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Abstract. Redactable signature schemes allow to black out predefined
parts of a signed message without affecting the validity of the signa-
ture, and are therefore an important building block in privacy-enhancing
cryptography. However, a second look shows, that for many practical ap-
plications, they cannot be used in their vanilla form. On the one hand,
already the identity of the signer may often reveal sensitive information
to the receiver of a redacted message; on the other hand, if data leaks or
is sold, everyone getting hold of (redacted versions of) a signed message
will be convinced of its authenticity.

We overcome these issues by providing a definitional framework and
practically efficient instantiations of so called signer-anonymous desig-
nated-verifier redactable signatures (AD-RS). As a byproduct we also
obtain the first group redactable signatures, which may be of indepen-
dent interest. AD-RS are motivated by a real world use-case in the field
of health care and complement existing health information sharing plat-
forms with additional important privacy features. Moreover, our results
are not limited to the proposed application, but can also be directly ap-
plied to various other contexts such as notary authorities or e-government
services.

1 Introduction

Digitalization of data and processes as well as the use of promising IT-trends such
as cloud computing is prevalent, steadily increasing and meanwhile outreaches
even sensitive fields such as the health care sector.1 Given the sensitivity of the
involved data and the high demands in data correctness and quality, the health
care domain is a prime example for the beneficial application of cryptographic
means such as encryption and digital signatures. This work is dedicated to the
development of a cryptographically enhanced solution for a real world hospital,
which is currently planning to complement its existing information sharing sys-
tem for electronic patient data with additional privacy features. The overall idea

‡ Supported by EU H2020 project Prismacloud, grant agreement n◦644962.
‖ Supported by EU H2020 project Credential, grant agreement n◦653454.
1 See e.g., www.healthcaredive.com/news/407746/

http://dx.doi.org/10.1007/978-3-319-48965-0_13
mailto:david.derler@tugraz.at
mailto:daniel.slamanig@tugraz.at
mailto:stephan.krenn@ait.ac.at
http://www.healthcaredive.com/news/healthcare-looks-to-future-in-cloud-computing/407746/


of the system is to grant patients access to all their medical records via a cloud-
based platform. The patients are then able to use this as a central hub to dis-
tribute their documents to different stakeholders, e.g., to request reimbursement
by the insurance, or to forward (parts of) the documents to the family doctor
for further treatment. While means for access control and data confidentiality
are already in place, the system should be complemented by strong authenticity
guarantees. At the same time a high degree of privacy should be maintained, i.e.,
by allowing the patients, on a fine-granular basis, to decide which parts of which
document should be visible to which party. For instance, the family doctor might
not need to learn the precise costs of a treatment; similarly a medical research
laboratory should not learn the patients’ identities.

From a research point of view, one motivation behind this work is to show
how rather complex real world scenarios with conflicting interests and strong se-
curity and privacy requirements can be elegantly and securely realized by means
of rigorous cryptographic design and analysis. More importantly, we can indeed
come up with provably secure and practical solutions being well suited for real
world use. Now, we discuss the motivation for our design.

Redactable Signatures. A trivial solution for the above problem would be to let
the hospital cloud create a fresh signature on the information to be revealed
every time the user wishes to forward authentic subsets of a document to other
parties. However, this is not satisfactory as it would require strong trust assump-
tions into the cloud: one could not efficiently guarantee that the signed data has
not been altered over time by the cloud or by a malicious intruder. It is there-
fore preferable to use redactable signatures (RS). These are signature schemes
that allow to black out (redact) predefined parts of a signed message while pre-
serving the validity of the signature, thereby guaranteeing the authenticity of
the redacted message. That is, it is not necessary to let the cloud attest the
authenticity of the forwarded data, as the signature on the redacted document
can be extracted from the doctor’s signature on the original document without
requiring the doctor’s secret signing key or further interaction with the doctor.

Designated Verifiers. Unfortunately, using redactable signatures in their vanilla
form in our scenario would lead to severe privacy problems, i.e., everyone getting
hold of a signed document would be convinced of its authenticity. In such a case,
for instance, an employer who gets hold of a signed health record of an employee,
might reliably learn the employee’s disease, who, in further consequence, might
get dismissed. What is therefore needed is a designated verifier for each redacted
version of a document. That is, when redacting a document, the patient should
be able to define the intended receiver. Then, while everybody can check the
validity of a leaked document, only the designated verifier is convinced about its
authenticity. This can be achieved by constructing the schemes in a way that the
designated verifier can fake indistinguishable signatures on its own. Moreover,
the public verifiability property might as well be a motivation for designated ver-
ifiers to not leak/sell documents, as this reduces the circle of possible suspects
to the data owner and the designated verifier.



Group Signatures. Another problem of RS is that they only support a single
signer. However, a hospital potentially employing hundreds of doctors will not
use a single signing key that is shared by all its employees. By doing so, the
identity of the signing doctor could not be revealed in case of a dispute, e.g.,
after a malpractice. However, using different keys for different doctors poses a
privacy risk again. For instance, if the document was signed using an oncologist’s
key, one could infer sensitive information about the disease—even though the
diagnosis was blacked out. What is therefore needed are features known from
group signatures, where towards the verifier the doctor’s identity remains hidden
within the set of doctors in the hospital, while re-identification is still possible
by a dedicated entity.

Contribution. The properties we need for our scenario are contributed by three
distinct cryptographic concepts and what we actually need can be considered as
a signer-anonymous designated-verifier redactable signature scheme. However,
while a lot of existing work studies the different concepts in isolation, there is
no work which aims at combining them in a way to profit from a combination of
their individual properties. Trying to obtain this by simply combining them in
an ad-hoc fashion, however, is dangerous. It is well known that the ad-hoc com-
bination of cryptographic primitives to larger systems is often problematic (as
subtle issues often remain hidden when omitting formal analysis) and security
breaches resulting from such approaches are often seen in practice. Unlike follow-
ing such an ad-hoc approach, we follow a rigorous approach and formally model
what is required by the use-case, introduce a comprehensive security model and
propose two (semi-)black-box constructions that are provably secure within our
model. While such a (semi-)black-box construction is naturally interesting from
a theoretical point of view, our second construction is also entirely practical and
thus also well suited to be used within the planned system. Finally, as a con-
tribution which may be of independent interest, we also obtain the first group
redactable signatures as a byproduct of our definitional framework.

Technical Overview. Our constructions provably achieve the desired functional-
ity by means of a two-tier signature approach: a message is signed using a freshly
generated RS key pair where the corresponding public key of this “one-time RS”
is certified using a group signature. For the designated verifier feature, we follow
two different approaches. Firstly, we follow the näıve approach and use a disjunc-
tive non-interactive proof of knowledge which either demonstrates knowledge of
a valid RS signature on the message, or it demonstrates knowledge of a valid
signature of the designated verifier on the same message. While this approach is
very generic, its efficiency largely depends on the complexity to prove knowledge
of an RS signature. To this end, we exploit key-homomorphic signatures, which
we introduce and which seem to be of independent interest. In particular, we
use the observation that a large class of RS can easily be turned into RS admit-
ting the required key-homomorphism, to obtain a practical construction. More
precisely, besides conventional group signatures and conventional redactable sig-
natures, our approach only requires to prove a single statement demonstrating
knowledge of the relation between two RS keys or demonstrating knowledge of



the designated verifier’s secret key. For instance, in the discrete logarithm setting
when instantiating this proof using Fiat-Shamir transformed [FS86] Σ-protocols,
they are highly efficient as they only require two group exponentiations.

Related Work. Redactable signature schemes have been independently in-
troduced in [JMSW02] and [SBZ01]. Although such schemes suffer from the
aforementioned problems, we can use them as an important building block. In
particular, we will rely on the general framework for such signatures as pre-
sented in [DPSS15]. Besides that, redactable signatures with an unlinkability
property have been introduced in [CDHK15, PS15].2 Unfortunately, apart from
lacking practical efficiency, even unlinkable redactable signatures are not useful
to achieve the desired designated verifier functionality. There is a large body of
work on signatures with designated verifiers, which are discussed subsequently.
However, none of the approaches considers selective disclosure via redaction or
a group signing feature.

In designated verifier (DV) signatures (or proofs) [JSI96], a signature pro-
duced by a signer can only be validated by a single user who is designated by
the signer during the signing process (cf. [LWB05] for a refined security model).
Designation can only be performed by the signer and verification requires the
designated verifier’s secret. Thus, this concept is not directly applicable to our
setting. In [JSI96] also the by now well known “OR trick” was introduced as a
DV construction paradigm.

Undeniable signatures [CA89] are signatures that can not be verified without
the signer’s cooperation and the signer can either prove that a signature is valid
or invalid. This is not suitable for us as this is an interactive process.

Designated confirmer signatures [Cha94] introduce a third entity besides the
signer and the verifier called designated confirmer. This party, given a signature,
has the ability to privately verify it as well as to convince anyone of its validity
or invalidity. Additionally, the designated confirmer can convert a designated
confirmer signature into an ordinary signature that is then publicly verifiable.
This is not suitable for our scenario, as it is exactly the opposite of what we
require, i.e., here the signature for the confirmer is not publicly verifiable, but
the confirmer can always output publicly verifiable versions of this signature.

Another concept, which is closer to the designation functionality that we re-
quire, are universal designated verifier (UDV) signatures introduced in [SBWP03].
They are similar to designated verifier signatures, but universal in the sense that
any party who is given a publicly verifiable signature from the signer can des-
ignate the signature to any designated verifier by using the verifiers public key.
Then, the designated verifier can verify that the message was signed by the
signer, but is unable to convince anyone else of this fact. Like with ordinary DV
signatures, UDV signatures also require the designated verifier’s secret key for
verification. There are some generic results for UDV signatures. In [Ver06] it was
shown how to convert various pairing-based signature schemes into UDV signa-
tures. In [SS08] it was shown how to convert a large class of signature schemes

2 Similar to the related concept of unlinkable sanitizable signatures [BFLS10, BPS13,
FKM+16, LZCS16].



into UDV signatures. Some ideas in our second construction are conceptually
related to this generic approach. However, as we only require to prove relations
among public keys, our approach is more tailored to efficiency.

2 Preliminaries

We denote algorithms by sans-serif letters, e.g., A,B. All algorithms are assumed
to return a special symbol ⊥ on error. By y ← A(x), we denote that y is assigned
the output of the potentially probabilistic algorithm A on input x and fresh ran-
dom coins. Similarly, y←R S means that y was sampled uniformly at random
from a set S. We let [n] := {1, . . . , n}. We write Pr[Ω : E ] to denote the proba-
bility of an event E over the probability space Ω. We use C to denote challengers
of security experiments, and Cκ to make the security parameter explicit.

A function ε(·) : N→ R≥0 is called negligible, iff it vanishes faster than every
inverse polynomial, i.e., ∀ k : ∃ nk : ∀ n > nk : ε(n) < n−k.

Followingly, we recap required cryptographic building blocks. Due to space
constraints we omit formal definitions for well known primitives such as a digital
signature scheme Σ = (KeyGen,Sign,Verify) and a (non-interactive) proof system
Π = (Setup,Proof,Verify) here, and present them in Appendix A.

Redactable Signatures. Below, we recall the generalized model for redactable
signatures from [DPSS15], which builds up on [BBD+10]. As done in [DPSS15],
we do not make the structure of the message explicit. That is, we assume that
the message m to be signed is some arbitrarily structured data. We use ADM to
denote a data structure encoding the admissible redactions of some messeage m
and we use MOD to denote a data structure containing modification instructions
for some message. We use m̊ �

ADM

m to denote that a message m̊ is derivable from
a message m under ADM and m̊←−MOD m to denote that m̊ is obtained by applying
MOD to m. Likewise, we use ˚ADM←−MOD

ADM to denote the derivation of ˚ADM from
ADM with respect to MOD. We use ADM � m to denote that ADM matches m, and
MOD � ADM to denote that MOD matches ADM.

Definition 1. An RS is a tuple (KeyGen,Sign,Verify,Redact) of PPT algorithms,
which are defined as follows:

KeyGen(1κ) : Takes a security parameter κ as input and outputs a keypair (sk, pk).
Sign(sk,m, ADM) : Takes a secret key sk, a message m and admissible modifica-

tions ADM as input, and outputs a message-signature pair (m, σ) together with
some auxiliary redaction information RED.3

Verify(pk,m, σ) : Takes a public key pk, a message m, and a signature σ as input,
and outputs a bit b.

Redact(pk,m, σ,MOD, RED) : Takes a public key pk, a message m, a valid signature
σ, modification instructions MOD, and auxiliary redaction information RED

as input. It returns a redacted message-signature pair (m̊, σ̊) and an updated
auxiliary redaction information R̊ED.

3 As it is common for RS, we assume that ADM can always be recovered from (m, σ).



While we omit correctness, we recall the remaining RS security definitions below.

Definition 2 (Unforgeability). An RS is unforgeable, if for all PPT adver-
saries A there exists a negligible function ε(·) such that

Pr

[
(sk, pk)← KeyGen(1κ),
(m?, σ?)← ASign(sk,·,·)(pk)

:
Verify(pk,m?, σ?) = 1 ∧

@ (m, ADM) ∈ QSign : m? �
ADM

m

]
≤ ε(κ),

where the environment keeps track of the queries to the signing oracle via QSign.

Definition 3 (Privacy). An RS is private, if for all PPT adversaries A there
exists a negligible function ε(·) such that

Pr

 (sk, pk)← KeyGen(1κ), b←R {0, 1},
O ← {Sign(sk, ·, ·), LoRRedact(sk, pk, ·, ·, b)},
b? ← AO(pk)

: b = b?

 ≤ 1/2 + ε(κ),

where LoRRedact is defined as follows:

LoRRedact(sk, pk, (m0, ADM0,MOD0), (m1, ADM1,MOD1), b):
1: Compute ((mc, σc), REDc)← Sign(sk,mc, ADMc) for c ∈ {0, 1}.
2: Let ((m̊c, σ̊c), R̊EDc)← Redact(pk, σc,mc,MODc, REDc) for c ∈ {0, 1}.
3: If m̊0 6= m̊1 ∨ ˚ADM0 6= ˚ADM1, return ⊥.
4: Return (m̊b, σ̊b).

Here, the admissible modifications ˚ADM0 and ˚ADM1 corresponding to the redacted
messages are implicitly defined by (and recoverable from) the tuples (m̊0, σ̊0) and
(m̊1, σ̊1) and the oracle returns ⊥ if any of the algorithms returns ⊥.

We call an RS secure, if it is correct, unforgeable, and private.

Group Signatures. Subsequently, we recall the established model for static
group signatures from [BMW03]. Again, we slightly adapt the notation to ours.

Definition 4. A group signature scheme GS is a tuple (KeyGen,Sign,Verify,Open)
of PPT algorithms which are defined as follows:

KeyGen(1κ, n) : Takes a security parameter κ and the group size n as input. It
generates and outputs a group verification key gpk, a group opening key gok,
as well as a list of group signing keys gsk = {gski}i∈[n].

Sign(gski,m) : Takes a group signing key gski and a message m as input and
outputs a signature σ.

Verify(gpk,m, σ) : Takes a group verification key gpk, a message m and a signa-
ture σ as input, and outputs a bit b.

Open(gok,m, σ) : Takes a group opening key gok, a message m and a signature
σ as input, and outputs an identity i.

The GS security properties are formally defined as follows (we omit correctness).



Definition 5 (Anonymity). A GS is anonymous, if for all PPT adversaries
A there exists a negligible function ε(·) such that

Pr


(gpk, gok, gsk)← KeyGen(1κ, n),
b←R {0, 1}, O ← {Open(gok, ·, ·)},
(i?0, i

?
1,m

?, st)← AO(gpk, gsk),
σ ← Sign(gski?b ,m

?), b? ← AO(σ, st)

:
b = b? ∧

(m?, σ) /∈ QOpen
2

 ≤ ε(κ),

where A runs in two stages and QOpen
2 records the Open queries in stage two.

Definition 6 (Traceability). A GS is traceable, if for all PPT adversaries A
there exists a negligible function ε(·) such that

Pr


(gpk, gok, gsk)← KeyGen(1κ, n),
O ← {Sig(·, ·),Key(·)},
(m?, σ?)← AO(gpk, gok),
i← Open(gok,m?, σ?)

:
Verify(gpk,m?, σ?) = 1 ∧

(i = ⊥ ∨ (i /∈ QKey ∧
(i,m?) /∈ QSig))

 ≤ ε(κ),

where Sig(i,m) returns Sign(gski,m), Key(i) returns gski, and QSig and QKey

record the queries to the signing and key oracle respectively.

We call a GS secure, if it is correct, anonymous and traceable.

3 Security Model

Now we formally define signer-anonymous designated-verifier redactable signa-
ture schemes (AD-RS). To obtain the most general result, we follow [DPSS15]
and do not make the structure of the messages to be signed explicit. Inspired
by [MPV09], we view signatures output by Sign as being of the form σ = (σ, σ).
That is, signatures are composed of a public signature component σ and a private
signature component σ, where σ may also be empty. For the sake of simple pre-
sentation we model our system for static groups, since an extension to dynamic
groups [BSZ05] is straight forward.

Definition 7 (AD-RS). An AD-RS is a tuple (Setup, DVGen, Sign, GVerify,
Open, Redact, Verify, Sim) of PPT algorithms, which are defined as follows.

Setup(1κ, n) : Takes a security parameter κ and the group size n as input. It
generates and outputs a group public key gpk, a group opening key gok, and
a list of group signing keys gsk = {gski}i∈[n].

DVGen(1κ) : Takes a security parameter κ as input and outputs a designated
verifier key pair (vskj , vpkj).

Sign(gski,m, ADM) : Takes a group signing key gski, a message m, and admissible
modifications ADM as input, and outputs a signature σ.

GVerify(gpk,m, σ) : Takes a group public key gpk, a message m, and a signature
σ as input, and outputs a bit b.



Open(gok,m, σ) : Takes a group opening key gok, a message m, and a valid sig-
nature σ as input, and outputs an identity i.

Redact(gpk, vpkj ,m, σ,MOD) : Takes a group public key gpk, a designated-verifier
public key vpkj, a message m, a valid signature σ, and modification instruc-
tions MOD as input, and returns a designated-verifier message-signature pair
(m̊, ρ).

Verify(gpk, vpkj ,m, ρ) : Takes a group public key gpk, a designated-verifier public
key vpkj, a message m, and a designated-verifier signature ρ. It returns a bit
b.

Sim(gpk, vskj ,m, ADM,MOD, σ): Takes a group public key gpk, a designated-verifier
secret key vskj, a message m, admissible modifications ADM, modification in-
structions MOD, and a valid public signature component σ as input and out-
puts a designated-verifier message signature pair (m̊, ρ).

Oracles. We base our security notions on the following oracles and assume that
(gpk, gok, gsk) generated in the experiments are implicitly available to them. The
environment stores a list DVK of designated-verifier key pairs, and a set of public
signature components SIG. Each list entry and each set is initially set to ⊥.

Key(i) : This oracle returns gski.
DVGen(j) : If DVK[j] 6= ⊥ this oracle returns ⊥. Otherwise, it runs (vskj , vpkj)←

DVGen(1κ), sets DVK[j]← (vskj , vpkj), and returns vpkj .
DVKey(j) : This oracle returns vskj .
Sig(i,m, ADM) : This oracle runs σ = (σ, σ) ← Sign(gski,m, ADM), sets SIG ←

SIG ∪ {σ} and returns σ.
Open(m, σ) : This oracle runs i← Open(gok,m, σ) and returns i.
Sim(j,m, ADM,MOD, σ) : If σ /∈ SIG, this oracle returns ⊥. Otherwise, it runs

(m̊, ρ)← Sim(gpk, vskj ,m, ADM,MOD, σ) and returns (m̊, ρ).
RoS(b, j,m, ADM,MOD, σ) : If b = 0, this oracle runs (m̊, ρ)← Redact(gpk, vpkj ,m,

σ,MOD) and returns (m̊, ρ). Otherwise, it uses the Sim oracle to obtain (m̊, ρ)←
Sim(j,m, ADM,MOD, σ) and returns (m̊, ρ).

Ch(i, j, (m0, ADM0,MOD0), (m1, ADM1,MOD1), b) : This oracle runs σc ← Sign(gski,
mc, ADMc), (m̊c, ρc) ← Redact(vpkj ,mc, σc,MODc), for c ∈ {0, 1}. If m̊0 6=
m̊1 ∨ ˚ADM0 6= ˚ADM1, it returns ⊥ and (m̊b, σb, ρb) otherwise.4

The environment stores the oracle queries in lists. In analogy to the oracle labels,
we use QKey,QDVGen,QDVKey,QSig,QOpen,QSim,QRoS, and QCh to denote them.

Security Notions. We require AD-RS to be correct, group unforgeable, desig-
nated-verifier unforgeable, simulatable, signer anonymous, and private.

Correctness guarantees that all honestly computed signatures verify correctly.
Formally, we require that for all κ ∈ N, for all n ∈ N, for all (gpk, gok, gsk)←

Setup(1κ, n), for all (vskj , vpkj)← DVGen(1κ), for all (vsk`, vpk`)← DVGen(1κ),
for all (m, ADM,MOD) where MOD � ADM ∧ ADM � m, for all (m′, ADM

′,MOD
′) where

MOD
′ � ADM

′ ∧ ADM
′ � m′ for all i ∈ [n], for all σ = (σ, σ)← Sign(gski,m, ADM),

4 Here ˚ADM0 and ˚ADM1 are derived from ADM0 and ADM1 with respect to MOD0 and MOD1.



for all u← Open(gok,m, σ), for all (m̊, ρ)← Redact(gpk, vpkj ,m, σ,MOD), for all
(m̊′, ρ′)← Sim(gpk, vsk`,m

′, ADM
′,MOD

′, σ), it holds with overwhelming probabil-
ity that GVerify(gpk,m, σ) = 1 ∧ i = u ∧ Verify(gpk, vpkj , m̊, ρ) = 1 ∧ Verify(
gpk, vpk`, m̊

′, ρ′) = 1 and that m̊←−MOD m ∧ m̊′ ←−MOD
′

m′.

Group unforgeability captures the intuition that the only way of obtaining valid
signatures on messages is by applying “allowed” modifications to messages which
were initially signed by a group member. Moreover, this property guarantees that
every valid signature can be linked to the original signer by some authority.

Technically, the definition captures the traceability property of group signa-
tures while simultaneously taking the malleability of RS into account.

Definition 8. An AD-RS is group unforgeable, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr


(gpk, gok, gsk)← Setup(1κ, n),
O ← {Sig(·, ·, ·),Key(·)},
(m?, σ?)← AO(gpk, gok),
u← Open(gok,m?, σ?)

:
GVerify(gpk,m?, σ?) = 1 ∧

(u = ⊥ ∨ (u /∈ QKey ∧
@(u,m, ADM) ∈ QSig : m? �

ADM

m))

 ≤ ε(κ).

Designated-verifier unforgeability models the requirement that a designated-
verifier signature can only be obtained in two ways: either by corretly redacting
a signature (which can be done by everybody having access to the latter), or
by having access to the secret key of the designated verifier. The former op-
tion would be chosen whenever a signature is to be legitimately forwarded to a
receiver, while the latter enables the designated verifier to fake signatures.

Together with the previous definition, designated-verifier unforgeability guar-
antees that no adversary can come up with a designated-verifier signature for a
foreign public key: by Definition 8 it is infeasible to forge a signature—and Def-
inition 9 states that the only way of generating a designated-verifier signature
for somebody else is to know a valid signature to start from.

Definition 9. An AD-RS is designated-verifier unforgeable, if there exists a
PPT opener O = (O1, O2) such that for every PPT adversary A there is a
negligible function ε1(·) such that∣∣∣∣∣Pr

[
(gpk, gok, gsk)← Setup(1κ, n) : A(gpk, gok, gsk) = 1

]
−

Pr
[
(gpk, gok, gsk, τ)← O1(1κ, n) : A(gpk, gok, gsk) = 1

] ∣∣∣∣∣ ≤ ε1(κ),

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr


(gpk, gok, gsk, τ)← O1(1κ, n),
O ← {Sig(·, ·, ·),Key(·),
DVGen(·),DVKey(·),
Sim(·, ·, ·, ·, ·)},
(m?, ρ?, v?)← AO(gpk, gok),
u← O2(τ, DVK,m?, ρ?, v?)

:

Verify(gpk, vpkv? ,m
?, ρ?) = 1 ∧

v? /∈ QDVKey ∧
∧ (u = ⊥ ∨ (u /∈ QKey ∧

@(u,m, ADM) ∈ QSig : m? �
ADM

m)) ∧
@(v?,m, ADM, ·, ·) ∈ QSim : m? �

ADM

m)

 ≤ ε2(κ).



In our definition, we assume a simple key registration for designated verifiers
to ensure that all designated-verifier key pairs have been honestly created and
thus an adversary is not able to mount rogue key attacks. In practice, this re-
quirement can often be alleviated by introducing an option to check the honest
generation of the keys (cf. [RY07]), which we omit for simplicity.

Simulatability captures that designated verifiers can simulate signatures on arbi-
trary messages which are indistinguishable from honestly computed signatures.

Definition 10. An AD-RS satisfies the simulatability property, if for all PPT
adversaries A there is a negligible function ε(·) such that it holds that

Pr



(gpk, gok, gsk)← Setup(1κ, n), b←R {0, 1},
O ← {DVGen(·),DVKey(·)},
((m0, ADM0,MOD0), (m1, ADM1),
i?, j?, st)← AO(gpk, gok, gsk),
σ = (σ, σ)← Sign(gski? ,mb, ADMb),
(m̊0, ρ)← RoS(b, j?,m0, ADM0,MOD0, σ),
b? ← AO(σ, m̊0, ρ, st)

:
b = b? ∧

ADM0 � m0 ∧
ADM1 � m1


≤ 1/2 + ε(κ).

As mentioned earlier, we assume that signatures consist of a private and a public
component (the latter being denoted by σ). To eliminate potential privacy issues
associated with a public σ, we also give σ as input to the simulator and the
adversary, and require that the adversary cannot tell real and faked signatures
apart even when knowing σ. This way, our definitional framework guarantees
that these parts do not contain any sensitive information.

In a realization of the system, the public parts of all signatures issued by the
hospital would be made publicly available (without further meta-information).

Signer anonymity requires that only the opening authority can determine the
identity of a signer.

Definition 11. An AD-RS is signer anonymous, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr


(gpk, gok, gsk)← Setup(1κ, n),
b←R {0, 1},O ← {Open(·, ·)},
(i?0, i

?
1,m

?, ADM
?, st)← AO(gpk, gsk),

σ ← Sign(gski?b ,m
?, ADM

?),

b? ← AO(σ, st)

:

b = b? ∧
@(m, (σ, ·)) ∈ QOpen

2 :
m �

ADM

m?

 ≤ 1/2 + ε(κ),

and A runs in two stages and QOpen
2 records queries to oracle Open in stage two.

The definition guarantees that—no matter how many signatures already have
been opened—the signers’ identities for all other signatures remain secret. The
formulation is, up to the last clause of the winning condition, similar to the
anonymity definition of group signature schemes (cf. Definition 5). We, how-
ever, need to adapt the last clause because Definition 5 requires signatures to be



non-malleable. In contrast, our signatures are malleable by definition. However,
we can still require parts of the signature, and in particular the public part, to
be non-malleable. By doing so, we can achieve a strong notion that resembles
anonymity in the sense of group signatures whenever honestly generated signa-
tures have different public components with overwhelming probability. This is
in particular the case for our instantiations provided in the next sections.

Privacy guarantees that a redacted designated-verifier signature does not leak
anything about the blacked-out parts of the original message.

Definition 12. An AD-RS is private, if for all PPT adversaries A there is a
negligible function ε(·) such that

Pr

 (gpk, gok, gsk)← Setup(1κ, n), b←R {0, 1},
O ← {Sig(·, ·, ·),Ch(·, ·, ·, ·, b)},
b? ← AO(gpk, gok, gsk)

: b = b?

 ≤ 1/2 + ε(κ).

We call an AD-RS secure, if it is correct, group unforgeable, designated-verifier
unforgeable, simulatable, signer anonymous, and private.

Group Redactable Signatures. When omitting the DV-related notions and
oracles, one directly obtains a definition of group redactable signatures, which
may also be useful for applications that require revocable signer-anonymity.

4 A Generic Construction

Now we present a simple generic construction which can be built by combining
any GS, any RS, and any Π that admits proofs of knowledge in a black-box way.
In Scheme 1 we present our construction which follows the intuition given in the
introduction. We use Π to prove knowledge of a witness for the following NP
relation R required by the verification of designated-verifier signatures.

((m, pk, vpkj), (σR, σV)) ∈ R ⇐⇒
RS.Verify(pk,m, σR) = 1 ∨ Σ.Verify( vpkj ,m, σV) = 1.

The rationale behind choosing R in this way is that this yields the most general
result. That is, no further assumptions on RS or Σ are required.

Theorem 1 (proven in Appendix B). If GS, RS, and Σ are secure and Π
is witness indistinguishable and admits proofs of knowledge, then Scheme 1 is
secure.

For an instantiation of our construction we can use standard GS and standard RS,
where multiple practically efficient instantiations exist. Thus, the time required
for signature creation/verification is mainly determined by the cost of the proof
of knowledge of the RS signature σR. We, however, want to emphasize that—
depending on the concrete RS—this proof can usually be instantiated by means
of relatively cheap Σ-protocols. Ultimately, as we will show below, we can replace
this proof with a much cheaper proof by exploiting properties of the used RS.



Setup(1κ, n) : Run (gpk, gok, gsk) ← GS.KeyGen(1κ, n), crs ← Π.Setup(1κ), set
gpk′ ← (gpk, crs) and return (gpk′, gok, gsk).

DVGen(1κ) : Run (vskj , vpkj)← Σ.KeyGen(1κ) and return (vskj , vpkj).

Sign(gski,m, ADM) : Run (sk, pk) ← RS.KeyGen(1κ) and return σ = (σ, σ) ← ((pk, σG),
(σR,RED)), with

σG ← GS.Sign(gski, pk), and ((m, σR), RED)← RS.Sign(sk,m, ADM).

GVerify(gpk,m, σ) : Parse σ as ((pk, σG), (σR, ·)) and return 1 if the following holds
and 0 otherwise:

GS.Verify(gpk, pk, σG) = 1 ∧ RS.Verify(pk,m, σR) = 1.

Open(gok,m, σ) : Parse σ as ((pk, σG), σ) and return GS.Open(gok, pk, σG).

Redact(gpk, vpkj ,m, σ,MOD) : Parse σ as ((pk, σG), (σR, RED)) and return (m̊, ρ), where

((m̊, σ̊R), ·)← RS.Redact(pk,m, σR,MOD, RED),

π ← Π.Proof(crs, (m̊, pk, vpkj), (̊σR,⊥)), and

ρ← ((pk, σG), π).

Verify(gpk, vpkj ,m, ρ) : Parse ρ as ((pk, σG), π) and return 1 if the following holds, and
0 otherwise:

GS.Verify(gpk, pk, σG) = 1 ∧ Π.Verify(crs, (m, pk, vpkj), π) = 1.

Sim(gpk, vskj ,m, ADM,MOD, σ) : If MOD � ADM ∧ ADM � m, parse σ as (pk, σG), run
m̊←−MOD m, and return (m̊, ρ), where

σV ← Σ.Sign(vskj , m̊),

π ← Π.Proof(crs, (m̊, pk, vpkj), (⊥, σV)), and

ρ← (σ, π).
Otherwise, return ⊥.

Scheme 1: Black-Box AD-RS

5 Boosting Efficiency via Key-Homomorphisms

In [DPSS15] it is shown that RS can be generically constructed from any EUF-
CMA secure signature scheme and indistinguishable accumulators [DHS15]. In
our setting it is most reasonable to consider messages as an (ordered) sequence
of message blocks. A straight forward solution would thus be to build upon
[DPSS15, Scheme 2], which is tailored to signing ordered sequences of messages
m = (m1, . . . ,mn). Unfortunately, this construction aims to conceal the number
of message blocks in the original message, and the positions of the redactions.
This can be dangerous in our setting, since it might allow to completely change
the document semantics. Besides that, it inherently requires a more complex
construction.



To this end, we pursue a different direction and require another message rep-
resentation: we make the position i of the message blocks mi in the message
explicit and represent messages as sets m = {1||m1, . . . , n||mn}. Besides solv-
ing the aforementioned issues, it also allows us to build upon the (simpler) RS
paradigm for sets [DPSS15, Scheme 1]. This paradigm subsumes the essence of
many existing RSs and works as follows. Secret keys, public keys, and signatures
are split into two parts each. One corresponds to the signature scheme Σ, and
one corresponds to the accumulator Λ. Then, Λ is used to encode the message,
whereas Σ is used to sign the encoded message. Consequently, we can look at RS
key pairs and signatures as being of the form (sk, pk) = ((skΣ, skΛ, pkΛ), (pkΣ,
pkΛ)) and σR = (σΣ, σΛ) where the indexes denote their respective types. We
emphasize that for accumulators it holds by definition that skΛ is an optional
trapdoor which may enable more efficient computations, but all algorithms also
run without skΛ and the output distribution of the algorithms does not depend
on whether the algorithms are executed with or without skΛ [DHS15, DPSS15].
We require this property to be able to create designated verifier signatures (cf.
Sim) and use (skΣ,⊥, pkΛ) to denote an RS secret key without skΛ.

RS following this paradigm only require Σ (besides correctness) to be EUF-
CMA secure. We observe that additional constraints on Σ—and in particular the
key-homomorphism as we define it below—does not influence RS security, while
it enables us to design the relation R such that it admits very efficient proofs.

Key-Homomorphic Signatures. Informally, we require signature schemes
where, for a given public key and a valid signature under that key, one can
adapt the public key and the signature so that the resulting signature is valid
with respect to the initial message under the new public key. Moreover, adapted
signatures need to be identically distributed as fresh signatures under the secret
key corresponding to the adapted public key.

Key-malleability in the sense of adapting given signatures to other signa-
tures under related keys has so far mainly been studied in context of related-key
attacks (RKAs) [BCM11], where one aims to rule out such constructions. Signa-
tures with re-randomizable keys which allow to consistently update secret and
public keys, but without considering adaption of existing signatures, have re-
cently been introduced and studied in [FKM+16]. As we are not aware of any
constructive use of and definitions for the functionality we require, we define
key-homomorphic signatures inspired by key-homomorphic symmetric encryp-
tion (cf. [AHI11]).

Let Σ = (KeyGen,Sign,Verify) be an EUF-CMA secure signature scheme
where the secret and public keys live in groups (H,+) and (G, ·), respectively.
Inspired by the definition for encryption schemes in [TW14], we define the fol-
lowing.

Definition 13 (Secret-Key to Public-Key Homomorphism). A signature
scheme Σ provides a secret-key to public-key homomorphism, if there exists an
efficiently computable map µ : H → G such that for all sk, sk′ ∈ H it holds that
µ(sk + sk′) = µ(sk) · µ(sk′), and for all (sk, pk) output by KeyGen, it holds that
pk = µ(sk).



Now, we define key-homomorphic signatures, where we focus on the class of func-
tions Φ+ representing linear shifts. We stress that Φ+ is a finite set of functions,
all with the same domain and range, and, in our case depends on the public key
of the signature scheme (which is not made explicit). Moreover, Φ+ admits an
efficient membership test and its functions are efficiently computable.

Definition 14 (Φ+-Key-Homomorphic Signatures). A signature scheme is
called Φ+-key-homomorphic, if it provides a secret-key to public-key homomor-
phism and an additional PPT algorithm Adapt, defined as:

Adapt(pk,m, σ,∆) : Takes a public key pk, a message m, a signature σ, and a
function ∆ ∈ Φ+ as input, and outputs a public key pk′ and a signature σ′,

where for all ∆ ∈ Φ+, all (sk, pk) ← KeyGen(1κ), all messages m, all σ ←
Sign(sk,m), all (pk′, σ′) ← Adapt(pk,m, σ,∆) it holds that Verify(pk′,m, σ′) = 1
and pk′ = ∆(pk).

For simplicity we sometimes identify a function ∆ ∈ Φ+ with its “shift amount”
∆ ∈ H. To model that freshly generated signatures look identical as adapted
signatures on the same message, we introduce the following additional property.

Definition 15 (Adaptability of Signatures). A Φ+-key-homomorphic sig-
nature scheme provides adaptability of signatures, if for every κ ∈ N, and every
message m, it holds that Adapt(pk,m,Sign(sk,m), ∆) and (pk · µ(∆),Sign(sk +
∆,m)) as well as (sk, pk) and (sk′, µ(sk′)) are identically distributed, where (sk,
pk)← KeyGen(1κ), sk′←R H, and ∆←R Φ+.

For an in-depth treatment and examples of key-homomorphic signatures, we re-
fer the reader to a more recent work [DS16b]. The important bottom-line here
is that there are various efficient schemes that satisfy Definition 15. For in-
stance, Schnorr signatures [Sch91], BLS signatures [BLS04], the recent scheme
by Pointcheval and Sanders [PS16] or Waters signatures [Wat05].

Φ+-Key-Homomorphic Redactable Signature Schemes. When instanti-
ating the RS construction paradigm from [DPSS15] (as outlined above) with a
Φ+-key-homomorphic signature scheme, the key homomorphism of the signa-
ture scheme straight-forwardly carries over to the RS and we can define Adapt
as follows.

Adapt(pk,m, σ,∆) : Parse pk as (pkΣ, pkΛ) and σ as (σΣ, σΛ), run (pk′Σ, σ
′
Σ) ←

Adapt(pkΣ, Λ(m), σΣ, ∆) and return (pk′, σ′)← ((pk′Σ, pkΛ), (σ′Σ, σΛ)).

This allows us to concisely present our construction in Scheme 2. The NP re-
lation, which needs to be satisfied by valid designated-verifier signatures is as
follows.

((pk, vpkj), (sk, vskj)) ∈ R ⇐⇒ pk = µ(sk) ∨ Σ.VKey(vskj , vpkj) = 1.

In the discrete logarithm setting such a proof requires an OR-Schnorr proof of
two discrete logs, i.e., only requires two group exponentiations.



Redact(gpk, vpkj ,m, σ,MOD) : Parse σ as ((pk, σG), (σR, RED)) and return (m̊, ρ), where

sk′←R H, pk′ ← µ(sk′), (pkR, σ
′
R)← Adapt(pk,m, σR, sk′),

((m̊, σ̊′R), ·)← RS.Redact(pkR,m, σ
′
R,MOD, RED),

π ← Π.Proof(crs, (pk′, vpkj), (sk′,⊥)), and ρ← ((pk, σG), pk′, σ̊′R, π).

Verify(gpk, vpkj ,m, ρ) : Parse ρ as ((pk, σG), pk′, σ̊′R, π), let pk = (pkΣ, pkΛ), compute
pkR ← (pkΣ · pk′, pkΛ) and return 1 if the following holds, and 0 otherwise:

GS.Verify(gpk, pk, σG) = 1 ∧ Π.Verify(crs, (pk′, vpkj), π) = 1

∧ RS.Verify(pkR,m, σ̊
′
R) = 1.

Sim(gpk, vskj ,m, ADM,MOD, σ) : If MOD � ADM ∧ ADM � m, parse σ as ((pkΣ, pkΛ), σG)
and return (m̊, ρ), where

skΣ
R←

R H, pkΣ
R ← µ(skΣ

R), pk′ ← pk−1
Σ · pkΣ

R,

((m, σ′R), RED)← RS.Sign((skΣ
R,⊥, pkΛ),m, ADM),

((m̊, σ̊′R), ·)← RS.Redact((pkΣ
R, pkΛ),m, σ′R,MOD, RED),

π ← Π.Proof(crs, (pk′, vpkj), (⊥, vskj)), and ρ← (σ, pk′, σ̊′R, π).

Scheme 2: Semi-Black-Box AD-RS where Setup, DVGen, Sign, GVerify, and Open
are as in Scheme 1.

Theorem 2 (proven in Appendix C). If GS is secure, RS is an adaptable RS
following [DPSS15, Scheme 1], Σ is secure, and Π is weakly simulation sound
extractable, then Scheme 2 is also secure.

5.1 Performance Overview

In this section we evaluate the practical efficiency of Scheme 2. We first assess
the practicality of the underlying components and then analyze the overhead
imposed by the provably provided strong security guarantees.

Group Signatures. It is well known that there exist multiple practically efficient
group signature schemes for non-constrained devices such as standard PCs or
even more powerful machines in the cloud. Yet, to adequately protect the doctor’s
group signing key—which is the only key that persists over multiple signing
operations—it might make sense to compute the doctor’s group signature σG

on the one-time RS public key pk upon Sign on some dedicated signature token
such as a smart card or smart phone. Using the estimations in [DS16a], such a
signature can be computed in ≈ 1s on an ARM Cortex-M0+, a processor that
is small enough to be employed in smart cards. While this is already acceptable,
the performance on smart phones will even be significantly better. For instance,
[CDDT12] report execution times of approximately 150ms for the computation
of a group signature with the well-known BBS [BBS04] scheme on a by now
rather outdated smart phone.



Key-Homomorphic Redactable Signatures. We first note that the RS keys are
freshly generated and the secret keys can be deleted after each signing opera-
tion. The respective operations can therefore be directly executed on the doctor’s
PC, potentially even in parallel to the computation of the group signature. Since
we are not aware of any performance evaluation of RS on standard PCs, we im-
plemented one possible instantiation of [DPSS15, Scheme 1]. In particular, we
based our RS implementation on Schnorr signatures and the indistinguishable
t-SDH accumulator from [DHS15] without further optimizations regarding effi-
ciency. In Table 1, we present our performance results on an Intel Core i7-4790 @
3.60GHz with 8GB of RAM, running Java 1.8.0 91 on top of Ubuntu 16.04. Each
value represents the mean of 100 consecutive executions. These results confirm
that the required RS paradigm is perfectly suited for our application.

Sign Verify Redact Verify (after Redact)

73.1ms 886.3ms 0.1ms 450.3ms

Table 1. RS timings in milliseconds, with a number of n = 100 message blocks, 50%
admissibly redactable blocks and 25% of the blocks being redacted upon Redact.

Additional Computations. Using Schnorr signatures, one only needs two group
exponentiations for the proof of knowledge5; the adaption of the signature only
requires a Zp operation, which, compared to the group exponentiations, can be
neglected. All in all, the additional computations can thus be ignored compared
to those of GS and RS6, even on very constrained devices such as [UW14].

Signature Size. Regarding signature size, the dominant part is the size of the RS
public key and signature, respectively, which is in turn determined by the choice
of the accumulator. In particular, when instantiating the RS with an accumulator
having constant key size and supporting batch verification, one can even obtain
constant size signatures. We refer the reader to [DPSS15] for a discussion on RS
signature sizes and [DHS15] for an overview of suitable accumulators.

6 Conclusion

We introduce the notion of signer-anonymous designated-verifier redactable sig-
natures, extending redactable signatures in their vanilla form in several impor-
tant directions. These additional features are motivated by a real world use-case

5 The results of [FKMV12] confirm that one can use Fiat-Shamir transformed Σ-
protocols in the discrete log setting as simulation sound extractable (and therefore
weakly simulation sound extractable) proof system when including the statement x
upon computing the hash for the challenge.

6 This is underpinned by the results in Table 1, where O(n) exponentiations happen.



in the health care field, demonstrating its practical relevance. Besides rigorously
modelling this primitive, we provide two instantiations. While both are interest-
ing from a theoretical point of view, the latter is also interesting in practice. In
particular, due to using key-homomorphic signatures as we introduce them in
this paper, we obtain a simple and practically efficient solution.
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and perfectly unlinkable sanitizable signatures without group signatures. In
EuroPKI 2013, 2013.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signa-
tures: The case of dynamic groups. In CT-RSA, 2005.

[CA89] David Chaum and Hans Van Antwerpen. Undeniable signatures. In
CRYPTO, 1989.
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A Definitions and Security Notions

Digital Signatures. Subsequently, we recall a definition of signatures.

Definition 16. A signature scheme Σ is a triple (KeyGen, Sign,Verify) of PPT
algorithms, which are defined as follows:

KeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs
a secret (signing) key sk and a public (verification) key pk with associated
message space M (we may omit to mention the message space M).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈ M as
input and outputs a signature σ.

Verify(pk,m, σ) : This algorithm takes a public key pk, a message m ∈M and a
signature σ as input and outputs a bit b ∈ {0, 1}.

In addition, we require an algorithm VKey(·, ·), which checks whether a key
pair is a valid output of KeyGen, i.e., for any (sk, pk) ← KeyGen(1κ) we have
VKey(sk, pk) = 1. Besides correctness, Σ needs to be existentially unforgeable
under adaptively chosen message attacks (EUF-CMA). Subsequently, we formally
recall the definition of EUF-CMA security.

Definition 17 (EUF-CMA). A signature scheme Σ is EUF-CMA secure, if for
all PPT adversaries A there is a negligible function ε(·) such that[

(sk, pk)← KeyGen(1κ),
(m?, σ?)← ASign(sk,·)(pk)

:
Verify(pk,m?, σ?) = 1 ∧

m? /∈ QSign

]
≤ ε(κ),

where the environment keeps track of the queries to the signing oracle via QSign.

We call a signature scheme secure, if it is correct and provides EUF-CMA security.

Non-Interactive Proof Systems. Now, we recall a standard definition of non-
interactive proof systems (Π). Our definitions are inspired by [Gro06]. Therefore,
let LR be an NP-language with witness relation R defined as LR = {x | ∃ w :
R(x,w) = 1}.

Definition 18. A non-interactive proof system Π is a tuple of algorithms (Setup,
Proof, Verify), which are defined as follows:

Setup(1κ) : This PPT algorithm takes a security parameter κ as input, and
outputs a common reference string crs.

Proof(crs, x, w) : This algorithm takes a common reference string crs, a state-
ment x, and a witness w as input, and outputs a proof π.

Verify(crs, x, π) : This PPT algorithm takes a common reference string crs, a
statement x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

If, in addition, if algorithm Proof runs in polynomial time, then we talk about
a non-interactive witness-indistinguishable argument system. We require Π to
be complete, sound, and adaptively witness-indistinguishable. Subsequently, we
recall formal definition of those properties.



Definition 19 (Completeness). A non-interactive proof system Π is com-
plete, if for every adversary A it holds that

Pr

[
crs← Setup(1κ), (x?, w?)← A(crs),
π ← Proof(crs, x?, w?)

:
Verify(crs, x?, π) = 1

∧ (x?, w?) ∈ R

]
= 1.

Definition 20 (Soundness). A non-interactive proof system Π is sound, if for
every PPT adversary A there is a negligible function ε(·) such that

Pr

[
crs← Setup(1κ), (x?, π?)← A(crs) :

Verify(crs, x?, π?) = 1
∧ x? /∈ LR

]
≤ ε(κ).

If ε = 0, we have perfect soundness.

Definition 21 (Adaptive Witness-Indistinguishability). A non-interactive
proof system Π is adaptively witness-indistinguishable, if for every PPT adver-
sary A there is a negligible function ε(·) such that

Pr
[
crs← Setup(1κ), b←R {0, 1}, b? ← AP(crs,·,·,·,b)(crs) : b = b?

]
≤ ε(κ),

where P(crs, x, w0, w1, b) := Proof(crs, x, wb), and P returns ⊥ if (x,w0) /∈
R ∨ (x,w1) /∈ R.

If ε = 0, we have perfect adaptive witness-indistinguishability.

Definition 22 (Adaptive Zero-Knowledge). A non-interactive proof system
Π is adaptively zero-knowledge, if there exists a PPT simulator S = (S1,S2)
such that for every adversary A there is a negligible function ε(·) such that∣∣∣∣∣∣

Pr
[
crs← Setup(1κ) : AP(crs,·,·)(crs) = 1

]
−

Pr
[
(crs, τ)← S1(1κ) : AS(crs,τ,·,·)(crs) = 1

]
∣∣∣∣∣∣ ≤ ε(κ),

where, τ denotes a simulation trapdoor. Thereby, P and S return ⊥ if (x,w) /∈ R
or π ← Proof(crs, x, w) and π ← S2(crs, τ, x), respectively, otherwise.

If ε = 0, we have perfect adaptive zero-knowledge. It is easy to show that adap-
tive zero-knowledge implies adaptive witness indistinguishability.

Definition 23 (Proof of Knowledge). A non-interactive proof system Π ad-
mits proofs of knowledge, if there exists a PPT extractor E = (E1,E2) such that
for every PPT adversary A there is a negligible function ε1(·) such that∣∣∣∣∣Pr

[
crs← Setup(1κ) : A(crs) = 1

]
−

Pr
[
(crs, ξ)← E1(1κ) : A(crs) = 1

] ∣∣∣∣∣ ≤ ε1(κ),

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr

[
(crs, τ)← E1(1κ), (x?, π?)← A(crs),
w ← E2(crs, ξ, x?, π?)

:
Verify(crs, x?, π?) = 1 ∧

(x?, w) /∈ R

]
≤ ε2(κ).



Definition 24 (Weak Simulation Sound Extractability). An adaptively
zero-knowledge non-interactive proof system Π is weakly simulation sound ex-
tractable, if there exists a PPT extractor E = (S,E) such that for every adversary
A it holds that ∣∣∣∣∣Pr

[
(crs, τ)← S1(1κ) : A(crs, τ) = 1

]
−

Pr
[
(crs, τ, ξ)← S(1κ) : A(crs, τ) = 1

] ∣∣∣∣∣ = 0,

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr

 (crs, τ, ξ)← S(1κ),
(x?, π?)← AS(crs,τ,·)(crs),
w ← E(crs, τ, ξ, x?, π?)

:
Verify(crs, x?, π?) = 1 ∧

(x?, ·) /∈ QS ∧ (x?, w) /∈ R

 ≤ ε2(κ),

where S(crs, τ, x) := S2(crs, τ, x) and QS keeps track of the queries to and answers
of S.

B Proof of Theorem 1

We show that Theorem 1 holds by proving Lemma 1-6.

Lemma 1. If GS is correct, RS is correct, Σ is correct, and Π is complete, then
Scheme 1 is also correct.

Lemma 1 straight-forwardly follows from inspection; the proof is omitted.

Lemma 2. If GS is traceable and RS is unforgeable, then Scheme 1 is group
unforgeable.

Proof. We construct efficient reductionsRt andRu turning an efficient group un-
forgeability adversary Agu, into an efficient adversary (1) At against traceability
of GS, or (2) Au against unforgeability of the RS.

(1) Rt obtains (gpk, gok) from a GS traceability challenger Ct
κ, completes the

setup as in the real game, and starts Agu on (gpk′, gok). Sig queries are simulated
by obtaining the group signature σG using the Sig oracle provided by Ct

κ and
running the remaining Sign algorithm as in the original protocol. Key queries
are simply forwarded to Ct

κ. Eventually, Agu outputs a forgery (m?, σ?) which
is opened to signer index u (recall that σ? = ((pk, σG), (σR,RED)). If u exists
(u 6= ⊥), and Agu either requested gsku or a group signature on pk for u (i.e.,
u ∈ QKey ∨ (u, pk) ∈ QSign), we abort as we are in the other case. Otherwise,
we output (pk, σG) as a valid forgery for traceability of GS.



(2) Ru runs the setup as in the real game and starts Agu on (gpk′, gok). On
each Sig query, Ru engages with an RS unforgeability challenger Cu

κ, obtains
pk and computes the RS signature using the Sign oracle provided by Cu

κ. The
remaining simulation is performed as in the original scheme. Eventually, Agu

outputs a forgery (m?, σ?) which is opened to signer index u (recall that σ? =
((pk, σG), (σR,RED)). If u does not exist (u = ⊥), or u exists and Agu neither
requested gsku nor a group signature on pk for u (i.e., u /∈ QKey ∧ (u, pk) /∈ QSign)
we abort as we are in the other case. Otherwise, we know that we have a valid
RS signature on m? under pk which is not derivable from any queried message
(i.e., @ (u,m, ADM) ∈ QSig : m? �

ADM

m) and we can output (m?, σR) as an RS forgery.

Overall Bound. The simulations in both reductions are indistinguishable from a
real game. In front of an adversary we randomly guess the adversary’s strategy,
inducing a loss of 1/2. Our reduction for a Type 1 forger always succeeds if the
adversary succeeds, whereas our reduction for Type 2 succeeds with a probability
of 1/q, where q ≤ poly(κ) is the number of queries to the Sig oracle. Overall, this
means that the probability to break group unforgeability is upper-bounded by
2 ·max{εgu(κ), q · εp(κ)}. ut

Lemma 3. If Π admits proofs of knowledge, Σ is EUF-CMA secure, and Scheme 1
is group unforgeable, then Scheme 1 is also designated-verifier unforgeable.

Proof. We bound the probability to break designated-verifier unforgeability. We
start by defining our opener O = (O1, O2).

O1(1κ, n) : Run (gpk, gok, gsk) ← GS.KeyGen(1κ, n), (crs, τ) ← Π.E1(1κ), set
gpk′ ← (gpk, crs), τ ′ ← (gpk′, gok, gsk, τ) and return (gpk′, gok, gsk, τ ′).

O2(τ, DVK,m?, ρ?) : Parse σ as ((pk, σG), σ) and return u ← GS.Open(gok,
pk, σG).

The tuple (gpk′, gok, gsk) contained in the output of O1 is computationally indis-
tinguishable from the output of Setup under the extraction-CRS indistinguisha-
bility of the proof system.

What remains is to show that—using O—the success probability of every
PPT adversary in the designated-verifier unforgeability game is negligible in
the security parameter. We do so by using a sequence of games, where we let
q ≤ poly(κ) be the number of queries to the DVGen oracle.

Game 0: The original designated-verifier-unforgeability game.
Game 1: As Game 0, but we modify O1 as follows. We use Cgu

κ to denote a
group unforgeability challenger.

O1(1κ, n) : Run (gpk, gok)← Cgu
κ , set gsk← ⊥ , (crs, τ) ← Π.E1(1κ), set

gpk′ ← (gpk, crs), τ ′ ← (gpk′, gok, gsk, τ) and return (gpk′, gok, gsk, τ ′).

Then, we simulate all queries to Sig and Key by forwarding them to Cgu
κ .

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].



Game 2: As Game 1, but we guess the index v? that the adversary will attack.
Transition - Game 1 → Game 2: The success probability in Game 2 is the same

as in Game 1, unless our guess is wrong. That is Pr[S2] = Pr[S1] · 1/q.
Game 3: As Game 2, but in the query to DVGen for user v? we engage with

an EUF-CMA challenger Cf
κ, obtain a public key pk and return vpkv? ← pk.

Furthermore, the queries to Sim for user v? are simulated without vskv? by
using the Sign oracle provided by Cf

κ.
Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S3] = Pr[S2].
Game 4: As Game 3, but for every output of the adversary, we obtain (σR, σV)←

Π.E2(crs, τ, (m?, pk, vpkv?), π). If the extractor fails, we abort.
Transition - Game 3 → Game 4: The success probability in Game 2 is the same

as in Game 1, unless the extractor fails, i.e., |Pr[S3]− Pr[S4]| ≤ εext2(κ).

In Game 4 we have two possibilities if A outputs a valid forgery.

1. We extract a signature σR such that RS.Verify(pk,m?, σR) = 1. Since, our
implementation of O1 does the same as what is done in Open and we have
that (u = ⊥ ∨ (u /∈ QKey ∧ @(u,m, ADM) ∈ QSig : m? �

ADM

m)) by definition, we
can compose σ ← ((pk, σG), (σR,⊥)) and return (m?, σ) to Cgu

κ as a forgery
for the group unforgeability game.

2. We extract a signature σV such that Σ.Verify(vpkv? ,m
?, σV) = 1. By defini-

tion, we have that v? /∈ QDVKey ∧ @(v?,m, ADM, ·, ·) ∈ QSim : m? �
ADM

m). Since
m? �

ADM

m also includes the identity, i.e., the case where m? = m, we know that
m? was never queried to the signing oracle provided by Cf

κ and we can output
(m?, σV) as a valid EUF-CMA forgery.

The union bound yields Pr[S4] ≤ εgu(κ) + εf(κ). Furthermore, we have that
Pr[S4] = Pr[S3] · (1 − εext2(κ)), that Pr[S3] = Pr[S2] = Pr[S1] · 1/q, and that
Pr[S0] = Pr[S1]. All in all this yields Pr[S0] ≤ q · (εgu(κ) + εf(κ) + εext2(κ)),
which proves the lemma. ut

Lemma 4. If Π is witness indistinguishable, then Scheme 1 is simulatable.

Proof. We show that the output in the simulatability game is (computationally)
independent of the bit b.

Game 0: The original simulatability game (σ is already independent of b).
Game 1: As Game 0, but we obtain crs for the Π upon Setup from a witness

indistinguishability challenger Cwi
κ instead of internally generating it.

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].
Game 2: As Game 1, but instead of executing Redact inside RoS, we exe-

cute the modified algorithm Redact′ with additional input vskj , which ad-

ditionally computes σV ← Σ.Sign(vskj , m̊) and then computes π as π ←
Π.Proof(crs, (m̊, pk, vpkj), (⊥, σV) ).

Transition - Game 1 → Game 2: A distinguisher D1→2 is a distinguisher for
adaptive witness indistinguishability of the Π, i.e., |Pr[S3]−Pr[S2]| ≤ εwi(κ).



In Game 2, Redact′ and Sim are identical, i.e., RoS is independent of b. Thus,
the adversary has no advantage in winning the game, i.e., Pr[S2] = 1/2, which
yields Pr[S0] ≤ 1/2 + εwi(κ). ut

Lemma 5. If GS is anonymous and RS is unforgeable, then Scheme 1 is signer
anonymous.

Proof. We construct an efficient reduction R which turns an efficient signer-
anonymity adversary Asa into an efficient adversary A against anonymity of the
underlying GS. R obtains (gpk, gsk) from the challenger Ca

κ of the anonymity
game of GS and completes the setup as in the original scheme. R simulates the
Open oracle by using the Open oracle provided by Ca

κ and startsAsa on (gpk′, gsk).
If Asa eventually outputs b?, then R outputs b? to Ca

κ. By the RS unforgeability,
the simulation of the Open oracle is computationally indistinguishable from a
real game. The reduction succeeds with non-negligible probability whenever Asa

succeeds with non-negligible probability. ut

Lemma 6. If RS is private, then Scheme 1 is private.

Proof. We prove privacy using a sequence of games, where we let q ≤ poly(κ) be
the number of queries to the Ch oracle.

Game 0: The privacy game with bit b = 0.
Game 1` (1 ≤ ` ≤ q): As Game 0, but we set b = 1 for the first ` queries to

Ch.
Transition - Game 0 → Game 11: A distinguisher between Game 0 and Game

11 is a distinguisher for the RS privacy game. To show this, we engage
with an RS privacy challenger Cp

κ in the first call to Ch, obtain pk, com-
pute σG ← GS.Sign(gski, pk), (m̊, σ̊R) ← Cp

κ.LoRRedact((m0,MOD0, ADM0),
(m1,MOD1, ADM1)), as well as π ← Π.Proof(crs, (m̊, pk, vpkj), (̊σR,⊥)), and
return (m̊, σ, ρ) = (m, (pk, σG), ((pk, σG), π)). Depending on the bit chosen
by Cp

κ, we either simulate Game 0 or Game 11.
Transition - Game 1` → 1`+1 (1 ≤ ` < q) : The answers of the Ch oracle for the

first ` queries are already simulated for b = 1. As above, a distinguisher
between Game 1` and Game 1`+1 is a RS privacy distinguisher.

In Game 1q we have a simulation for bit b = 1. We can bound probability
to distinguish the simulations for b = 0 and b = 1 by |Pr[S1q ] − Pr[S0]| ≤
q · εp(κ), which shows that the advantage to win the privacy game is bounded
by 1/2 + q · εp(κ). ut

C Proof of Theorem 2

Subsequently, we show that Theorem 2 holds by proving Lemma 7-12.

Lemma 7. If GS is correct, RS is correct and adapts signatures, Σ is correct,
and Π is complete, then Scheme 2 is also correct.



Lemma 7 straight-forwardly follows from inspection; the proof is omitted.

Lemma 8. If GS is traceable and RS is unforgeable, then Scheme 2 is group
unforgeable.

Lemma 8 can be proven identically as group unforgeability is proven in the
previous section and is therefore omitted.

Lemma 9. If Π is weakly simulation sound extractable, Σ is EUF-CMA secure,
RS adapts signatures, Scheme 2 is group unforgeable, and the DL assumption
holds in G, then Scheme 2 is also designated-verifier unforgeable.

Proof. We subsequently prove designated-verifier unforgeability using a sequence
of games. First, we define the opener O = (O1, O2) as follows.

O1(1κ, n) : Run (gpk, gok, gsk) ← GS.KeyGen(1κ, n), (crs, τ)← Π.S1(1κ), set
gpk′ ← (gpk, crs), τ ′ ← (gpk, gok, gsk, τ), and return (gpk′, gok, gsk, τ ′).

O2(τ, DVK,m?, ρ?) : Parse σ as ((pk, σG), σ) and return u ← GS.Open(gok,
pk, σG).

The tuple (gpk′, gok, gsk) contained in the output of O1 is computationally indis-
tinguishable from the output of Setup under the simulation-CRS indistinguisha-
bility of the proof system. From now on we will simulate all proofs, i.e., replace
all calls to Π.Proof(crs, x, w) by Π.S2(crs, τ, x).

What remains is to show that—using O—the success probability of every
PPT adversary following strategy (1) in the designated-verifier unforgeability
game is negligible in the security parameter. We do so by using a sequence of
games where we let qSim ≤ poly(κ) be the number of queries to the Sim oracle
and q ≤ poly(κ) the number of users in the system.

Game 0: The original designated-verifier unforgeability game.
Game 1: As Game 0, but we modify O1 as follows, where Cgu

κ denotes a group-
unforgeability challenger (note that we can assume that all required accu-
mulator public keys are obtained from collision freeness challengers as all
algorithms also run without secret keys without affecting the output distri-
bution of the algorithms):

O1(1κ, n) : Run (gpk, gok)← Cgu
κ , set gsk← ⊥ , (crs, τ)← Π.S1(1κ),

gpk′ ← (gpk, crs), τ ′ ← (gpk, gok, gsk, τ), and return (gpk′, gok, gsk, τ ′).

Furthermore, whenever the adversary queries Sig or Key, we use the oracles
provided by Cgu

κ to obtain the required group signatures and keys, respec-
tively.

Transition - Game 0 → Game 1: This game change is conceptual and Pr[S1] =
Pr[S0].

Game 2: As Game 1, but whenever the adversary outputs a forgery so that
pkΣ ·pk′ corresponds to a key pkΣ

R used in a Sim oracle call we check whether
the signed accumulator value (used to encode the message) is still the same
as the one signed in Sim and abort if so.



Transition - Game 1 → Game 2: If we abort, we have a collision for one of the
accumulators. That is, |Pr[S1]− Pr[S2]| ≤ qSim · εcf(κ).

Game 3: As Game 2, but inside Sim we obtain pkΣ

R from an EUF-CMA chal-
lenger of Σ and obtain the required signatures inside RS.Sign using the Sign
oracle provided by the challenger.

Transition - Game 2 → Game 3: This change is conceptual: Pr[S2] = Pr[S3].7

Game 4: As Game 3, but we guess the index v? that the adversary will attack.
If our guess is wrong, we abort.

Transition - Game 3 → Game 4: The success probability in Game 4 is the same
as in Game 3, unless our guess is wrong. That is Pr[S4] = Pr[S3] · 1/q.

Game 5: As Game 4, but in the query to DVGen for user v? we engage with an
EUF-CMA challenger Cf

κ, obtain a public key pk and return vpkv? ← pk.
Transition - Game 4 → Game 5: This change is conceptual, i.e., Pr[S4] = Pr[S5].
Game 6: As Game 5, but we further modify O1 as follows, where Cgu

κ denotes
a group-unforgeability challenger:

O1(1κ, n) : Run (gpk, gok)← Cgu
κ , set gsk← ⊥, (crs, τ, ξ)← Π.S(1κ) ,

gpk′ ← (gpk, crs), τ ′ ← (gpk, gok, gsk, τ, ξ ), and return (gpk′, gok, gsk,
τ ′).

Transition - Game 5 → Game 6: This change is conceptual, i.e., Pr[S5] = Pr[S6].
Game 7: As Game 6, but for every output of the adversary, we check whether

pkR corresponds to a key obtained from a challenger in Sim and continue
if so. Otherwise, we obtain (sk′, vskv?) ← Π.E(crs, ξ, (pk′, vpkv?), π). If the
extractor fails, we abort.

Transition - Game 6 → Game 7: Both games proceed identically, unless the ex-
tractor fails, i.e., |Pr[S6]− Pr[S7]| ≤ εext(κ).

If the adversary outputs a forgery (m?, ρ?, v?), where ρ? = (((pkΣ, pkΛ), σG), pk′,
σ̊′R, π), we check whether we have extracted vskv? such that Σ.VKey(vpkv? , vskv?) =
1. If so, we choose a random message m in the message space of Σ, compute
σ ← Σ.Sign(vskv? ,m) and output (m,σ) as an EUF-CMA forgery for Σ. Other-
wise, we have extracted a secret key sk′ such that RS.VKey(pk′, sk′) = 1. Then,
we have that Verify(gpk, vpkv? ,m

?, ρ?) = 1 by definition. If pkΣ · pk′ corresponds
to a key pkΣ

R used in Sim, we can output the Σ-signature σ on the accumulator
together with the accumulator as an EUF-CMA forgery to one of the challengers
from Sim. If not, we can obtain (pk, σ̊′′R)← RS.Adapt(pkΣ · pk′,m?, σ̊′R,−sk′) and
output (m?, σ) = (m?, (((pkΣ, pkΛ), σG), (̊σ′′R,⊥))) to break group unforgeability.
Note that our implementation of O2 does the same as what is done in Open and
we have that (u = ⊥ ∨ (u /∈ QKey ∧ @(u,m, ADM) ∈ QSig : m? �

ADM

m)) by defi-
nition. Also note that Game 2 and Game 3 resemble the proof strategy for RS
constructions following the paradigm from [DPSS15]. Taking the union bound,
the success probability in Game 7 is bounded by Pr[S7] ≤ εgu(κ)+(1+qSim)·εf(κ).

7 Note that the changes in Game 2 and Game 3 resemble the unforgeability proof
strategy of [DPSS15, Scheme 1]. For further details, and, in particular for the collision
freeness notion of accumulators, see [DPSS15].



Thus, we have that Pr[S0] ≤ q · (εgu(κ) + (1 + qSim) · εf(κ) + εext(κ)) + qSim · εcf(κ)
which concludes the proof. ut
Lemma 10. If Π is witness indistinguishable, and RS adapts signatures, then
Scheme 2 is simulatable.

Proof. We prove that the output in the simulatability game is (computationally)
independent of the bit b.

Game 0: The original simulatability game (σ is already independent of b).
Game 1: As Game 0, but we obtain crs for the Π upon Setup from a witness

indistinguishability challenger Cwi
κ instead of internally generating it.

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].
Game 2: As Game 1, but instead of Redact inside RoS we execute the modified

algorithm Redact′ which runs on additional input vskj and computes π as

π ← Π.Proof(crs, (pk′, vpkj), (⊥, vskj) ).

Transition - Game 1 → Game 2: A distinguisher D1→2 is a distinguisher for
adaptive witness indistinguishability of Π, i.e., |Pr[S2]− Pr[S1]| ≤ εwi(κ).

Game 3: As Game 2, but we further modify Redact′ so that it additionally
takes ADM as input and works as follows.

Redact′(gpk, vpkj ,m, σ,MOD, vskj , ADM) : Parse σ as ((pk, σG), (σR, RED))
and return (m̊, ρ), where

skR ←R H, pkR ← µ(skR), pk′ ← pk−1 · µ(skR)

((m, σ′R), RED)← RS.Sign((skR,⊥, pkΛ),m, ADM) ,

((m̊, σ̊′R), ·)← RS.Redact(pkR,m, σ
′
R,MOD, RED),

π ← Π.Proof(crs, (pk′, vpkj), (⊥, vskj)), and ρ← (σ, pk′, σ̊′R, π).

Transition - Game 2 → Game 3: Under adaptability of the RS, Game 2 and
Game 3 are perfectly indistinguishable, i.e., Pr[S3] = Pr[S2].

In Game 3, Redact′ and Sim are identical; RoS is thus independent of b. Thus,
the adversary has no advantage in winning the game, i.e., Pr[S3] = 1/2. Further,
we have that Pr[S0] = Pr[S1] ≤ Pr[S2] + εwi(κ), and that Pr[S3] = Pr[S2], which
yields Pr[S0] ≤ 1/2 + εwi(κ). ut
Lemma 11. If GS is anonymous, then Scheme 2 is signer anonymous.

The proof is identical to the proof of Lemma 5 and therefore not restated here.

Lemma 12. If RS is private and adapts signatures, then Scheme 2 is private.

Proof. The proof strategy is identical to the privacy proof in the previous sec-
tion. We however, use the following hybrid to interpolate between the games:
We engage with an RS privacy challenger Cp

κ in the ` + 1st call to Ch, obtain
pk, compute σG ← GS.Sign(gski, pk), (m̊, σ̊R)← Cp

κ.LoRRedact((m0,MOD0, ADM0),
(m1,MOD1, ADM1)), sk′←R H, pk′ ← µ(sk′), (pkR, σ̊

′
R) ← RS.Adapt(pk, m̊, σ̊R, sk′),

as well as π ← Π.Proof(crs, (pk′, vpkj), (sk′,⊥)), and return (m̊, σ, ρ) = (m̊, (pk,

σG), ((pk, σG), pk′, σ̊′R, π)) Then, depending on the bit chosen by Cp
κ, we either

simulate Game 0 or Game 11 (resp. 1` or Game 1`+1). ut
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