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Abstract. Recently, Tao et al. presented a new simple and efficient
multivariate pubic key encryption scheme based on matrix multiplica-
tion, which is called Simple Matrix Scheme or ABC. Using linearization
method, we propose a polynomial time algorithm, which directly solves
an equivalent private key from the public key of ABC. Furthermore, our
attack can also be applied to the variants of ABC since these variants
have the same algebraic structure as the ABC scheme. Therefore, the
ABC cryptosystem and its variants are insecure.
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1 Introduction

Since Shor [1] presented a polynomial time quantum algorithm for integers fac-
torization and discrete logarithm problem, the widely used public key encryp-
tion schemes such as RSA, DSA, and ECC [2–4] would become insecure once
the quantum computer becomes a reality. This encourages researchers to study
the new public key scheme in order to resist quantum computers attacks.

Multivariate public key cryptosystems (MPKC) are believed an alternative
that can resist quantum computing attacks. This is because MPKC is based
on a system of multivariate polynomials over a finite field that is an NP-hard
problem [5, 6]. However, this does not mean that a public key scheme based on
multivariate polynomials is secure. Many multivariate public key schemes have
been broken in the past [7–10]. A major problem of all multivariate public key
schemes is no security proof.

Recently, Tao et al. [11] presented a new simple and efficient multivariate
pubic key encryption scheme based on matrix multiplication, which is called
Simple Matrix Scheme or ABC. Subsequently, Ding, Petzoldt, and Wang [12]
proposed an improved variant of ABC that introdces cubic polynomials, and
claimed breaking this variant using algebraic attacks is at least as hard as solving
a set of random quadratic equations. Very recently, Tao, Xiang, Petzoldt, and
Ding [13] generalized the ABC scheme by using non-square matrices, instead of
square matrices. To eliminate the decryption failures from ABC, Petzoldt, Ding,
and Wang [14] described a new version of ABC, which uses tensor product of
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matrices. However, Hashimoto [15] showed the security of this variant is much
weaker than that of the origin ABC scheme. Furthermore, Peng, Tang, Chen,
Wu, and Zhang [16] optimized the implementation of ABC by exploiting the
power of modern x64 CPU to improve the efficiency.

In order to analyze the security of ABC and its variants, Moody, Perlner,
and Smith-Tone [17] presented a structural key recovery attack using subspace
differential invariants inherent to the ABC scheme. This attack takes time at
least O(qss7 log q) for ABC [1] and O(sqrn3 log q) for the improved ABC [12],
where q, n, r, s were defined in the following scheme. If r, s are the security pa-
rameter or q is the exponential size of the security parameter, then the attack
algorithm in [17] needs exponential time. Thus, the attack based on subspace
differential invariants [17] did not completely break the ABC and its variants.
Recently, Moody, Perlner, and Smith-Tone [18] further demonstrated that the
cubic variant of ABC do not enhance the security of ABC. To the best of our
knowledge, no polynomial time attacks were known before this work on the ABC
and its variants.

Our main contribution is to prove that the ABC cryptosystem [11] and its
variants [12, 13] are insecure. In this paper, we analyze the algebraic structure
of ABC and transform this structure into a new algebraic mapping that is easy
to apply with linearization techniques. Then using linearization equation tech-
nique, we present a polynomial time (i.e. O(s3n12 log q), or O(s3n9 log q) by using
attack method in Section 4) algorithm for ABC that solves an equivalent pri-
vate key from its public key. Our key observation is that in order to implement
the linearization attack for ABC, it is not necessary to use the higher-order
linearization equations considered in [11–13], but only the cubic (or quadratic)
linearization equations. That is, we can use a new linearization method to find
an equivalent private key from the public key. Furthermore, since the variants
in [12, 13] have the same algebraic structure as the ABC scheme, consequently
the above attack can also generalize to these variants.

Organization. Section 2 describes the ABC cryptosystem. Section 3 pro-
vides the cryptanalysis of ABC. Section 4 presents the variants of ABC using
rectangular matrix and its cryptanalysis. Section 5 describes the cubic ABC and
its cryptanalysis. Section 6 draws conclusions.

2 ABC Cryptosystem

In this section, we briefly describe the ABC cryptosystem. For symbolic consis-
tency, we adaptively use the following notations.

Let F be a finite field with q elements. Let n,m, s ∈ N be integers such
that n = s2 and m = 2n. Given a positive integer k, let Fk denote the set of
all k-tuples of elements of F. We use bold lower-case letters like x to denote
column vectors, and the transpose of vectors like xT to denote row vectors. We
use bold upper-case letters like A to denote matrices, and represent a matrix by
the column vector.
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We denote the plaintext by x = (x1, x2, · · · , xn)T ∈ Fn and the ciphertext
by y = (y1, y2, · · · , ym)T ∈ Fm. The polynomial ring with n variables in F is
denoted by F[x1, · · · , xn].

Let L1 : Fn → Fn and L2 : Fm → Fm be two linear transformations, that is,

L1(x1, x2, · · · , xn) = L1x,

L2(y1, y2, · · · , ym) = L2y,

where L1 ∈ Fn×n,L2 ∈ Fm×m, x = (x1, x2, · · · , xn)T and y = (y1, y2, · · · , ym)T .
Key Generation:
(1) Given x = (x1, x2, · · · , xn)T , choose the linear map L1 : Fn → Fn:

(1.1) Choose an invertible matrix L1 ∈ Fn×n as the linear map L1.
(1.2) Compute x = L1x, where x = (x1, x2, · · · , xn)T .

(2) Define the central map F over x:

(2.1) Given x = (x1, x2, · · · , xn)T , generate matrices A,B,C:

A =


a1,1 a1,2 · · · a1,s
a2,1 a2,2 · · · a2,s

...
... · · ·

...
as,1 as,2 · · · as,s

 ,

B =


b1,1 b1,2 · · · b1,s
b2,1 b2,2 · · · b2,s

...
... · · ·

...
bs,1 bs,2 · · · bs,s

 ,

C =


c1,1 c1,2 · · · c1,s
c2,1 c2,2 · · · c2,s

...
... · · ·

...
cs,1 cs,2 · · · cs,s

 ,

where for i, j ∈ [s], ai,j = x(i−1)∗s+j , and bi,j , ci,j are randomly linear
combinations of the set {x1, · · · , xn}.
(2.2) Set E1 = A ·B and E2 = A ·C.
(2.3) Define the central map F over x:

F(x1, · · · , xn) = (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn)),

where for i, j ∈ [s], f(i−1)s+j is the (i, j) element in E1, fs2+(i−1)s+j is the
(i, j) element in E2.

(2.4) Replacing x with L1x for F , generate the central map F̃ over x:

F̃(x1, · · · , xn) = F((L1x)T )

= (F ◦ L1)(x1, · · · , xn)

= (f̃1(x1, · · · , xn), · · · , f̃m(x1, · · · , xn)).
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(3) For F̃(x1, · · · , xn), choose the linear map L2 : Fm → Fm:

(3.1) Choose an invertible matrix L2 ∈ Fm×m as the linear map L2.
(3.2) Define the maps

F(x1, · · · , xn) = (L2(F̃(x1, · · · , xn))T )T

= (L2 ◦ F̃)(x1, · · · , xn)

= (L2 ◦ F ◦ L1)(x1, · · · , xn)

= (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn)).

(4) Output the public key pk = {F = L2 ◦ F ◦ L1} and the private key
sk = {L1,L2,B,C}.

Encryption: Given the public key pk and a message d = (d1, d2, · · · , dn)T ∈
Fn, then the ciphertext is

yT = (y1, y2, · · · , ym) = F(d1, d2, · · · , dn).

Decryption: Given the secret key sk and a ciphertext yT = (y1, y2, · · · , ym),
one decrypts as follows:

(1) Compute yT = (y1, y2, · · · , ym) = L−12 (yT ) = (L−12 y)T , and set

E1 =


y1 y2 · · · ys
ys+1 ys+2 · · · y2s

...
...

...
...

y(s−1)s+1 y(s−1)s+2 · · · ys2

 ∈ Fs×s,

E2 =


ys2+1 ys2+2 · · · ys2+s
ys2+s+1 ys2+s+2 · · · ys2+2s

...
...

...
...

ys2+(s−1)s+1 ys2+(s−1)s+2 · · · y2s2

 ∈ Fs×s.

(2) By E1 = AB and E2 = AC, we consider the following cases:

– If E1 is invertible, then BE−11 E2 = C. We get n linear equations with
n unknowns x1, · · · , xn.

– If E2 is invertible, but E1 is not invertible, then CE−12 E1 = B. We
also obtain n linear equations with n unknowns x1, · · · , xn.

– If E1,E2 are not invertible, but A is invertible, then A−1E1 = B and
A−1E2 = C. We consider the elements of A−1 as the new variables, and end
up with m = 2n linear equations in m unknowns. Then, we can eliminate
the new variables to derive n linear equations in the x1, · · · , xn.

– Otherwise, the decryption fails. Note that there exists an error for
the decryption analysis of this case in ABC [1]. Because if the rank of A
is r with r < s, then there exists a nonsigular matrix W such that WA =(

Ir×r A
′

r×(s−r)
0(s−r)×r 0(s−r)×(s−r)

)
, instead of WA =

(
Ir×r 0r×(s−r)

0(s−r)×r 0(s−r)×(s−r)

)
. Name-

ly, A
′

r×(s−r) is generally not a “0” matrix.
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(3)Given the above solution xT = (d1, d2, · · · , dn), compute the plaintext

dT = (d1, d2, · · · , dn) = L−11 (x1, · · · , xn).

Remark 1. If B,C are homogeneous linear combinations in {x1, · · · , xn},
then one cannot solve a unique solution. For this case, authors provided a new en-
crypting step in [12] to determine which of multiple solutions is really a plaintext.
Furthermore, in this case, the finite field F must be polynomial in n. Otherwise,
the decryption time cannot be polynomial time in n.

3 Cryptanalysis of ABC

In this section, using linearization equation technique, we present a polynomial
time algorithm that directly solves an equivalent private key from the public key
of ABC. As a result, we break this ABC cryptosystem.

Theorem 1. Given the public key pk of the ABC cryptosystem, there exists
a polynomial time algorithm which finds an equivalent secret key.

Proof. By F = L2 ◦ F ◦ L1, we have L−12 ◦ F = F ◦ L1. Hence,

(L−12 ◦ F)(x1, · · · , xn)

= (L−12 (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn))T )T

= (L−12 (y1, · · · , ym)T )T

where yj = f j(x1, · · · , xn), j ∈ [m].

(F ◦ L1)(x1, · · · , xn)

= F(L1(x1, · · · , xn))

= F((L1(x1, · · · , xn)T )T )

= F(x1, · · · , xn)

= (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn))

Again by E1 = AB and E2 = AC and the definition of the central map F ,
we have that E1,E2,A,B,C are defined in the variables {x1, · · · , xn}.

In the following Claims 1-7, we construct a system of linear equations from
the public key of ABC by applying linearization methods. Then, in Claim 8, we
provide a polynomial time algorithm to solve this system of linear equations.
Finally, in Claims 9-10, we show that an equivalent private key obtained from
Claim 8 can decrypt an arbitrary ciphertext of ABC.

�

Claim 1. Suppose L−12 =

 v1,1 · · · v1,m
...

...
...

vm,1 · · · vm,m

, then y = L−12 (y1, · · · , ym)T .
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Proof. By the definition of L2,

y = (L−12 (y1, · · · , ym))T

= L−12 (y1, · · · , ym)T

= (
∑m

j=1
v1,jyj , · · · ,

∑m

j=1
vm,jyj)

T .

�

Claim 2. Suppose L1 =

u1,1 · · · u1,n...
...

...
un,1 · · · un,n

, then x = L1(x1, · · · , xn)T .

Proof. By the definition of L1,

x = (L1(x1, · · · , xn))T

= L1(x1, · · · , xn)T

= (
∑n

j=1
u1,jxj , · · · ,

∑n

j=1
un,jxj)

T .

�

According to the ABC cryptosystem, the entries bi,j , ci,j , i, j ∈ [s] in B,C
are randomly linear combinations of {x1, · · · , xn}. Without loss of generality, we

assume bi,j =
∑n

k=1
bi,j,kxk and ci,j =

∑n

k=1
ci,j,kxk

Therefore, by the definitions of A,B,C, we obtain

A =


x1 x2 · · · xs
xs+1 xs+2 · · · x2s

...
... · · ·

...
x(s−1)s+1 x(s−1)s+2 · · · xs2

 ,

B =



∑n

k=1
b1,1,kxk

∑n

k=1
b1,2,kxk · · ·

∑n

k=1
b1,s,kxk∑n

k=1
b2,1,kxk

∑n

k=1
b2,2,kxk · · ·

∑n

k=1
b2,s,kxk

...
... · · ·

...∑n

k=1
bs,1,kxk

∑n

k=1
bs,2,kxk · · ·

∑n

k=1
bs,s,kxk

 ,

C =



∑n

k=1
c1,1,kxk

∑n

k=1
c1,2,kxk · · ·

∑n

k=1
c1,s,kxk∑n

k=1
c2,1,kxk

∑n

k=1
c2,2,kxk · · ·

∑n

k=1
c2,s,kxk

...
... · · ·

...∑n

k=1
cs,1,kxk

∑n

k=1
cs,2,kxk · · ·

∑n

k=1
cs,s,kxk

 ,
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Claim 3. Suppose yT = L−12 (y1, · · · , ym), then

E1 =


y1 y2 · · · ys
ys+1 ys+2 · · · y2s

...
...

...
...

y(s−1)s+1 y(s−1)s+2 · · · ys2

 ,

E2 =


ys2+1 ys2+2 · · · ys2+s
ys2+s+1 ys2+s+2 · · · ys2+2s

...
...

...
...

ys2+(s−1)s+1 ys2+(s−1)s+2 · · · y2s2

 .

Proof. By the definition of E1,E2 and F , the result directly follows.
�

Claim 4. Suppose A,B,C,E1,E2 are defined as above. Then we can gener-
ate the system of m quadratic equations in variables x1, · · · , xn and y1, · · · , ym.

Proof. Using E1 = A ·B and E2 = A ·C, the result directly follows.
�

Claim 5. Given the system of m quadratic equations in Claim 4, then we
can generate the system of m quadratic equations in variables x1, · · · , xn and
y1, · · · , ym.

Proof. By Claims 1 and 2, y = L−12 (y1, · · · , ym)T and x = L1(x1, · · · , xn)T .
Thus, for the system of quadratic equations in Claim 4, we can get the

result by replacing x1, · · · , xn and y1, · · · , ym with the corresponding entries in
L1(x1, · · · , xn)T and L−12 (y1, · · · , ym)T .

Without loss of generality, we denote by Ẽ1 = Ã · B̃ and Ẽ2 = Ã · C̃ this
new system in variables x1, · · · , xn and y1, · · · , ym.

�
Since one can generate arbitrary number of plaintext and ciphertext pairs

for any public key cryptosystem. Consequently, when we consider x,y as known
variables, and {bi,j,k, ci,j,k, i, j ∈ [s], k ∈ [n]}, {ui,j , i, j ∈ [n]}, and {vi,j , i, j ∈
[m]} as unknown variables, we can establish a new system of equations.

Claim 6. Given Ẽ1 = Ã·B̃ and Ẽ2 = Ã·C̃ in Claim 5, and a set of plaintext-
ciphertext pairs {x1, · · · , xn} and {y1, · · · , ym} generated by the public key of
ABC, then the system of equations becomes a system of cubic equations in
3n2 +m2 unknown variables {bi,j,k, ci,j,k, i, j ∈ [s], k ∈ [n]}, {ui,j , i, j ∈ [n]}, and
{vi,j , i, j ∈ [m]}.

Proof. It is easy to verify that the number of unknown variables {bi,j,k, ci,j,k, i, j ∈
[s], k ∈ [n]}, {ui,j , i, j ∈ [n]}, and {vi,j , i, j ∈ [m]} is 3n2 +m2. Similarly, it is not
difficult to verify this system is cubic equations over these unknown variables.

�
Claim 7. Given the system of cubic equations in Claim 6, then using re-

linearization technique in variables {bi,j,k, ci,j,k, i, j ∈ [s], k ∈ [n]}, {ui,j , i, j ∈
[n]}, and {vi,j , i, j ∈ [m]}, the system becomes a system of linear equation-
s with 2sn4 + m2 unknown variables that have the form bi,j,kui1,j1ui2,j2 , or
ci,j,kui1,j1ui2,j2 , or {vi,j , i, j ∈ [m]}.



8 Chunsheng Gu

Proof. By Claim 5, we have the following system in variables x1, · · · , xn and
y1, · · · , ym. {

Ẽ1 = Ã · B̃
Ẽ2 = Ã · C̃

(1)

By E1 = AB and Claim 2, we get the (1, 1) element of ÃB̃ as follows:

(ÃB̃)1,1 =
∑n

k=1
b1,1,kxkx1 +

∑n

k=1
b1,2,kxkx2 + · · ·+

∑n

k=1
b1,s,kxkxs

=
∑n

k=1
b1,1,k(

∑n

j=1
uk,jxj

∑n

j=1
u1,jxj)+∑n

k=1
b1,2,k(

∑n

j=1
uk,jxj

∑n

j=1
u2,jxj)+

· · ·+∑n

k=1
b1,s,k(

∑n

j=1
uk,jxj

∑n

j=1
us,jxj)

It is easy to see that for the variables {bi,j,k, i, j ∈ [s], k ∈ [n]}, {ui,j , i, j ∈
[n]}, there are s × n × (n2) = sn3 different cubic terms in the (1, 1) element of

ÃB̃. So, the total number of different cubic terms in ÃB̃ are sn4.

Thus, from the perspective of unknown variables in A,B,C,L1 , any cubic
term in these elements of ÃB̃ and ÃC̃ must be of the form bi,j,kui1,j1ui2,j2 or
ci,j,kui1,j1ui2,j2 . As a result, there are at most 2 × sn4 = 2sn4 different cubic

terms in the right side ÃB̃ and ÃC̃ of the system (1).

For the left side Ẽ1, Ẽ2 of the system (1), we have the linear terms with m2

unknown variables in L−12 .

Consequently, the total number of unknown variables generated by relin-
earization method is 2sn4 +m2.

�
In the following, we first present Algorithm 1 that runs in the polynomial

time to solve the linear system (1). Then, we show the solution returned by
Algorithm 1 is an equivalent private key.

Claim 8. Given the relinearization system of equations with 2sn4 + m2

unknowns in Claim 7, there exists a polynomial time algorithm, which finds
a feasible solution for the unknown variables {bi,j,k, ci,j,k, i, j ∈ [s], k ∈ [n]},
{ui,j , i, j ∈ [n]}, and {vi,j , i, j ∈ [m]}.

Proof. By Claim 7, we obtain the relinearization system of equations with
2sn4 + m2 unknown variables. These unknown variables are all of the form
bi,j,kui1,j1ui2,j2 , ci,j,kui1,j1ui2,j2 , i, j ∈ [s], k ∈ [n], i1, i2, j1, j2 ∈ [n], and {vi,j , i, j ∈
[m]}.

Since there are 2sn4 + m2 unknown variables, we require 2sn4 + m2 linear
equations. Again, using a pair of plaintext-ciphertext, we can get m linear equa-
tions over unknown variables. So, we can construct the relinearization system of
equations by using sn3 +m plaintext-ciphertext pairs.
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Assume the linear system of equations is Dz = 0 with f = 2sn4 + m2

unknown variables. Algorithm 1 solves Dz = 0 and generates an equivalent
private key as follows.

Algorithm 1 Solving the linear system to find an equivalent private key.

Input: The linear system of equations Dz = 0 with f = 2sn4+m2 unknown variables,
where zt is of the form bi,j,kui1,j1ui2,j2 , ci,j,kui1,j1ui2,j2 , vi3,j3 .

Output: An equivalent private key.
1: Using Gaussian Elimination method, transform Dz = 0 into the following form:(

Iw×w 0w×(f−w)

0(f−w)×w I(f−w)×(f−w)

)(
zS
zS

)
=

(
Uw×(f−w)zS

zS

)
, (2)

where S ∪ S = [f ], and Uw×(f−w) ∈ Fw×(f−w).
2: Without loss of generality, assume zS = (z1, · · · , zw)T , zS = (zw+1, · · · , zf )T .

Randomly set zS = (αw+1, · · · , αf )T such that αt ∈ F\{0}, t = w + 1, · · · , f .
3: By the system (2), we compute zS = Uw×(f−w)zS = Uw×(f−w)(αw+1, · · · , αf )T .

Let zS = (α1, · · · , αw)T .
4: Choose an arbitrary non-univariate zt, t ∈ [f ], such as zt = bi,j,kui1,j1ui2,j2 . With-

out loss of generality, we randomly set ui1,j1 = βi1,j1 ∈ F\{0}. For any other
forms of zt, e.g. zt = ci,j,kui1,j1ui2,j2 , or bi,j,kui1,j1 , or bi,j,k et al., we deal with zt
similarly.

5: If ui1,j1 appears in zγ , γ ∈ [f ], e.g. zγ = ci′ ,j′ ,k′ui1,j1ui′2,j
′
2
, then we replace zγ

with βi1,j1ci′ ,j′ ,k′ui′2,j
′
2

and override a new unknown variable zγ = ci′ ,j′ ,k′ui′2,j
′
2

=

αγ × β−1
i1,j1

. We similarly deal with any other forms.
6: If there exists a non-univariate zt, t ∈ [f ] with quadratic or cubic in the unknown

variables {bi,j,k, ci,j,k, i, j ∈ [s], k ∈ [n]}, {ui,j , i, j ∈ [n]}, then goto 4.
7: return a feasible solution for the unknown variables {bi,j,k, ci,j,k, i, j ∈ [s], k ∈ [n]},
{ui,j , i, j ∈ [n]}, and {vi,j , i, j ∈ [m]}.

Time analysis of Algorithm 1: Given the linear system Dz = 0 with
f = 2sn4 +m2 unknown variables:

Step 1: The Gaussian Elimination method costs timeO(f3 log q) = O(s3n12 log q).
Step 2: Setting zS costs time O(f log q) = O(sn4 log q).
Step 3: Computing zS costs time O(f2 log q).
Step 4: Choosing an arbitrary non-univariate zt, t ∈ [f ] costs time O(f log q).
Step 5: Scanning and overriding zγ , γ ∈ [f ] requires time O(f log q).
Step 6: By Claim 6, there exist 3n2+m2 unknown variables {bi,j,k, ci,j,k, i, j ∈

[s], k ∈ [n]}, {ui,j , i, j ∈ [n]}, and {vi,j , i, j ∈ [m]}. However, only 3n2 unknown
variables appear in non-univariate zt, t ∈ [f ]. Hence the number of “goto” Step
4 is at most 3n2. On the other hand, checking whether there exists a non-
univariate zt, t ∈ [f ] takes time O(f). So, this substep requires time at most
3n2 ×O(f log q) = O(sn6 log q).

Thus, Algorithm 1 runs in time O(s3n12 log q).
�
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Claim 9. The probability that L1 obtained by Algorithm 1 is not invertible
is 1

q .

Proof. Assume L1 consists of {ui,j , i, j ∈ [n]} returned by Algorithm 1. Since
for a random matrix L ∈ Fn×n, the probability det(L) = 0 is 1

|F| = 1
q . Without

loss of generality, we can assume {ui,j , i, j ∈ [n]} are random elements in F. So,
the probability det(L1) = 0 is also 1

q .
�

Claim 10. Given a feasible solution for {bi,j,k, ci,j,k, i, j ∈ [s], k ∈ [n]},
{ui,j , i, j ∈ [n]}, and {vi,j , i, j ∈ [m]} returned by Algorithm 1, one can generate
an equivalent private key {B,C,L1,L

−1
2 }, and correctly decrypt ciphertexts in

the ABC cryptosystem.
Proof. By Claim 9, the probability L1 is invertible is 1 − 1

q . So, if L1 is not
invertible, we reuse Algorithm 1 to generate a new feasible solution. Without
loss of generality, assume L1 is invertible.

Since L−12 itself is already in the form of inverse matrix, it is not required
invertible. Of course, the probability that L−12 is invertible is also 1− 1

q .

Thus, {B,C,L1,L
−1
2 } can be used an equivalent private key.

Consequently, given an arbitrary ciphertext of ABC, we can decrypt it into
the plaintext using the private key {B,C,L1,L

−1
2 } obtained by Algorithm 1.

�
Remark 2. Note that by F = L2 ◦F ◦L1 and plaintext-ciphertext pairs gen-

erated by the public key, we can directly construct a system of quartic equations
on unknown variables, and get an equivalent secret key by directly applying lin-
earization method. In this case, the linearization system has 2sn4m2 unknown
variables. We can solve this linearization system by similarly using Algorithm 1.

4 ABC using rectangular matrix and Cryptanalysis

In the ABC cryptosystem, there are two shortcomings: (1) the probability of
decryption failure is relatively large; (2) the decryption algorithm is less efficient.

To overcome these shortcomings, Tao et al. proposed a variant scheme of
ABC in [12] that uses rectangular matrices. Since this improved scheme pre-
serves the same algebraic structure as the basic ABC scheme [11], as a result,
the attack method described above can also be applied to this variant. In the fol-
lowing, we first give the ABC using rectangular matrix in [12], and then provide
cryptanalysis for this variant.

4.1 ABC using rectangular matrix

Let F be a finite field with q elements, and r, s, u, v,m, n ∈ N be integers such
that m = s · (u+ v), s ≥ r and (n− r(u+ v − s)) · (n− r(u+ v − s) + 1) ≤ 2m.

Key Generation:
(1) Given x = (x1, x2, · · · , xn)T , choose the linear map L1 : Fn → Fn:

(1.1) Choose an invertible matrix L1 ∈ Fn×n as the linear map L1.
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(1.2) Compute x = L1x, where x = (x1, x2, · · · , xn)T .

(2) Define the central map F over x:

(2.1) Given x = (x1, x2, · · · , xn)T , generate matrices A,B,C:

A =


a1,1 a1,2 · · · a1,r
a2,1 a2,2 · · · a2,r

...
... · · ·

...
as,1 as,2 · · · as,r

 ,

B =


b1,1 b1,2 · · · b1,u
b2,1 b2,2 · · · b2,u

...
... · · ·

...
br,1 br,2 · · · br,u

 ,

C =


c1,1 c1,2 · · · c1,v
c2,1 c2,2 · · · c2,v

...
... · · ·

...
cr,1 cr,2 · · · cr,v

 ,

where the elements ai,j in A are randomly chosen from the set {x1, x2, · · · , xn}
, and the elements bi,j , ci,j in B,C are randomly linear combinations of the
set {x1, · · · , xn}, respectively.

(2.2) Set E1 = A ·B and E2 = A ·C.

(2.3) Define the central map F over x:

F(x1, · · · , xn) = (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn)),

where for i ∈ [s], j ∈ [u], f(i−1)u+j is the (i, j) element in E1, and for
i ∈ [s], j ∈ [v], fsu+(i−1)v+j is the (i, j) element in E2.

(2.4) Replacing x with L1x for F , generate the central map F̃ over x:

F̃(x1, · · · , xn) = (F ◦ L1)(x1, · · · , xn)

= (f̃1(x1, · · · , xn), · · · , f̃m(x1, · · · , xn)).

(3) For F̃(x1, · · · , xn), choose the linear map L2 : Fm → Fm:

(3.1) Choose an invertible matrix L2 ∈ Fm×m as the linear map L2.

(3.2) Define the maps

F(x1, · · · , xn) = (L2 ◦ F̃)(x1, · · · , xn)

= (L2 ◦ F ◦ L1)(x1, · · · , xn)

= (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn)).
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(4) Output the public key pk = {F = L2 ◦ F ◦ L1} and the private key
sk = {L1,L2,A,B,C}.

Note that A in the private key is not required when decrypting a ciphertext
of ABC with rectangular matrices.

Encryption: Given the public key pk and a message dT = (d1, d2, · · · , dn) ∈
Fn, then the ciphertext is

yT = (y1, y2, · · · , ym) = F(d1, d2, · · · , dn).

Decryption: Given the secret key sk and a ciphertext yT = (y1, y2, · · · , ym),
one decrypts as follows:

(1) Compute yT = (y1, y2, · · · , ym) = L−12 (y) = (L−12 y)T , and set

E1 =


y1 y2 · · · yu
yu+1 yu+2 · · · y2u

...
...

...
...

y(s−1)u+1 y(s−1)u+2 · · · ysu

 ∈ Fs×u,

E2 =


ysu+1 ysu+2 · · · ysu+v
ysu+v+1 ysu+v+2 · · · ysu+2v

...
...

...
...

ysu+(s−1)v+1 ysu+(s−1)v+2 · · · ysu+sv

 ∈ Fs×v.

(2) By E1 = AB and E2 = AC, we find a plaintext vector x ∈ Fn such that
F(x) = yT as follows:

– If the rank of A is r, then there exists an r × s matrix W such that
W ×A = I, where I is the r × r identity matrix. First, by E1 = AB and
E2 = AC, we get W × E1 = B and W × E2 = C, and generate r(u + v)
linear equations in rs+ n unknown variables when considering the elements
of W as unknown variables. Then, we eliminate rs unknown variables of
W from these equations, and get about r(u + v − s) linear equations in
unknown variables {x1, x2, · · · , xn}. Finally, using Gaussian elimination and
Relinearization algorithm [19], we find a solution xT = (d1, d2, · · · , dn).

– In the rank of A is less than r, decryption remains an open problem.

(3) Compute the plaintext (d1, d2, · · · , dn) = L−11 (d1, d2, · · · , dn).

4.2 Cryptanalysis

For this improved scheme, A,B,C are the rectangular matrices, instead of the
square matrices in the origin ABC scheme. Furthermore, each element of A in
this variant is randomly chosen from {x1, · · · , xn}, whereas each element of A
in ABC is ordered from {x1, · · · , xn} . Namely, we can directly write out the
elements of A according to {x1, · · · , xn} for ABC, but we cannot achieve this
for its variant.
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However, by the definition of A,B,C, we observe that if we substitute
{x1, · · · , xn} with L1x for the elements of A,B,C, then Ã, B̃, C̃ generated by
this method are defined in the variables {x1, · · · , xn}. As a result, we do not
need to know in advance how the elements of A choose from {x1, · · · , xn}. Fur-
thermore, the above attack for ABC does not matter about matrix shape. Hence,
we can generalize the above attack to this variant.

Theorem 2. Given the public key pk of ABC using rectangular matrix, there
exists a polynomial time algorithm which finds an equivalent secret key.

Proof. By F = L2 ◦ F ◦ L1, we have L−12 ◦ F = F ◦ L1 = F̃ . Hence,

(L−12 ◦ F)(x1, · · · , xn) = (L−12 (y1, · · · , ym)T )T

where yj = f j(x1, · · · , xn), j ∈ [m].

(F ◦ L1)(x1, · · · , xn) = F̃(x1, · · · , xn)

= (f̃1(x1, · · · , xn), · · · , f̃m(x1, · · · , xn))

Again by E1 = AB and E2 = AC and the definition of the central map F ,
we have that E1,E2,A,B,C are defined in the variables {x1, · · · , xn}.

Replacing x with L1x, we have the following system in the variables x1, · · · , xn:{
E1 = Ã · B̃
E2 = Ã · C̃

(3)

On the other hand, given yT = (y1, y2, · · · , ym) = L−12 (y), we have

E1 =


y1 y2 · · · yu
yu+1 yu+2 · · · y2u

...
...

...
...

y(s−1)u+1 y(s−1)u+2 · · · ysu

 ∈ Fs×u,

E2 =


ysu+1 ysu+2 · · · ysu+v
ysu+v+1 ysu+v+2 · · · ysu+2v

...
...

...
...

ysu+(s−1)v+1 ysu+(s−1)v+2 · · · ysu+sv

 ∈ Fs×v.

Replacing y with L−12 (y1, · · · , ym)T , we get the following system in the vari-
ables x1, · · · , xn and y1, · · · , ym:{

Ẽ1 = Ã · B̃
Ẽ2 = Ã · C̃

(4)

In the following proof, we first give two claims about the elements of Ã, B̃, C̃
in the equation (4).

Claim 11. The elements ãi,j in Ã can be represented linear combination of
the set {x1, · · · , xn}.
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Proof. Since the elements ai,j , i ∈ [s], j ∈ [r] in A are randomly chosen from
the set {x1, x2, · · · , xn}, without loss of generality, assume ai,j = xt, t ∈ [n].

By x = L1x, we have xt =
∑n

k=1
ut,kxk.

So, ai,j =
∑n

k=1
ut,kxk. Namely, ãi,j =

∑n

k=1
ãi,j,kxk with ãi,j,k = ut,k.

The result follows.
�

Claim 12. The elements b̃i,j , c̃i,j in B̃, C̃ can be represented linear combi-
nation of the set {x1, · · · , xn}.

Proof. Since the elements bi,j in B are randomly linear combinations of the

set {x1, · · · , xn}, without loss of generality, assume bi,j =
∑n

t=1
bi,j,txt.

By x = L1x, we have bi,j =
∑n

t=1
bi,j,t

∑n

k=1
ut,kxk.

We arrange bi,j and write it as b̃i,j =
∑n

k=1
b̃i,j,kxk, where b̃i,j,k =

∑n

t=1
bi,j,tut,k.

Similarly, we can obtain c̃i,j =
∑n

k=1
c̃i,j,kxk, where c̃i,j,k =

∑n

t=1
ci,j,tut,k.

�
The proof of Theorem 2 continue:
In the following, we first analyze the (1, 1) element of ÃB̃ as follows:

(ÃB̃)1,1 =
∑r

j=1
ã1,j b̃j,1

=
∑r

j=1
(
∑n

k=1
ã1,j,kxk)(

∑n

k=1
b̃j,1,kxk)

It is easy to verify that there are rn2 different quadratic terms ã1,j,k1 b̃j,1,k2
in (ÃB̃)1,1 . So, there are su× rn2 different quadratic terms in ÃB̃.

Similarly, there are also sv × rn2 different quadratic terms in ÃC̃.
Now, we can construct a system of linear equations with s(u+ v)× rn2 +m2

unknown variables from the public key of the variant by applying linearization
methods, and solve an equivalent private key by using Algorithm 1 in Claim 8.

Furthermore, solving an equivalent private key takes time at most (s(u+v)×
rn2 +m2)3 log q = O(r3m3n6 log q).

This completes the proof of Theorem 2.
�

Notice that the above equivalent private key only includes L−12 and F̃ . So,
one no longer uses the linear inverse transformation L−11 when decrypting a
ciphertext.

Remark 3. (1)If we require the equivalent private key obtained by Theorem
2 can generate the public key of the variant, then we need to directly build
the linearization system from F = L2 ◦ F̃ and add the coefficient equations in
F = L2 ◦ F̃ into the linearization system. It is not difficult to verify that there
are rn2(su + sv)m2 = rn2m3 different cubic terms in this case. Similarly, we
can solve this linearization system by using Algorithm 1 in Claim 8. (2)When
s = r = u = v, the variant becomes the origin ABC scheme. Namely, the origin
ABC scheme is a special case of the variant. So, the origin ABC scheme can
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also be broken by using the attack method in this section. Furthermore, when
applying the attack method in this section to ABC, there only exists 2sn3 +m2

different quadratic terms. Consequently, the time complexity of attacking ABC
will reduce to O(s3n9 log q).

5 Cubic ABC and Cryptanalysis

To improve the security of ABC, Ding, Petzoldt, and Wang [13] describe a cu-
bic ABC. In this improved version, the elements of A are setting as random
quadratic polynomials. However, the cubic ABC scheme has the same structure
of ABC. As a result, we can also break the cubic ABC scheme using similar
method attacking ABC.

5.1 Cubic ABC

Let n,m, s ∈ N be integers such that n = s2 and m = 2n. We denote the
plaintext by (x1, x2, · · · , xn) ∈ Fn and the ciphertext by (y1, y2, · · · , ym) ∈ Fm.

Key Generation:
(1) Given x = (x1, x2, · · · , xn)T , choose the linear map L1 : Fn → Fn:

(1.1) Choose an invertible matrix L1 ∈ Fn×n as the linear map L1.
(1.2) Compute x = L1x, where x = (x1, x2, · · · , xn)T .

(2) Define the central map F over x:

(2.1) Given x = (x1, x2, · · · , xn)T , generate matrices A,B,C:

A =


a1,1 a1,2 · · · a1,s
a2,1 a2,2 · · · a2,s

...
... · · ·

...
as,1 as,2 · · · as,s

 ,

B =


b1,1 b1,2 · · · b1,s
b2,1 b2,2 · · · b2,s

...
... · · ·

...
bs,1 bs,2 · · · bs,s

 ,

C =


c1,1 c1,2 · · · c1,s
c2,1 c2,2 · · · c2,s

...
... · · ·

...
cs,1 cs,2 · · · cs,s

 ,

where ai,j , i, j ∈ [s] are random quadratic polynomials in {x1, · · · , xn}, and
bi,j , ci,j , i, j ∈ [s] are randomly linear combinations in {x1, · · · , xn}.
(2.2) Set E1 = A ·B and E2 = A ·C.
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(2.3) Define the central map F over x:

F(x1, · · · , xn) = (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn)),

where for i, j ∈ [s], f(i−1)s+j is the (i, j) element in E1, fs2+(i−1)s+j is the
(i, j) element in E2.

(2.4) Replacing x with L1x for F , generate the central map F̃ over x:

F̃(x1, · · · , xn) = (F ◦ L1)(x1, · · · , xn)

= (f̃1(x1, · · · , xn), · · · , f̃m(x1, · · · , xn)).

(3) For F̃(x1, · · · , xn), choose the linear map L2 : Fm → Fm:

(3.1) Choose an invertible matrix L2 ∈ Fm×m as the linear map L2.
(3.2) Define the maps

F(x1, · · · , xn) = (L2 ◦ F̃)(x1, · · · , xn)

= (L2 ◦ F ◦ L1)(x1, · · · , xn)

= (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn)).

(4) Output the public key pk = {F = L2 ◦ F ◦ L1} and the private key
sk = {L1,L2,B,C}.

Encryption: Given the public key pk and a message dT = (d1, d2, · · · , dn) ∈
Fn, then the ciphertext is

yT = (y1, y2, · · · , ym) = F(d1, d2, · · · , dn).

Decryption: Given the secret key sk and a ciphertext yT = (y1, y2, · · · , ym),
one decrypts as follows:

(1) Compute yT = (y1, y2, · · · , ym) = L−12 (y) = (L−12 y)T , and set

E1 =


y1 y2 · · · ys
ys+1 ys+2 · · · y2s

...
...

...
...

y(s−1)s+1 y(s−1)s+2 · · · ys2

 ∈ Fs×s,

E2 =


ys2+1 ys2+2 · · · ys2+s
ys2+s+1 ys2+s+2 · · · ys2+2s

...
...

...
...

ys2+(s−1)s+1 ys2+(s−1)s+2 · · · y2s2

 ∈ Fs×s.

(2) By E1 = AB and E2 = AC, we consider the following cases:

– If E1 is invertible, then BE−11 E2 = C. We get n linear equations with
n unknowns x1, · · · , xn.

– If E2 is invertible, but E1 is not invertible, then CE−12 E1 = B. We
also obtain n linear equations with n unknowns x1, · · · , xn.
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– If E1,E2 are not invertible, but A is invertible, then A−1E1 = B and
A−1E2 = C. We consider the elements of A−1 as the new variables, and end
up with m = 2n linear equations in m unknowns. Then, we can eliminate
the new variables to derive n linear equations in the x1, · · · , xn.

– Otherwise, the decryption fails.

(3)Given the above solution xT = (d1, d2, · · · , dn), compute the plaintext

(d1, d2, · · · , dn) = L−11 (x1, · · · , xn).

5.2 Cryptanalysis

Except with the definition of A, the cubic ABC scheme is same as ABC. So,
we can also generate an equivalent private key for the cubic ABC applying the
above similar method.

Since the elements ai,j , i, j ∈ [s] of A are random quadratic polynomials in

{x1, · · · , xn}, we can write A = A(2) + A(1) + A(0) = (a
(2)
i,j ) + (a

(1)
i,j ) + (a

(0)
i,j ),

where the element a
(2)
i,j of A(2) is a quadratic polynomial, the element a

(1)
i,j of A(1)

is a linear polynomial, and the element a
(0)
i,j of A(0) is a constant polynomial.

That is, AB = A(2)B + A(1)B + A(0)B, AC = A(2)C + A(1)C + A(0)C.
Now, we can rewrite the public key as follows:

F = F (3)
+ F (2)

+ F (1)

= L2 ◦ (F (3) + F (2) + F (1)) ◦ L1

= L2 ◦ F (3) ◦ L1 + L2 ◦ F (2) ◦ L1 + L2 ◦ F (1) ◦ L1

where F (3) (resp. F (2),F (1)) is cubic (resp. quadratic, one) central map.
Similarly, we can also obtain L−12 ◦ F = F (3) ◦ L1 + F (2) ◦ L1 + F (1) ◦ L1.

Thus, we can find an equivalent secret key by using the same method of attacking
ABC.

Theorem 3. Given the public key pk of the cubic ABC, there exists a poly-
nomial time algorithm which finds an equivalent secret key.

Proof. By L−12 ◦ F = F ◦ L1, we have

(L−12 ◦ F)(x1, · · · , xn) = (L−12 (y1, · · · , ym)T )T

where yj = f j(x1, · · · , xn), j ∈ [m].

(F ◦ L1)(x1, · · · , xn) = (F (3) ◦ L1 + F (2) ◦ L1 + F (1) ◦ L1)(x1, · · · , xn)

= F̃ (3)(x1, · · · , xn) + F̃ (2)(x1, · · · , xn) + F̃ (1)(x1, · · · , xn)

Since E1 = AB, E2 = AC and E1,E2,A,B,C are defined in the variables
{x1, · · · , xn}, we obtain a system in the variables x1, · · · , xn by replacing x with
L1x: {

E1 = Ã · B̃ = Ã(2)B̃ + Ã(1)B̃ + Ã(0)B̃

E2 = Ã · C̃ = Ã(2)C̃ + Ã(1)C̃ + Ã(0)C̃
(5)
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Furthermore, given yT = (y1, y2, · · · , ym) = L−12 (y), we have

E1 =


y1 y2 · · · ys
ys+1 ys+2 · · · y2s

...
...

...
...

y(s−1)s+1 y(s−1)s+2 · · · ys2

 ∈ Fs×s,

E2 =


ys2+1 ys2+2 · · · ys2+s
ys2+s+1 ys2+s+2 · · · ys2+2s

...
...

...
...

ys2+(s−1)s+1 ys2+(s−1)s+2 · · · y2s2

 ∈ Fs×s.

Replacing y with L−12 (y1, · · · , ym)T , we get a system in the variables x1, · · · , xn
and y1, · · · , ym: {

Ẽ1 = Ã · B̃ = Ã(2)B̃ + Ã(1)B̃ + Ã(0)B̃

Ẽ2 = Ã · C̃ = Ã(2)C̃ + Ã(1)C̃ + Ã(0)C̃
(6)

Since Ã(0) is a constant matrix, we let Ã(0) = ã0i,j , i, j ∈ [s]. In the following,

we give several Claims about the elements of Ã(2), Ã(1), B̃, C̃ in the equation
(6).

Claim 13. The elements ã
(2)
i,j in Ã(2) can be represented quadratic combina-

tion of the set {x1, · · · , xn}.
Proof. Since a

(2)
i,j of A(2) is a random quadratic polynomial in {x1, x2, · · · , xn}.

Assume a
(2)
i,j =

∑n

t=1

∑n

r=1
a
(2)
i,j,t,rxtxr, i, j ∈ [s].

By x = L1x, we have xt =
∑n

k=1
ut,kxk, t ∈ [n].

For a
(2)
i,j , replacing xt with

∑n

k=1
ut,kxk, we obtain

ã
(2)
i,j =

∑n

t=1

∑n

r=1
a
(2)
i,j,t,rxtxr

=
∑n

t=1

∑n

r=1
a
(2)
i,j,t,r

∑n

α=1
ut,αxα

∑n

β=1
ur,βxβ

=
∑n

α=1

∑n

β=1
ã
(2)
i,j,α,βxαxβ ,

where ã
(2)
i,j,α,β =

∑n

t=1

∑n

r=1
a
(2)
i,j,t,rut,αur,β

The result follows.
�

Similar to Claim 12, we can directly get the following results.

Claim 14. The elements ã
(1)
i,j in Ã(1) can be represented linear combination

of the set {x1, · · · , xn}. Namely, ã
(1)
i,j =

∑n

k=1
ã
(1)
i,j,kxk.

Claim 15. The elements b̃i,j , c̃i,j in B̃, C̃ can be represented linear combina-

tion of the set {x1, · · · , xn}. Namely, b̃i,j =
∑n

k=1
b̃i,j,kxk, c̃i,j =

∑n

k=1
c̃i,j,kxk.
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The proof of Theorem 3 continue:
Now, we analyze the (1, 1) element of ÃB̃ in the equation 6 as follows:

(ÃB̃)1,1 = (Ã(2)B̃)1,1 + (Ã(1)B̃)1,1 + (Ã(0)B̃)1,1

(Ã(2)B̃)1,1 =
∑s

θ=1
ã
(2)
1,θ b̃θ,1

=
∑s

θ=1
(
∑n

α=1

∑n

β=1
ã
(2)
1,θ,α,βxαxβ)(

∑n

k=1
b̃θ,1,kxk)

(Ã(1)B̃)1,1 =
∑s

θ=1
ã
(1)
1,θ b̃θ,1

=
∑s

θ=1
(
∑n

k=1
ã
(1)
1,θ,αxα)(

∑n

k=1
b̃θ,1,kxk)

(Ã(0)B̃)1,1 =
∑s

θ=1
ã
(0)
1,θ b̃θ,1

=
∑s

θ=1
ã
(0)
1,θ

∑n

k=1
b̃θ,1,kxk

It is easy to verify there exist sn3 different quadratic terms ã
(2)
1,θ,α,β b̃θ,1,k

in (Ã(2)B̃)1,1, sn2 different quadratic terms ã
(1)
1,θ,αb̃θ,1,k in (Ã(1)B̃)1,1, and sn

different quadratic terms ã
(0)
1,θ b̃θ,1,k in (Ã(0)B̃)1,1. Namely, there are s(n3+n2+n)

different quadratic terms in (ÃB̃)1,1. So, there are sn(n3 + n2 + n) different

quadratic terms in ÃB̃.
Similarly, there are also sn(n3 + n2 + n) different quadratic terms in ÃC̃.
Now, we can construct a system of linear equations with 2sn(n3+n2+n)+m2

unknown variables from the public key of the cubic ABC scheme by applying
linearization methods, and solve an equivalent private key by using Algorithm 1
in Claim 8.

Furthermore, solving an equivalent private key takes time at most (2sn(n3 +
n2 + n) +m2)3 log q = O(s3n12 log q).

This completes the proof of Theorem 3.
�

6 Conclusions

In this paper, using linearization method, we have proposed a polynomial time
algorithm for ABC proposed by Tao et al. in [11], which directly solves an equiv-
alent private key from the public key of ABC. Furthermore, our attack method
can also be applied to the variants in [12, 13] since the variants proposed by Tao
et al. and Ding et al. preserve the same algebraic structure as the ABC scheme
[11]. Therefore, the ABC cryptosystem [11] and its variants [12, 13] are insecure.
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