from the coset g · RUNs to ZNs−1 , thus we can represent g · RUNs as{
h = χ−1(b)

∣∣ b ∈ ZNs−1

}
where χ−1(b) denotes the unique inverse of b ∈ ZNs−1 under χ in g ·RUNs .

By combining the above two relations, we get that

|g|Ns · RU+
Ns =

{
|χ−1(b)|Ns

∣∣ b ∈ ZNs−1

}
.

Next we analyze the action of χ on |g|Ns · RU+
Ns . More precisely, for b ∈ ZNs−1 , it holds that

χ−1(b) = a + bN mod N s for some 0 < a < N . Here a 6= 0 because χ−1(b) ∈ g · RUNs ⊆ Z∗Ns . We
compute χ(|χ−1(b)|Ns) as follows.

– If 0 ≤ b < (N s−1−1)/2, then |a+bN | ≤ (N−1)+((N s−1−1)/2−1) ·N < (N s−1)/2. According
to our notation (7), |χ−1(b)|Ns = |a+bN |Ns = a+bN , where 0 < a < N , thus χ(|χ−1(b)|Ns) = b.

– If (N s−1 − 1)/2 < b ≤ N s−1 − 1, then |a + bN | ≥ 1 + ((N s−1 − 1)/2 + 1) · N > (N s − 1)/2.
According to (7), |χ−1(b)|Ns = |a+ bN |Ns = N s− (a+ bN) = (N −a) + (N s−1−1− b) ·N , where
0 < N − a < N , thus χ(|χ−1(b)|Ns) = N s−1 − 1− b.
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– If b = (N s−1 − 1)/2, no matter |χ−1(b)|Ns = a + bN or |χ−1(b)|Ns = N s − (a + bN), we both
have that χ(|χ−1(b)|Ns) = (N s−1 − 1)/2.

In summary, for 0 ≤ b < (N s−1 − 1)/2, there are exactly two pre-images of b in |g|Ns · RU+
Ns under

χ, i.e., |χ−1(b)|Ns and |χ−1(N s−1 − 1 − b)|Ns ; for b = (N s−1 − 1)/2, there is exactly one pre-image
of b in |g|Ns · RU+

Ns under χ, i.e., |χ−1((N s−1 − 1)/2)|Ns . Therefore (1) follows.
Since J+

Ns = CR+
Ns ⊗RU+

Ns , J+
Ns can be viewed as unions of cosets of RU+

Ns with coset leaders in
CR+

Ns ⊆ J+
Ns . Then by (1), χ maps elements in J+

Ns to Z+
Ns−1 , thus (2) follows.

Corollary 3 (Action of χ on Cosets of RU+
Ns and on J+

Ns). For any |g|Ns ∈ J+
Ns, both

χ
(
U|g|Ns ·RU+

Ns

)
and χ

(
UJ+

Ns

)
are statistically close to UZ+

Ns−1
with statistical distance 1/N s−1.

Proof. By Lemma 7, for 0 ≤ b < (N s−1 − 1)/2, Pr
[
χ
(
U|g|Ns ·RU+

Ns

)
= b

]
= 2/N s−1; for b =

(N s−1 − 1)/2, Pr
[
χ
(
U|g|Ns ·RU+

Ns

)
= b
]

= 1/N s−1. Thus

∆
(
χ
(
U|g|Ns ·RU+

Ns

)
, UZ+

Ns−1

)
= 1

2 ·
(Ns−1−1)/2∑

b=0

∣∣Pr
[
χ
(
U|g|Ns ·RU+

Ns

)
= b
]
− Pr[UZ+

Ns−1
= b]

∣∣
= 1

2 ·
(Ns−1−1)/2−1∑

b=0

∣∣ 2
Ns−1 − 1

(Ns−1+1)/2

∣∣+ 1
2 ·
∣∣ 1
Ns−1 − 1

(Ns−1+1)/2

∣∣
= Ns−1−1

Ns−1·(Ns−1+1)
≤ 1

Ns−1 .

Since J+
Ns = CR+

Ns ⊗ RU+
Ns , J+

Ns can be viewed as disjoint unions of cosets of RU+
Ns with coset

leaders in CR+
Ns , i.e.,

J+
Ns =

⋃
|g|Ns∈CR+

Ns

|g|Ns · RU+
Ns .

By Lemma 7, for 0 ≤ b < (N s−1− 1)/2, there are exactly two pre-images in each coset |g|Ns ·RU+
Ns ,

thus Pr
[
χ
(
UJ+

Ns

)
= b

]
= 2|CR+

Ns |/|J+
Ns | = 2/N s−1; for b = (N s−1 − 1)/2, there is exactly one

pre-image in each coset |g|Ns · RU+
Ns , thus Pr

[
χ
(
UJ+

Ns

)
= b
]

= |CR+
Ns |/|J+

Ns | = 1/N s−1. Similarly,

we can get that ∆
(
χ
(
UJ+

Ns

)
, UZ+

Ns−1

)
≤ 1/N s−1.

Corollary 4 (Action of χ on Subsets of Cosets of RU+
Ns). For any |g|Ns ∈ J+

Ns and any subset
S of |g|Ns · RU+

Ns, the guessing probability of χ
(
US
)

is at most 2/|S|.

Proof. By Lemma 7, for any b ∈ Z+
Ns−1 , there are at most two pre-images in the coset |g|Ns ·RU+

Ns ,
so is in S. Then max

b∈Z+

Ns−1

Pr
[
χ
(
US
)

= b
]
≤ 2/|S|, and the corollary follows.

Lemma 8 (Action of χ on CR+
Ns). The guessing probability of χ

(
UCR+

Ns

)
is at most (AdvdcrGenN(`)+

3/N s−1)1/2, which is negligible in ` under the DCR assumption w.r.t. GenN.

Proof. We construct a PPT adversary A against the DCR assumption. On input (N, v), A aims to
tell whether v = u or v = uN

s−1
mod N s for u←$ Z∗Ns . A samples |g|Ns ←$ CR+

Ns and outputs 1 if
and only if χ(|g|Ns) = χ(|v2|Ns).
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In the case of v = u, |v2|Ns is randomly distributed over J+
Ns , thus

Pr
[
χ(|g|Ns) = χ(|v2|Ns)

]
= Pr

[
χ
(
UCR+

Ns

)
= χ

(
UJ+

Ns

)]
≤ Pr

[
χ
(
UCR+

Ns

)
= UZ+

Ns−1

]
+∆

(
UZ+

Ns−1
, χ
(
UJ+

Ns

))
≤ 1
|Z+

Ns−1 |
+ 1

Ns−1 ≤ 3
Ns−1 ,

where the second inequality follows from Corollary 3.
In the case of v = uN

s−1
mod N s, |v2|Ns is randomly distributed over CR+

Ns , thus

Pr
[
χ(|g|Ns) = χ(|v2|Ns)

]
= Pr

[
χ
(
UCR+

Ns

)
= χ

(
U′CR+

Ns

)]
=

∑
b∈Z+

Ns−1

Pr
[
χ
(
UCR+

Ns

)
= b
]2 ≥ max

b∈Z+

Ns−1

Pr
[
χ
(
UCR+

Ns

)
= b
]2
,

where UCR+
Ns
,U′CR+

Ns
are both randomly distributed over CR+

Ns .

Thus we have that

AdvdcrGenN,A(`) ≥ max
b∈Z+

Ns−1

Pr
[
χ
(
UCR+

Ns

)
= b
]2 − 3

Ns−1 ,

and it follows max
b∈Z+

Ns−1

Pr
[
χ
(
UCR+

Ns

)
= b
]
≤
(
AdvdcrGenN,A(`) + 3/N s−1

)1/2
.

7.3 THPSDCR from the DCR Assumption

Let χ be the map defined in (8). Here we give a DCR-based construction THPSDCR in Fig. 11, whose
subset membership and public-key collision problems are hard under the DCR assumption.

prmTHPS ←$ THPS.Setup(1`):

(N, p, q)←$ GenN(1`). |g|Ns ←$ CR+
Ns s.t. |g|Ns is a generator.

Return prmTHPS := (N, |g|Ns), which implicitly defines (K, C,V, T ,SK,PK, Λ(·), µ):

K := Z+
Ns−1 . C := J+

Ns\{1}. V := CR+
Ns\{1} =

{
|g|wNs

∣∣ w ∈ Zφ(N)/4

}
\{1}.

T := ZN . SK := ZNs × ZNs . PK := J+
Ns × J+

Ns .

For sk = (k1, k2) ∈ SK, C = |c|Ns ∈ C and t ∈ T , Λsk(C, t) := χ
(
|c|k1+k2t
Ns

)
∈ K.

For sk = (k1, k2) ∈ SK, pk = µ(sk) := (|g|k1Ns , |g|
k2
Ns) ∈ PK.

K ← THPS.Pub(pk, C, w, t):

Parse pk = (|h1|Ns , |h2|Ns) ∈ PK.

Return K := χ
(
|h1|wNs · |h2|wtNs

)
.

K ← THPS.Priv(sk, C, t):

Parse sk = (k1, k2) ∈ SK and C = |c|Ns ∈ C.
Return K := χ

(
|c|k1+k2t
Ns

)
.

Fig. 11. Construction of THPSDCR.

We stress that given N , a generator of CR+
Ns can be sampled as |a2Ns−1 |Ns for a uniform a ∈ Z∗Ns ;

given prmTHPS = (N, |g|Ns), the membership of C = J+
Ns\{1} can be efficiently checked, an element

in V can be sampled as |g|wNs for a uniform w ∈ ZbN/4c which is statistically close to the uniform
distribution with a negligible statistical distance 1− φ(N)/N ≤ 1/p+ 1/q, and an element in C can
be sampled as |a2|Ns for a uniform a ∈ Z∗Ns until |a2|Ns 6= 1 [HK09, Hof16].
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Theorem 5. The THPSDCR in Fig. 11 is an Fraff-tailored THPS under the DCR assumption w.r.t.
GenN, where Fraff =

{
f(a,b) : (k1, k2) ∈ SK 7−→ (ak1 + b1, ak2 + b2) ∈ SK

∣∣ a ∈ Z∗N , gcd(a, φ(N)/4)
= 1, b = (b1, b2) ∈ SK

}
is the class of restricted affine functions. More precisely, it is average-case

Fraff-strongly-universal1, Fraff-universal2, Fraff-public-key-homomorphic and has Fraff-poly-bounded
collisions. Furthermore, it is Fraff-extracting under the DCR assumption w.r.t. GenN .

Proof of Theorem 5.

[Projectiveness.] For all sk = (k1, k2) ∈ SK, all C = |g|wNs ∈ V with witness w and all t ∈ T , it
follows that

THPS.Pub(µ(sk), C, w, t) = χ
(

(|g|k1
Ns)

w · (|g|k2
Ns)

wt
)

= χ
(

(|g|wNs)k1+k2t
)

= THPS.Priv(sk, C, t).

[Average-Case Fraff-Strongly-Universal1.] Suppose that f(a,b) ∈ Fraff with b = (b1, b2) and
t ∈ T . For sk = (k1, k2) ←$ SK and C ←$ C \ V, we consider the distribution of Λf(a,b)(sk)(C, t)

conditioned on pk = µ(sk) and C.

Note that the distribution of (k1, k2) ←$ SK = ZNs × ZNs is statistically close to (k1, k2) ←
$ SK′ = Zφ(N)·Ns−1 × Zφ(N)·Ns−1 , with a negligible statistical distance 2 · (1− φ(N)/N) ≤ 2/p+
2/q. For the latter distribution, we have that (k1, k2) mod φ(N)/4 is randomly distributed over
Zφ(N)/4 × Zφ(N)/4, (k1, k2) mod N s−1 is randomly distributed over ZNs−1 × ZNs−1 , and they are
independent of each other.

By the fact that J+
Ns = CR+

Ns ⊗ RU+
Ns , we can represent C ←$ C \ V as C = |g|r1Ns · |1 +N |r2Ns

for r1 ←$ Zφ(N)/4 and r2 ←$ ZNs−1 \ {0}. Except with a negligible probability (1 − φ(N)/N) ≤
1/p+ 1/q, we have r2 ∈ Z∗Ns−1 .

In the following analysis, we let sk←$ SK′ and assume that r2 ∈ Z∗Ns−1 . Firstly pk = µ(sk) =

(|g|k1
Ns , |g|k2

Ns), which leaks (k1, k2) mod φ(N)/4, but the values of (k1, k2) mod N s−1 are totally
hidden. Then

Λf(a,b)(sk)(C, t) = Λ(ak1+b1,ak2+b2)(C, t) = χ
(
(|g|r1Ns · |1 +N |r2Ns)

(ak1+b1)+(ak2+b2)t
)

= χ
(
|g|r1a(k1+k2t)

Ns · |1 +N |r2a(k1+k2t)
Ns · (|g|r1Ns · |1 +N |r2Ns)

b1+b2t︸ ︷︷ ︸
(∗)

)
. (9)

Conditioned on pk and C, (k1 + k2t mod N s−1) is randomly distributed over ZNs−1 . Since r2 ∈
Z∗Ns−1 and a ∈ Z∗N , the term |1 +N |r2a(k1+k2t)

Ns is randomly distributed over RU+
Ns . So (∗) is ran-

domly distributed over the coset of RU+
Ns with coset leader |g|r1a(k1+k2t)

Ns ·(|g|r1Ns ·|1+N |r2Ns)b1+b2t ∈
J+
Ns . By Corollary 3, Λf(a,b)(sk)(C, t) = χ(∗) is statistically close to the uniform distribution over

K = Z+
Ns−1 conditioned on pk and C, with statistical distance 1/N s−1.

Therefore, let sk←$ SK, pk = µ(sk) and C ←$ C \ V,

∆
(

(pk, C, Λf(a,b)(sk)(C, t)) , (pk, C,UK )
)
≤ 3

p + 3
q + 1

Ns−1 .

That is, THPSDCR is average-case Fraff-strongly-universal1 with εac-str-u1
THPS,Fraff

(`) = 3/p + 3/q +

1/N s−1, which is negligible in `.
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[Fraff-Universal2.] Suppose that f(a,b), f(a′,b′) ∈ Fraff with b = (b1, b2) and b′ = (b′1, b
′
2), C ∈ C,

C ′ ∈ C \ V and t, t′ ∈ T with t 6= t′. For sk = (k1, k2) ← $ SK, we consider the distribution of
Λf(a′,b′)(sk)(C

′, t′) conditioned on pk = µ(sk) and Λf(a,b)(sk)(C, t).

Similar as above, in the following analysis, we let sk←$ SK′, which has a negligible statistical
distance 2/p + 2/q with sk ←$ SK, and we represent C,C ′ as C = |g|r1Ns · |1 + N |r2Ns and C ′ =

|g|r
′
1
Ns · |1 +N |r

′
2
Ns for some r1, r

′
1 ∈ Zφ(N)/4 and r2, r

′
2 ∈ ZNs−1 with r′2 6= 0 (because C ′ /∈ V).

Firstly pk = µ(sk) = (|g|k1
Ns , |g|k2

Ns), which leaks (k1, k2) mod φ(N)/4, but the values of
(k1, k2) mod N s−1 are totally hidden. Next, by Eq. (9),

Λf(a,b)(sk)(C, t) = χ
(
|g|r1a(k1+k2t)

Ns · |1 +N |r2a(k1+k2t)
Ns · (|g|r1Ns · |1 +N |r2Ns)

b1+b2t
)
,

which may further leak the value of (k1 + k2t mod N s−1). Similarly,

Λf(a′,b′)(sk)(C
′, t′) = χ

(
|g|r

′
1a
′(k1+k2t′)

Ns · |1 +N |r
′
2a
′(k1+k2t′)

Ns · (|g|r
′
1
Ns · |1 +N |r

′
2
Ns)

b′1+b′2t
′︸ ︷︷ ︸

(∗∗)

)
.

Since t 6= t′ ∈ ZN , it follows that (k1 + k2t
′ mod N s−1) is independent of (k1 + k2t mod N s−1),5

and randomly distributed over ZNs−1 conditioned on pk and Λf(a,b)(sk)(C, t). Together with r′2 6=

0 mod N s−1 and a′ ∈ Z∗N , the term |1 + N |r
′
2a
′(k1+k2t′)

Ns is randomly distributed over a subgroup
of RU+

Ns of size at least min{p, q}. So (∗∗) is randomly distributed over a subset S of the coset

of RU+
Ns with coset leader |g|r

′
1a
′(k1+k2t′)

Ns · (|g|r
′
1
Ns · |1 + N |r

′
2
Ns)b

′
1+b′2t

′ ∈ J+
Ns , where the size of S is

at least min{p, q}. By Corollary 4, the guessing probability of Λf(a′,b′)(sk)(C
′, t′) = χ(∗∗) = χ(US)

is at most 2/|S| ≤ 2/p+ 2/q conditioned on pk and Λf(a,b)(sk)(C, t).

Therefore, for sk ← $ SK, the guessing probability of Λf(a′,b′)(sk)(C
′, t′) is at most 4/p +

4/q conditioned on pk and Λf(a,b)(sk)(C, t). This implies that THPSDCR is Fraff-universal2 with

εu2
THPS,Fraff

(`) = 4/p+ 4/q, which is negligible in `.

[Fraff-Extracting.] For all f(a,b) ∈ Fraff with b = (b1, b2), all C ∈ C = J+
Ns\{1} and all t ∈ T , we can

represent C as C = |g|r1Ns · |1 +N |r2Ns for some r1 ∈ Zφ(N)/4 and r2 ∈ ZNs−1 with (r1, r2) 6= (0, 0).
For sk = (k1, k2)←$ SK, we consider the guessing probability of Λf(a,b)(sk)(C, t).

• If r2 6= 0, i.e., C ∈ C \ V, then by the Fraff-universal2 property, the guessing probability of
Λf(a,b)(sk)(C, t) is at most 4/p+ 4/q.

• If r2 = 0 but r1 6= 0, i.e., C ∈ V, then according to Eq. (9),

Λf(a,b)(sk)(C, t) = χ
(
|g|r1a(k1+k2t)+r1(b1+b2t)

Ns︸ ︷︷ ︸
(∗ ∗ ∗)

)
.

We let sk←$ SK′, which has a negligible statistical distance 2/p+ 2/q with sk←$ SK. Then
(k1+k2t mod φ(N)/4) is randomly distributed over Zφ(N)/4. Since r1 6= 0 and gcd(a, φ(N)/4) =

1, (∗ ∗ ∗) is randomly distributed over CR+
Ns . By Lemma 8, the guessing probability of

Λf(a,b)(sk)(C, t) = χ(∗ ∗ ∗) = χ(UCR+
Ns

) is at most (AdvdcrGenN(`) + 3/N s−1)1/2.

5 Strictly speaking, this holds only if gcd(t−t′, N) = 1. However, in our applications, if t 6= t′ ∈ ZN but gcd(t−t′, N) 6=
1, i.e., gcd(t− t′, N) ∈ {p, q}, the adversary can factorize N thus break the DCR assumption w.r.t. GenN. Therefore,
except with a negligible probability, we can always assume that gcd(t− t′, N) = 1.
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Therefore, for sk←$ SK, the guessing probability of Λf(a,b)(sk)(C, t) is at most 2/p+ 2/q+

(AdvdcrGenN(`) + 3/N s−1)1/2.

Overall, THPSDCR is Fraff-extracting with εextTHPS,Fraff
(`) = max{4/p+4/q, 2/p+2/q+(AdvdcrGenN(`)+

3/N s−1)1/2}, which is negligible in ` under the DCR assumption w.r.t. GenN.

[Fraff-Public-Key-Homomorphism.] For all f(a,b) ∈ Fraff with b = (b1, b2), and all sk = (k1, k2) ∈
SK, observe that

µ
(
f(a,b)(sk)

)
= µ(ak1 + b1, ak2 + b2) =

(
|g|ak1+b1

Ns , |g|ak2+b2
Ns

)
(10)

=
(

(|g|k1
Ns)

a · |g|b1Ns , (|g|k2
Ns)

a · |g|b2Ns

)
.

We define the Fraff-public-key transformer THPS.PKTran : PK × Fraff −→ PK as follows: for
any pk = (|h1|Ns , |h2|Ns) ∈ PK,

THPS.PKTran(pk, f(a,b)) :=
(
|h1|aNs · |g|b1Ns , |h2|aNs · |g|b2Ns

)
.

Then according to Eq. (10), µ
(
f(a,b)(sk)

)
= THPS.PKTran(µ(sk), f(a,b)).

[Fraff-Poly-Bounded Collisions.] For any pair of distinct f(a,b), f(a′,b′) ∈ Fraff with b = (b1, b2)
and b′ = (b′1, b

′
2), we count the number of sk = (k1, k2) ∈ SK, such that f(a,b)(sk) = f(a′,b′)(sk),

i.e., (ak1 + b1, ak2 + b2) = (a′k1 + b′1, a
′k2 + b′2).

If a = a′ but b 6= b′, the equation can never be satisfied. If a 6= a′, there is exactly one sk
satisfying the equation, i.e., sk = (ki)

2
i=1 = ((b′i − bi)/(a− a′))2

i=1.6

Therefore, max
f(a,b) 6=f(a′,b′)∈Fraff

∣∣{sk ∈ SK | f(a,b)(sk) = f(a′,b′)(sk)}
∣∣ ≤ 1.

Theorem 6. For the THPSDCR in Fig. 11, the SMP and PKCP are both hard under the DCR
assumption w.r.t. GenN.

Proof of Theorem 6.

[Subset Membership Problem.] Suppose that A is a PPT adversary against the SMP related to
THPSDCR, we construct a PPT adversary B against the DCR assumption w.r.t. GenN by invoking
A.

On input (N, v), B aims to tell whether v = u or v = uN
s−1

mod N s for u ← $ Z∗Ns . B
samples a generator |g|Ns ←$ CR+

Ns , sets prmTHPS := (N, |g|Ns) and C := |v2|Ns . Then B invokes
A(prmTHPS, C) and outputs whatever A outputs.

In the case of v = u, C is uniformly distributed over J+
Ns , thus C = 1 with probability of

1/(1
4φ(N)N s−1), C is randomly distributed over V with probability of (1

4φ(N)−1)/(1
4φ(N)N s−1),

and C is randomly distributed over C\V with probability of (1
4φ(N)N s−1− 1

4φ(N))/(1
4φ(N)N s−1);

in the case of v = uN
s−1

mod N s, C is uniformly distributed over CR+
Ns , thus C = 1 with

probability of 1/(1
4φ(N)) and C is randomly distributed over V with probability of (1

4φ(N) −
1)/(1

4φ(N)). In conclusion, we have that

AdvdcrGenN,B(`) ≥ (1− 1
Ns−1 ) · AdvsmpTHPS,A(`)− 2

1
4
φ(N)

≥ 1
2 · Adv

smp
THPS,A(`)− 8

φ(N) ,

and the SMP related to THPSDCR is hard under the DCR assumption.

6 Strictly speaking, a− a′ has inverse only if gcd(a− a′, N) = 1. By a similar argument as Footnote 5, we can always
assume that gcd(a − a′, N) = 1, otherwise the adversary in our applications can break the DCR assumption w.r.t.
GenN.
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[Public-Key Collision problem.] Suppose that A′ is a PPT adversary against the PKCP related
to THPSDCR, we construct a PPT adversary B′ against the DCR assumption w.r.t. GenN by
invoking A′.

On input (N, v), B′ aims to tell whether v = u or v = uN
s−1

mod N s for u←$ Z∗Ns . B′ samples
|g|Ns ←$ CR+

Ns , and sets prmTHPS := (N, |g|Ns). Then B′ feeds A′ with prmTHPS and gets back a
pair of sk = (k1, k2) and sk′ = (k′1, k

′
2).

Suppose that A′ succeeds, i.e., sk 6= sk′ but µ(sk) = µ(sk′), then we have that ( |g|k1
Ns , |g|k2

Ns ) =

( |g|k
′
1
Ns , |g|k

′
2
Ns ), that is, ( |g|k1−k′1

Ns , |g|k2−k′2
Ns ) = (1, 1). It must holds that φ(N)/4 divides both k1−k′1

and k2 − k′2. Without loss of generality, suppose that k1 6= k′1, then k1 − k′1 must be a non-zero
multiple of φ(N)/4. In this case, it will be quite easy for B′ to solve its own problem: B′ simply
checks whether or not vk1−k′1 = 1 mod N s holds, and returns 1 if it is. Obviously, the equation
holds if and only if v = u′N

s−1
mod N s for some u′ ∈ Z∗Ns . In the case of v = u, B′ outputs 1 with

probability at most 1/N s−1; in the case of v = uN
s−1

mod N s, B′ will always output 1. Therefore

AdvdcrGenN,B′(`) ≥ AdvpkcpTHPS,A′(`) · (1−
1

Ns−1 ) ≥ 1
2 · Adv

pkcp
THPS,A′(`),

and the PKCP related to THPSDCR is hard under the DCR assumption.

Remark 4. For our applications, we can relax the function class Fraff specified in Theorem 5 to
F̃raff =

{
f(a,b) : (k1, k2) ∈ SK 7−→ (ak1 + b1, ak2 + b2) ∈ SK

∣∣ a ∈ ZN\{0}, gcd(a, φ(N)/4) = 1, b =

(b1, b2) ∈ SK
}

. The reason is that, if the adversary submits a function f(a,b) ∈ F̃raff \ Fraff, i.e.,
a ∈ ZN\{0} but a /∈ Z∗N , then gcd(a,N) ∈ {p, q}, thus one can factorize N and break the DCR
assumption w.r.t. GenN.

When plugging the THPSDCR into the paradigms in Fig. 4, Fig. 8 and Fig. 16, we obtain a MAC
MAC[THPSDCR], a PKE scheme PKE[THPSDCR,AE] and a SE scheme SE[THPSDCR,AE] respectively.
The super-strong RKA securities of the resulting MAC, PKE and SE schemes are stated as follows.

Corollary 5. If H is collision-resistant and the DCR assumption holds w.r.t. GenN, then the
MAC[THPSDCR] is super-strong EU-F̃raff-RK-CMVA secure, where F̃raff is specified in Remark 4.

If H1 is collision-resistant, H2 is universal, AE is OT-secure with key space KAE = {0, 1}`,
and the DCR assumption holds w.r.t. GenN, then the PKE[THPSDCR,AE] and SE[THPSDCR,AE] are

super-strong IND-F̃raff-RK-CCA2 secure, where F̃raff is specified in Remark 4.

The above corollary follows from Theorems 1, 2, 5, 6, Corollary 1 and Remark 4, as well as the
fact that both |KAE| · εu2

THPS,Fraff
(`) = 2` · (4/p+ 4/q) and |KAE|/|K| = 2` · 2/(N s−1 + 1) are negligible

in ` since p, q are of 2`-bit.
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A Authenticated Encryption and Symmetric Encryption

A.1 Authenticated Encryption

An authenticated encryption (AE) scheme is associated with a message space M and a key space
KAE, and consists of a pair of PPT algorithms AE = (AE.Enc,AE.Dec): AE.Enc(κ,m) takes as input
a key κ ∈ KAE and a message m ∈M, and outputs a ciphertext χ; AE.Dec(κ, χ) takes as input a key
κ ∈ KAE and a ciphertext χ, and outputs a message m ∈ M or a rejection symbol ⊥. Correctness
of AE requires that, for all κ ∈ KAE, all m ∈ M and all possible χ ←$ AE.Enc(κ,m), it holds that
AE.Dec(κ, χ) = m.

The security notions for AE include One-time ciphertext-indistinguishability (IND-OT) and One-
time ciphertext-integrity (INT-OT). The IND-OT and INT-OT securities of AE are formalized via
the security games in Fig. 12.

Procedure Initialize:

κ←$ KAE.

b←$ {0, 1}. // challenge bit

Return ε.

Procedure LR(m0,m1): // one query

χ←$ AE.Enc(κ,mb).

Return χ.

Procedure Finalize(b′):

Return (b′ = b).

Procedure Initialize:

κ←$ KAE.

Return ε.

Procedure LR(m): // one query

χ←$ AE.Enc(κ,m).

Return χ.

Procedure Finalize(χ∗):

If χ∗ = χ, Return 0.

Return (AE.Dec(κ, χ∗) 6= ⊥).

Fig. 12. Security games for AE. Left: IND-OT; Right: INT-OT.

Definition 23 (One-Time Security for AE). AE is one-time secure (OT-secure), if it is IND-
OT secure and INT-OT secure, i.e., for any PPT adversary A, both Advind-ot

AE,A (`) := |Pr[IND-OTA ⇒
1]− 1/2| and Advint-ot

AE,A(`) := Pr[INT-OTA ⇒ 1] are negligible in `, where games IND-OT and INT-OT
are specified in Fig. 12.

A.2 Symmetric Encryption

A symmetric encryption (SE) scheme consists of four PPT algorithms SE = (SE.Setup,SE.Gen,
SE.Enc,SE.Dec): SE.Setup(1`) outputs a system parameter prm, which implicitly defines a key space
KSE and a message space M; SE.Gen(prm) generates a key k ∈ KSE; SE.Enc(k,m) takes as input a

38



key k ∈ KSE and a message m ∈ M, and outputs a ciphertext c; SE.Dec(k, c) takes as input a key
k ∈ KSE and a ciphertext c, and outputs a message m ∈ M or a rejection symbol ⊥. Correctness of
SE requires that, for all possible prm←$ SE.Setup(1`), k←$ SE.Gen(prm) and m ∈M, we have that
SE.Dec(k,SE.Enc(k,m)) = m.

Procedure Initialize:

prm←$ SE.Setup(1`).

k←$ SE.Gen(prm).

b←$ {0, 1}.
Return prm.

Proc. LR(f∗ ∈ F ,m0,m1):

// one query

k′∗ := f∗(k) ∈ KSE.

c∗ ←$ SE.Enc(k′∗,mb).

QENC := {(k′∗, c∗)}.
Return c∗.

Procedure Enc(f ∈ F ,m):

k′ := f(k) ∈ KSE.

c←$ SE.Enc(k′,m).

Return c.

Procedure Dec(f ∈ F , c):
k′ := f(k) ∈ KSE.

If (k′, c) ∈ QENC , Return ⊥.

Return SE.Dec(k′, c).

Procedure Finalize(b′):

Return (b′ = b).

Fig. 13. IND-F-RK-CCA2 security game for SE.

Let F be a class of functions from KSE to KSE. We define the indistinguishability under F-related-
key chosen-plaintext and chosen-ciphertext attacks (IND-F-RK-CCA2) according to [BCM11], where
the adversary can obtain a challenge ciphertext, and make encryption and decryption queries under
any F-related key.

Definition 24 (IND-F-RK-CCA2 Security for SE). SE is IND-F-RK-CCA2 secure, if for any
PPT adversary A, the advantage Advind-rk-cca2

SE,F ,A (`) :=
∣∣Pr[IND-F-RK-CCA2A ⇒ 1] − 1

2

∣∣ is negligible
in `, where game IND-F-RK-CCA2 is specified in Fig. 13.

B Proof of Lemma 2

The F-universal2 property implies that, for all prmTHPS ←$ THPS.Setup(1`),

max
f ′,pk,C′,t′,K′

Pr
[
Λf ′(sk)(C

′, t′) = K ′ | µ(sk) = pk
]
≤ εu2

THPS,F (`),

where the maximum is over all f ′ ∈ F , all pk ∈ PK, all C ′ ∈ C \ V, all t′ ∈ T and all K ′ ∈ K, and
the probability is over sk←$ SK.

By a simple fact about guessing probability (i.e., for any random variable X over X and any
function f from X to Y, max

x∈X
Pr[X = x] ≤ max

y∈Y
Pr[f(X) = y]), we get that

max
sk′∈SK

Pr[sk = sk′ | µ(sk) = pk] ≤ max
f ′,pk,C′,t′,K′

Pr
[
Λf ′(sk)(C

′, t′) = K ′ | µ(sk) = pk
]
,

and the lemma follows from the above two in-equations.

C Description of Games G1–G6 in the Proof of Theorem 2

– Game G1: This game is the same as game G0, except that, the challenger changes the way it
computes pk′∗, K∗ in LR and pk′ in Enc and Dec.

In game G0, the challenger computes pk′∗ := µ(sk′∗) with sk′∗ := f∗(sk) in LR(f∗,m0,m1)
and pk′ := µ(sk′) with sk′ := f(sk) in Enc(f,m) and Dec

(
f, 〈C,χ〉

)
. Now in game G1, it simply
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invokes the F-public-key transformer THPS.PKTran to compute pk′∗ := THPS.PKTran(pk, f∗) in
LR and pk′ := THPS.PKTran(pk, f) in Enc and Dec.

Since THPS is F-public-key-homomorphic, this change is conceptual.
In addition, in game G0, the challenger computes K∗ := THPS.Pub(pk′∗, C∗, w∗, t∗) in LR.

Now in game G1, it computes K∗ := Λsk′∗(C
∗, t∗).

By the fact that THPS is projective, it holds that

K∗
G0= THPS.Pub(pk′∗, C∗, w∗, t∗) : C∗ ←$ V with witness w∗

G1= Λsk′∗(C
∗, t∗) : via projective property.

Therefore G1 is identical to G0, and Pr0[Win] = Pr1[Win].

Next, through the following games G2 –G5, the challenger will answer Dec queries
(
f, 〈C,χ〉

)
in

different ways (and finally avoid using the secret key sk), as long as t = t∗, where t = H1(pk′, C)
and t∗ = H1(pk′∗, C∗).

More precisely, we divide the event that t = t∗ into four cases:
• Case 1: t = t∗ ∧ (f, C) = (f∗, C∗)
• Case 2: t = t∗ ∧

(
C 6= C∗ ∨ (C = C∗ ∧ pk′ 6= pk′∗)

)
• Case 3: t = t∗ ∧ C = C∗ ∧ pk′ = pk′∗ ∧ sk′ 6= sk′∗

• Case 4: t = t∗ ∧ C = C∗ ∧ sk′ = sk′∗ ∧ f 6= f∗

In the next four games, the challenger will handle these cases one by one.

– Game G2: This game is the same as game G1, except that, when answering Dec
(
f, 〈C,χ〉

)
, if

Case 1 occurs, i.e., t = t∗ ∧ (f, C) = (f∗, C∗), the challenger directly sets κ := κ∗ instead of
computing κ := H2(K).

Suppose that Case 1 holds. Clearly, f = f∗ leads to sk′ = sk′∗. Thus in game G1,

K = Λsk′(C, t) = Λsk′∗(C
∗, t∗) = K∗, κ = H2(K) = H2(K∗) = κ∗.

Therefore in Case 1, κ = κ∗ holds both in G1 and G2. Then G2 is identical to G1, and
Pr1[Win] = Pr2[Win].

– Game G3: This game is the same as game G2, except that, when answering Dec
(
f, 〈C,χ〉

)
, if

Case 2 occurs, i.e., t = t∗ ∧
(
C 6= C∗ ∨ (C = C∗ ∧ pk′ 6= pk′∗)

)
, the challenger returns ⊥ directly.

Since t = H1(pk′, C) and t∗ = H1(pk′∗, C∗), any difference between G2 and G3 will imply a
collision of H1. Thus

∣∣Pr2[Win]− Pr3[Win]
∣∣ ≤ AdvcrH1

(`).

– Game G4: This game is the same as game G3, except that, when answering Dec
(
f, 〈C,χ〉

)
, if

Case 3 occurs, i.e., t = t∗ ∧ C = C∗ ∧ pk′ = pk′∗ ∧ sk′ 6= sk′∗, the challenger simply returns ⊥.
Let PKColl denote the event that A ever queries Dec

(
f, 〈C,χ〉

)
, such that pk′ = pk′∗ but

sk′ 6= sk′∗. Clearly G3 and G4 are the same unless PKColl occurs. We have that
∣∣Pr3[Win] −

Pr4[Win]
∣∣ ≤ Pr4[PKColl].

Since pk′ = µ(sk′) and pk′∗ = µ(sk′∗), it is straightforward to construct a PPT adversary to

solve the PKCP related to THPS, such that Pr4[PKColl] ≤ AdvpkcpTHPS(`). Therefore
∣∣Pr3[Win] −

Pr4[Win]
∣∣ ≤ AdvpkcpTHPS(`).
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– Game G5: This game is the same as game G4, except that, when answering Dec
(
f, 〈C,χ〉

)
, if

Case 4 occurs, i.e., t = t∗ ∧ C = C∗ ∧ sk′ = sk′∗ ∧ f 6= f∗, the challenger directly returns ⊥.
Let Guess denote the event that A ever queries Dec(f, 〈C,χ〉), such that sk′ = sk′∗ but f 6= f∗.

Clearly G4 and G5 are the same unless Guess occurs. Therefore we have that∣∣Pr4[Win]− Pr5[Win]
∣∣ ≤ Pr5[Guess]. (11)

We will give an upper bound on Pr5[Guess]. However, the analysis of Pr5[Guess] is not an easy
task, and we will defer it to the following game G′5.

– Game G′5: It is the same as game G5, except that, when answering Dec
(
f, 〈C,χ〉

)
, if t 6= t∗

and C ∈ C \ V, the challenger returns ⊥ directly instead of outputting AE.Dec(κ, χ).
Let Bad denote the event that A ever queries Dec(f, 〈C,χ〉), such that C ∈ C \ V but

AE.Dec(κ, χ) 6= ⊥. Clearly games G5 and G′5 are the same until Bad happens, thus∣∣Pr5[Guess]− Pr′5[Guess]
∣∣ ≤ Pr′5[Bad]. (12)

We give an upper bound on Pr′5[Bad] via the following lemma.

Lemma 9. Pr′5[Bad] ≤ Qd ·
(√
|KAE| · εu2

THPS,F (`) +Advint-otAE (`)
)
.

Proof. The proof follows the high-level strategy of that for Lemma 3, however, they differ in the
low-level analysis. We consider the information about sk that A may obtain in game G′5.

• For Initialize, the value of pk = µ(sk) is leaked to A.
• For LR(f∗,m0,m1), the challenger can use pk to compute pk′∗ and K∗. More precisely, pk′∗ =
THPS.PKTran(pk, f∗) and

K∗ = Λsk′∗(C
∗, t∗) : C∗ ←$ V with witness w∗

= THPS.Pub(pk′∗, C∗, w∗, t∗) : via projective property.

• For Enc(f,m), the challenger uses pk to compute pk′ and K by pk′ = THPS.PKTran(pk, f)
and K = THPS.Pub(pk′, C, w, t).
• For Dec

(
f, 〈C,χ〉

)
, the challenger uses pk to compute pk′ by pk′ = THPS.PKTran(pk, f).

– If t = t∗ ∧ (f, C) = (f∗, C∗), i.e., Case 1 occurs, the challenger does not use sk at all but
simply sets κ = κ∗.

– If t = t∗ ∧ (f, C) 6= (f∗, C∗), i.e., Case 2 or Case 3 or Case 4 occurs, the challenger does
not use sk and returns ⊥ directly.

– If t 6= t∗ and C ∈ C \ V, the challenger returns ⊥ directly.
– If t 6= t∗ and C ∈ V, the challenger computes K = Λsk′(C, t), which leaks at most pk′ to
A since THPS is projective.

Thus the only information about sk that A may get in G′5 is pk = µ(sk).
The event Bad occurs in game G′5 means that A ever queries Dec(f, 〈C,χ〉) such that C ∈ C\V

but AE.Dec(κ, χ) 6= ⊥, where κ := H2(K) with K := Λsk′(C, t) = Λf(sk)(C, t).
Since C ∈ C \ V, by the F-universal2 property of THPS, the guessing probability of K =

Λf(sk)(C, t) is at most εu2
THPS,F (`) conditioned on pk = µ(sk). Then by the Leftover Hash Lemma

(i.e., Lemma 1), since H2 is universal, κ := H2(K) is statistically close to the uniform distribution
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over KAE, with statistical distance
√
|KAE| · εu2

THPS,F (`). For κ ←$ KAE, AE.Dec(κ, χ) 6= ⊥ will hold

with probability at most Advint-otAE (`). Thus in one Dec query, Bad occurs with probability at
most

√
|KAE| · εu2

THPS,F (`) +Advint-otAE (`).

By a union bound, Pr′5[Bad] ≤ Qd ·
(√
|KAE| · εu2

THPS,F (`) +Advint-otAE (`)
)

and the lemma follows.

Finally, we analyze Pr′5[Guess]. Recall that in the proof of Lemma 9, we observe that the only
information about sk that A may get in game G′5 is pk = µ(sk). Since THPS is F-universal2, by
Lemma 2, given pk, the conditional guessing probability of sk is at most εu2

THPS,F (`).
Since THPS has F-poly-bounded collisions, i.e.,

max
f 6=f∗∈F

∣∣{sk ∈ SK | f(sk) = f∗(sk)}
∣∣ ≤ p(`),

for some polynomial p(`), in one Dec query
(
f, 〈C,χ〉

)
, the event sk′ = f(sk) = f∗(sk) = sk′∗ but

f 6= f∗ can hold with probability at most p(`) · εu2
THPS,F (`). By a union bound over Qd times of

Dec queries,
Pr′5[Guess] ≤ Qd · p(`) · εu2

THPS,F (`). (13)

By combining Eqs. (11)-(13) and Lemma 9, we get that
∣∣Pr4[Win] − Pr5[Win]

∣∣ ≤ Qd ·(√
|KAE| · εu2

THPS,F (`) +Advint-otAE (`)
)

+Qd · p(`) · εu2
THPS,F (`).

Next, we consider a sequence of games G5,1 –G5,4, as shown in Fig. 14, which are defined analogous
to {G5,i,0 –G5,i,4}i∈[Qt] in the proof of Theorem 1.

– Game G5,1: This game is the same as game G5, except that, in LR(f∗,m0,m1), the challenger
samples C∗ uniformly from C \ V instead of V.

It is straightforward to bound the difference between G5 and G5,1 by constructing a PPT
adversary to solve the SMP related to THPS, such that

∣∣Pr5[Win]− Pr5,1[Win]
∣∣ ≤ AdvsmpTHPS(`).

– Game G5,2: This game is the same as game G5,1, except that, when answering Dec
(
f, 〈C, χ〉

)
, if

t 6= t∗ and C ∈ C \ V, the challenger directly returns ⊥ instead of outputting AE.Dec(κ, χ).

Let B̃ad denote the event that A ever queries Dec(f, 〈C,χ〉) such that t 6= t∗ and C ∈
C \ V but AE.Dec(κ, χ) 6= ⊥. Clearly G5,1 and G5,2 are the same until B̃ad happens, therefore∣∣Pr5,1[Win]− Pr5,2[Win]

∣∣ ≤ Pr5,2[B̃ad].

We give an upper bound on Pr5,2[B̃ad] via the following lemma.

Lemma 10. Pr5,2[B̃ad] ≤ Qd ·
(√
|KAE| · εu2

THPS,F (`) +Advint-otAE (`)
)
.

Proof. The proof is essentially a combination of that for Lemma 4 and 9. We consider the
information about sk that A may get in game G5,2.

• For Initialize, the value of pk = µ(sk) is leaked to A.
• For LR(f∗,m0,m1), the challenger can use pk to compute pk′∗ by pk′∗ = THPS.PKTran(pk, f∗).

However, the challenger may leak the value of K∗ = Λsk′∗(C
∗, t∗) = Λf∗(sk)(C

∗, t∗) to A, where
C∗ ←$ C \ V.
• For Enc(f,m), the challenger uses pk to compute pk′ and K by pk′ = THPS.PKTran(pk, f)

and K = THPS.Pub(pk′, C, w, t).
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Dec
(
f ∈ F , 〈C,χ〉

)
:

// G5, G5,1, G5,2, G5,3 , G5,4, G6

If (f, 〈C,χ〉) ∈ QENC , Return ⊥.

pk′ := THPS.PKTran(pk, f) ∈ PK.

If C /∈ C, Return ⊥.

t := H1(pk′, C) ∈ T .

If t = t∗,

If (f, C) = (f∗, C∗),

κ := κ∗.

If (f, C) 6= (f∗, C∗),

Return ⊥.

Else t 6= t∗,

If C ∈ C \ V, Return ⊥.

If C ∈ V,

K := Λsk′(C, t) ∈ K.

κ := H2(K) ∈ KAE.

Return AE.Dec(κ, χ).

Initialize & Finalize(b′).

// same as in Fig. 9

LR(f∗ ∈ F ,m0,m1): // one query

// G5, G5,1, G5,2, G5,3, G5,4 , G6

pk′∗ := THPS.PKTran(pk, f∗) ∈ PK.

C∗ ←$ V with witness w∗.

C∗ ←$ C \ V.

t∗ := H1(pk′∗, C∗) ∈ T .

K∗ := Λsk′∗(C
∗, t∗) ∈ K.

K∗ ←$ K.

κ∗ := H2(K∗) ∈ KAE.

χ∗ ←$ AE.Enc(κ∗,mb).

QENC :=
{

(f∗, 〈C∗, χ∗〉)
}

.

Return 〈C∗, χ∗〉.

Enc(f ∈ F ,m): // G5 –G6

pk′ := THPS.PKTran(pk, f) ∈ PK.

C ←$ V together with witness w.

t := H1(pk′, C) ∈ T .

K := THPS.Pub(pk′, C, w, t) ∈ K.

κ := H2(K) ∈ KAE.

χ←$ AE.Enc(κ,m).

Return 〈C,χ〉.

Fig. 14. Games G5, {G5,1 –G5,4}, G6 for super-strong IND-F-RK-CCA2 security of PKE[THPS,AE].

• For Dec
(
f, 〈C,χ〉

)
, the challenger uses pk to compute pk′ by pk′ = THPS.PKTran(pk, f).

– If t = t∗ ∧ (f, C) = (f∗, C∗), the challenger does not use sk at all but simply sets κ = κ∗.
– If t = t∗ ∧ (f, C) 6= (f∗, C∗), the challenger returns ⊥.
– If t 6= t∗ and C ∈ C \ V, the challenger returns ⊥.
– If t 6= t∗ and C ∈ V, the challenger computes K = Λsk′(C, t), which leaks at most pk′ to
A since THPS is projective.

Thus the only information about sk that A may get in game G5,2 is pk = µ(sk) and K∗ =
Λf∗(sk)(C

∗, t∗), where C∗ ←$ C \ V.

The event B̃ad occurs in game G5,2 means that A ever queries Dec(f, 〈C,χ〉) such that t 6= t∗

and C ∈ C \ V but AE.Dec(κ, χ) 6= ⊥, where κ := H2(K) with K := Λsk′(C, t) = Λf(sk)(C, t).
Since C ∈ C \ V and t 6= t∗, by the F-universal2 property of THPS, the guessing probability

of K = Λf(sk)(C, t) is at most εu2
THPS,F (`) conditioned on pk = µ(sk) and K∗ = Λf∗(sk)(C

∗, t∗).
Then by the Leftover Hash Lemma, since H2 is universal, κ := H2(K) is statistically close to
the uniform distribution over KAE, with statistical distance

√
|KAE| · εu2

THPS,F (`). For κ ← $ KAE,

AE.Dec(κ, χ) 6= ⊥ will hold with probability at most Advint-otAE (`). Thus in one Dec query, B̃ad
occurs with probability at most

√
|KAE| · εu2

THPS,F (`) +Advint-otAE (`).

By a union bound, Pr5,2[B̃ad] ≤ Qd ·
(√
|KAE| · εu2

THPS,F (`) +Advint-otAE (`)
)
. The lemma follows.

Thus
∣∣Pr5,1[Win]− Pr5,2[Win]

∣∣ ≤ Qd · (√|KAE| · εu2
THPS,F (`) +Advint-otAE (`)

)
.
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– Game G5,3: This game is the same as game G5,2, except that, in LR(f∗,m0,m1), the challenger
samples K∗ uniformly from K instead of computing K∗ := Λsk′∗(C

∗, t∗) = Λf∗(sk)(C
∗, t∗).

Recall that in the proof of Lemma 10, we observe that the only information about sk thatAmay
get in game G5,2 is pk = µ(sk) and K∗ = Λf∗(sk)(C

∗, t∗), where C∗ ←$ C \ V. By the average-case
F-strongly-universal1 property of THPS, the joint distribution of (pk, C∗,K∗ = Λf∗(sk)(C

∗, t∗))

in game G5,2 is statistically close to (pk, C∗,K∗ = UK), with statistical distance εac-str-u1
THPS,F (`). The

latter distribution is exactly the one used in game G5,3.
Therefore, games G5,2 and G5,3 are statistically close with statistical distance εac-str-u1

THPS,F (`), i.e.,∣∣Pr5,2[Win]− Pr5,3[Win]
∣∣ ≤ εac-str-u1

THPS,F (`).

– Game G5,4: This game is the same as game G5,3, except that, when answering Dec
(
f, 〈C, χ〉

)
, if

t 6= t∗ and C ∈ C \ V, the challenger outputs AE.Dec(κ, χ) again, instead of returning ⊥ directly.
That is, the challenger will output AE.Dec(κ, χ) no matter C ∈ V or C ∈ C \ V.

The analysis of the difference between games G5,3 and G5,4 is analogous to that between G5,1

and G5,2. Similarly, we have that
∣∣Pr5,3[Win]−Pr5,4[Win]

∣∣ ≤ Qd ·(√|KAE| · εu2
THPS,F (`) +Advint-otAE (`)

)
.

– Game G6: This game is the same as game G5,4, except that, in LR(f∗,m0,m1), the challenger
samples C∗ uniformly from V instead of C \ V.

It is easy to construct a PPT adversary to solve the SMP related to THPS, such that∣∣Pr5,4[Win]− Pr6[Win]
∣∣ ≤ AdvsmpTHPS(`).

D Super-Strong RKA secure SE from THPS

D.1 Super-Strong IND-F-RK-CCA2 Security for SE

Let F be a class of functions from KSE to KSE. The IND-F-RK-CCA2 security notion for SE (cf.
Definition 24) defined in [BPT12] allows the adversary to get a challenge ciphertext c∗ through
LR(f∗,m0,m1), which encrypts mb under F-related key k′∗ = f∗(k). However, the decryption
oracle Dec(f, c) is a bit restricted: it prohibits decryption of the challenger ciphertext c∗ under
the corresponding F-related key k′∗. In other words, if the adversary queries Dec(f, c) such that
(f(k), c) = (k′∗, c∗), the decryption oracle does not work. Similar to the discussion of that for the
strong IND-F-RK-CCA2 security of PKE in Subsection 5.1, this restriction is by no means reason-
able. The adversary does not own the key k, thus it might not even realize (f(k), c) = (k′∗, c∗).

Here we relax the decryption restriction, and define an enhanced security notion for SE, namely
super-strong IND-F-RK-CCA2 security. That is, we allow the adversary to query Dec(f, c) even if
it has queried LR(f∗,m0,m1) such that (f(k), c) = (f∗(k), c∗), as long as (f, c) 6= (f∗, c∗).

Definition 25 (Super-Strong IND-F-RK-CCA2 Security for SE). SE is super-strong IND-

F-RK-CCA2 secure, if for any PPT adversary A, the advantage Advsup-str-ind-rk-cca2
SE,F ,A (`) :=

∣∣Pr[super-

strong-IND-F-RK-CCA2A ⇒ 1] − 1
2

∣∣ is negligible in `, where game super-strong-IND-F-RK-CCA2 is
specified in Fig. 15.

D.2 The Construction

Let PKE[THPS,AE] = (PKE.Setup,PKE.Gen,PKE.Enc,PKE.Dec) be the canonical PKE scheme in
Fig. 8, with secret key space SK, public key space PK and message spaceM. It also associates with al-
gorithms PKE.SK and PKE.PK. The proposed SE scheme SE[THPS,AE] = (SE.Setup, SE.Gen, SE.Enc,
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Procedure Initialize:

prm←$ SE.Setup(1`).

k←$ SE.Gen(prm).

b←$ {0, 1}.
Return prm.

Proc. LR(f∗ ∈ F ,m0,m1):

// one query

k′∗ := f∗(k) ∈ KSE.

c∗ ←$ SE.Enc(k′∗,mb).

QENC :=
{

(f∗, c∗)
}

.

Return c∗.

Procedure Enc(f ∈ F ,m):

k′ := f(k) ∈ KSE.

c←$ SE.Enc(k′,m).

Return c.

Procedure Dec(f ∈ F , c):
If (f, c) ∈ QENC , Return ⊥.

k′ := f(k) ∈ KSE.

Return SE.Dec(k′, c).

Procedure Finalize(b′):

Return (b′ = b).

Fig. 15. super-strong-IND-F-RK-CCA2 security game for SE.

SE.Dec) with key space KSE := SK and message spaceM is defined in a black-box manner by invok-
ing the algorithms of PKE[THPS,AE], as shown in Fig. 16. The correctness of SE[THPS,AE] follows
from the canonical property and the correctness of PKE[THPS,AE] directly.

prm←$ SE.Setup(1`):

prm←$ PKE.Setup(1`).

Return prm.

sk←$ SE.Gen(prm):

sk←$ PKE.SK(prm).

Return sk.

〈C,χ〉 ←$ SE.Enc(sk,m):

pk := PKE.PK(sk) ∈ PK.

〈C,χ〉 ←$ PKE.Enc(pk,m).

Return 〈C,χ〉.

m/⊥ ← SE.Dec
(
sk, 〈C,χ〉

)
:

m/⊥ ← PKE.Dec
(
sk, 〈C,χ〉

)
.

Return m/⊥.

Fig. 16. Construction of SE[THPS,AE]. Here PKE denotes the PKE[THPS,AE] in Fig. 8.

Theorem 7. If the PKE[THPS,AE] in Fig. 8 is super-strong IND-F-RK-CCA2 secure, then the
SE[THPS,AE] in Fig. 16 is super-strong IND-F-RK-CCA2 secure.

Proof of Theorem 7. Suppose that A is a PPT adversary against the super-strong IND-F-RK-
CCA2 security of SE[THPS,AE]. We want to construct a PPT adversary B against the super-strong
IND-F-RK-CCA2 security of PKE[THPS,AE]. The security reduction is quite straightforward. B has
access to oracles InitializePKE, LRPKE, EncPKE and DecPKE in the super-strong-IND-F-RK-CCA2
game of PKE[THPS,AE] (cf. Fig. 7), and B wants to simulate the oracles Initialize, LR, Enc and
Dec in the super-strong-IND-F-RK-CCA2 game of SE[THPS,AE] (cf. Fig. 15) for A.

For Initialize, B invokes its own InitializePKE oracle and gets (prm, pk). B discards pk and
returns prm to A. Note that B does not have the secret key sk. To simulate LR(f∗,m0,m1), B queries
its own LRPKE oracle with (f∗,m0,m1), gets 〈C∗, χ∗〉 and simply returns 〈C∗, χ∗〉 to A. To simulate
Enc(f,m), B queries its own EncPKE oracle with (f,m), gets 〈C,χ〉 and replies A with 〈C,χ〉. To
simulate Dec

(
f, 〈C,χ〉

)
, B queries its own DecPKE oracle with

(
f, 〈C,χ〉

)
, gets m/⊥ and replies A

with m/⊥. Finally, B outputs whatever A outputs.
It is easy to check that B simulates the super-strong-IND-F-RK-CCA2 game perfectly with A, and

B succeeds as long as A succeeds. Therefore, we have that

Advsup-str-ind-rk-cca2
SE[THPS,AE],F ,A (`) = Advsup-str-ind-rk-cca2

PKE[THPS,AE],F ,B(`),

and the super-strong IND-F-RK-CCA2 security of SE[THPS,AE] follows.

By combining Theorem 2 in Subsection 5.2 with Theroem 7, we immediately obtain Corollary 1
shown in Subsection 5.3.
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