
Integrity Analysis of Authenticated Encryption Based on
Stream Ciphers ∗

Kazuya Imamura1, Kazuhiko Minematsu2, and Tetsu Iwata3

1 Nagoya University, Japan, k_imamur@echo.nuee.nagoya-u.ac.jp
2 NEC Corporation, Japan, k-minematsu@ah.jp.nec.com
3 Nagoya University, Japan, iwata@cse.nagoya-u.ac.jp

Abstract. We study the security of authenticated encryption based on a stream cipher and a
universal hash function. We consider ChaCha20-Poly1305 and generic constructions proposed by
Sarkar, where the generic constructions include 14 AEAD (authenticated encryption with associated
data) schemes and 3 DAEAD (deterministic AEAD) schemes. In this paper, we analyze the integrity
of these schemes both in the standard INT-CTXT notion and in the RUP (releasing unverified
plaintext) setting called INT-RUP notion. We present INT-CTXT attacks against 3 out of the 14
AEAD schemes and 1 out of the 3 DAEAD schemes. We then show INT-RUP attacks against 1 out
of the 14 AEAD schemes and the 2 remaining DAEAD schemes. We next show that ChaCha20-
Poly1305 is provably secure in the INT-RUP notion. Finally, we show that 4 out of the remaining
10 AEAD schemes are provably secure in the INT-RUP notion.

Keywords: authenticated encryption, stream cipher, universal hash function, provable security,
integrity, releasing unverified plaintext

1 Introduction

Background. An authenticated encryption (AE) scheme is a symmetric encryption primitive where the
goal is to achieve both privacy and integrity of plaintexts. Examples of AE include GCM [11], CCM [19],
and EAX [6], and they are widely used in practice. There are several ways to construct AE, and the
construction by the generic composition (GC), which was formalized by Bellare and Namprempre [3],
is to combine existing primitives, one for encryption and the other for authentication, to obtain AE.
The security notion for integrity, called INT-CTXT, requires that an adversary is unable to produce
a ciphertext that is accepted in verification, where the adversary has access to an encryption oracle.
Authenticated encryption with associated data (AEAD) was formalized in [15], where associated data
(AD) is the input that is authenticated but not encrypted. Nonce-based encryption was formalized in [16],
where a nonce is the input of the scheme which is supposed to be used only once, meaning that it is not
repeated. Implementation of a nonce is non-trivial in practice, and a repeat of a nonce in AEAD is often
devastating. To address this issue, deterministic authenticated encryption (DAE) was formalized in [17].
More precisely, DAEAD is DAE that supports AD, which is AE that remains secure without the use
of a nonce and does not leak information about a plaintext from a ciphertext, except for the repetition
of the input. In this sense DAEAD has the nonce-reuse misuse resistance, but on a downside, DAEAD
requires off-line computation. The GC in [3] was refined by Namprempre, Rogaway, and Shrimpton [12]
by explicitly treating the use of a nonce.

Another direction of GC was put forward by Sarkar [18], where a stream cipher is used for encryption
and a universal hash function is used for authentication. In [18], a total of 17 AEAD/DAEAD schemes
are proposed. There are 14 AEAD schemes, called AEAD-{1, 2, 2a, 2b, 3, 4, 4a, 4b, 5, 6, 6a, 7, 8, 8a}, and 3
DAEAD schemes, called DAEAD-{1, 2, 2a}. It was proved that all these schemes achieve both privacy and
integrity under the assumption that the stream cipher is a pseudo-random function (PRF) and that the
hash function is a universal hash function.

Related AEAD which we call ChaCha20-Poly1305 was proposed by Nir and Langley [13]. A stream
cipher ChaCha20 [8] is used for encryption and a universal hash function Poly1305 [7] is used for authenti-
cation, which were designed by Bernstein. ChaCha20-Poly1305 is practically used in IETF protocols [13].
The scheme is similar to one of the GC called AEAD-2b of [18], but there is a subtle difference and it does

∗A proceedings version of this paper appears in [10]. The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-47422-9 15. This is the full version.

http://dx.doi.org/10.1007/978-3-319-47422-9_15

Table 1. INT-CTXT and INT-RUP security of AEAD and DAEAD schemes. The mark 3 means secure, 7 means
insecure, (7) follows from the INT-CTXT result, and ? remains open.

Scheme INT-CTXT INT-RUP

ChaCha20-Poly1305 3 ([14]) 3 (Theorem 1)

AEAD-1 3 ([18, Theorem 20]) 3 (Theorem 2)
AEAD-2 3 ([18, Theorem 20]) 3 (Theorem 2)
AEAD-2a 7 (Sect. 4.1) (7)
AEAD-2b 3 ([18, Theorem 20]) 7 (Sect. 4.2)
AEAD-3 3 ([18, Theorem 20]) 3 (Theorem 2)
AEAD-4 3 ([18, Theorem 20]) 3 (Theorem 2)
AEAD-4a 7 (Sect. 4.1) (7)
AEAD-4b 7 (Sect. 4.1) (7)
AEAD-5 3 ([18, Theorem 20]) ?
AEAD-6 3 ([18, Theorem 20]) ?
AEAD-6a 3 ([18, Theorem 20]) ?
AEAD-7 3 ([18, Theorem 20]) ?
AEAD-8 3 ([18, Theorem 20]) ?
AEAD-8a 3 ([18, Theorem 20]) ?

DAEAD-1 3 ([18, Theorem 21]) 7 (Sect. 4.2)
DAEAD-2 3 ([18, Theorem 21]) 7 (Sect. 4.2)
DAEAD-2a 7 (Sect. 4.1) (7)

not exactly follow the composition. Procter [14] proved that ChaCha20-Poly1305 achieves both privacy
and authenticity in the model of [4] under the assumption that ChaCha20 block function is a PRF.

Another security notion called the releasing unverified plaintext (RUP) was formalized by Andreeva et
al. [1]. This notion is motivated to cover the situation in which there is not enough memory in decryption
devices to store the entire decrypted plaintext and decrypted plaintexts are immediately required in real
time. The corresponding integrity notion is called INT-RUP, and the goal of an adversary under the INT-
RUP notion is to produce a new ciphertext which is accepted in the verification, where the adversary has
access to the oracle that returns unverified plaintexts. We remark that the notion is often referred to as
the decryption-misuse setting.

Our Contributions. In this paper, we study the integrity of AEAD and DAEAD based on a stream cipher
and a universal hash function in the standard INT-CTXT notion and in the decryption-misuse, INT-RUP
notion.

Our results are summarized in Table 1. We first show that there are INT-CTXT attacks against 4
out of 17 schemes in [18], invalidating the original INT-CTXT security claims. In addition to this, we
show INT-RUP attacks against 3 out of the 17 schemes, showing a sort of tightness of the original INT-
CTXT claims. All our attacks need only a few queries, and are hence practical. Specifically, we show
INT-CTXT attacks against AEAD-{2a, 4a, 4b} and DAEAD-2a, and INT-RUP attacks against AEAD-2b
and DAEAD-{1, 2}. We note that INT-RUP security is not claimed in [18], as [18] predates [1].

A universal hash function, or more precisely an almost XOR universal (AXU) hash function, is used
in these schemes, and our observation is that the definition of an AXU hash function does not exclude
a case where it has a fixed point, which is the input X and the output Y of the hash function H such
that HL(X) = Y holds independent of the key L. Our INT-CTXT attacks against AEAD-{2a, 4a, 4b} and
DAEAD-2a, and INT-RUP attacks against DAEAD-{1, 2} make use of the existence of the fixed point. The
INT-RUP attack against AEAD-2b is based on a different observation. We show that an adversary can
recover the hash key from the unverified plaintext and hence break the INT-RUP security with probability
1. The attacks are described in Sect. 4. We remark that our attacks imply the existence of a universal
hash function that makes these schemes insecure, and the attacks do not imply the non-existence of a
universal hash function that makes the schemes secure.

Next, we show that ChaCha20-Poly1305 is INT-RUP secure under the same assumption as Procter.
While ChaCha20-Poly1305 is similar to AEAD-2b, there is a difference in the order of the generation
of a hash key and a keystream, and this small difference results in the difference in INT-RUP security.

2

Finally, we show that AEAD-{1, 2, 3, 4} are INT-RUP secure under the assumption that a stream cipher
is a PRF. Our security bounds of these schemes are shown in Sect. 5.

2 Preliminaries

2.1 Notation

We write {0, 1}∗ for the set of all finite bit strings, and for an integer l ≥ 0, we write {0, 1}l for all the
l-bit strings. We write ε for the empty string. For X ∈ {0, 1}∗, |X| is its length in bits. For X ∈ {0, 1}∗
and an integer l such that |X| ≥ l, msbl(X) denotes the most significant (the leftmost) l bits of X, and
lsbl(X) denotes the least significant (the rightmost) l bits of X. For X,Y ∈ {0, 1}∗, their concatenation
is written as X ‖ Y . The bit string of m zeros is written as 0m ∈ {0, 1}m, and m ones is written as

1m ∈ {0, 1}m. For a finite set X , we write X
$← X for a procedure of assigning X an element sampled

uniformly at random from X .

2.2 AEAD and DAEAD

Authenticated Encryption with Associated Data (AEAD) [3,15]. The goal of AEAD is to achieve both
privacy and integrity of a plaintext, and integrity of associated data. We consider that AEAD consists
of three deterministic algorithms, and let AEAD = (AEAD.Enc,AEAD.Dec,AEAD.Ver). Let K ∈ K be the
underlying secret key that fixes the three algorithms, where K is the key space. The encryption algorithm
AEAD.EncK takes input a nonce N , associated data A, and a plaintext M , and outputs a ciphertext C
and a tag T . The decryption algorithm AEAD.DecK takes input N , A, C, and T , and always outputs
M . The verification algorithm AEAD.VerK takes input N , A, C, and T , and outputs > or ⊥, where >
means that the verification is accepted, and ⊥ means that the verification is rejected. The correctness
requirement must be satisfied, that is, the following requirements are satisfied.{

AEAD.DecK(N,A,AEAD.EncK(N,A,M)) = M

AEAD.VerK(N,A,AEAD.EncK(N,A,M)) = >

Deterministic AEAD (DAEAD) [17]. DAEAD is AEAD that does not require a nonce. Let DAEAD =
(DAEAD.Enc,DAEAD.Dec,DAEAD.Ver), where the encryption algorithm DAEAD.EncK takes input A and
M , and outputs C and T , the decryption algorithm DAEAD.DecK takes input A, C, and T , and outputs
M , and the verification algorithm DAEAD.VerK takes input A, C, and T , and outputs > or ⊥. As in
AEAD, the following correctness requirement must be satisfied.{

DAEAD.DecK(A,DAEAD.EncK(A,M)) = M

DAEAD.VerK(A,DAEAD.EncK(A,M)) = >

2.3 Security Definitions

Ciphertext Integrity. For AEAD and DAEAD, privacy and integrity are the main two security notions.
In this paper, we focus on the latter, and describe two notions called INT-CTXT and INT-RUP. INT-
CTXT is a standard, classical notion that captures the integrity of ciphertext under chosen ciphertext
attacks. INT-RUP considers a more powerful adversary that has access to an oracle that returns unverified
plaintexts. We note that INT-RUP is a stronger notion than INT-CTXT, and if a scheme is INT-RUP
secure, then it is also INT-CTXT secure.

Definition 1 (INT-CTXT Advantage [3,4]). Let A be an adversary that has access to two oracles
AEAD.EncK and AEAD.VerK . Then we define the INT-CTXT advantage of A against AEAD as

Advint-ctxt
AEAD (A)

def
= Pr[AAEAD.EncK ,AEAD.VerK forges],

where K
$← K and A forges is the event that AEAD.VerK returns > to A. We assume that A does not

repeat a query, and if A receives a response (C, T) for an encryption query (N,A,M), then A does not
subsequently make a verification query (N,A,C, T). We assume that A is nonce-respecting with respect to
encryption queries, that is, if (Ni, Ai,Mi) denotes the i-th encryption query, then it holds that Ni 6= Ni′

for any i 6= i′.

3

We note that A may repeat a nonce within verification queries, may reuse a nonce used for an encryption
query as a nonce for a subsequent verification query, and may reuse a nonce used for a verification query
as a nonce for a subsequent encryption query.

The INT-CTXT advantage for DAEAD is similarly defined as

Advint-ctxt
DAEAD (A)

def
= Pr[ADAEAD.EncK ,DAEAD.VerK forges].

We assume that A does not repeat a query, and if A receives a response (C, T) for an encryption query
(A,M), then A does not subsequently make a verification query (A,C, T). Since DAEAD does not take a
nonce N as input, A has no nonce-respecting restriction.

Definition 2 (INT-RUP Advantage [1]). Let A be an adversary that has access to three oracles
AEAD.EncK , AEAD.DecK , and AEAD.VerK . Then we define the INT-RUP advantage of A against AEAD
as

Advint-rup
AEAD (A)

def
= Pr[AAEAD.EncK ,AEAD.DecK ,AEAD.VerK forges],

where K
$← K and A forges is the event that AEAD.VerK returns > to A. A does not repeat a query, and

if A receives a response (C, T) for an encryption query (N,A,M), then A does not subsequently make
a verification query (N,A,C, T). A is nonce-respecting with respect to encryption queries. However, a
nonce can be repeated within decryption queries and within verification queries, and the same nonce can
be reused across encryption, decryption, and verification queries.

The INT-RUP advantage of DAEAD is defined as

Advint-rup
DAEAD(A)

def
= Pr[ADAEAD.EncK ,DAEAD.DecK ,DAEAD.VerK forges].

As in the INT-CTXT definition, since DAEAD does not take a nonce N as input, A has no nonce-
respecting restriction. However, we assume that A does not repeat a query, and if A receives a response
(C, T) for an encryption query (A,M), then A does not subsequently make a verification query (A,C, T).

Pseudo-Random Function (PRF). Following [18], we consider a stream cipher as a function SC : K ×
{0, 1}n → {0, 1}`, where K is the set of keys, n denotes the length of IV in bits, and ` is a sufficiently
large and fixed integer. For a key K ∈ K, the corresponding function SCK takes an IV N ∈ {0, 1}n as
input, and outputs the keystream Z ← SCK(N) ∈ {0, 1}`. Let Rand(n, `) be the set of all functions from
{0, 1}n to {0, 1}`, and let A be an adversary. Then we define the PRF-advantage of A against SC as

Advprf
SC (A)

def
= Pr[K

$← K : ASCK ⇒ 1]− Pr[F
$← Rand(n, `) : AF ⇒ 1],

where A ⇒ 1 denotes the event that A outputs 1.
We note that in the above formalization, SCK is a function with fixed-input length and fixed-output

length, and we assume that the output of SCK is always ` bits. However, in the actual usage of SCK , we
abuse the notation and for instance we write C ←M ⊕ SCK(N) to mean C ←M ⊕msb|M |(SCK(N)), or
R ‖ Z ← SCK(N), where |R| = n and |Z| is clear from the context (such as the length of the plaintext),
to mean Y ← SCK(N), R← msbn(Y), and Z ← lsb|Z|(msbn+|Z|(Y)).

Hash Function. Let H : L ×DH → {0, 1}n be a hash function, where L is a set of hash keys, DH denotes
the domain, and n is the length of the output in bits. The function specified by L ∈ L is written as HL.

Let {HL} be a family of keyed hash functions. For any distinct X ′, X ∈ DH and any Y ∈ {0, 1}n, if
the differential probability Pr[HL(X)⊕ HL(X ′) = Y] is at most ε, then HL is defined to be an ε-almost-

XOR-universal (ε-AXU) hash function, where the probability is taken over the choice of L
$← L.

There are several examples of an ε-AXU hash function for small ε, and they include GHASH used in
GCM [11] and Poly1305 [7]. For these hash functions, the key length is independent of the input length,
and the key space is the set of bit strings of a fixed length. Following [18], we call this type of hash
functions Type-I hash functions. There are other examples of an ε-AXU hash function where the key
length can be as long as the input length, or even longer that that, including UMAC [9]. We call this
type of hash functions Type-II hash functions.

4

We observe that the definition of an ε-AXU hash function does not exclude a case where the hash
function has a fixed point. That is, there may exist X ∈ DH and Y ∈ {0, 1}n such that HL(X) = Y holds
independently of the key L, since the requirement is about the differential probability, and the uniformity
of a single input is irrelevant of the definition. Indeed, practical hash functions like GHASH and Poly1305
have a fixed point. For GHASH, it takes (A,C) ∈ {0, 1}∗×{0, 1}∗ as input and outputs Y ∈ {0, 1}n, and
it holds that GHASHL(A,C) = Y with probability 1 for (A,C) = (ε, ε) and Y = 0n. Poly1305 has the
same fixed point. We will exploit the existence of a fixed point in our attacks.

3 Schemes

In this section, we present the specifications of AEAD and DAEAD schemes that are proposed in [18],
and ChaCha20-Poly1305 [13].

AEAD in [18]. Let fStr be an arbitrary fixed n-bit string. For instance fStr could be 0n. AEAD schemes
in [18] are specified by a stream cipher SC and a hash function H, and we write AEAD[SC,H] for AEAD
that uses SC and H as parameters. We also write AEAD[Rand(n, `),H] for AEAD where we use a random

function F
$← Rand(n, `) as the stream cipher SCK . The encryption algorithms of the schemes are defined

in Fig. 1. See Fig. 2 for the overall structure of the encryption algorithms. The decryption and verification
algorithms are described in Appendix A. We note that these schemes have the convention on the length of
the input. Specifically, the encryption algorithms take any plaintext M which is not empty, and |M | = 0
is not allowed [18].

We also note that AEAD-{1, 2, 2a, 2b, 3, 4, 4a, 4b} use H as a double-input hash function, but AEAD-
{5, 6, 6a, 7, 8, 8a} use H as a hash function that can take both double-input and single-input. See [18] for
more details on this matter.

ChaCha20-Poly1305 [13]. Let KCC = {0, 1}256 and KPoly = {0, 1}128 × {0, 1}128. We denote ChaCha20
block function by CC : KCC×{0, 1}32×{0, 1}96 → {0, 1}512, and denote Poly1305 authentication function
by Poly : KPoly × {0, 1}∗ → {0, 1}128. The functions specified by K ∈ KCC and (r, s) ∈ KPoly are written
as CCK and Polyr,s, respectively. We write CC&Poly for ChaCha20-Poly1305.

With these functions, the encryption algorithm of ChaCha20-Poly1305 is defined in Fig. 3. See Fig. 4
for the overall structure of the encryption algorithm. The decryption and verification algorithms are
defined in Appendix A. See [7,8] for further details of the specifications of ChaCha20 and Poly1305.

Observe the similarity to AEAD-2b. SCK(N) in AEAD-2b corresponds to CCK(0, N),CCK(1, N), . . . ,
CCK(d|M |/512e, N), where (L,R) in AEAD-2b corresponds to (r, s) in ChaCha20-Poly1305. The difference
is that L is taken from the rightmost bits of SCK(N), thus the starting position can be moved depending
on the length of M , while r is always taken from the same position.

DAEAD in [18]. The encryption algorithms of DAEAD schemes are defined in Fig. 5. See Fig. 6 for the
overall structure. We note that the basic idea of DAEAD schemes follows the SIV construction in [17].
The decryption and verification algorithms are described in Appendix A.

4 Negative Results

In this section, we show that AEAD-{2a, 4a, 4b} and DAEAD-2a are not INT-CTXT secure and that
AEAD-2b and DAEAD-{1, 2} are not INT-RUP secure. Our forgery attacks against these schemes are
presented in Fig. 7 and Fig. 8.

Before describing the details of our attacks, we present the following proposition showing that the
fixed point can be “moved” to any desired point without changing the value of ε.

Proposition 1. Let H̃L : DH → {0, 1}n be a hash function, ϕ : DH → DH be an injective function, and

c ∈ {0, 1}n be a constant. Let HL : DH → {0, 1}n be a hash function, where HL(X) = H̃L(ϕ(X)) ⊕ c. If

{H̃L} is ε-AXU, then {HL} is ε-AXU.

5

AEAD-1.EncK,L(N,A,M)

1. R ‖ Z ← SCK(N)
2. C ←M ⊕msb|M|(Z)
3. T ← HL(A,C)⊕R
4. return (C, T)

AEAD-2.EncK,K′(N,A,M)

1. L← SCK(K′)
2. R ‖ Z ← SCK(N)
3. C ←M ⊕msb|M|(Z)
4. T ← HL(A,C)⊕R
5. return (C, T)

AEAD-2a.EncK(N,A,M)

1. K′ ← msbn(SCK(fStr))
2. L← SCK(K′)
3. R ‖ Z ← SCK(N)
4. C ←M ⊕msb|M|(Z)
5. T ← HL(A,C)⊕R
6. return (C, T)

AEAD-2b.EncK(N,A,M)

1. R ‖ S ← SCK(N)
2. Parse S as Z ‖ L where |Z| = |M |
3. C ←M ⊕ Z
4. T ← HL(A,C)⊕R
5. return (C, T)

AEAD-3.EncK,L(N,A,M)

1. R ‖ Z ← SCK(N)
2. C ←M ⊕msb|M|(Z)
3. T ← HL(A,M)⊕R
4. return (C, T)

AEAD-4.EncK,K′(N,A,M)

1. L← SCK(K′)
2. R ‖ Z ← SCK(N)
3. C ←M ⊕msb|M|(Z)
4. T ← HL(A,M)⊕R
5. return (C, T)

AEAD-4a.EncK(N,A,M)

1. K′ ← msbn(SCK(fStr))
2. L← SCK(K′)
3. R ‖ Z ← SCK(N)
4. C ←M ⊕msb|M|(Z)
5. T ← HL(A,M)⊕R
6. return (C, T)

AEAD-4b.EncK(N,A,M)

1. R ‖ S ← SCK(N)
2. Parse S as Z ‖ L where |Z| = |M |
3. C ←M ⊕ Z
4. T ← HL(A,M)⊕R
5. return (C, T)

AEAD-5.EncK,L(N,A,M)

1. V ← HL(A,N)
2. R ‖ Z ← SCK(V)
3. C ←M ⊕msb|M|(Z)
4. T ← HL(C)⊕R
5. return (C, T)

AEAD-6.EncK,K′(N,A,M)

1. L1 ‖ L2 ← SCK(K′)
2. V ← HL1(A,N)
3. R ‖ Z ← SCK(V)
4. C ←M ⊕msb|M|(Z)
5. T ← HL2(C)⊕R
6. return (C, T)

AEAD-6a.EncK(N,A,M)

1. K′ ← msbn(SCK(fStr))
2. L1 ‖ L2 ← SCK(K′)
3. V ← HL1(A,N)
4. R ‖ Z ← SCK(V)
5. C ←M ⊕msb|M|(Z)
6. T ← HL2(C)⊕R
7. return (C, T)

AEAD-7.EncK,L(N,A,M)

1. V ← HL(A,N)
2. R ‖ Z ← SCK(V)
3. C ←M ⊕msb|M|(Z)
4. T ← HL(M)⊕R
5. return (C, T)

AEAD-8.EncK,K′(N,A,M)

1. L1 ‖ L2 ← SCK(K′)
2. V ← HL1(A,N)
3. R ‖ Z ← SCK(V)
4. C ←M ⊕msb|M|(Z)
5. T ← HL2(M)⊕R
6. return (C, T)

AEAD-8a.EncK(N,A,M)

1. K′ ← msbn(SCK(fStr))
2. L1 ‖ L2 ← SCK(K′)
3. V ← HL1(A,N)
4. R ‖ Z ← SCK(V)
5. C ←M ⊕msb|M|(Z)
6. T ← HL2(M)⊕R
7. return (C, T)

Fig. 1. Pseudocode of the encryption algorithms of AEAD schemes [18]

6

AEAD-1.EncK,L,AEAD-2.EncK,K′ ,AEAD-2a.EncK

HL

N AM

R

Z

C T

K′

fStr

SCK

K′

SCK

L

SCK

AEAD-2b.EncK

L

HL

N AM

R

Z

C T

SCK

AEAD-3.EncK,L,AEAD-4.EncK,K′ ,AEAD-4a.EncK

HL

N AM

R

Z

C T

K′

fStr

SCK

K′

SCK

L

SCK

AEAD-4b.EncK

L

HL

N AM

R

Z

C T

SCK

AEAD-5.EncK,L

HL

N

M

R

Z

C T

SCK

V

HL

A

V

AEAD-6.EncK,K′ ,AEAD-6a.EncK

K′

fStr

SCK

K′

SCK HL1

N

M

R

Z

C T

SCK

V

A

V

L1 L2

HL2

AEAD-7.EncK,L

HL

N

M

R

Z

C T

SCK

V

HL

A

V

AEAD-8.EncK,K′ ,AEAD-8a.EncK

K′

fStr

SCK

K′

SCK HL1

N

M

R

Z

C T

SCK

V

A

V

L1 L2

HL2

Fig. 2. Illustration of the encryption algorithms of AEAD schemes [18]. In AEAD-2 and AEAD-4, L = SCK(K′). In
AEAD-2a and AEAD-4a, L = SCK(msbn(SCK(fStr))). In AEAD-6 and AEAD-8, L1 ‖ L2 = SCK(K′). In AEAD-6a
and AEAD-8a, L1 ‖ L2 = SCK(msbn(SCK(fStr))).

7

CC&Poly.EncK(N,A,M)

1. Z ← KSGenK(N, |M |)
2. C ←M ⊕ Z
3. T ← TagK(N,A,C)
4. return (C, T)

KSGenK(N, l)

1. m← dl/512e
2. for i← 1 to m do
3. Z[i]← CCK(i,N)
4. l∗ ← l mod 512
5. Z[m]← lsbl∗(Z[m])
6. Z ←

∑m
i=1 Z[i] · 2512(i−1)

7. return Z

TagK(N,A,C)

1. s ‖ r ← lsb256(CCK(0, N)) where |r| = |s| = 128
2. l1 ← 128d|A|/128e
3. l2 ← l1 + 128d|C|/128e
4. l3 ← l2 + 64
5. Y ← A
6. Y ← Y + C · 2l1

7. Y ← Y + d|A|/8e · 2l2

8. Y ← Y + d|C|/8e · 2l3

9. T ← Polyr,s(Y)
10. return T

Fig. 3. Pseudocode of the encryption algorithm of ChaCha20-Poly1305. The arithmetics are usual integer addition
and multiplication.

KSGenK TagK

C

N

Z

A CNM

T

Fig. 4. Illustration of the encryption algorithm of ChaCha20-Poly1305

Proof. For any distinct X,X ′ ∈ DH and any Y ∈ {0, 1}n, ϕ(X) and ϕ(X ′) are distinct, and we have

Pr[HL(X)⊕ HL(X ′) = Y] = Pr[H̃L(ϕ(X))⊕ c⊕ H̃L(ϕ(X ′))⊕ c = Y]

= Pr[H̃L(ϕ(X))⊕ H̃L(ϕ(X ′)) = Y] ≤ ε.

Therefore, {HL} is also ε-AXU. ut

There exists an ε-AXU hash function H̃L such that H̃L(A,M) = 0n for (A,M) = (ε, ε), e.g., GHASH
function in GCM and Poly1305, and we use the proposition to respect the non-empty plaintext convention
of the schemes in [18].

We are now ready to present the details of our attacks.

4.1 AEAD-{2a, 4a, 4b} and DAEAD-2a Are Not INT-CTXT Secure

Attack against AEAD-2a. The hash function in AEAD-2a takes associated data A and a ciphertext C as
input. Suppose that H̃L is an ε-AXU hash function such that H̃L : (ε, ε) 7→ 0n. Let A0 be any associated
data and C0 be any ciphertext such that |C0| = 1, i.e., C0 is a bit. We also assume that, given a hash
key of length n bits, the adversary can compute the hash value for any input, e.g., Type-I hash functions
like GHASH function. Define an injective function ϕ as follows.

ϕ(A,C) =


(ε, ε) if (A,C) = (A0, C0)

(A0, C0) if (A,C) = (ε, ε)

(A,C) otherwise

Let HL(A,C) = H̃L(ϕ(A,C)). Then HL is an ε-AXU function from Proposition 1.
Now in the attack in Fig. 7, the adversary receives (C1, T1) for the first encryption query (N1, A1,M1) =

(fStr, A0,M0), where |M0| = 1. We see that Pr[C1 = C0] is approximately 1/2. If C1 6= C0, then the
adversary fails to make a forgery. If C1 = C0, from K ′ = msbn(SCK(fStr)), ϕ(A0, C0) = (ε, ε), and

H̃L(ε, ε) = 0n, the adversary receives K ′ as the tag. Suppose that K ′ 6= fStr. For the second encryp-
tion query (N2, A2,M2) = (K ′, A0,M0), the adversary receives (C2, T2). Pr[C2 = C0] is approximately
1/2, and if C2 6= C0, then the adversary fails to make a forgery. If C2 = C0, from L = SCK(K ′) and

8

DAEAD-1.EncK,L(A,M)

1. V ← HL(A,M)
2. T ← msbn(SCK(V))
3. Z ← SCK(T)
4. C ←M ⊕ Z
5. return (C, T)

DAEAD-2.EncK,K′(A,M)

1. L← SCK(K′)
2. V ← HL(A,M)
3. T ← msbn(SCK(V))
4. Z ← SCK(T)
5. C ←M ⊕ Z
6. return (C, T)

DAEAD-2a.EncK(A,M)

1. K′ ← msbn(SCK(fStr))
2. L← SCK(K′)
3. V ← HL(A,M)
4. T ← msbn(SCK(V))
5. Z ← SCK(T)
6. C ←M ⊕ Z
7. return (C, T)

Fig. 5. Pseudocode of the encryption algorithms of DAEAD schemes [18]

Z

C

SCK

V

HL

A

K′

fStr

SCK

K′

SCK

L

SCK

T

M

Fig. 6. Illustration the encryption algorithms of DAEAD schemes [18]. In DAEAD-2, L = SCK(K′). In DAEAD-2a,
L = SCK(msbn(SCK(fStr))).

HL(A0, C0) = 0n, the adversary receives the first n bits of the hash key L, called L∗. If K ′ = fStr, the
hash key L∗ is fStr. Therefore, the forgery (N∗, A∗, C∗, T ∗), where N∗ = fStr, is accepted with probability
approximately 1/4.

Attack against AEAD-4a. In AEAD-4a, the hash function takes A and M as input. Let H̃L be an ε-AXU
hash function such that H̃L : (ε, ε) 7→ 0n. Given a hash key of length n bits, we assume that the adversary
can compute the hash value for any input. Let A0 be any associated data and M0 be any non-empty
plaintext that will be used in the attack. Define an injective function ϕ as follows.

ϕ(A,M) =


(ε, ε) if (A,M) = (A0,M0)

(A0,M0) if (A,M) = (ε, ε)

(A,M) otherwise

(1)

Let HL(A,M) = H̃L(ϕ(A,M)). Then HL is an ε-AXU function from Proposition 1.
For the first encryption query (N1, A1,M1) = (fStr, A0,M0), fromK ′ = msbn(SCK(fStr)), ϕ(A0,M0) =

(ε, ε), and H̃L(ε, ε) = 0n, the adversary receives K ′ as the tag. Suppose that K ′ 6= fStr. For the second
encryption query (N2, A2,M2) = (K ′, A0,M0), the adversary receives the first n bits of the hash key L,
which we write L∗, and can compute the tag T ∗ ← HL∗(A

∗,M∗)⊕K ′ without access to the encryption
oracle. Here the length of M∗ should be at most the length of M0. If fStr = K ′, then the hash key L∗

is fStr. Therefore the forgery (N∗, A∗, C∗, T ∗), where N∗ = fStr and C∗ ← M∗ ⊕ msb|M∗|(M1 ⊕ C1), is
accepted with probability 1.

Attack against AEAD-4b. The hash function in AEAD-4b takes A and M as input. Suppose that H̃L

is an ε-AXU hash function such that H̃L : (ε, ε) 7→ 0n. Let A0 be any associated data and M0 be any

non-empty plaintext. Define an injective function ϕ as in (1). Let HL(A,M) = H̃L(ϕ(A,M)). Then HL

is an ε-AXU function from Proposition 1. Let N ∈ {0, 1}n be an arbitrary nonce.
For the encryption query (N1, A1,M1) = (N,A0,M0), since we define R = msbn(SCK(N)), ϕ(A0,M0)

= (ε, ε), and H̃L(ε, ε) = 0n, the adversary receives R as the tag. Observe that we have (R,Z0, L) =
SCK(N). In the attack, we parse Z0 as Z0 = Z∗ ‖ L∗, and use Z∗ as the keystream and L∗ as the hash
key. Note that Z0 = M0 ⊕ C0 and hence the adversary can recover Z0, and given L∗, the adversary can
compute T ∗ for any (A∗,M∗). We remark that the length of L∗ to compute Step 4 may depend on |A∗|
and |M∗| if Type-II hash function is used, and the length of L∗ can be arbitrarily long by using long

9

INT-CTXT attack against AEAD-2a

1. (C1, T1)← AEAD-2a.EncK(N1, A1,M1) where (N1, A1,M1)← (fStr, A0,M0)
2. if C1 = C0 then
3. K′ ← T1

4. if K′ 6= fStr then
5. (C2, T2)← AEAD-2a.EncK(N2, A2,M2) where (N2, A2,M2)← (K′, A0,M0)
6. if C2 = C0 then
7. L∗ ← T2; T ∗ ← HL∗(A

∗, C∗)⊕K′

8. > ← AEAD-2a.VerK(N∗, A∗, C∗, T ∗) where N∗ ← fStr
9. else

10. L∗ ← fStr; T ∗ ← HL∗(A
∗, C∗)⊕ fStr

11. > ← AEAD-2a.VerK(N∗, A∗, C∗, T ∗) where N∗ ← fStr

INT-CTXT attack against AEAD-4a

1. (C1,K
′)← AEAD-4a.EncK(N1, A1,M1) where (N1, A1,M1)← (fStr, A0,M0)

2. if K′ 6= fStr then
3. (C2, L

∗)← AEAD-4a.EncK(N2, A2,M2) where (N2, A2,M2)← (K′, A0,M0)
4. else
5. L∗ ← K′

6. T ∗ ← HL∗(A
∗,M∗)⊕K′ where |M∗| ≤ |M0|

7. > ← AEAD-4a.VerK(N∗, A∗,M∗ ⊕msb|M∗|(M1 ⊕ C1), T ∗) where N∗ ← fStr

INT-CTXT attack against AEAD-4b

1. (C0, R)← AEAD-4b.EncK(N1, A1,M1) where (N1, A1,M1)← (N,A0,M0)
2. Z0 ←M0 ⊕ C0

3. Parse Z0 as Z∗ ‖ L∗ where |L∗| is the key length to compute Step 4
4. T ∗ ← HL∗(A

∗,M∗)⊕R
5. > ← AEAD-4b.VerK(N∗, A∗, C∗, T ∗) where N∗ ← N and C∗ ←M∗ ⊕ Z∗

INT-CTXT attack against DAEAD-2a

1. (C0,K
′)← DAEAD-2a.EncK(A1,M1) where (A1,M1)← (A0,M0)

2. L∗ ←M0 ⊕ C0

3. Compute (A∗,M∗) such that fStr = HL∗(A
∗,M∗) with L∗

4. > ← DAEAD-2a.VerK(A∗, C∗, T ∗) where (C∗, T ∗)← (M∗ ⊕msb|M∗|(L
∗),K′)

Fig. 7. INT-CTXT attacks

M0. For any M∗ ∈ {0, 1}|Z∗|, the adversary can compute the tag T ∗. Hence the forgery (N∗, A∗, C∗, T ∗),
where N∗ = N and C∗ = M∗ ⊕ Z∗, is accepted with probability 1.

Attack against DAEAD-2a. Suppose that H̃L is an ε-AXU hash function such that H̃L : (ε, ε) 7→ 0n. We
also assume that, given a hash key L∗ and Y , we can compute some (A∗,M∗) such that Y = HL∗(A

∗,M∗).
Let A0 be arbitrary associated data and M0 be a plaintext. Define an injective function ϕ as in (1). We

have a restriction on |M0|, which is discussed below. Let HL(A,M) = H̃L(ϕ(A,M)) ⊕ fStr. Then HL is
ε-AXU from Proposition 1.

For the encryption query (A1,M1) = (A0,M0), from ϕ(A0,M0) = (ε, ε) and H̃L(ε, ε) = 0n, it follows
that HL(A0,M0) = fStr. From K ′ = msbn(SCK(fStr)), the adversary receives K ′ as the tag. From
SCK(K ′) = L andM0⊕C0, it obtains the first |M0| bits of L. Let L∗ be the value of msb|M0|(L). The length
of L∗ has to be long enough so that the adversary can compute (A∗,M∗) such that fStr = HL∗(A

∗,M∗).
Therefore, (A∗, C∗, T ∗), where (C∗, T ∗) = (M∗ ⊕msb|M∗|(L

∗),K ′), is always accepted.

Comments. We note that, since the above schemes are not INT-CTXT secure, they are not INT-RUP
secure, and these attacks contradict the claims in [18]. All the above attacks use the fixed point of the
hash function. For example, given the security proof of AEAD-2, it is tempting to claim that AEAD-2a is
also secure. However, the dependence of the generation of K ′ and (R,Z) within the encryption algorithm
allows the adversary to reproduce K ′ within encryption, and the fixed point of the hash function makes it

10

INT-RUP attack against AEAD-2b

1. (C, T)← AEAD-2b.EncK(N1, A1,M1) where (N1, A1,M1)← (N,A,M)
2. Let c be an integer which is at least |M | plus the hash key length of H
3. Z′ ← AEAD-2b.DecK(N ′1, A

′
1, C

′
1, T

′
1) where (N ′1, A

′
1, C

′
1, T

′
1)← (N,A′, 0c, T ′)

4. Parse Z′ as Z ‖ L where |Z| = |M |
5. R← HL(A,C)⊕ T
6. Parse Z′ as Z∗ ‖ L∗ where |Z∗| ≤ |Z|
7. T ∗ ← HL∗(A

∗, C∗)⊕R where |C∗| = |Z∗|
8. > ← AEAD-2b.VerK(N∗, A∗, C∗, T ∗) where N∗ ← N

INT-RUP attack against DAEAD-{1, 2}

1. M ′1 ← DAEAD-{1, 2}.DecK(A′1, C
′
1, T

′
1) where (A′1, C

′
1, T

′
1)← (A′1, C

′
1, V0)

2. M ′2 ← DAEAD-{1, 2}.DecK(A′2, C
′
2, T

′
2) where (A′2, C

′
2, T

′
2)← (A′2, C

′
2,M

′
1 ⊕ C′1)

3. > ← DAEAD-{1, 2}.VerK(A∗, C∗, T ∗) where (A∗, C∗, T ∗)← (A0,M0 ⊕M ′2 ⊕ C′2, T
′
2)

Fig. 8. INT-RUP attacks

possible for the adversary to actually learn the value of K ′. This type of discrepancy explains the success
of the above attacks.

4.2 AEAD-2b and DAEAD-{1, 2} Are Not INT-RUP Secure

Attack against AEAD-2b. Suppose that HL is ε-AXU. The values N ∈ {0, 1}n, A ∈ {0, 1}∗, and M ∈
{0, 1}∗ can be arbitrarily chosen, where |M | 6= 0.

For the encryption query (N1, A1,M1) = (N,A,M), the adversary receives (C, T). For the decryption
query (N ′1, A

′
1, C

′
1, T

′
1) = (N,A′, 0c, T ′), where A′ ∈ {0, 1}∗ and T ′ ∈ {0, 1}n may be arbitrarily chosen,

the adversary receives Z ′ as the plaintext. Z ′ can be parsed into the keystream Z and the hash key L.
Then the adversary can compute R = HL(A,C) ⊕ T with L. We observe that Z ′ can also be parsed
into another keystream Z∗ and another hash key L∗. For any A∗ ∈ {0, 1}∗ and any C∗ ∈ {0, 1}|Z∗|, the
adversary can compute the tag as T ∗ = HL∗(A

∗, C∗)⊕R. Therefore, (N∗, A∗, C∗, T ∗), where N∗ = N , is
accepted with probability 1. Note that this attack does not rely on the fixed point of the hash function.

Attacks against DAEAD-{1, 2}. Suppose that HL is an ε-AXU hash function such that HL(A0,M0) = V0
for any L, where A0 ∈ {0, 1}∗ and M0 ∈ {0, 1}n denote special input to produce the fixed point V0. The
values A′1, A

′
2 ∈ {0, 1}∗ and C ′1, C

′
2 ∈ {0, 1}n can be arbitrarily chosen.

For the first decryption query (A′1, C
′
1, T

′
1) = (A′1, C

′
1, V0), the adversary receives the plaintext M ′1.

Then the keystream is computed as M ′1 ⊕ C ′1. In fact, it is computed as the tag from SCK(V0). For the
second decryption query (A′2, C

′
2, T

′
2) = (A′2, C

′
2,M

′
1 ⊕ C ′1), the adversary receives the plaintext M ′2. For

the verification query (A∗, C∗, T ∗) = (A0,M0⊕M ′2⊕C ′2, T ′2), from HL(A0,M0) = V0 and T ′2 = SCK(V0),
the forgery (A∗, C∗, T ∗) is accepted with probability 1.

5 Positive Results

5.1 ChaCha20-Poly1305 Is INT-RUP Secure

Let A be an adversary. Suppose that A makes q encryption queries (N1, A1,M1), . . . , (Nq, Aq,Mq), q′ de-
cryption queries (N ′1, A

′
1, C

′
1, T

′
1), . . . , (N ′q′ , A

′
q′ , C

′
q′ , T

′
q′), and q′′ verification queries (N ′′1 , A

′′
1 , C

′′
1 , T

′′
1), . . . ,

(N ′′q′′ , A
′′
q′′ , C

′′
q′′ , T

′′
q′′). Define the maximum byte length of the message for the encryption queries and the

verification queries as

16

 max
1≤i≤q
1≤j≤q′′

{⌈
|Ai|
128

⌉
+

⌈
|Mi|
128

⌉}
∪
{⌈ |A′′j |

128

⌉
+

⌈ |C ′′j |
128

⌉}
+ 1

 .

The security bound of ChaCha20-Poly1305 is given as follows. We note that we consider the case where
CCK is a random function and focus on the information theoretic case. However, it is standard to derive
the corresponding complexity theoretic result. See for example [2].

11

Theorem 1. Consider CC&Poly, where a random function F : {0, 1}32×{0, 1}128 → {0, 1}512 is used as
CCK . Let A be an INT-RUP adversary that makes at most q encryption queries, q′ decryption queries,
and q′′ verification queries, and the maximum byte length of the message for the encryption queries and
the verification queries is at most `max bytes. Then we have

Advint-rup
CC&Poly(A) ≤ q′′ 8d`max/16e

2106
.

A proof is presented in Appendix B. We note that the INT-CTXT security was proved by Procter
in [14]4. The above theorem shows that the security does not change even if the adversary is given access
to the decryption oracle. We see that the adversary learns the keystream Mi⊕Ci by making an encryption
query (Ni, Ai,Mi). Intuitively, there is no additional information that the adversary can learn from the
decryption oracle, since the decryption oracle simply allows the adversary to learn the keystream, which
is already available from the encryption oracle.

5.2 AEAD-{1, 2, 3, 4} Are INT-RUP Secure

The following theorem shows the security bounds of AEAD-{1, 2, 3, 4}. We focus on the information
theoretic result, but the corresponding complexity theoretic result can be obtained in a standard way [2].

Theorem 2. Let Rand(n, `) and H be the parameters of each AEAD scheme. Suppose that {HL} is ε-
AXU. Let A be an INT-RUP adversary that makes at most q encryption queries, q′ decryption queries,
and q′′ verification queries. Then we have the following security bounds:

Advint-rup
AEAD-1[Rand(n,`),H](A) ≤ q′′ε, (2)

Advint-rup
AEAD-3[Rand(n,`),H](A) ≤ q′′ε, (3)

Advint-rup
AEAD-2[Rand(n,`),H](A) ≤ q + q′ + q′′

2n
+ q′′ε, and (4)

Advint-rup
AEAD-4[Rand(n,`),H](A) ≤ q + q′ + q′′

2n
+ q′′ε. (5)

A proof is presented in Appendix C.

6 Conclusions

In this paper, we analyzed the integrity of the authenticated encryption schemes that are based on stream
ciphers and universal hash functions. Our attacks indicate that the use of fStr to reduce the number of
secret keys requires careful handling in the security proof.

It would be interesting clarify the INT-RUP security of the remaining AEAD schemes shown as open
in Table 1.

Acknowledgments. We thank the anonymous ProvSec 2016 reviewers and participants of Early Sym-
metric Crypto (ESC) 2015 for helpful comments. We also thank Palash Sarkar for insightful feedback on
an earlier version of this paper. The work by Tetsu Iwata was supported in part by JSPS KAKENHI,
Grant-in-Aid for Scientific Research (B), Grant Number 26280045, and was carried out in part while
visiting Nanyang Technological University, Singapore.

4We remark that there is a minor gap in the proof in [14]. The proof introduces a hybrid (E1, D1) where the
keystream is the output of a random function taking a nonce, and another hybrid (E2, D2) where the keystream
is completely random for both encryption and decryption, and claims both hybrids are equivalent. This does not
hold true in general since the keystream in a decryption query can be determined by an encryption query made
before. However, as far as we see, the theorem statement stands.

12

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How to Securely Release
Unverified Plaintext in Authenticated Encryption. In: Iwata, T., Sarkar, P. (eds.) ASIACRYPT 2014 (1).
LNCS, vol. 8873, pp. 105–125. Springer (2014)

2. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining message authentication code.
J. Comput. Syst. Sci. 61(3), 362–399 (2000)

3. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions and Analysis of the
Generic Composition Paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545.
Springer (2000)

4. Bellare, M., Rogaway, P.: Encode-Then-Encipher Encryption: How to Exploit Nonces or Redundancy in
Plaintexts for Efficient Cryptography. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–
330. Springer (2000)

5. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing
Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer (2006)

6. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B.K., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 389–407. Springer (2004)

7. Bernstein, D.J.: The Poly1305-AES Message-Authentication Code. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 32–49. Springer (2005)

8. Bernstein, D.J.: ChaCha, a variant of Salsa20 (2008), http://cr.yp.to/papers.html#chacha, Document ID:
4027b5256e14b6796842e6d0f68b0b5e

9. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and Secure Message Authentica-
tion. In: Wiener, M. (ed.) CRYPTO ’99. LNCS, vol. 1666, pp. 216–233. Springer (1999)

10. Imamura, K., Minematsu, K., Iwata, T.: Integrity Analysis of Authenticated Encryption Based on Stream
Ciphers. In: Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp. 257–276. Springer (2016)

11. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter Mode (GCM) of Operation.
In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer (2004)

12. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering Generic Composition. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 257–274. Springer (2014)

13. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF protocols. IRTF RFC 7539 (May 2015), https:

//tools.ietf.org/html/rfc7539

14. Procter, G.: A Security Analysis of the Composition of ChaCha20 and Poly1305. Cryptology ePrint Archive,
Report 2014/613 (2014), http://eprint.iacr.org/

15. Rogaway, P.: Authenticated-Encryption with Associated-Data. In: Atluri, V. (ed.) ACM Conference on Com-
puter and Communications Security. pp. 98–107. ACM (2002)

16. Rogaway, P.: Nonce-Based Symmetric Encryption. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS, vol.
3017, pp. 348–359. Springer (2004)

17. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap Problem. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer (2006)

18. Sarkar, P.: Modes of operations for encryption and authentication using stream ciphers supporting an initial-
isation vector. Cryptography and Communications 6(3), 189–231 (2014)

19. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). Submission to NIST (2002), http:
//csrc.nist.gov/

A Definitions of Decryption and Verification Algorithms of AEAD and
DAEAD Schemes

AEAD in [18]. Decryption algorithms of AEAD schemes are defined in Fig. 9. In each scheme, the mask
R generated from the output of SC is never used, and the tag T , which is a part of the input, is not used.
The associated data A is not used in AEAD-{1, 2, 2a, 2b, 3, 4, 4a, 4b}.

Verification algorithms of AEAD schemes are defined in Fig. 10. Since the hash function takes input
a plaintext in AEAD-{3, 4, 4a, 4b, 7, 8, 8a}, we use both R and Z.

ChaCha20-Poly1305 [13]. The decryption and verification algorithms are defined in Fig. 11. The functions
KsGenK and TagK are defined in Fig. 3.

DAEAD in [18]. Decryption and verification algorithms of DAEAD schemes are defined in Fig. 12. The
keystream Z is generated by using the tag T . The associated data A is never used for the decryption.

13

http://cr.yp.to/papers.html#chacha
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
http://eprint.iacr.org/
http://csrc.nist.gov/
http://csrc.nist.gov/

AEAD-1.DecK,L(N,A,C, T)

1. R ‖ Z ← SCK(N)
2. M ← C ⊕ Z
3. return M

AEAD-2.DecK,K′(N,A,C, T)

1. R ‖ Z ← SCK(N)
2. M ← C ⊕ Z
3. return M

AEAD-2a.DecK(N,A,C, T)

1. R ‖ Z ← SCK(N)
2. M ← C ⊕ Z
3. return M

AEAD-2b.DecK(N,A,C, T)

1. R ‖ S ← SCK(N)
2. Parse S as Z ‖ L where |Z| = |C|
3. M ← C ⊕ Z
4. return M

AEAD-3.DecK,L(N,A,C, T)

1. R ‖ Z ← SCK(N)
2. C ←M ⊕ Z
3. return M

AEAD-4.DecK,K′(N,A,C, T)

1. R ‖ Z ← SCK(N)
2. M ← C ⊕ Z
3. return M

AEAD-4a.DecK(N,A,C, T)

1. R ‖ Z ← SCK(N)
2. M ← C ⊕ Z
3. return M

AEAD-4b.DecK(N,A,C, T)

1. R ‖ S ← SCK(N)
2. Parse S as Z ‖ L where |Z| = |C|
3. M ← C ⊕ Z
4. return M

AEAD-5.DecK,L(N,A,C, T)

1. V ← HL(A,N)
2. R ‖ Z ← SCK(V)
3. M ← C ⊕ Z
4. return M

AEAD-6.DecK,K′(N,A,C, T)

1. L1 ‖ L2 ← SCK(K′)
2. V ← HL1(A,N)
3. R ‖ Z ← SCK(V)
4. M ← C ⊕ Z
5. return M

AEAD-6a.DecK(N,A,C, T)

1. K′ ← msbn(SCK(fStr))
2. L1 ‖ L2 ← SCK(K′)
3. V ← HL1(A,N)
4. R ‖ Z ← SCK(V)
5. M ← C ⊕ Z
6. return M

AEAD-7.DecK,L(N,A,C, T)

1. V ← HL(A,N)
2. R ‖ Z ← SCK(V)
3. M ← C ⊕ Z
4. return M

AEAD-8.DecK,K′(N,A,C, T)

1. L1 ‖ L2 ← SCK(K′)
2. V ← HL1(A,N)
3. R ‖ Z ← SCK(V)
4. M ← C ⊕ Z
5. return M

AEAD-8a.DecK(N,A,C, T)

1. K′ ← msbn(SCK(fStr))
2. L1 ‖ L2 ← SCK(K′)
3. V ← HL1(A,N)
4. R ‖ Z ← SCK(V)
5. M ← C ⊕ Z
6. return M

Fig. 9. Pseudocode of the decryption algorithms of AEAD schemes [18]

14

AEAD-1.VerK,L(N,A,C, T)

1. R ‖ Z ← SCK(N)
2. T ∗ ← HL(A,C)⊕R
3. if T ∗ = T then return >
4. return ⊥

AEAD-2.VerK,K′(N,A,C, T)

1. L← SCK(K′)
2. R ‖ Z ← SCK(N)
3. T ∗ ← HL(A,C)⊕R
4. if T ∗ = T then return >
5. return ⊥

AEAD-2a.VerK(N,A,C, T)

1. K′ ← msbn(SCK(fStr))
2. L← SCK(K′)
3. R ‖ Z ← SCK(N)
4. T ∗ ← HL(A,C)⊕R
5. if T ∗ = T then return >
6. return ⊥

AEAD-2b.VerK(N,A,C, T)

1. R ‖ S ← SCK(N)
2. Parse S as Z ‖ L where |Z| = |C|
3. T ∗ ← HL(A,C)⊕R
4. if T ∗ = T then return >
5. return ⊥

AEAD-3.VerK,L(N,A,C, T)

1. R ‖ Z ← SCK(N)
2. M ← C ⊕ Z
3. T ← HL(A,M)⊕R
4. if T ∗ = T then return >
5. return ⊥

AEAD-4.VerK,K′(N,A,C, T)

1. L← SCK(K′)
2. R ‖ Z ← SCK(N)
3. M ← C ⊕ Z
4. T ∗ ← HL(A,M)⊕R
5. if T ∗ = T then return >
6. return ⊥

AEAD-4a.VerK(N,A,C, T)

1. K′ ← msbn(SCK(fStr))
2. L← SCK(K′)
3. R ‖ Z ← SCK(N)
4. M ← C ⊕ Z
5. T ∗ ← HL(A,M)⊕R
6. if T ∗ = T then return >
7. return ⊥

AEAD-4b.VerK(N,A,C, T)

1. R ‖ S ← SCK(N)
2. Parse S as Z ‖ L where |Z| = |C|
3. M ← C ⊕ Z
4. T ∗ ← HL(A,M)⊕R
5. if T ∗ = T then return >
6. return ⊥

AEAD-5.VerK,L(N,A,C, T)

1. V ← HL(A,N)
2. R ‖ Z ← SCK(V)
3. T ∗ ← HL(C)⊕R
4. if T ∗ = T then return >
5. return ⊥

AEAD-6.VerK,K′(N,A,C, T)

1. L1 ‖ L2 ← SCK(K′)
2. V ← HL1(A,N)
3. R ‖ Z ← SCK(V)
4. T ∗ ← HL2(C)⊕R
5. if T ∗ = T then return >
6. return ⊥

AEAD-6a.VerK(N,A,C, T)

1. K′ ← msbn(SCK(fStr))
2. L1 ‖ L2 ← SCK(K′)
3. V ← HL1(A,N)
4. R ‖ Z ← SCK(V)
5. T ∗ ← HL2(C)⊕R
6. if T ∗ = T then return >
7. return ⊥

AEAD-7.VerK,L(N,A,C, T)

1. V ← HL(A,N)
2. R ‖ Z ← SCK(V)
3. M ← C ⊕ Z
4. T ∗ ← HL(M)⊕R
5. if T ∗ = T then return >
6. return ⊥

AEAD-8.VerK,K′(N,A,C, T)

1. L1 ‖ L2 ← SCK(K′)
2. V ← HL1(A,N)
3. R ‖ Z ← SCK(V)
4. M ← C ⊕ Z
5. T ∗ ← HL2(M)⊕R
6. if T ∗ = T then return >
7. return ⊥

AEAD-8a.VerK(N,A,C, T)

1. K′ ← msbn(SCK(fStr))
2. L1 ‖ L2 ← SCK(K′)
3. V ← HL1(A,N)
4. R ‖ Z ← SCK(V)
5. M ← C ⊕ Z
6. T ∗ ← HL2(M)⊕R
7. if T ∗ = T then return >
8. return ⊥

Fig. 10. Pseudocode of the verification algorithms of AEAD schemes [18]

15

CC&Poly.DecK(N,A,C, T)

1. Z ← KSGenK(N, |C|)
2. M ← C ⊕ Z
3. return M

CC&Poly.VerK(N,A,C, T)

1. T ∗ ← TagK(N,A,C)
2. if T ∗ = T then return >
3. return ⊥

Fig. 11. Pseudocode of the decryption and verification algorithms of ChaCha20-Poly1305 [13]

DAEAD-1.DecK,L(A,C, T)

1. Z ← SCK(T)
2. M ← C ⊕ Z
3. return M

DAEAD-2.DecK,K′(A,C, T)

1. Z ← SCK(T)
2. M ← C ⊕ Z
3. return M

DAEAD-2a.DecK(A,C, T)

1. Z ← SCK(T)
2. M ← C ⊕ Z
3. return M

DAEAD-1.VerK,L(A,C, T)

1. Z ← SCK(T)
2. M ← C ⊕ Z
3. V ← HL(A,M)
4. T ∗ ← msbn(SCK(V))
5. if T ∗ = T then return >
6. return ⊥

DAEAD-2.VerK,K′(A,C, T)

1. L← SCK(K′)
2. Z ← SCK(T)
3. M ← C ⊕ Z
4. V ← HL(A,M)
5. T ∗ ← msbn(SCK(V))
6. if T ∗ = T then return >
7. return ⊥

DAEAD-2a.VerK(A,C, T)

1. K′ ← msbn(SCK(fStr))
2. L← SCK(K′)
3. Z ← SCK(T)
4. M ← C ⊕ Z
5. V ← HL(A,M)
6. T ∗ ← msbn(SCK(V))
7. if T ∗ = T then return >
8. return ⊥

Fig. 12. Pseudocode of the decryption and verification algorithms of DAEAD schemes [18]

B Proof of Theorem 1

We evaluate Advint-rup
CC&Poly(A) following the game playing proof technique in [5]. Without loss of gener-

ality, we assume that A is deterministic and makes exactly q encryption queries, q′ decryption queries,
and q′′ verification queries. Let (Ni, Ai,Mi) for i = 1, . . . , q, (N ′i′ , A

′
i′ , C

′
i′ , T

′
i′) for i′ = 1, . . . , q′, and

(N ′′j , A
′′
j , C

′′
j , T

′′
j) for j = 1, . . . , q′′ denote the queries. The internal variables are written analogously.

We define Game G0 in Fig. 13. In Fig. 13, Game G0 simulates the real oracles of ChaCha20-Poly1305
based on the random function F . Then we have

Advint-rup
CC&Poly(A) = Pr[AG0 sets forge].

We next define Game G1 in Fig. 14. Game G1 simulates the oracles using the lazy sampling of F , where
F is regarded as an array, and the array F (X,Y) is initially undefined for all (X,Y) ∈ {0, 1}32×{0, 1}96.
Now since the function F produces the random values and the values are perfectly indistinguishable
between Game G0 and Game G1, these games are identical. Hence

Pr[AG0 sets forge] = Pr[AG1 sets forge]. (6)

We consider Pr[AG1 sets forge]. In Fig. 14, the authentication keys in verification queries are generated
independently of the keystreams in decryption queries, and hence there are two cases to consider. We
denote the polynomial hash function in Poly1305 [7] by Hr. If for the j-th verification query, it holds that
N ′′j 6= Ni for all i, then (r′′j , s

′′
j) is uniformly distributed and independent of (ri, si). Hence

Pr[T ∗j = T ′′j] = Pr[Hr′′j
(Y ′′j) + s′′j mod 2128 = T ′′j] =

1

2128
.

Suppose that for the j-th verification query, we have N ′′j = Ni for some i. Then it follows that
(r′′j , s

′′
j) = (ri, si). The event T ∗j = T ′′j is equivalent to

Hri(Y
′′
j)−Hri(Yi) mod 2128 = T ′′j − Ti mod 2128. (7)

Now if (A′′j , C
′′
j) = (Ai, Ci), then we necessarily have T ′′j 6= Ti and hence (7) cannot hold. Therefore

let (A′′j , C
′′
j) 6= (Ai, Ci). Then, since Hr is ε-A∆U [7, Sect. 3], meaning that it has a small differential

probability with respect to modulo 2128, we have

Pr[T ∗j = T ′′j] = Pr[Hri(Y
′′
j)−Hri(Yi) mod 2128 = T ′′j − Ti mod 2128] ≤ ε.

16

Game G0

Initialize

1. forge← false; F
$← {f | f : {0, 1}32 × {0, 1}96 → {0, 1}512}

Oracle Encrypt(N,A,M)

2. Z ← KSGen(N, |M |)
3. C ←M ⊕ Z
4. T ← Tag(N,A,C)
5. return (C, T)

Oracle Decrypt(N,A,C, T)

6. Z ← KSGen(N, |C|)
7. M ← C ⊕ Z
8. return M

Oracle Verify(N,A,C, T)

9. T ∗ ← Tag(N,A,C)
10. if T ∗ = T then forge← true; return >
11. return ⊥

Subroutine KSGen(N, l)

12. m← dl/512e
13. for i← 1 to m do
14. Z[i]← F (i,N)
15. Z[m]← lsbl mod 512(Z[m])
16. Z ←

∑m
i=1 Z[i] · 2512(i−1)

17. return Z

Subroutine Tag(N,A,C)

18. s ‖ r ← lsb256(F (0, N)) where |r| = |s| = 128
19. l1 ← 128d|A|/128e
20. l2 ← l1 + 128d|C|/128e
21. l3 ← l2 + 64
22. Y ← A
23. Y ← Y + C · 2l1

24. Y ← Y + d|A|/8e · 2l2

25. Y ← Y + d|C|/8e · 2l3

26. T ← Polyr,s(Y)
27. return T

Fig. 13. Game G0 for the proof of Theorem 1

17

Game G1

Initialize

1. forge← false; N ← ∅

Oracle Encrypt(N,A,M)

2. Z ← KSGen2(N, |M |)
3. C ←M ⊕ Z
4. T ← Tag(N,A,C)
5. return (C, T)

Oracle Decrypt(N,A,C, T)

6. Z ← KSGen2(N, |C|)
7. M ← C ⊕ Z
8. return M

Oracle Verify(N,A,C, T)

9. T ∗ ← Tag2(N,A,C)
10. if T ∗ = T then forge← true; return >
11. return ⊥

Subroutine KSGen2(N, l)

12. m← dl/512e
13. for i← 1 to m do
14. Z[i]

$← {0, 1}512
15. if (i,N) ∈ N then Z[i]← F (i,N)
16. else N ← N ∪ {(i,N)}
17. F (i,N)← Z[i]
18. Z[m]← lsbl mod 512(Z[m])
19. Z ←

∑m
i=1 Z[i] · 2512(i−1)

20. return Z

Subroutine Tag2(N,A,C)

21. U ‖ s ‖ r $← {0, 1}512 where |r| = |s| = 128
22. if (0, N) ∈ N then U ‖ s ‖ r ← F (0, N)
23. else N ← N ∪ {(0, N)}
24. F (0, N)← U ‖ s ‖ r
25. l1 ← 128d|A|/128e
26. l2 ← l1 + 128d|C|/128e
27. l3 ← l2 + 64
28. Y ← A
29. Y ← Y + C · 2l1

30. Y ← Y + d|A|/8e · 2l2

31. Y ← Y + d|C|/8e · 2l3

32. T ← Polyr,s(Y)
33. return T

Fig. 14. Game G1. Keystreams and authentication keys are generated at random.

18

Therefore, for each j = 1, . . . , q′′, we have Pr[T ∗j = T ′′j] ≤ ε. Following [7, Sect. 3], ε = (8d`max/16e)/2106.
Hence we have

Pr[AG1 sets forge] ≤ q′′ 8d`max/16e
2106

. (8)

The claimed bound is obtained from (6) and (8). ut

C Proof of Theorem 2

C.1 Proof of (4)

We evaluate Advint-rup
AEAD-2[Rand(n,`),H](A) following [5], where AEAD-2[Rand(n, `),H] is AEAD-2 that is based

on a random function F
$← Rand(n, `), and A is a deterministic adversary that makes exactly q encryption

queries, q′ decryption queries, and q′′ verification queries.
We define two games, Game G0 and Game G1, in Fig. 15, where Game G1 includes the boxed

statements and Game G0 does not. Game G1 simulates the AEAD-2 encryption oracle in lines 3–10, the
decryption oracle in lines 11–17, and the verification oracle in lines 18–25 using the lazy sampling of F .
We initialize the two flags, bad and forge, to false. We let N be the set of the input values of F that have
already been defined.

Game G0 is obtained from Game G1 by removing the boxed statements, and we see that Game G0

and Game G1 are identical until one of the flags gets set. Therefore, from the fundamental lemma of
game playing, we have

Advint-rup
AEAD-2[Rand(n,`),H](A) ≤ Pr[AG0 sets bad or forge].

We consider Pr[AG0 sets bad or forge]. We write the q encryption queries as (Ni, Ai,Mi), q
′ decryption

queries as (N ′i′ , A
′
i′ , C

′
i′ , T

′
i′), and q′′ verification queries as (N ′′j , A

′′
j , C

′′
j , T

′′
j). Observe that GameG0 always

returns a random string of |Mi|+ n bits for the i-th encryption query based on the randomness Ri and
Zi chosen for this query, or based on Z ′i′ and R′i′ chosen in the prior decryption query. We also see that
it returns a random string of |C ′i′ | bits for the i′-th decryption query based on the randomness Z ′i′ chosen
for this query, or based on Zi in the prior encryption query. The verification oracle always returns ⊥.
From these observations, we may fix the queries and focus on the non-adaptive strategy.

We first consider Pr[AG0 sets bad]. The flag bad means that the secret key K ′ is equal to one of the
nonces Ni, N

′
i′ , or N ′′j , where i = 1, . . . , q, i′ = 1, . . . , q′, and j = 1, . . . , q′′. Hence we have

Pr[AG0 sets bad] ≤ q + q′ + q′′

2n
. (9)

Next, we consider Pr[AG0 sets forge]. The flag forge means that a tag computed in the Oracle Verify
is equal to a tag queried for the Oracle Verify. There are two cases to consider. If for the j-th verification
query, N ′′j 6= Ni for all i, the value R′′j is uniformly distributed and independent of (Ri, Zi) for all i. We
note that whether N ′′j = N ′h for some h holds or not does not matter, since this only reveals Z ′′j from the
result of h-th decryption query. The value R′′j is also independent of the hash key L. Hence

Pr[T ∗j = T ′′j] = Pr[R′′j = HL(A′′j , C
′′
j)⊕ T ′′j] =

1

2n
.

Suppose that for the j-th verification query, we have N ′′j = Ni for some i. Then the value (R′′j , Z
′′
j) is

independent of (Rk, Zk) for all i 6= k, and R′′j = Ri. Hence the event T ∗j = T ′′j is equivalent to

HL(A′′j , C
′′
j)⊕ HL(Ai, Ci) = T ′′j ⊕ Ti. (10)

From the restriction on the adversary, we have (N ′′j , A
′′
j , C

′′
j , T

′′
j) 6= (Ni, Ai, Ci, Ti), and this implies

(A′′j , C
′′
j , T

′′
j) 6= (Ai, Ci, Ti). If (A′′j , C

′′
j) = (Ai, Ci), then we have T ′′j 6= Ti and (10) cannot hold. If

(A′′j , C
′′
j) 6= (Ai, Ci), then

Pr[T ∗j = T ′′j] = Pr[HL(A′′j , C
′′
j)⊕ HL(Ai, Ci) = T ′′j ⊕ Ti] ≤ ε.

Therefore, for each j = 1, . . . , q′′, we have Pr[T ∗j = T ′′j] ≤ ε, and hence we obtain

Pr[AG0 sets forge] ≤ q′′ε. (11)

The claimed bound (4) is obtained from (9) and (11). ut

19

Game G0, Game G1

Initialize

1. bad← forge← false; N ← ∅
2. K′

$← {0, 1}n; L
$← {0, 1}`; F (K′)← L

Oracle Encrypt(N,A,M)

3. R
$← {0, 1}n; Z

$← {0, 1}`−n

4. if K′ = N then bad← true; R ‖ Z ← F (N)

5. else if N ∈ N then R ‖ Z ← F (N)
6. else N ← N ∪ {N}
7. F (N)← R ‖ Z
8. C ←M ⊕msb|M|(Z)
9. T ← HL(A,C)⊕R

10. return (C, T)

Oracle Decrypt(N,A,C, T)

11. R
$← {0, 1}n; Z

$← {0, 1}`−n

12. if K′ = N then bad← true; R ‖ Z ← F (N)

13. else if N ∈ N then R ‖ Z ← F (N)
14. else N ← N ∪ {N}
15. F (N)← R ‖ Z
16. M ← C ⊕msb|C|(Z)
17. return M

Oracle Verify(N,A,C, T)

18. R
$← {0, 1}n; Z

$← {0, 1}`−n

19. if K′ = N then bad← true; R ‖ Z ← F (N)

20. else if N ∈ N then R ‖ Z ← F (N)
21. else N ← N ∪ {N}
22. F (N)← R ‖ Z
23. T ∗ ← HL(A,C)⊕R

24. if T ∗ = T then forge← true; return >
25. return ⊥

Fig. 15. Game G0 and G1 for the proof of (4) in Theorem 2

20

Game G0, Game G1

Initialize

1. forge← false; N ← ∅
2. L

$← L

Oracle Encrypt(N,A,M)

3. R
$← {0, 1}n; Z

$← {0, 1}`−n

4. if N ∈ N then R ‖ Z ← F (N)
5. else N ← N ∪ {N}
6. F (N)← R ‖ Z
7. C ←M ⊕msb|M|(Z)
8. T ← HL(A,M)⊕R
9. return (C, T)

Oracle Decrypt(N,A,C, T)

10. R
$← {0, 1}n; Z

$← {0, 1}`−n

11. if N ∈ N then R ‖ Z ← F (N)
12. else N ← N ∪ {N}
13. F (N)← R ‖ Z
14. M ← C ⊕msb|C|(Z)
15. return M

Oracle Verify(N,A,C, T)

16. R
$← {0, 1}n; Z

$← {0, 1}`−n

17. if N ∈ N then R ‖ Z ← F (N)
18. else N ← N ∪ {N}
19. F (N)← R ‖ Z
20. T ∗ ← HL(A,C)⊕R

21. if T ∗ = T then forge← true; return >
22. return ⊥

Fig. 16. Game G0 and G1 for the proof of (3) in Theorem 2

C.2 Proof of (3)

AEAD-3 has the hash key L as the secret key and hashes the plaintext instead of the ciphertext. As in
the proof of (4), we assume that A is deterministic and makes exactly q encryption queries, q′ decryption
queries, and q′′ verification queries.

Two games Game G0 and Game G1 are defined in Fig. 16, where Game G1 includes the boxed
statements and Game G0 does not. Game G1 simulates the AEAD-3 encryption oracle in lines 3–9, the
decryption oracle in lines 10–15, and the verification oracle in lines 16–22 using the lazy sampling of F .

Game G0 is obtained from Game G1 by removing the boxed statements, and Game G0 and Game G1

are identical until the flag forge gets set, and we therefore have

Advint-rup
AEAD-3[Rand(n,`),H](A) ≤ Pr[AG0 sets forge]

from the fundamental lemma of game playing.

We consider Pr[AG0 sets forge]. The flag forge means that a tag computed in the Oracle Verify is
equal to a tag queried for the Oracle Verify.

By following a similar argument to the proof of (4), we focus on the non-adaptive strategy and fix
the q encryption queries (Ni, Ai,Mi), q

′ decryption queries (N ′i′ , A
′
i′ , C

′
i′ , T

′
i′), and q′′ verification queries

(N ′′j , A
′′
j , C

′′
j , T

′′
j).

We consider three cases. If for the j-th verification query, N ′′j 6= Ni for all i, and N ′′j 6= N ′i′ for all i′,
the value (R′′j , Z

′′
j) is uniformly distributed and independent of (Ri, Zi) for all i, and Z ′i′ for all i′. The

21

value R′′j is also independent of the hash key L. Hence

Pr[T ∗j = T ′′j] = Pr[R′′j = HL(A′′j ,M
′′
j)⊕ T ′′j] =

1

2n
.

If for the j-th verification query, N ′′j 6= Ni for all i, and N ′′j = N ′i′ for some i′, then the keystreams
Z ′′j and Z ′i′ have an overlap. Suppose that |M ′′j | ≤ |M ′i′ |. In this case, Z ′′j is a prefix of Z ′i′ , and let this
value be z′′j . Then the event T ∗j = T ′′j is equivalent to

HL(A′′j , C
′′
j ⊕ z′′j)⊕R′′j = T ′′j .

Now since R′′j is independent of z′′j , we have

Pr[T ∗j = T ′′j] = Pr[HL(A′′j , C
′′
j ⊕ z′′j)⊕R′′j = T ′′j] =

1

2n
.

The other situation where Z ′i′ is a proper prefix of Z ′′j can be shown in a similar way.
Suppose that for the j-th verification query, N ′′j = Ni for some i. Then the value (R′′j , Z

′′
j) is indepen-

dent of (Rk, Zk) for all i 6= k, and R′′j = Ri. The keystreams Z ′′j and Zi have an overlap. Suppose that
|M ′′j | ≤ |Mi|, i.e., Z ′′j is a prefix of Zi. Note that the other case of |Mj | < |M ′′j | follows similarly. Let this
value be z′′j . The event T ∗j = T ′′j is equivalent to

HL(A′′j , C
′′
j ⊕ z′′j)⊕ HL(Ai,Mi) = T ′′j ⊕ Ti. (12)

Now if (A′′j , C
′′
j) = (Ai, Ci), it follows that M ′′j = Mi and Z ′′j = Zi. We have T ′′j 6= Ti and (12) cannot

hold. If (A′′j , C
′′
j) 6= (Ai, Ci), then (A′′j , C

′′
j ⊕ z′′j) = (A′′j ,M

′′
j) 6= (Ai,Mi). Hence we have

Pr[T ∗j = T ′′j] = Pr[HL(A′′j , C
′′
j ⊕ z′′j)⊕ HL(Ai,Mi) = T ′′j ⊕ Ti] ≤ ε.

Therefore, for each j = 1, . . . , q′′, we have Pr[T ∗j = T ′′j] ≤ ε. It follows that

Pr[AG0 sets forge] ≤ q′′ε, (13)

and the bound (3) follows from (13). ut

C.3 Proof Outlines of (2) and (5)

We briefly discuss how other bounds of (2) and (5) are obtained.
We first consider the security bound of AEAD-1 in (2). While AEAD-2 derives L from SCK(K ′), AEAD-

1 uses independent key L. Thus the bound of AEAD-1 is derived from Appendix C.1 by removing the bad
event regarding a collision between K ′ and other inputs to SCK , which has probability (q + q′ + q′′)/2n.

For AEAD-4 in (5), we see that it is similar to both AEAD-2 and AEAD-3. It derives the hash key from
K ′ as in AEAD-2, and it hashes the plaintext instead of the ciphertext as in AEAD-3. We need to consider
a collision between K ′ and other inputs to SCK as a bad event. We obtain the bound (5) by following
the proof of AEAD-3 in Appendix C.2 and adopting the evaluation of the probability of the bad event as
in Appendix C.1.

22

	 Integrity Analysis of Authenticated Encryption Based on Stream Ciphers A proceedings version of this paper appears in DBLP:conf/provsec/ImamuraMI16. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-47422-9_15. This is the full version.

