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Abstract

Thus far, partial key exposure attacks on RSA have been intensively studied using lattice
based Coppersmith’s methods. In the context, attackers are given partial information of a secret
exponent and prime factors of (Multi-Prime) RSA where the partial information is exposed in
various ways. Although these attack scenarios are worth studying, there are several known
attacks whose constructions have similar flavor. In this paper, we try to formulate general
attack scenarios to capture several existing ones and propose attacks for the scenarios. Our
attacks contain all the state-of-the-art partial key exposure attacks, e.g., due to Ernst et al.
(Eurocrypt’05) and Takayasu-Kunihiro (SAC’14, ICISC’14), as special cases. As a result, our
attacks offer better results than previous best attacks in some special cases, e.g., Sarkar-Maitra’s
partial key exposure attacks on RSA with the most significant bits of a prime factor (ICISC’08)
and Hinek’s partial key exposure attacks on Multi-Prime RSA (J. Math. Cryptology ’08).
We claim that our contribution is not only generalizations or improvements of the existing
results. Since our attacks capture general exposure scenarios, the results can be used as a tool
kit; the security of some future variants of RSA can be examined without any knowledge of
Coppersmith’s methods.
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1 Introduction

Background. Let N = pq be a public RSA modulus where p and q are distinct prime factors with
the same bit-size. A public/secret exponent e and d such that ed = 1 (mod Φ(N)) where Φ(N)
is Euler’s totient function. There is a variant of RSA called Multi-Prime RSA that have a public
modulus N =

∏r
i=1 pi where pi’s are all distinct primes with the same bit-size. A public/secret

exponent of Multi-Prime RSA satisfies the same equation as the standard RSA. Multi-Prime RSA
offers faster decryption/signing by combining with Chinese Remainder Theorem.

From the invention of RSA cryptosystems, hardness of the factorization/RSA problem have
been intensively studied. One well known approach in the literature is lattice based Coppersmith’s
methods [Cop96a, Cop96b]. The method showed an RSA modulus N = pq can be factorized in
polynomial time with half the most significant bits of a prime factor. Although Coppersmith’s
methods requires involved technical analyses, the method has revealed the vulnerability of RSA in
many papers. One of the most famous result is Boneh and Durfee’s small secret exponent attack on
RSA [BD00] that factorizes an RSA modulus N in polynomial time when d < N1−1/

√
2 = N0.292···.

Ciet et al. [CKLQ02] extended the attack for Multi-Prime RSA and their attack works when

d < N1−
√

1−1/r.
Boneh, Durfee, and Frankel [BDF98] proposed several attacks on RSA called partial key ex-

posure attacks that make use of the most/least significant bits (MSBs/LSBs) of d. Afterwards,
the research becomes a hot topic and numerous papers have been published. Although the original
attacks [BDF98] work only for a small e, several improvements [BM03, EJMdW05, SSM10, TK14d]
have been proposed using Coppersmith’s methods [Cop96a, Cop96b]. In particular, Ernst et al.
[EJMdW05] revealed that RSA becomes vulnerable even for a full size e and Takayasu-Kunihiro’s
attacks [TK14d] contain Boneh-Durfee’s small secret exponent attack [BD00] as a special case.
Besides these results, numerous papers have studied partial key exposure attacks for various attack
scenarios; attacks on Multi-Prime RSA with the MSBs/LSBs of d [Hin08], attacks on RSA with
the MSBs of a prime factor [SMS08], attacks on RSA with the MSBs/LSBs of d and the MSBs of
a prime factor [SM08], attacks on RSA where the prime factors share the same LSBs [SWS+08],
attacks on RSA where the prime factors are almost the same sizes [dW02], attacks on Multi-Prime
RSA where all the prime factors are almost the same sizes [TK14c, ZT13, ZT14], and more.

Indeed, there are many papers that study partial key exposure attacks on RSA. However, the
situation does not immediately mean that the problem is worth studying in such many papers.
Among the above variants of the attack, some papers capture almost the same attack scenarios.
Hence, essentially the same algorithms have been proposed in several papers. We do not think the
situation is not desirable for the development of the cryptographic research.
Our Contributions. To resolve the situation, we define a general partial key exposure scenario.
For the purpose, we classify some existing works with respect to three properties; attackers know
partial information of a secret exponent and prime factors for Multi-Prime RSA. Since there are
no results that capture the three properties simultaneously, we define a general attack scenario as
follows.

Definition 1 ((α, β, γ, δ)-Partial Key Exposure Attacks on RSA). Let N =
∏r

i=1 pi where all
p1, . . . , pr are distinct primes of the same bit-size. Let e = Nα and d = Nβ such that ed = 1
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mod Φ(N). Given (N, e, d̃, Φ̃(N)) where d̃ ≥ Nβ−γ is the MSBs/LSBs of d and |Φ(N)− Φ̃(N)| ≤
N δ, the goal of the problem is to compute Φ(N).

We parametrize the problem with respect to (α, β, γ, δ). Notice that the number of prime factors
r is independent of the hardness of the problem. Although partial information of prime factors in
previous works are defined in various ways, the above definition captures several exposure scenarios
simultaneously. For example, let us focus on an attack on RSA with the most significant bits prime
factors and an attack on Multi-Prime RSA. Given p̃ which is the δ′ logN MSBs of an RSA prime
factor p, then we regard Φ̃(N) = N − p̃N1/2−δ′ − ⌊N/p̃N1/2−δ′⌋ and an attack on RSA with the
most significant bits of prime factors is captured by δ = 1/2− δ′ since |Φ(N)− Φ̃(N)| is bounded
above by N1/2−δ′ within a constant factor [SM08, SMS08]. Similarly, we regard Φ̃(N) = N and
an attack on Multi-Prime RSA is captured by δ = 1 − 1/r since |Φ(N) − N | is bounded above
by N1−1/r within a constant factor [Hin08]. Since we analyze all 0 ≤ γ ≤ β and 0 ≤ δ ≤ 1, our
definition covers several existing works simultaneously. Moreover, the definition will cover other
unknown variants that will be studied in the future. Then our results can be viewed as a tool kit
to study partial key exposure attacks as [BM05]. It means that our results enable even beginners
of Coppersmith’s methods to examine the security of such future variants without understanding
the technical detail of this paper.

We use lattice based Coppersmith’s methods to solve integer/modular equations as previous
works and obtain the following results.

Theorem 1. Given the MSBs/LSBs of d, there are polynomial time algorithms to solve (α, β, γ, δ)-
Partial Key Exposure Attacks on RSA when

• γ <
3−δ−2

√
δ2+3(α+β−1)δ

3 .

Theorem 2. Given the MSBs of d, there are polynomial time algorithms to solve (1, β, γ, δ)-Partial
Key Exposure Attacks on RSA when

1. γ < 1− 2
3

(
δ +

√
δ(4δ − 3 + 6β)

)
for β < 1− δ −

√
δ(1−δ)

3 ,

2. γ <
1+β−

√
4δ−3(1−β)2

2 for 1− δ−
√

δ(1−δ)
3 ≤ β < 1− δ and 1/3 ≤ δ, and for 1− δ−

√
δ(1−δ)

3 ≤

β < 1−
√

δ
3 and δ < 1/3,

3. 3λτ − 3(1− δ)τ2 + τ3 < (δτ−β+λ)3

δ(1+λ−2β) where λ = max{γ, β + δ − 1} and τ = 1− β+δ−1
δ−

√
1+λ−2β

for

1− δ ≤ β < 3(1−δ)(1+δ)
4 and 1/3 ≤ δ < 2/3, and for 1− δ ≤ β < δ − (2δ−1)2

δ2
and 2/3 ≤ δ,

4. γ ≤ 3(1−δ)2

4 for 3(1−δ)(1+δ)
4 ≤ β < 3(1−δ)2+4(1−δ)

4 and 1/3 ≤ δ < 2/3,

5. γ <
2+β−2δ−2

√
(β+δ−1)(β+4δ−1)

3 for 3(1−δ)2+4(1−δ)
4 ≤ β and 1/3 ≤ δ,

6. γ ≤ 1− 2
√
3δ
3 for 1−

√
δ
3 ≤ β and δ < 1/3.
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Figure 1: Comparisons of partial key exposure attacks on RSA with the ≈ 3
16 logN MSBs of p,

i.e., (1, β, γ, 5/16)-partial key exposure attacks. We compare how much portions of d should be
exposed for β between Sarkar and Maitra’s attack (gray areas) [SM08] and our Theorem 2 and 3
(red areas). The left (resp. right) figure represents the attack with the MSBs (resp. LSBs).

Theorem 3. Given the LSBs of d, there are polynomial time algorithms to solve (1, β, γ, δ)-Partial
Key Exposure Attacks on RSA when

1. γ < 1− 2
3

(
δ +

√
δ(4δ − 3 + 6β)

)
for β < 1− δ −

√
δ(1−δ)

3 ,

2. γ <
1+β−

√
4δ−3(1−β)2

2 for 1− δ −
√

δ(1−δ)
3 ≤ β < 1− δ

2 −
√

3δ(4−δ)

6 ,

3. γ < 1− δ+2
√

δ(δ+3β)

3 for 1− δ
2 −

√
3δ(4−δ)

6 ≤ β.

First of all, our results cover all the known best attacks as special cases, e.g., Theorem 1, the
conditions 4–6 of Theorem 2, and the condition 3 of Theorem 3 for δ = 1/2 are the same as Ernst
et al.’s attack [EJMdW05]. Extensions of previous works are not trivial at all. In the context of the
algorithm construction of Coppersmith’s methods, to tackle the equations with the more monomials
requires the more involved analyses. Hence, to extend some attacks with more partial information
and the extended attacks completely cover the original ones as special cases is challenging in some
cases. For example, Ernst et al.’s (1, β, γ, 1/2)-partial key exposure attack [EJMdW05] for γ = β do
not cover Boneh and Durfee’s (1, β, β, 1/2)-partial key exposure attack [BD00]. It takes about ten
years until the desired attacks [TK14d] were proposed. Indeed, in this paper, we have to analyze
eight attacks to obtain the best results for all the cases.

Furthermore, our results offer improved attacks in some special cases. More concretely, we
improve Sarkar and Maitra’s partial key exposure attacks on RSA with partial information of prime
factors [SM08] for small d and Hinek’s partial key exposure attacks on Multi-Prime RSA [Hin08].
See Figures 1 and 2 for detailed comparisons. Indeed, our attacks require smaller portions of partial
information of d than their attacks.
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Figure 2: Comparisons of partial key exposure attacks on Multi-Prime RSA for the number of prime
factors r = 3, i.e., (1, β, γ, 2/3)-partial key exposure attacks. We compare how much portions of
d should be exposed for β between Hinek’s attack (gray areas) [Hin08] and our Theorem 2 and 3
(red areas). The left (resp. right) figure represents the attack with the MSBs (resp. LSBs).

Technical Overview. To provide better attacks based on Coppersmith’s methods is equivalent
to provide better lattice constructions to solve the underlying equations. There is a well-known
strategy for the construction due to Jochemsz and May [JM06]. The construction may be simple
and easy to understand even for beginners of the research area. Ernst et al. [EJMdW05] made
use of the strategy for their attacks. Sarkar-Maitra [SM08], Hinek [Hin08], and some other papers
extended the attack of Ernst et al. Then, we also follow the strategy and propose extended attacks
in Section 3; Theorem 1, the conditions 4–6 of Theorem 2, and the condition 3 of Theorem 3. The
results based on the strategy are almost naive extensions of the previous attacks although there
are some improved analyses in our results; the condition 6 of Theorem 2 in Section 3.3 improves
Sarkar-Maitra’s attack.

Notice that the Jochemsz-May strategy does not always offer the best attacks and lattice con-
structions that outperform the strategy require involved analyses. For example, Boneh and Durfee’s
small secret exponent attack [BD00]; (1, β, β, 1/2)-partial key exposure attack, does not seem to
be captured by the strategy. To construct better attacks, we make use of Takayasu and Kunihiro’s
attacks [TK14c, TK14d] where the attack in [TK14c] and [TK14d] solved (1, β, β, δ)-partial key
exposure attacks for 0 ≤ δ ≤ 1 and (1, β, γ, 1/2)-partial key exposure attacks for 0 ≤ γ ≤ β,
respectively. Technically, the former and the latter attack constructs a better lattice with respect
to the value of δ and γ, respectively. Moreover, they are the only existing partial key exposure
attacks that outperform the Jochemsz-May strategy [JM06] except the Boneh-Durfee attack and its
straightforward extension. As we suggested above, these lattice constructions [TK14c, TK14d] seem
to be technically hard to follow. Indeed, there are only a few papers [TK16a, TK16c] that make
use of these results to obtain better results. In this paper, we fully exploit the spirit of the lattice
constructions [TK14c, TK14d] and propose (1, β, γ, δ)-partial key exposure attacks for arbitrary
0 ≤ γ ≤ β and 0 ≤ δ ≤ 1. Our attacks cover Takayasu and Kunihiro’s attacks [TK14c, TK14d] for
a fixed γ = β and δ = 1/2, respectively. We study the attacks with the MSBs and LSBs of d in
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Section 4 and 5, respectively.

2 Preliminaries

In this section, we briefly introduce some basic notions of Coppersmith’s methods. For more
detailed information, see [Cop97, Cop01, May10, NS01].

Let b1, . . . , bn ∈ Zn′
be linearly independent n′-dimensional vectors. All vectors are row

representations. A lattice L(b1, . . . , bn) spanned by the basis vectors b1, . . . , bn is defined as
L(b1, . . . , bn) = {

∑n
j=1 cjbj : cj ∈ Z}. We also use matrix representations B ∈ Zn×n′

for the
bases where each row corresponds to basis vectors b1, . . . , bn. Then, a lattice spanned by the basis
matrix B is defined as L(B) = {cB : c ∈ Zn}. We call n a rank of the lattice, and n′ a dimension
of the lattice. We call the lattice full-rank when n = n′. We define a determinant of a lattice
det(L(B)) as det(L(B)) =

√
det(BBT ) where BT is a traspose of B. By definition, a determi-

nant of a full-rank lattice can be computed as det(L(B)) = | det(B)|. Moreover, a determinant of
a triangular matrix can be easily computed as the product of all diagonals.

For a cryptanalysis, to find short lattice vectors is a very important problem. In 1982, Lenstra,
Lenstra, and Lovász [LLL82] proposed a polynomial time algorithm to find short lattice vectors.

Propostition 1 (LLL algorithm [LLL82, May03]). Given a matrix B ∈ Zn×n′
, the LLL algorithm

finds vectors b′1 and b′2 in a lattice L(B). Euclidean norms of the vectors are bounded by

∥b′1∥ ≤ 2(n−1)/4(det(L(B)))1/n and ∥b′2∥ ≤ 2n/2(det(L(B)))1/(n−1).

The running time is polynomial time in n, n′, and input length.

Although the outputs of the LLL algorithm are not the shortest lattice vectors in general, the
fact is not the matter in the context of Coppersmith’s methods.

Instead of original Coppersmith’s methods, we introduce Howgrave-Graham’s reformulation to
solve modular equations [How97] and Coron’s reformulation to solve integer equations [Cor04].
Although Coron’s method [Cor04] is less efficient than original Coppersmith’s method [Cop96a]
and Coron’s other method [Cor07], it is simpler to analyze than the other methods.

For a k-variate polynomial h(x1, . . . , xk) =
∑

hi1,...,ikx
i1
1 · · ·xikk , we define a norm of a polynomial

∥h(x1, . . . , xk)∥ =
√∑

h2i1,...,ik and ∥h(x1, . . . , xk)∥∞ = maxi1,...,ik |hi1,...,ik |. At first, we show a

modular method since an integer method makes use of the modular method. Coppersmith’s method
can find solutions (x̃1, x̃2) of a bivariate modular equation h(x1, x2) = 0 (mod e) when |x̃1| <
X1, |x̃2| < X2, and X1X2 is reasonably smaller than e. In general, the simpler the Newton polygon
of the polynomial is, the larger solutions can be recovered. Letm be a positive integer. We construct
n polynomials h1(x1, x2), . . . , hn(x1, x2) that have the root (x̃1, x̃2) modulo em. Then, we construct
a matrix B whose rows consist of coefficients of h1(x1X1, x2X2), . . . , hn(x1X1, x2X2). Applying the
LLL algorithm toB and we obtain two short vectors b′1 and b′2, and their corresponding polynomials
h′(x1, x2) and h′2(x1, x2). If norms of these polynomials are small, they have the root (x̃1, x̃2) over
the integers. The fact comes from the following lemma due to Howgrave-Graham [How97].
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Lemma 1 ([How97]). Let h(x1, . . . , xk) ∈ Z[x1, . . . , xk] be a polynomial over the integers that
consists of at most n monomials. Let X1, . . . , Xk, and R be positive integers. If the polynomial
h(x1, . . . , xk) satisfies the following two conditions:

1. h(x̃1, . . . , x̃k) = 0 (mod R), where |x̃1| < X1, . . . , |x̃k| < Xk,

2. ∥h(x1X1, . . . , xkXk)∥ < R/
√
n.

Then, h(x̃1, . . . , x̃k) = 0 holds over the integers.

Therefore, if h′(x1, x2) and h′2(x1, x2) satisfy Lemma 1, we can compute Gröbner bases or a
resultant of them and easily recover (x̃1, x̃2). By making use of the unravelled linearization, we
only analyze triangular matrices in this paper. Better lattice constructions for triangular matrices
are well analyzed [May10, TK14a] by introducing helpful polynomials. Intuitively, polynomials in
lattice bases are called helpful when their diagonals in the triangular basis matrices are smaller than
the modulus of the equations em. To solve modular equations for larger roots, as many (resp. less)
helpful (resp. unhelpful) polynomials as possible should be selected as long as the basis matrices
are triangular. We follow the definition from [TK14d] as follows.

Definition 2 (Helpful Polynomials). To solve equations modulo e, consider a basis matrix B. We
add a new shift-polynomial h[i′,j′](x, y) and construct a new basis matrix B+. We call h[i′,j′](x, y)
a helpful polynomial, provided that det(B+)/ det(B) ≤ em. Conversely, if the inequality does not
hold, we call h[i′,j′](x, y) an unhelpful polynomial.

Next, we show an integer method. Coppersmith’s method can find solutions (x̃1, x̃2, x̃3) of a
trivariate integer equation h(x1, x2, x3) = 0 when |x̃1| < X1, |x̃2| < X2, |x̃3| < X3, and X1X2X3

is reasonably smaller than ∥h(x1X1, x2X2, x3X3)∥∞. Although we omit details of the method,
we set a reasonable integer R and remaining procedures are almost the same as modular case
by solving a modular equation h(x1, x2, x3) = 0 mod R. New polynomials h′(x1, x2, x3) and
h′2(x1, x2, x3) obtained by outputs of the LLL algorithm are provably algebraically independent
of h(x1, x2, x3). See [Cor04] for the detail. To the best of our knowledge, there are no algo-
rithms to solve integer equations known that outperform the algorithm based on the Jochemsz-
May strategy [JM06]. Hence, we follow the strategy. Let lj denote the largest exponent of xj in

the polynomial h(x1, . . . , xk) =
∑

hi1,...,ikx
i1
1 · · ·xikk . We set an (possibly large) integer W such

that W ≤ ∥h(x1, . . . , xk)∥∞ and an integer R := WX
l1(m−1)+t
1

∏k
u=2X

lu(m−1)
j with some positive

integers m and t = O(m) such that gcd(R, h0,...,0) = 1. We compute c = h−1
0,...,0 (mod R) and

h′(x1, . . . , xk) := c · h(x1, . . . , xk) (mod R). We define shift-polynomials g and g′ as

g : xi11 · · ·xikk · h(x1, . . . , xk) ·X
l1(m−1)+t−i1
1

k∏
u=2

X
lu(m−1)−ij
j for xi11 · · ·xikk ∈ S,

g′ : xi11 · · ·xikk ·R for xi11 · · ·xikk ∈ M\S,

for sets of monomials

S :=
∪

0≤j≤t

{xi1+j
1 · · ·xikk |xi11 · · ·xikk is a monomial of h(x1, . . . , xk)

m−1},
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M :={monomials of xi11 · · ·xikk · h(x1, . . . , xk) for xi11 · · ·xikk ∈ S}.

All these shift-polynomials g and g′ modulo R have the root (x̃1, . . . , x̃k) that is the same as
h(x1, . . . , xk). We construct a lattice with coefficients of g(x1X1, . . . , xkXk) and g′(x1X1, . . . , xkXk)
as the bases. The shift-polynomials generate a triangular basis matrix. Ignoring low order
terms of m, LLL outputs short vectors that satisfy Lemma 1 when

∏k
j=1X

sj
j < W |S| for sj =∑

x
i1
1 ···xik

k ∈M\S ij . When the condition holds, we can find all the small root. See [JM06] for the

detail.
We should note that these methods require heuristic argument. There are no assurance if

new polynomials obtained by outputs of the LLL algorithm are algebraically independent. In this
paper, we assume that these polynomials are always algebraically independent and resultants of
polynomials will not vanish as previous works.

3 Attacks by Solving Integer Equations

In this section, we solve integer equations and propose three attacks, i.e., Attacks 1–3. The Attack
1, 2, and 3 in Section 3.1, 3.2, and 3.3 corresponds to Theorem 1 and the condition 3 of Theorem
3, the conditions 4 and 5 of Theorem 2, and the condition 6 of Theorem 2, respectively. Algorithm
constructions in this section are similar to Ernst et al. [EJMdW05].

3.1 The Attack 1

In this section, we consider (α, β, γ, δ)-partial key exposure attacks with the MSBs/LSBs of d. When
d̃ which is the MSBs/LSBs of d is given, RSA key generation can be written as e(d̃M̃ + d′M ′) =
1 + kΦ(N) with some integer k such that |k| ≤ Nα+β−1. When d̃ is the MSBs (resp. LSBs),
d′ denotes the LSBs (resp. MSBs) of d, and M̃ = 2⌊γ logN⌋ and M ′ = 1 (resp. M̃ = 1 and
M ′ = 2⌊(β−γ) logN⌋). Then, we find the root of the following polynomial over the integers:

fi1(x, y, z) = c+ eM ′x+ y(Φ̃ + z)

where c = 1 − ed̃M̃ . If we can recover the root (x, y, z) = (−d′, k,Φ(N) − Φ̃(N)), whole secret
information can be computed. By definition, the absolute values of the root are bounded above
by X := Nγ , Y := Nα+β−1, Z := N δ. By solving the integer equation based on the Jochemsz-May
strategy [JM06], Theorem 1 and the condition 3 of Theorem 3 can be obtained.

We set an (possibly large) integer W such that W < Nα+β since ∥fi1(xX, yY, zZ)∥∞ ≥
max{|c|, |eM ′X|} ≈ Nα+β. Next, we set an integer R := W (XY )m−1 · Zm+r−1+t with some
integers m = ω(r) and t = τm where τ ≥ 0 such that gcd(R, c) = 1. We compute c′ = c−1 mod R
and f ′

i1(x, y, z) := c · fi1(x, y, z) mod R. We define shift-polynomials gi1 and g′i1 as

gi1 : x
iXyiY ziZ · f ′

i1 ·Xm−1−iXY m−1−iY Zm+r−1+t−iZ for xiXyiY ziZ1 ∈ S,

g′i1 : x
iXyiY ziZ ·R for xiXyiY ziZ1 ∈ M\S,
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for sets of monomials

S :=
∪

0≤j≤t

{
xiXyiY ziZ+j

∣∣∣∣xiXyiY ziZ is a monomial of fi(x, y, z1)
m−1

}
,

M :=

{
xiXyiY ziZ

∣∣∣∣ monomials of xi
′
Xyi

′
Y zi

′
Z · fi(x, y, z) for xi

′
Xyi

′
Y zi

′
Z ∈ S

}
.

By definition of sets of monomials S and M , it follows that

xiXyiyziZ ∈ S ⇔ iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1− iX ; iZ = 0, 1, . . . , iY + t,

xiXyiyziZ ∈ M ⇔ iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m− iX ; iZ = 0, 1, . . . , iY + t.

All these shift-polynomials gi1 and g′i1 modulo R have the root (x, y, z) = (−d′, k,Φ(N) − Φ̃(N))
that is the same as fi1(x, y, z). We build a lattice with these polynomials.

Based on the Jochemsz-May strategy, the integer equation fi1(x, y, z) = 0 can be solved when

X( 1
6
+ τ

2 )m
3
Y ( 1

3
+ τ

2 )m
3
Z

(
1
6
+ τ

2
+ τ2

2

)
m3

< W ( 1
6
+ τ

2 )m
3

⇔ γ

(
1

6
+

τ

2

)
+ (α+ β − 1)

(
1

3
+

τ

2

)
+ δ

(
1

6
+

τ

2
+

τ2

2

)
< (α+ β)

(
1

6
+

τ

2

)
.

By substituting τ = 1−γ−δ
2δ , the claimed inequality of Theorem 1 can be obtained:

γ <
3− δ − 2

√
δ2 + 3(α+ β − 1)δ

3
.

The condition 3 of Theorem 3 can be obtained by substituting α = 1.

3.2 The Attack 2

In this section, we consider (1, β, γ, δ)-partial key exposure attacks with the MSBs of d. As in
Section 3.1, when d̃ which is the MSBs of d is given, RSA key generation can be written as
e(d̃M + d′) = 1 + kΦ(N) with some integer k such that |k| ≤ Nβ and M = 2⌊γ logN⌋. In this
section, we use an additional information k̃ = ⌊(ed̃ − 1)/Φ̃(N)⌋ which is an approximation to k.
From the simple calculation,

|k̃ − k| =

∣∣∣∣∣ed̃M − 1

Φ̃(N)
− ed− 1

Φ(N)

∣∣∣∣∣ =
∣∣∣∣∣Φ(N)(ed̃M − 1)− Φ̃(N)(ed− 1)

Φ̃(N)Φ(N)

∣∣∣∣∣
=

∣∣∣∣∣e(Φ(N)d̃M − Φ̃(N)d) + (Φ̃(N)− Φ(N))

Φ̃(N)Φ(N)

∣∣∣∣∣
=

∣∣∣∣∣eΦ̃(N)(d̃M − d)− (Φ̃(N)− Φ(N))(ed̃M − 1)

Φ̃(N)Φ(N)

∣∣∣∣∣
9



≤

∣∣∣∣∣e(d̃M − d)

Φ(N)

∣∣∣∣∣+
∣∣∣∣∣(Φ̃(N)− Φ(N))(ed̃M − 1)

Φ̃(N)Φ(N)

∣∣∣∣∣ .
By definition, ∣∣∣∣∣e(d̃M − d)

Φ(N)

∣∣∣∣∣ ≤ Nγ and

∣∣∣∣∣(Φ̃(N)− Φ(N))(ed̃M − 1)

Φ̃(N)Φ(N)

∣∣∣∣∣ ≤ Nβ+δ−1.

Therefore, k̃ satisfies the following condition:

|k̃ − k| < 2Nλ where λ = max{γ, β + δ − 1}.

The approximate value enables us to obtain better results for large β. Since Sarkar and Maitra
[SM08] used λ = max{γ, β−1/2} for δ ≤ 1/2, we improve the bound although the following lattice
construction is completely the same. We find the root of the following polynomial over the integers:

fi2(x, y, z) = c+ ex+ (k̃ + y)(Φ̃ + z),

where c = 1−ed̃M̃ as in Section 3.1. If we can recover the root (x, y, z) = (−d′, k−k̃,Φ(N)−Φ̃(N)),
whole secret information can be computed. The absolute values of the root are bounded above by
X := Nγ , Y := Nλ, Z := N δ where λ = max{γ, β + δ − 1}. Although the absolute values of
solutions become smaller than those in Section 3.1, the result in this section is not always better
since the Newton polygon of the polynomial becomes more complex.

We set an (possibly large) integer W such that W < N1+λ since ∥fi2(xX, yY, zZ)∥∞ ≥
|Φ̃(N)Y | ≈ N1+λ. Next, we set an integer R := WXm−1 · Y m+r−1+tZm−1 with some integers
m = ω(r) and t = τm where τ ≥ 0 such that gcd(R, c) = 1. We compute c′ = c−1 mod R and
f ′
i2(x, y, z) := c · fi2(x, y, z) mod R. We define shift-polynomials gi1 and g′i1 as

gi2 : x
iXyiY ziZ · f ′

i2 ·Xm−1−iXY m−1+t−iY Zm+r−1−iZ for xiXyiY ziZ1 ∈ S,

g′i2 : x
iXyiY ziZ ·R for xiXyiY ziZ1 ∈ M\S,

for sets of monomials

S :=
∪

0≤j≤t

{
xiXyiY +jziZ

∣∣∣∣xiXyiY ziZ is a monomial of fi(x, y, z1)
m−1

}
,

M :=

{
xiXyiY ziZ

∣∣∣∣ monomials of xi
′
Xyi

′
Y zi

′
Z · fi(x, y, z) for xi

′
Xyi

′
Y zi

′
Z ∈ S

}
.

By definition of sets of monomials S and M , it follows that

xiXyiyziZ ∈ S ⇔ iX = 0, 1, . . . ,m− 1; iY = 0, 1, . . . ,m− 1 + t− iX ; iZ = 0, 1, . . . ,m− 1− iX ,

xiXyiyziZ ∈ M ⇔ iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m+ t− iX ; iZ = 0, 1, . . . ,m− iX .

All these shift-polynomials gi2 and g′i2 modulo R have the root (x, y, z) = (−d′, k− k̃,Φ(N)−Φ̃(N))
that is the same as fi2(x, y, z). We build a lattice with these polynomials.
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Based on the Jochemsz-May strategy [JM06], the integer equation fi1(x, y, z) = 0 can be solved

when X( 1
3
+ τ

2 )m
3
Y

(
1
2
+τ+ τ2

2

)
m3

Z( 1
2
+ τ

2 )m
3
< W ( 1

3
+ τ

2 )m
3
. By substituting τ = 1−γ−δ−λ

2λ , the condi-
tions 4 and 5 of Theorem 2 can be obtained. To follow the definition λ = max{γ, β+ δ− 1}, λ = γ

when β < 3(1−δ)2+4(1−δ)
4 and λ = β + δ − 1 otherwise.

3.3 Attack 3

In this section, we propose a better lattice construction than that in Section 3.2. Notice that the
Newton polygon of fi2(x, y, z) is symmetric with respect to y and z. Hence, we should add extra
shifts for the smaller variable. From the bound of the Attack 2, Y = Nλ = N3(1−δ)2/4 ≥ Z = N δ

when δ < 1/3. Therefore, we add extra shifts for z for such small δ. We construct a lattice that is
symmetric with respect to y and z from that in Section 3.2 and the integer equation fi2(x, y, z) = 0

can be solved when X( 1
3
+ τ

2 )m
3
Y ( 1

2
+ τ

2 )m
3
Z

(
1
2
+τ+ τ2

2

)
m3

< W ( 1
3
+ τ

2 )m
3
. By substituting τ = 1−λ−2δ

2δ ,

the condition 6 of Theorem 2 can be obtained. Notice that when δ < 1/3, β+ δ− 1 < γ ≤ 1− 2
√
3δ
3

always hold for β < 1.

4 Attacks with the MSBs of d by Solving Modular Equations

In this section, we solve modular equations and propose three attacks, i.e., Attacks 4–6, for
(1, β, γ, δ)-partial key exposure attacks with the MSBs of d. The Attack 4, 5, and 6 in Section
4.1, 4.2, and 4.3 correspond to the conditions 2, 3, and 1 of Theorem 2, respectively. Algorithm
constructions in Section 4.1 and 4.2, that in Section 4.3 are similar to Takayasu-Kunihiro’s [TK14d]
and [TK14c], respectively.

4.1 The Attack 4

As in Section 3.2, when d̃ which is the MSBs of d is given, RSA key generation can be written as
e(d̃M +d′) = 1+kΦ(N) with some integer k such that |k| ≤ Nβ and M = 2⌊γ logN⌋. Then, we find
the root of the following modular polynomial:

fMSBs,m(x, y) = 1 + (k̃ + x)(Φ̃(N) + y) (mod e)

where k̃ = ⌊(ed̃− 1)/Φ̃(N)⌋ which is an approximation to k as in Section 3.2. If we can recover the
root (x, y) = (k − k̃,Φ(N) − Φ̃(N)), whole secret information can be computed. To obtain better
results than integer equations based method in Section 3, we use a linearized variable z = (k̃+x)y+1.
The absolute values of the root are bounded above by X := Nλ, Y := N δ, Z := Nβ+δ where
λ = max{γ, β + δ − 1}.

To solve the modular equation fMSBs,m(x, y) = 0, we use the following shift-polynomials
gMSBs.m1
[u,i] (x, y) and gMSBs.m2

[u,i] (x, y):

gMSBs.m1
[u,i] (x, y) := xu−ifMSBs,m(x, y)iem−i and

gMSBs.m2
[u,j] (x, y) := yjfMSBs,m(x, y)uem−u.

11



All these shift-polynomials gMSBs.m1
[u,i] and gMSBs.m2

[u,j] modulo em have the root (x, y) = (k−k̃,Φ(N)−
Φ̃(N)) that is the same as fMSBs,m(x, y). We build a lattice with these polynomials. In this section,
we show a basic lattice construction to solve the modular equation and the resulting algorithm works

when 1 − δ −
√

δ(1−δ)
3 ≤ β < 1 − δ and 1/3 ≤ δ, and when 1 − δ −

√
δ(1−δ)

3 ≤ β < 1 −
√

δ
3 and

δ < 1/3. In the lattice construction, we use shift-polynomials gMSBs.m1
[u,i] (x, y) and gMSBs.m2

[u,i] (x, y)
with indices in Ix and Iy where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . , u and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . ,

⌊
β − λ

δ
m+

1 + λ− δ − 2β

δ
u

⌋
,

respectively. Although the selections of shift-polynomials generate non-triangular basis matrices,
we partially apply the linearization z = (k̃ + x)y + 1 and the basis matrices can be transformed
into triangular as in [TK14c]. We follow the result and the basis matrices have diagonals

• Xu−⌈lMSBs(i)⌉Y i−⌈lMSBs(i)⌉Z⌈lMSBs(i)⌉em−i for gMSBs.m1
[u,i] (x, y) and

• Xu−⌈lMSBs(u+j)⌉Y u+j−⌈lMSBs(u+j)⌉Z⌈lMSBs(u+j)⌉em−u for gMSBs.m2
[u,j] (x, y) where

lMSBs(j) := max

{
0,

δj − (β − λ)m

1 + λ− 2β

}
.

Notice that the result is valid only when 1+λ−δ−2β
δ ≤ 1, i.e., β ≥ 1+λ−2δ

2 , since unravelled lin-
earization does not work well otherwise in the sense that the diagonals of triangular basis matrices
become larger. We define the above polynomial selections for all the gMSBs.m2

[u,j] (x, y) to be helpful.

Lemma 2. Assume there are shift-polynomials gMSBs.m1
[u,u′+j′] (x, y) for u = u′ + j′, . . . ,m and

gMSBs.m2
[u,u′+j′−u](x, y) for u = u′ + 1, . . . , u′ + j′ − 1 in lattice bases. Then, shift-polynomials

gMSBs.m2
[u′,j′] (x, y)are helpful polynomials when u′ = 0, 1, . . . ,m; j′ = 1, . . . , ⌊β−λ

δ m + 1+λ−δ−2β
δ u⌋,

whereas shift-polynomials gMSBs.m2
[u′,j′] (x, y)are unhelpful polynomials when u′ = 0, 1, . . . ,m; j′ >

β−λ
δ m+ 1+λ−δ−2β

δ u.

Proof. Consider the basis matrix B. We add a new shift-polynomial gMSBs2
[u′,j′] (x, y) and construct

the basis matrix B+. The value det(B+)/det(B) can be computed as

det(B+)

det(B)
= Y j′Zu′

em−u′ ·
(
XY

Z

)m−u′

where the size is bounded above by N δj′+(β+δ)u′+m−u′+(λ−β)(m−u′) within a constant factor. This
value is smaller than the size of the modulus em, if and only if

δj′ + (β + δ)u′ +m− u′ + (λ− β)(m− u′) ≤ m

⇔ j′ ≤ β − λ

δ
m+

1 + λ− δ − 2β

δ
u′

as required.
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When m+ β−λ
δ m+ 1+λ−δ−2β

δ m = 1−β
δ m ≤ 1, i.e., β ≥ 1−δ, shift-polynomials gMSBs.m1

[u,j] (x, y) for

u ≥ β−λ
2β+δ−λ−1 ; i ≥

β−λ
2β+δ−λ−1 are unhelpful polynomials and do not contribute for the basis matrices

to be triangular. In addition, when 1+λ−δ−2β
δ ≤ 0, i.e., β ≥ 1+λ−δ

2 , not all the gMSBs.m2
[u,j] (x, y)

become helpful polynomials. Hence, we use the above collection of shift-polynomials only when
β < min{1− δ, 1+λ−δ

2 }.
We show that the above lattice yields the condition 2 of Theorem 2. For the purpose, we

compute the dimension

n = |Ix ∪ Iy| =
1− λ

2δ
m2 + o(m2),

and the determinant of the lattices det(B) = XsXY sY ZsZese where

sX =
∑

(u,i)∈Ix

(u− ⌈lMSBs(i)⌉) +
∑

(u,j)∈Iy

(u− ⌈lMSBs(u+ j)⌉) = 1 + β − 2λ

6δ
m3 + o(m3),

sY + sZ =
∑

(u,i)∈Ix

i+
∑

(u,j)∈Iy

(u+ j) =
1− β − λ+ β2 − βλ+ λ2

6δ2
m3 + o(m3),

sZ =
∑

(u,i)∈Ix

⌈lMSBs(i)⌉+
∑

(u,j)∈Iy

⌈lMSBs(u+ j)⌉ = 1 + λ− 2β

6δ
m3 + o(m3),

se =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− u) =
1 + β − 2λ+ δ

6δ
m3 + o(m3)

as required. We can find solutions of fMSBs(x, y) = 0 provided that (det(B))1/n < em. Ignoring
low order terms of m, the inequality becomes

λ2 − (1 + β)λ+ β2 − β + 1− δ > 0

that yields the bound

λ <
1 + β −

√
−3 + 4δ + 6β − 3β2

2
.

To satisfy the restriction 1+λ−2δ
2 ≤ β < min{1 − δ, 1+λ−δ

2 } discussed above, the condition is valid

only when 1− δ−
√

δ(1−δ)
3 ≤ β < 1− δ and 1/3 ≤ δ, and when 1− δ−

√
δ(1−δ)

3 ≤ β < 1−
√

δ
3 and

δ < 1/3. Notice that the bound is always larger than β + δ − 1. When β ≥ 1−
√

δ
3 and δ < 1/3,

the Attack 3 becomes the best.

4.2 The Attack 5

In this section, we propose an attack for larger β, i.e., β ≥ 1− δ for 1/3 ≤ δ. As discussed above,
the polynomial selections in Section 4.1 have unhelpful polynomials in this case and we should
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eliminate them to obtain better results. For the purpose, in this section, we use shift-polynomials
gMSBs.m1
[u,i] (x, y) and gMSBs.m2

[u,j] (x, y) with indices in Ix and Iy where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . ,min{u, t} and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . ,min

{⌊
β − λ

δ
m+

1 + λ− δ − 2β

δ
u

⌋
, t− u

}
,

for some integer t, respectively. The parameter τ = t/m should be optimized later. The selections
of shift-polynomials generate basis matrices that are not triangular. However, we partially apply
the linearization z = (k̃ + x)y + 1 and the basis matrices can be transformed into triangular as
in Section 3.3. Moreover, the diagonals of the basis matrices are the same as those in Section
3.3. Hence, Lemma 2 also holds. We use the above polynomial selections when β−λ

δ m < t and
1+λ−δ−2β

δ > 0 hold, i.e., β < min{δτ+λ, 1+λ−δ
2 }, since all the gMSBs.m2

[u,j] (x, y) do not become helpful
polynomials otherwise.

We show that the above lattice yields the condition 3 of Theorem 2. For the purpose, we
compute the dimension

n = |Ix ∪ Iy| =
(
τ − (δτ − β + λ)2

2δ(1 + λ− 2β)

)
m2 + o(m2),

and the determinant of the lattices det(B) = XsXY sY ZsZese where

sX =
∑

(u,i)∈Ix

(u− ⌈lMSBs(i)⌉) +
∑

(u,j)∈Iy

(u− ⌈lMSBs(u+ j)⌉)

=

(
τ

2
− (δτ − β + λ)3

6δ(1 + λ− 2β)2

)
m3 − sZ + o(m3),

sY + sZ =
∑

(u,i)∈Ix

i+
∑

(u,j)∈Iy

(u+ j)

=

(
τ2

2
− (δτ − β + λ)3

3δ2(1 + λ− 2β)
− (β − λ)(δτ − β + λ)2

2δ2(1 + λ− 2β)

)
m3 + o(m3),

sZ =
∑

(u,i)∈Ix

⌈lMSBs(i)⌉+
∑

(u,j)∈Iy

⌈lMSBs(u+ j)⌉

=

(
(δτ − β + λ)2

2δ(1 + λ− 2β)
− (δτ − β + λ)3

3δ(1 + λ− 2β)2

)
m3 + o(m3),

se =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− u)

= τm3 − τ2

2
m3 +

τ3

6
m3 − (δτ − β + λ)2

2δ(1 + λ− 2β)
m3 +

(δτ − β + λ)3

6δ(1 + λ− 2β)2
m3 + o(m3).

We can find solutions fMSBs(x, y) = 0 provided that (det(B))1/n < em. Ignoring low order
terms of m, the inequality becomes

λ
τ

2
− (1− δ)

τ2

2
+

τ3

6
<

(δτ − β + λ)3

6δ(1 + λ− 2β)
.
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To maximize the solvable root bounds, we set τ = 1 − β+δ−1
δ−

√
1+λ−2β

. To satisfy the restriction

β < min{δτ + λ, 1+λ−δ
2 } discussed above, the attack works when 1 − δ ≤ β < 3(1−δ)(1+δ)

4 and

1/3 ≤ δ < 2/3, and when 1− δ ≤ β < δ − (2δ−1)2

δ2
and 2/3 ≤ δ. The attack 2 becomes the best for

larger β.

4.3 The Attack 6

In this section, we propose an attack for smaller β, i.e., β < 1− δ −
√

δ(1−δ)
3 . As discussed above,

the polynomial selections in Section 4.1 collect gMSBs.m2
[u,j] (x, y) where all the shifts are not helpful.

The defect follows from the fact that when 1+λ−δ−2β
δ > 1, the unravelled linearization does not

work well and the diagonals of the resulting triangular basis matrices become larger. Hence, in
this section, we use shift-polynomials gMSBs.m1

[u,i] (x, y) and gMSBs.m2
[u,j] (x, y) with indices in Ix and Iy

where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . , u and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . , t+ u,

for some integer t, respectively. The parameter τ = t/m should be optimized later. The selections
of shift-polynomials generate basis matrices that are not triangular. However, we partially apply
the linearization z = (k̃ + x)y + 1 and the basis matrices can be transformed into triangular as in
Section 4.1. Moreover, the diagonals of the basis matrices are the same as those in Section 3.3 by
modifying

lMSBs(k) := max

{
0,

k − τm

2

}
.

Hence, Lemma 2 also holds.
We show that the above lattice yields the condition 1 of Theorem 2. For the purpose, we

compute the dimension

n = |Ix ∪ Iy| = (1 + τ)m2 + o(m2),

and the determinant of the lattices det(B) = XsXY sY ZsZese where

sX =
∑

(u,i)∈Ix

(u− ⌈lMSBs(i)⌉) +
∑

(u,j)∈Iy

(u− ⌈lMSBs(u+ j)⌉) =
(
1

3
+

τ

2

)
m3 + o(m3),

sY + sZ =
∑

(u,i)∈Ix

i+
∑

(u,j)∈Iy

(u+ j) =

(
2

3
+ τ +

τ2

2

)
m3 + o(m3),

sZ =
∑

(u,i)∈Ix

⌈lMSBs(i)⌉+
∑

(u,j)∈Iy

⌈lMSBs(u+ j)⌉ = 1

3
m3 + o(m3),

se =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− u) =
1 + τ

2
m3 + o(m3).
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We can find solutions of fMSBs(x, y) = 0 provided that (det(B))1/n < em. Ignoring low order
terms of m, the inequality becomes

λ

(
1

3
+

τ

2

)
+ δ

(
2

3
+ τ +

τ2

2

)
+ β

1

3
+

1 + τ

2
< 1 + τ.

To maximize the right hand side of the inequality, we set the parameter τ = 1−2δ−λ
2δ and the

condition becomes

λ <
3− 2δ − 2

√
4δ2 − 3δ + 6βδ

3

as required.

5 Attacks with the LSBs of d by Solving Modular Equations

In this section, we solve modular equations and propose two attacks, i.e., Attacks 6 and 7, for
(1, β, γ, δ)-partial key exposure attacks with the LSBs of d. The Attack 7 and 8 in Section 5.1
and 5.2 corresponds to the conditions 2 and 1 of Theorem 3, respectively. Algorithm constructions
in Section 5.1 and that in Section 5.2 is similar to Takayasu-Kunihiro’s [TK14d] and [TK14c],
respectively.

5.1 The Attack 7

As in Section 3.1, when d̃ which is the LSBs of d is given, RSA key generation can be written as
e(d̃+ d′M) = 1+ kΦ(N) with some integer k such that |k| ≤ Nβ and M = 2⌊(β−γ) logN⌋. Then, we
find the root of the following modular polynomials:

fLSBs.m1(x, y) := 1− ed̃+ x(Φ̃(N) + y) (mod eM),

fLSBs.m2(x, y) := 1 + x(Φ̃(N) + y) (mod e).

If we can recover the root (x, y) = (k,Φ(N)−Φ̃(N)), whole secret information can be computed. To
obtain better results than integer equations based method in Section 3, we use a linearized variable
z = xy + 1. The absolute values of the root are bounded above by X := Nβ, Y := N δ, Z := Nβ+δ.

To solve the modular equations fLSBs.m1(x, y) = 0 and fLSBs.m2(x, y) = 0, we use the following
shift-polynomials gLSBs.m1

[u,i] (x, y) and gLSBs.m2
[u,j] (x, y):

gLSBs.m1
[u,i] (x, y) := xu−ifLSBs.m1(x, y)

i(eM)m−i and

gLSBs.m2
[u,j] (x, y) := yjfLSBs.m1(x, y)

u−⌈lLSBs(j)⌉fLSBs.m2(x, y)
⌈lLSBs(j)⌉em−uMm−(u−⌈lLSBs(j)⌉),

where

lLSBs(j) = max

{
0,

δj − (β − γ)m

1− 2β + γ − δ

}
.
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All these shift-polynomials gLSBs.m1
[u,i] and gLSBs.m2

[u,j] modulo (eM)m have the root (x, y) = (k,Φ(N)−
Φ̃(N)) that is the same as fLSBs,m1(x, y) and fLSBs,m2(x, y). We build a lattice with these polyno-
mials. In this section, we show a basic lattice construction to solve the modular equations and the

resulting algorithm works when 1−δ−
√

δ(1−δ)
3 ≤ β < 1− δ

2 −
√

3δ(4−δ)

6 . In the lattice construction,

we use shift-polynomials gLSBs.m1
[u,i] (x, y) and gLSBs.m2

[u,j] (x, y) with indices in Ix and Iy where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . , u and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . ,

⌊
β − λ

δ
m+

1 + λ− δ − 2β

δ
u

⌋
,

respectively. Although the selections of shift-polynomials generate non-triangular basis matrices,
we partially apply the linearization z = xy + 1 and the basis matrices can be transformed into
triangular as in [TK14c]. We follow the result and the basis matrices have diagonals

• XuY i(eM)m−i for gLSBs.m1
[u,i] (x, y) and

• Xu−⌈lLSBs(u+j)⌉Y u+j−⌈lLSBs(u+j)⌉Z⌈lLSBs(u+j)⌉em−uMm−(u−⌈lLSBs(u+j)⌉) for gLSBs.m2
[u,j] (x, y).

Notice that the result is valid only when 1+γ−δ−2β
δ ≤ 1, i.e., β ≥ 1+γ−2δ

2 , since unravelled lin-
earization does not work well otherwise. We define the above polynomial selections for all the
gMSBs.m2
[u,j] (x, y) to be helpful.

Lemma 3. Assume there are shift-polynomials gLSBs.m2
[u′+i,j′+i](x, y) for i = 1, 2, . . . ,m − u′ in lattice

bases. Then, shift-polynomials gLSBs.m2
[u′,j′] (x, y)are helpful polynomials when u′ = 0, 1, . . . ,m; j′ =

1, . . . , ⌊β−γ
δ m + 1+γ−δ−2β

δ u′⌋, whereas shift-polynomials gLSBs.m2
[u′,j′] (x, y)are unhelpful polynomials

when u′ = 0, 1, . . . ,m; j′ > β−γ
δ m+ 1+γ−δ−2β

δ u′.

Proof. Consider the basis matrix B. We add a new shift-polynomial gLSBs.m2
[u′,k′] (x, y) and construct

the basis matrix B+. The value det(B+)/det(B) can be computed as

det(B+)

det(B)
= Y j′Zu′

em−u′
Mu′

.

where the size is bounded above by N δj′+(δ+β)u′+m−u′+(β−γ)u′
within a constant factor. This value

is smaller than the size of the modulus (eM)m, if and only if

δj′ + (δ + β)u′ +m− u′ + (β − γ)u′ ≤ (1 + β − γ)m

⇔ j′ ≤ β − γ

δ
m+

1− 2β + γ − δ

δ
u′

as required.
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When 1+γ−δ−2β
δ ≤ 0, i.e., β ≥ 1+γ−δ

2 , all the shift-polynomials gLSBs.m2
[u,j] (x, y) in the above

selection do not become a helpful polynomial since the assumption in Lemma 3 fails. Hence, we
use the above collection of shift-polynomials only when β < 1+γ−δ

2 .
We show that the above lattice yields the condition 2 of Theorem 3. For the purpose, we

compute the dimension

n = |Ix ∪ Iy| =
1− γ

2δ
m2 + o(m2),

and the determinant of the lattices det(B) = XsXY sY ZsZeseM sM where

sX + sZ =
∑

(u,i)∈Ix

u+
∑

(u,j)∈Iy

u =
1− β − γ

6δ
m3 + o(m3),

sY + sZ =
∑

(u,i)∈Ix

i+
∑

(u,j)∈Iy

(u+ j) =
1− β − γ + β2 − βγ + γ2

6δ2
m3 + o(m3),

sZ =
∑

(u,i)∈Ix

⌈lMSBs(i)⌉+
∑

(u,j)∈Iy

⌈lMSBs(u+ j)⌉ = 1− 2β + γ

6δ
m3 + o(m3),

se =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− u) =
1 + β − 2γ + δ

6δ
m3 + o(m3),

sM =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− (u− ⌈lLSBs(j)⌉)) = 2− β − γ

6δ
m3 + o(m3).

We can find solutions of fLSBs.m1(x, y) = 0 and fLSBs.m2(x, y) = 0 provided that (det(B))1/n <
(eM)m. Ignoring low order terms of m, the inequality becomes

γ2 − (1 + β)γ + β2 − β + 1− δ > 0

that yields the bound

γ <
1 + β −

√
−3 + 4δ + 6β − 3β2

2

as required. To satisfy the restriction 1+γ−2δ
2 ≤ β < 1+γ−δ

2 discussed above, the condition is valid

only when 1 − δ −
√

δ(1−δ)
3 ≤ β < 1 − δ

2 −
√

3δ(4−δ)

6 . When 1 − δ
2 −

√
3δ(4−δ)

6 ≤ β, Theorem 1
becomes the best.

5.2 The Attack 8

In this section we propose an attack that works when β < 1−δ−
√

δ(1−δ)
3 . In the lattice construction,

we use the same shift-polynomials gLSBs.m1
[u,i] (x, y) and gLSBs.m2

[u,j] (x, y) where

lLSBs(j) = max {0, j − τm}
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with indices in Ix and Iy where

Ix ⇔ u = 0, 1, . . . ,m; i = 0, 1, . . . , u and

Iy ⇔ u = 0, 1, . . . ,m; j = 1, 2, . . . , t+ u,

respectively. The parameter τ = t/m should be optimized later. Although the selections of shift-
polynomials generate non-triangular basis matrices, we partially apply the linearization z = xy+1
and the basis matrices can be transformed into triangular as in Section 5.1. The basis matrices
have the same diagonals as those in Section 5.1 although the function lLSBs(j) is modified.

We show that the above lattice yields the condition 1 of Theorem 2. For the purpose, we
compute the dimension

n = |Ix ∪ Iy| = (1 + τ)m2 + o(m2),

and the determinant of the lattices det(B) = XsXY sY ZsZeseM sM where

sX =
∑

(u,i)∈Ix

u+
∑

(u,j)∈Iy

u =

(
2

3
+

τ

2

)
m3 + o(m3),

sY + sZ =
∑

(u,i)∈Ix

i+
∑

(u,j)∈Iy

(u+ j) =

(
2

3
+ τ +

τ2

2

)
m3 + o(m3),

se =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− u) =
1 + τ

2
m3 + o(m3),

sM =
∑

(u,i)∈Ix

(m− i) +
∑

(u,j)∈Iy

(m− (u− ⌈lLSBs(j)⌉)) =
(
2

3
m3 +

τ

2

)
m3 + o(m3).

We can find solutions of fLSBs.m1(x, y) = 0 and fLSBs.m2(x, y) = 0 provided that (det(B))1/n <
(eM)m. Ignoring low order terms of m, the inequality becomes

β

(
2

3
+

τ

2

)
+ δ

(
2

3
+ τ +

τ2

2

)
+

1 + τ

2
+ (β − γ)

(
2

3
+

τ

2

)
< (1 + β − γ)(1 + τ).

To maximize the right hand side of the inequality, we set the parameter τ = 1−2δ−γ
2δ and the

condition becomes

γ <
3− 2δ − 2

√
4δ2 − 3δ + 6βδ

3

as required.

6 Concluding Remarks

In this paper, we defined partial key exposure attacks on RSA to capture general scenarios. Indeed,
several existing works can be viewed as special cases of our general definition. Then we constructed
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eight attacks for the scenario. These attacks contain all the state-of-the-art partial key exposure
attacks as special cases. Furthermore, our attacks improve several existing attacks in some cases.
Due to our generalized definition of partial key exposure scenarios, we believe that our attacks can
be used as a tool kit. The results enable even beginners of Coppersmith’s methods to examine the
security of several future variants of RSA and upcoming partial key exposure scenarios.

Although we tried to capture as wide class of partial key exposure scenarios as possible in
this paper, we could only capture Multi-Prime RSA with partial information. There are other
papers that studied partial key exposure attacks on other variants of RSA; RSA with moduli
N = prq [LZPL15, Sar16, TK16a], CRT-RSA [BM03, TK15, TK16b], RSA with multiple expo-
nent pairs [PHL+15, TK14b, TK16c], and more. It should be interesting open problems to study
generalized partial key exposure scenarios for these variants as our work.
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