
Private Projections & Variants

Xavier Carpent
University of California, Irvine

xcarpent@uci.edu

Sky Faber
University of California, Irvine

fabers@uci.edu

Tomas Sander
Hewlett Packard Labs

tomas.sander1001@gmail.com

Gene Tsudik
University of California, Irvine

gts@ics.uci.edu

ABSTRACT
There are many realistic settings where two mutually suspi-
cious parties need to share some specific information while
keeping everything else private. Various privacy-preserving
techniques (such as Private Set Intersection) have been pro-
posed as general solutions.

Based on timely real-world examples, this paper motivates
the need for a new privacy tool, called Private Set Intersection
with Projection (PSI-P). In it, Server has (at least) a two-
attribute table and Client has a set of values. At the end of
the protocol, based on all matches between Client’s set and
values in one (search) attribute of Server’s database, Client
should learn the set of elements corresponding to the second
attribute, and nothing else. In particular the intersection
of Client’s set and the set of values in the search attribute
must remain hidden.

We construct several efficient (linear complexity) proto-
cols that approximate privacy required by PSI-P and suf-
fice in many practical scenarios. We also provide a new
construction for PSI-P with full privacy, albeit slightly less
efficient. Its key building block is a new primitive called
Existential Private Set Intersection (PSI-X) which yields a
binary flag indicating whether the intersection of two private
sets is empty or non-empty.

1. INTRODUCTION
A Private Section Intersection (PSI) protocol allows two

parties: Server (S) and Client (C) with respective input sets
A and B, to privately compute their intersection. As a re-
sult, Client learns only A ∩ B and |A|, while Server learns
nothing beyond |B|. PSI has been widely studied and many
concrete techniques 1 have been proposed. One reason for
PSI’s appeal is that it enables a wide range of privacy-agile
applications: from personal genomics to querying cloud-
resident databases. Also, unlike many other cryptographic
protocols, PSI has been deployed in the real world. For ex-
ample, Google uses a PSI variant in its advertising business.1

1This might be the very first instance of a Secure Function

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Different applications motivate several PSI variations, such
as PSI-CA, where Client learns only the size of the intersec-
tion: |A ∩ B|. Another is PSI with Data Transfer (PSI-
DT) [20] where, for each element in the intersection, Client
learns one or more associated attribute(s). PSI-DT is par-
ticularly useful in privacy-preserving database applications
where Server has a database DB and A = {a1, . . . , an}
corresponds to one attribute (column) in DB. Such appli-
cations are quite realistic considering current popularity of
cloud storage. In the simplest two-attribute case, Server’s
input is DB = {(a1, d1), . . . , (an, dn)}, while Client’s input
is B = {b1, . . . , bm}. At the end of the protocol, Client
learns N = {(ai, di) | ∃(i, j) 3 bj = ai}.

Unfortunately, PSI-DT generously allows Client to learn
the exact relationship between the two attributes, i.e., each
(ai, di) tuple. This also yields auxiliary information, e.g.,
frequency distributions (histograms) of both attributes. In
this paper, motivated by some real-world scenarios, we ex-
plore a range of practical techniques that offer more privacy
than PSI-DT. In particular, for the ideal privacy case, we in-
troduce a new primitive called PSI with Projection (PSI-P)
which allows the server to only learn the projection of the
second attribute based on the view2 formed by N . While
the set-up is the same as in PSI-DT, Client only learns
P = {di | ∃(i, j) 3 bj = ai}. Unlike PSI-DT, A∩B remains
hidden. PSI-P is useful in scenarios where: (i) Client needs
to learn all distinct values of one attribute for all matches of
another attribute, and (ii) Server wants to keep secret which
values of the latter attribute result in a match.

1.1 Specific Motivation
Indicators of Compromise (IOCs) are network- or host-

based artifacts, which – when observed – indicate that a
cyber-intrusion took place. Equivalently, IOCs consist of ob-
servables associated with malicious activity. Popular network-
based IOCs include: IP addresses (plus port data), domain
names, URLs, email addresses, user agents, ASN, ISP, net-
blocks and SSL certificates. A common strategy for an orga-
nization to monitor its networks for a breach involves collect-
ing a wide range of event data (firewall logs, web proxy logs,
IDS/IPS alerts, etc.) and matching it against known IOCs.
If a match is found, an alert is issued and a (human) inci-
dent responder investigates further. To respond effectively,
in addition to learning that an IOC was detected, an incident
responder must learn what this IOC means. For example,

Evaluation (SFE) technique being used in the real world [29].
2We use the term view in the database sense, i.e., a virtual
table or an intermediate result of a query.

1



if detected IOCs are associated with a nation state target-
ing intellectual property (IP), effective response would be
different than if the IOCs point to an e-crime syndicate tar-
geting a company’s credit card database. Information that
a responder needs is IOC context, which includes: means of
mitigation (e.g., which systems to patch), vulnerabilities ex-
ploited, associated malware families, threat actors and their
motivations, modus operandi, tooling, active campaigns, as
well as additional IOCs for which a responder should search.

In this scenario, a set of IOCs needs to be matched with
network event data. Additional data transferred for each
matching IOC is its context. The novel requirement is that
which indicators match must remain secret. This is appar-
ent in cases where IOCs themselves are highly sensitive, e.g.,
associated with a nation state engaging in industrial or po-
litical espionage, or terror groups planning to sabotage criti-
cal infrastructures, or e-crime syndicates targeting PII. Such
sophisticated attackers are routinely tracked by government
agencies and security vendors specializing in high-value, so-
called “threat intelligence”. Also, cyber-security teams in
targeted organizations collect such IOCs in their own inves-
tigations. Often, these IOCs and their contexts are classi-
fied.

Leakage of IOCs can tip off the attacker that the intru-
sion is detected and cause it to change the infrastructure
and tooling, thus setting back the investigation [12]. IOC
leakage also gives away methods and capabilities of the in-
vestigators. Aside from malicious disclosure, receivers of
sensitive IOCs need to be trusted not to mishandle them. If
IOCs are accidentally blocked at the firewall or searched on
the Web, this can signal to the attacker that the intrusion
is detected, thus compromising gathered intelligence. Un-
derstandably, organizations are extremely reluctant to share
IOC-related data. The unfortunate consequence is that par-
ties who would otherwise greatly benefit from information
sharing (e.g., potential victims of massive IP theft) are un-
prepared and not protected because the intelligence never
reaches them. For that reason, the US private sector has
long requested better information sharing. In response, the
President issued an Executive Order requiring US govern-
ment to improve its information sharing practices [27].

As shown in the rest of this paper, PSI with Projection ad-
dresses the above challenge. It can be used to match highly
sensitive IOCs, without disclosing them. Contextual data
associated with each IOC is carefully crafted such that it
is both useful and actionable to Client, while not giving
away extra information. For example, a given IOC context
might advise an organization to patch certain systems or put
specific controls in place, without disclosing further details
about the attack campaign that these measures are sup-
posed to thwart. At the same time, privacy of the receiving
organization (Client’s) is preserved: it does not disclose its
event logs to a third party or the government – something
few organizations are willing to do.

1.2 Roadmap and Contributions
In this paper, we construct several practical protocols for

PSI with Projection and related capabilities. Our first ap-
proach is based on well-known Oblivious Polynomial Evalu-
ation (OPE) PSI and PSI-DT protocols. It achieves optimal
round complexity of two and has the advantage of being con-
ceptually simple. However, it falls short in two important
ways: (1) OPE-based protocols are not the most efficient

PSI and PSI-DTtechniques, and (2) it involves some infor-
mation leakage, which we discuss below.

Our second protocol also achieves linear-time complexity.
It is a modified variant of the basic PSI-CA protocol from [7]
that performs data transfer using Oblivious Pseudo-Random
Function (OPRF) techniques [20]. The resulting protocol
hides the set intersection from Client, which is the main
privacy property we want to achieve. It is fast, practical
and sufficient for many application scenarios. Nonetheless,
it has the same information leakage as the first.

Next, we address the issue of information leakage. In an
ideal PSI-P, Client must only learn the true projection P =
{di | ∃(i, j) 3 bj = ai}. (Note that P is a proper set,
not a multi-set). However, in our OPE- and OPRF-based
protocols Client actually learns:

P ′ = {(di,#(di)) | ∃(i, j) 3 bj = ai}

where #(di) is the number of times di occurs as the second
attribute (or contextual data field) in all records where a
match happens, i.e., any bj = ai. Extra information in P ′ –
beyond that in P – corresponds to a frequency distribution
or a histogram for the contextual data.

Revealing this extra information is not always a problem;
in fact, it might even be desirable. However, suppose that
Server’s contextual data amounts to a single message “Call
NSA.” If Client learns that this message was triggered 1, 000
times, it also learns that exactly 1, 000 elements of Client’s
input set are on the NSA IOC watch-list. That gives away
much more information than simply: ”one or more elements
of Client’s input are on the watch-list.”

Furthermore, security event logs can be massive. For ex-
ample, in one specific large enterprise (with which the au-
thors are familiar) collects on the order of 5 Billion events
per day for security monitoring. Clearly, these logs must
be aggressively filtered before being fed to our algorithms.
The size of filtered event-logs will influence how well match-
ing indicators are hidden within Client’s input and can be
negotiated between Server and Client if needed.

Consider another example illustrating the risks of disclos-
ing frequencies: the number of a given IOCs sightings de-
notes how often that IOC was seen on the Internet. It rep-
resents valuable feedback for threat intelligence providers
to receive sightings information from customers for IOCs
provided to them. A threat intelligence provider can draw
conclusions about which types of organizations are at risk,
which IOCs are used in live attack campaigns, etc. Maan-
while, for an organization, it is less sensitive to disclose that
an IOC was sighted in its infrastructure. However, disclosing
that it was seen 10, 000 times is more sensitive, since it im-
plies that the organization had a serious breach. Organiza-
tions are extremely reluctant to share breach data which ex-
poses them to the risk of regulatory fines and reputation loss,
or gives away vulnerabilities of their infrastructure. There
are several ways to deal with IOC sightings in practice; how-
ever, we stress that frequencies of occurrence must be dealt
with carefully. It is thus highly desirable to have protocols
for matching threat intelligence data that do not leak this
information.

Motivated by the above, our third protocol is a modifica-
tion of the second. By slightly increasing run-time (at most
by a factor of 2) it improves privacy by only disclosing raw
frequency distribution, while hiding the mapping between
the set of contextual data attribute values and their frequen-

2



cies. For example, if the projection is P = {d1, d2} where d1
occurs 2, and d2 – 10, 000, times, Client learns {2, 10, 000}
and not which of the two elements occurred 10, 000 times.
Breaking the association between frequencies and projected
elements is a significant privacy improvement.

However, our ultimate goal is to design a protocol that
leaks no information at all about frequencies, i.e., realizes
PSI with Projection with full privacy. This turns out to be
hard. Short of reverting to general Secure Function Evalua-
tion (SFE) techniques, current PSI protocols do not support
deduplication needed to achieve PSI with Projection.

However, we approach the problem by reducing PSI-P to
a primitive we call Existential PSI (PSI-X): for Server and
Client with sets A and B PSI-X returns 1 if A ∩ B is non-
empty, and 0 otherwise. Except |A| and |B|, no other infor-
mation about A, B or A∩B is revealed to either party. This
privacy requirement exceeds that of a PSI-CA that outputs
|A∩B|. We believe that the concept of PSI-X is interesting
in its own right, because it answers the basic question: “Do
we have anything in common?” with optimal privacy.

We construct an efficient, randomized PSI-X algorithm
as follows. First Server and Client apply respectively a
PRF and OPRF-style transformations to their respective
sets. Then, using 2-universal hashing, Server and Client
map the resulting sets to a much smaller universe. In the
smaller universe, we obtain PSI-X using BGN encryption
[3]. Complexity of the resulting algorithm is dominated by
O(|A| · |B|) BGN multiplications. If A ∩ B 6= ∅, the algo-
rithm always (correctly) returns 1. Otherwise, if A ∩B= ∅,
the algorithm returns 0 with a (constant) probability ≥ 1/2
that only depends on the set-up parameters. In summary,
we construct an efficient, randomized algorithm for PSI with
Projection. Finding an efficient deterministic algorithm for
PSI-X remains to be an interesting open question for future
work.

2. PRELIMINARIES
This section summarizes our notation and terminology

used in the rest of this paper.

2.1 Notation and Terminology
In every PSI protocol flavor, Server’s input consists of a

two-attribute database (table)DB = {(a1, d1), . . . , (an, dn)}
where the set of first attributes is A = {a1, . . . , an}, and
Client’s input is a set: B = {b1, . . . , bm}. At the end of
a protocol, Client learns some of the following information,
shown in Table 1.

For a subset L ⊂ {I, DT, P, H, F, CA, X} we now define
PSI-L to be a protocol wherein Client learns nothing be-
yond information indicated by L and |A|. This notation is
reflected in Table 1. For its part, Server learns nothing ex-
cept |B|. Armed with this notation, we now define a family
of PSI protocols.

Definition 1 (PSI-L). Let L ⊂ {I,DT,P,H,F,CA,X}.
PSI-L is a two-party protocol involving Server and Client.
Server input consists of DB = {(a1, d1), . . . , (an, dn)} where
the first attribute represents A = {a1, . . . , an}. Client input
is a set of elements: B = {b1, . . . , bm}. At the end of execu-
tion, Client outputs the information specified in L and |C|
and Server outputs |B|. No party learns any further infor-
mation.

Table 1: Protocol Notation

I Intersection I = A ∩ B

CA Cardinality of A ∩ B, CA = |I|

DT Subset of records in DB corresponding to elements in A ∩ B:
DT = {(a, d) ∈ DB | a ∈ A ∩ B}

P Projection of DT onto second attribute of DB:
P = { d | (a, d) ∈ DT }

H Histogram of second attribute in DT , i.e.,
∀d ∈ P , frequency of occurance of d in DT :
H = { (d, fd) | d ∈ P, fd = |{(a, d) ∈ DT}| }

F Frequency distribution of second attribute in DT ,
equivalent to random permutation of second attribute of H:
F = Π( {fd | (d, fd) ∈ H} ) for random permutation Π

X One-bit value indicating if the intersection
is empty, b ∈ {0, 1} where b = 1 ⇐⇒ I = A ∩ B 6= ∅

We denote a given L variant by appending its symbol to
the string “PSI”, e.g., for L = {P, H} we write PSI-L as
PSI-P-H. We now make some observations on this notation
and relationships among protocol variants, summarized in
Figure 1.

DT

I

H

F

CA

P

X

Figure 1: Relationships between information dis-
closed by various PSI protocols.

• Standard PSI protocols that compute the set intersec-
tion A ∩B are called PSI-I in our notation.
• Our notions of PSI-CA and PSI-DT coincide with their

common prior use in the literature.
• Our representation is not unique, e.g., PSI-DT can also

be written as PSI-DT-I-P-H.
• Notation X → Y means: “knowledge of X implies

knowledge of Y ”.
• PSI-DT discloses the maximum amount of information

among all protocols in this family.
• PSI-X discloses the minimal amount of information.

The strategy for the rest of this paper is as follows. Our
main goal is to construct a PSI-P protocol. We start with
(known) PSI-DT protocols and modify them. The first two
protocols in Section 3 remove knowledge of the intersection
from Client and yield PSI-P-H protocols. Next, tbe third
protocol realizes PSI-P-F; it achieves better privacy than

3



the first two by removing any linkage between elements in
P and their frequencies, i.e., we progress from a protocol
disclosing H to a protocol disclosing F and P. In Section 4,
we remove knowledge of F from Client and construct a PSI-
P protocol. This is the hardest step. The key building block
for a PSI-P protocol is a sub-protocol for PSI-X.

2.2 Privacy Advantages of Projection Variants
Before proceeding to concrete protocols, we consider de-

grees of privacy attainable with various envisaged PSI-based
projection techniques, compared to PSI-DT.

2.2.1 PSI-P
Recall that m and n are respective sizes of Client and

Server inputs. From the privacy perspective, in an ideal
PSI-P protocol, Client learns only:

P = {di | ∃(ai ∈ A, bj ∈ B) 3 bj = ai}

However, in some extreme cases, PSI-P offers no privacy
over PSI-DT. For example, if w = |P | = 0, then A ∩ B =
∅ and no additional information is learned in either pro-
tocol. Also, if m = 1, then w ∈ {0, 1} and both PSI-
P and PSI-DT yield equivalent knowledge. Nonetheless,
in general, PSI-P that results in Client learning P offers
more privacy to Server than PSI-DT which lets Client learn
N={(ai, di) ∈ A | ∃(bj ∈ B) 3 bj = ai}. In other words, PSI-
P offers no privacy over PSI-DT if m = 1 or w = 0. The
same is true when w = m.

Aside from these corner cases, PSI-P can offer a signif-
icant privacy advantage over PSI-DT. In general, we can
express the number of possible mappings of elements in B
to elements in P as:

MP (m,w) =

{
m+ 1

w + 1

}
· w! (1)

where
{
n
k

}
represents the Stirling number of the second kind,

i.e., the number of ways to partition n objects into k non-
empty subsets. Eq. (1) is the number of partial surjective
functions from B to P . The mappings are partial because
some elements in B might not be in A ∩ B, and surjective
because each element in P has at least one corresponding
element in B. LetMT (m,w) be the number of total surjec-
tive functions from B to P . This is known to be:

{
m
w

}
· w!;

see for instance the twelve-fold way [26]. For each non-total
function f , let f ′ : B → P ∪ {ε} where f ′(x) = ε for every
x undefined through f . The number of such functions is
MT (m,w+ 1). Adding to this number the partial functions
that are already summed up gives:

MT (m,w + 1) +MT (m,w) =
{ m

w + 1

}
· (w + 1)! +

{m
w

}
· w!

=MP (m,w)

by the recurrence relation of Stirling numbers of the second
kind

{
n+1
k

}
= k

{
n
k

}
+
{

n
k−1

}
. This expression also assumes

(perhaps idealistically) that Client has no extra information
about DB and its second attribute is uniformly distributed.

GivenMP (m,w), we can capture the exact degree of pri-
vacy (Dpriv) that PSI-P offers over PSI-DT as:

Dpriv = 1− 1

MP (m,w)

As reflected by aforementioned “corner cases”, Dpriv = 0
for m = 1 or w = 0. We also note that perfect privacy

(Dpriv = 1) is unattainable for m ≥ 1. Indeed, Dpriv = 1
only if m = 0, i.e, B = ∅.

2.2.2 PSI-P-H
PSI-P-H allows Client to learn the histogram H (see Ta-

ble 1) which also leaks CA = |A ∩ B|. It thus yields more
information than P given by PSI-P, though less information
than N given by PSI-DT.

Let MH(m,w,H) be the number of possible mappings
from elements in B={b1, . . . , bm} to elements in P, given
projection histogram H. Let fi relate to the frequency of
the i-th element in P , that is such that (Pi, fi) ∈ H. The
number of such mappings is the product of the number of
ways to choose f1 elements among m and the number of
ways to choose f2 elements among m− f1, etc. That is:

MH(m,w,H) =

w∏
k=1

(
m−

∑k−1
i=1 fi

fk

)

=

w∏
k=1

(m−
∑k−1
i=1 fi)!

fk!(m−
∑k
i=1 fi)!

=
m!(∏w

k=1 fk!
)

(m−
∑k
i=1 fi)!

Note that this number does not rely on the order in which
projection elements are considered.

2.2.3 PSI-P-F
PSI-P-F allows Client to learn P and F , both of size w

(see Table 1). It thus offers more privacy than PSI-P-H,
over PSI-DT. The number of mappings from elements in
B={b1, . . . , bm} to projection set elements, given the ran-
domly permuted projection histogram F , is:

MF (m,w, F ) =MH(m,w,H) · πF ,

with πF the number of possible histograms related to F .
That is, the number of permutations with repetition of in-
distinguishable objects:

πF =
w!∏
ni!

with ni = |{i ∈ F}|, the number of occurences of a frequency
i in F . For example, with m = 8, w = 4, H = (1, 3, 1, 1), we
have:
• MH(8, 4, (1, 3, 1, 1)) = 8!

3!2!
= 6720

• MF (8, 4, (1, 1, 1, 3)) = 6720 · 4!
3!

= 26880
• MP (8, 4) = 6951 · 4! = 166824

In the corner case, when m = w, and F = H = (1, 1, . . . , 1),
we have: MF (m,w, F ) = MH(m,w,H) = MP (m,w) =
m!. Finally, note that the same measure of privacy Dpriv
defined for PSI-P can be used for PSI-P-H and PSI-P-F,
since in each case all mappings are equally likely.

3. PROTOCOLS
We now proceed to construct a series of protocols with

variable degrees of privacy, falling into the range between
PSI-DT and PSI-P.

3.1 Initial PSI-P-H Protocol
Our initial goal is for Client to learn the second attribute

of DT without learning A ∩ B. As a result, Client learns
projection P and histogram H, as defined in the previous

4



section. We can achieve this easily by modifying any OPE-
based3 PSI protocol (e.g., [14]), as described below.
Setup: Server and Client respective inputs are:
DB = {(a1, d1), . . . , (an, dn)} and B = {b1, . . . , bm}, re-
spectively. A = {a1, . . . , an} is the first attribute of DB =
{(a1, d1), . . . , (an, dn)}. Let E be an additively homomor-
phic encryption scheme, e.g., Paillier [24], and Enc be a sym-
metric authenticated encryption scheme (AKE), e.g., [2].

1. Client generates a new public/secret key-pair for E.
Client encodes each element from B = {b1, . . . , bm}
as a root of a polynomial P :=

∏m
i=1(X − bi). Next,

Client encrypts the coefficients of P using E and sends
the resulting list of encrypted coefficients to Server,
together with the new public key.

2. For each ai ∈ A = {a1, . . . , an}, Server chooses, at
random, symmetric key ki and identifier oi. It then
computes qi := Encki(di) and forms Q = {q1, . . . , qn}.

3. For each (ai, di) ∈ DB, Server computes E(ri ·P (ai)+
ki ‖ oi), with ri random numbers, using the homomor-
phic properties of E and adds resulting elements to a
list L. Server shuffles L and Q and sends the shuffled
sets to Client.

4. Client decrypts elements in L and parses the result
into k ‖ o. If there is an element in Q marked o, Client
decrypts it with k. If the integrity check holds, Client
obtains d. Otherwise, Client discards this element.

Because of an AKE scheme, Client can distinguish whether
decryption of qi in Step 4 is a random value or an actual
attribute (that it needs to learn) associated with an element
in A ∩B.

Computation cost is dominated by O(nm) exponentia-
tions, if we use the Paillier scheme. By applying Horner’s
rule and binning techniques we can reduce computation to
O(n log log(m)) exponentiations [14].

In this protocol, Client learns the histogram H without
learning A ∩ B. Recall that our ultimate goal is to hide
the frequencies, or equivalently, to deduplicate the projec-
tion. However, this seems difficult in protocols that work
“point-by-point”, such as the one above. For example, if
A = {a1, a2} and DB = {(a1, d1), (a2, d1)}, Client learns
two independent outputs that could yield further informa-
tion, depending on B. What is missing is the ability to
aggregate two independent outputs, such that the cases of
|A∩B| = 1 and |A∩B| = 2 are indistinguishable to Client.
This illustrates a basic limitation of such “point-by-point”
protocols in attaining PSI-P with maximal privacy. In con-
trast, protocols in Section 4 below provide this kind of ag-
gregation capability.

3.2 A More Practical PSI-P-H Protocol
We now present a PSI-P-H protocol with a linear com-

putation cost, which is much more efficient than the ini-
tial protocol. The intuition is to modify the basic PSI-CA
protocol from [7]4 to perform data transfer with techniques
similar to traditional OPRF-based PSI-DT protocols, such
as [20]. Specifically, as in PSI-CA, Client and Server evalu-
ate an Oblivious Pseudo-Random Function (OPRF) on each
of Client’s set elements. Then, for every record in DB,

3OPE: Oblivious Polynomial Evaluation.
4Note that in [7], the protocol contains an additional DH-like
key exchange that was subsequently removed in the latest
version [8]. Private communication with the authors clari-
fied that this key exchange is not required.

Server transfers its second-attribute value encrypted under
a unique key derived from the pre-image of the OPRF eval-
uated over the value of the first attribute of the same record.
This way, Client only decrypts second-attribute values (di-s)
that correspond to elements in the intersection.

This protocol needs a semantically secure symmetric-key
encryption function (Ek(·), Dk(·)), a corresponding key deriva-
tion function KDF (·), two random oracles H(·)5 and H ′(·),
random permutation Π(·), and a keyed pseudorandom func-
tion Fk(x) = H ′(gkH(x)), based on the following group pa-
rameters: primes p and q (where p = 2ql + 1) and a gener-
ator g of order q in a subgroup of Zp. The resulting PSI-
P-H protocol is shown in Figure 2. The notation is largely
self-explanatory, except for H[d] which denotes an element
(d, f) ∈ H where d is a data item and f is its frequency
up to now. H[d].f denotes the frequency attribute/field of
element (d, f).

On its own, this protocol comes very close to the desired
PSI-P functionality. Unfortunately, it does not address the
deduplication problem. At the same time, for some applica-
tions where this information leakage is acceptable or desired,
this is the most efficient protocol that we identified thus far.

It is also easy to see that this protocol, being a minor vari-
ation of the original PSI-CA, leaks no information beyond
the histogram, assuming that all encrypted data values edj
are of uniform size. See Section 3.6 for more details.

3.3 PSI-DT with Deduplication
The main challenge in constructing an ideal PSI-P pro-

tocol is how to handle data deduplication to avoid privacy
leakage. Another issue is bandwidth: ideally, the protocol
should transfer associated data values (corresponding to the
intersection computed on the first attribute) only once. This
is particularly the case if these values are large, e.g., photos
or video clips. We now present a trick for reducing privacy
leakage from frequencies, and also lowering bandwidth con-
sumption.

We construct a protocol based on two rounds of PSI-DT.
First, we introduce a randomly generated tag, tk ←$ {0, 1}`,
for each unique data value dk. This produces DBA, a map-
ping between A and randomly generated tags, where distinct
elements in A mapping to the same data value in DB are as-
sociated with the same tag in DBA. Another data structure
DBT maps distinct tags to data values.

Then, Client and Server run PSI-DT on these (potentially
duplicated) tags instead of data values. Note that while the
number of tags and distinct data values is the same, the size
of the former is uniform and may be significantly smaller.

Next, Client filters all duplicate tags and then pads the
resulting set of tags with randomly generated tags, up to
the size of min(m,n). This is necessary to preclude Server
from learning CA. Alghough padding incurs additional com-
putation in PSI-P-H, dummy tags need not be blinded by
Client; they should only be indistinguishable from actual
blinded elements.

Then, Client runs PSI-DT for the second time, its input
being the deduplicated padded set of unique tags. Server
input in this round includes the tags and their mapping to
data items. This way, Server only sends each encrypted data
item once, regardless of the number of set elements which
map to it. Details are shown in Figure 9 in Appendix A.

5The range of H is the set of elements from the group gen-
erated by g.

5



PSI-P-H on input: H(·), H′(·), p, g, Ek(·), Dk(·), KDF (·)

Client on input: B = {b1, . . . , bm} Server on input: DB={(a1, d1), . . . , (an, dn)}
Rc ←$Zq Rs ←$Zq
for i = 1..m : for j = 1..n :

hbi = H(bi), xi = (hbi)
Rc haj = H(aj), yj = (haj)

Rs , taj = H′(yj)

kj = KDF (yj), edj = Ekj (dj)

{x1, . . . , xm}

for i = 1..m : x′i = (xi)
Rs

Π(
{
x′1, . . . , x

′
m

}
)

Π({(ta1, ed1), . . . , (tan, edn)})

for i = 1..m :

zi = (x′i)
R−1

c , tbi = H′(zi)

P = H = {∅}
for j = 1..n :

if ∃ i 3 taj = tbi :

kj = KDF (zi), d = Dkj (edj)

if d 6∈ P : H = H ∪ {(d, 1)}
else : H[d].f = H[d].f + 1

P = P ∪ {d}
return (n, P,H) return m

Figure 2: PSI with Projection and Histogram (PSI-P-H). All computation is mod p, unless otherwise stated.

At the end of the protocol Client learns the same infor-
mation as in PSI-DT, in particular, the histogram H. How-
ever, each encrypted data item is only transferred once, in
the second round. If data items are large this can result
in appreciable bandwidth savings. However, these savings
come at increased computation by a factor of at most 2,
since PSI-DT is run twice.

Also, Client learns k – the number of distinct data ele-
ments in DB. This can be avoided (see 3.5) at the cost
of negating bandwidth savings. Indeed, disclosure of k is
inherent to each data element being sent only once.

3.4 Practical PSI-P-F Protocol
In our previous protocols Client learns H – the histogram

of data items in projection N. We now show how to construct
an efficient (linear-time) PSI-P-F protocol. As argued ear-
lier, disclosing only the frequencies to Client (and not their
linkage to elements in the projection set) is a major practical
privacy gain.

To construct a practical PSI-P-F protocol, we use the
deduplication technique described in Section 3.3 and re-
flected in Figure 9), except, instead of PSI-DT, we run
PSI-P-H twice. The resulting protocol is a practical, linear-
time instantiation of PSI-P-F. Its offers better privacy since
Client only learns the histogram of tags in the first exe-
cution of PSI-P-H. The second execution of PSI-P-H re-
moves the mapping between tags and second-attribute val-
ues, thereby also removing any association between frequen-
cies and second-attribute values. The protocol is shown in
Figure 3.

Note that, as with PSI-DT with deduplication, Client

learns k – the number of distinct second-attribute values
in DB. This is not the case in PSI-P-H from Section 3.2.
See Section 3.5 for a discussion.

3.5 Hiding Number of Distinct Data Elements
The number of distinct data elements k = |{d | (a, d) ∈

DB}| is revealed in both PSI-DT with deduplication and
PSI-P-F. This is inherent to transmitting each (encrypted)
data element (aka second-attribute value) only once. This
leakage in PSI-P-H can be avoided by running a simple PSI-
DT protocol; however the sole advantage of PSI-DT with
deduplication over PSI-DT is bandwidth savings.

In PSI-P-F, leakage can be avoided by having Server pad
DBT to n ≥ k pairs, using random tags (indistinguishable
from real tags by Client) and dummy enryptions. Although
this would result in no bandwitdh savings, it might be useful
in scenarios where data elements are small and/or privacy
of k is important.

Given that this leakage can be avoided, it is omitted from
the final output of PSI-DT with deduplication as well as
PSI-P-F in Section 3.6. Finally, this leakage is absent in
PSI-P presented later in Section 4.

3.6 Correctness & Privacy

Definition 2 (Correctness of PSI-L). If both par-
ties are honest, at the end of protocol execution on respective
inputs [(B), (A,DB)], Client outputs (n,L) and Server out-
puts m.

Definition 3 (Privacy of PSI-L). If both parties are
honest, at the end protocol execution on respective inputs

6



PSI-P-F on input: two party protocol PSI-P-H(·, ·)

Client on input: Server on input:

B = {b1, . . . , bm} (A = {a1, . . . , an} ,
DB = {(a1, d1), . . . , (an, dn)})

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tag Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DB
A

= {}; DBT
= {}

for j = 1..n :

if @(t, dj) ∈ DBT

t←$ {0, 1}`

add (t, dj) to DB
T

add (aj , t) to DB
A

T = {t | ∃(t, d) ∈ DBT}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .First instance of PSI-P-H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T
′

= {t | ∃(a, t) ∈ DBA
: a ∈ B}

PSI-P-H

B A,DBA

n, T ′, HA
m

H
A

= (|{(d, t) ∈ DBA}| | t ∈ T ′)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Second instance of PSI-P-H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P = {d | ∃(a, d) ∈ DB : a ∈ B}

PSI-P-H

pad(T ′) T,DBT

k, P,HT min(m,n)

return (n, P,H
A

) return m

Figure 3: PSI with Projection and Frequency distribution (PSI-P-F).

[(B), (A,DB)], Client learns nothing beyond (n,L) and Server
learns nothing beyond m.

Theorem 1. PSI-P-H is correct.

Proof. We have: zi = x
′R−1

c
i = x

Rs/Rc
πi = hbRs

πi
for some

1 ≤ πi ≤ m (corresponding element in the first permuta-
tion). Doing the same for yj , we express:

tbi = H ′(zi) = H ′(hbRs
πi

) and taj = H ′(yj) = H ′(haRs
j )

For indices j, such that tbi = taj for some 1 ≤ i ≤ m, the
above equations imply that bπi = aj and also zi = yj . The
corresponding element edj is decrypted using a key derived
from yj = zi. Note that H is deduced from this process
because Client learns the number of taj-s associated with a
given data item in projection.

Theorem 2. PSI-P-F is correct.

Proof. In the first instance of PSI-P-H, Client learns T ′

– tags associated with items in the intersection and their
histogram (by Theorem 1). Therefore, F (randomized his-
togram of corresponding data items). In the second PSI-
P-H, Client learns data items associated with tag elements,
i.e., PSI-P. Client also learns their histogram HT (again, by
Theorem 1). However, each data item is mapped only to one
tag in DBT; thus, no additional information is leaked.

Our PSI-P-H construction is substantially based on the PSI-
CA technique from [7]. The argument for its privacy is there-
fore very similar, and relies on the very same assumptions,

i.e., semi-honest (HbC) participants, DDH, One-More-DH,
and Gap-One-More-DH assumptions; we refer to [7] for fur-
ther details.

Theorem 3. PSI-P-H is private.

Proof (Sketch). Server privacy: The main addition
of PSI-P-H over PSI-CA is that, in Server’s reply, encrypted
data elements are associated with hashed blinded elements.
Client can not learn anything from encrypted elements for
which it does not know the decryption keys, based on secu-
rity of E(·. Ah decryption key can be learned only if the
corresponding element is in the intersection.
Client privacy: Serverlearns nothing more than in PSI-CA,
which is private.

Theorem 4. PSI-P-F is private.

Proof (Sketch). Server privacy: Based on the defini-
tion of PSI-P-H and its privacy (Theorem 3), Client learns
P and H related to B and DBA, and (padded) T ′ and DBT,
respectively.

In the first exchange, this reveals (fromDBA) tags mapped
to items in A∩B and their histogram. Nothing is learnt from
tag values since they are selected at random. Even though
the histogram HA leaks frequency distribution of tags, it
conveys no information about the histogram of data items,
since their order is randomly permuted.

The second exchange reveals the data items mapped to
tags received in the first exchange. The histogram HT car-
ries no useful information since mappings are unique inDBT.

7



It is computationally infeasible for Client to learn the tags
corresponding to items outside the intersection and learn
additional data items.
Client privacy Server learns nothing beyond m from either
interaction (by Theorem 3). In particular, in the second
exchange, since Client input is padded to min(m,n), Server
can not learn CA. It also can not distinguish its own tags
from padding tags generated by Client, since all tags are
blinded by the latter.

4. PSI-P & PSI-X: HIDING FREQUENCIES
Our strategy in this paper is to progress from a PSI-DT

(=PSI-DT-I-P-H-F) protocol to a PSI-P protocol by remov-
ing information from Client’s output. In the previous sec-
tion, we constructed a very efficient and practical PSI-P-F
protocol that builds upon some prior PSI constructions. In
this section we aim to hide the frequencies (F) from Client.

As mentioned in the discussion of the OPE-based PSI-P-
H protocol, in order to hide frequencies, we need the ability
to aggregate responses that result from comparing elements
ai ∈ A = {a1, . . . , an} with bj ∈ B = {b1, . . . , bm}. Given a
fully homomorphic encryption (FHE) scheme, aggregation
on (encrypted) responses is possible. Furthermore, PSI-X
is also easily attainable with FHE. One näıve way to do
so (albeit with quadratic complexity) is to compute: (1)
yij = E(rij ∗ (ai − bj)) for each i ∈ [1, n], j ∈ [1,m] and
unique random rij , and then: (2) E(

∏n,m
i=1,j=1(yij)). The

result of (2) would decrypt to zero iff A ∩ B 6= ∅ and to a
random value, otherwise.

However, with only an additively homomorphic encryp-
tion (AHE) scheme such as Pailler, as in the OPE setting,
there is no obvious way to do that. Unfortunately FHE is
not yet practical. To this end, we present a new alterna-
tive construction that offers aggregation without FHE. The
protocols achieve PSI-P and PSI-X. However they are more
expensive than techniques presented in Section 3.4.

4.1 PSI-X Construction
In the simplest situation for aggregation (or deduplica-

tion) there is only one distinct second-attribute value. Server
input is DB={(a1, d1), . . . , (an, dn)} where d1 = d2 = ... =
dn, while Client input is B={b1, . . . , bm}. Client should learn
d1 iff A∩B 6= ∅, otherwise Client learns nothing other than
A∩B = ∅. This is very similar to PSI-X where Client learns
1 if A ∩B 6= ∅ and 0 otherwise.

The first step to construct a protocol for PSI-X is to rep-
resent the sets A and B by their characteristic functions χA
and χB . Comparison of individual elements at position i is
given by the product χA(i)χB(i). Their aggregation is the
disjunction: ∨

∀ i

χA(i)χB(i) (2)

which is 1 iff A ∩B 6= ∅.
We can evaluate this Boolean formula in Eq. (2) on en-

crypted values using, for example, Boneh-Goh-Nissim (BGN) [3]
partially homomorphic encryption scheme, which allows multiply-
once/add-many homomorphic operations. More precisely,
BGN can be used to evaluate 2-DNF formulas on cipher-
text.

However, in general, the size of U , the universe the set ele-
ments belong to, is either not bounded or too big for storing
the characteristic functions efficiently. Instead, we store the

characteristic functions in a lossy manner, by choosing a
random 2-universal hash-function h : U → [1, . . . , N ] (for
appropriately chosen N) [5] and applying it to the sets. We
then check whether h(A) ∩ h(B) 6= ∅ by evaluating the for-
mula in Eq. (2) for h(A) and h(B). This introduces the
possibility of false positives due to hash collisions. A false
positive occurs when A ∩ B = ∅ while h(A) ∩ h(B) 6= ∅.
It is easy to see that this error probability is a constant P
that depends only on the parameters of the protocols (P is
computed below). In other words, it depends on n,m,N ,
and not on the specific A and B. If A ∩ B 6= ∅ then
h(A)∩h(B) 6= ∅ and Eq. (2) always yields a correct answer.
We can lower the error probability exponentially through a
series of independent rounds.

The protocol is depicted in Figure 4. First, A is blinded
using a keyed PRF and B is blinded using an oblivious evalu-
ation of that PRF (OPRF) under the same key. The reason
for the oblivious evaluation is to provide forward security.
Client then initializes a BGN key-pair and transmits the
public key to the server. Then, the following procedure is
repeated R times.

A 2-universal hash function h : U → [1, . . . , N ] is ran-
domly chosen by both parties from a fmaily of hash function
H (see more detail below about optimally choosing N). Bit
vector UA (and likewise for UB) of size N are built for A

such that UAi = 1 ⇐⇒ ∃x ∈ Ã : h(x) = i. Both vectors
are encrypted under BGN by Server and Client respectively.
Client sends its set to Server, who evaluates Eq. (2) on en-
crypted values. Server picks a random s to randomize the
intermediate result using the scheme’s homomorphic prop-
erties (as in the basic protocol in [3]) and sends the result
back. Client tests if the received value is an encryption of
0. If yes, the intersection is guaranteed to be empty. Oth-
erwise, either the intersection is non-empty or a false pos-
itive occurred with probability P as outlined above. After
R rounds, Client derives the output of PSI-X. If A∩B 6= ∅,
the output is always 1 – the correct answer. If A ∩ B = ∅,
the output is 0, which is correct with probability 1− PR.

We now have

Theorem 5. PSI-X is a randomized algorithm with a one-
sided error. For input sets A and B with A∩B 6= ∅ the algo-
rithm always answers correctly. If A ∩ B = ∅ the algorithm
answers correctly with probability 1− PR, where

P = 1−
(

1− 1

N

)mn
≈ 1− e−mn/N

and R is the number of rounds. For N = mn
log 2

and mn large

we have P ≈ 1/2.

In this theorem and in what follows, log denotes the nat-
ural logarithm. The proof follows from the discussion above
and the fact that for any given distinct values x, y ∈ U and
for a family H = {h : U → [1, ...N ]} of 2-universal hash
functions we have Prh∈H[h(x) = h(y)] = 1/N .

We now analyze the runtime of PSI-X. There are N en-
cryptions, additions and multiplications required per round
on the server side (and N encryptions and 1 decryption on
the client side). Multiplications (i.e., invocations of the pair-
ing operation) being the driving cost for BGN, the cost is
expressed as the number of multiplications. Given a desired
error probability PX a user can chose N and the number of
rounds R. We now show how to do so optimally.

8



PSI-X on input:

Client on input: Server on input:

B = {b1, . . . , bm} A = {a1, . . . , an}

kprf ←$ {0, 1}`

B̃ = OPRFkprf
(B) Ã← PRFkprf

(A)

X ← 1

(kpriv, kpub)← BGN-Init()

kpub

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . loop for r = 1..R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UBr ← (0, . . . , 0), |UBr| = N UAr ← (0, . . . , 0), |UAr| = N

for i = 1..m : for i = 1..n :

UBr,hr(B̃i)
← 1 UAr,hr(Ãi)

← 1

EUBr ← BGN-Enckpub
(UBr) EUAr ← BGN-Enckpub

(UAr)

EUBr s←$ {0, 1}`
′

Xr = s(EUAr · EUBr)

if BGN-Is-Zerokpriv
(Xr) : X ← 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

return X

Figure 4: Existential PSI (PSI-X).

Theorem 6. The number of ciphertext multiplication op-
erations CX in PSI-X is minimized when

N =
mn

log 2
,

giving

CX = −mn logPX

log2 2
,

for a desired total probability of false positive PX . For this
choice of N the number of rounds is R = logPX

logP
, with P the

probability of a false positive in one round.

Proof. See Appendix B

We now show PSI-X has the desired privacy properties.
PSI-X uses as subprotocols an OPRF protocol [15, 19] and
the SFE protocol for evaluating 2-DNF formulas from [3].
The 2-DNF protocol is secure under the Subgroup Decision
Assumption.

Theorem 7. Given a secure OPRF protocol and under
the Subgroup Decision Assumption PSI-X is private.

Proof (Sketch). PSI-X has three steps. First Client
and Server engage in an OPRF protocol. Second there is a
hashing step with a randomly chosen 2-universal hash func-
tion h. Third there is a secure evaluation of a 2-DNF formula
Eq. (2) on the outputs from the hashing step. Hashing and
2-DNF formula evaluation are repeated in R independent
rounds.

Client privacy The OPRF protocol does not leak infor-
mation to the Server about Client’s input due to its pri-
vacy guarantees. In Step 3 Server additionally receives a

set of BGN-encrypted values from Client. Under the Sub-
group Decision Assumption BGN encryption is semantically
secure and thus Server does not learn anything from these
ciphertexts.

Server privacy We show that a simulator C∗ can simu-
late the Client’s view of the protocol from its input and the
protocol output. The Client’s view consists of OPRF(B),
i.e. OPRF applied to his input B. In the i’th round of
the protocol Client sees a randomly chosen 2-universal hash
function hi, the result from the secure evaluation of the 2-
DNF formula applied to hi(OPRF (B)) and the binary out-
put oi := BGN-Is-Zerokpriv(Xr) of the 2-DNF computation.

If the PSI-X protocol outputs 1 then all the oi have been 1
by definition of the protocol. In the simulation C∗ generates
a set of random values in the range of the PRF. This set is
indistinguishable from the set OPRF(B) without knowledge
of kprf . In addition he sets each bit in bit vector UA to be
1 at every location, and then proceeds as would the Server
sending back Xi = s(EUAi ·EUBi). This ensures oi = 1 for
all i. Using sequential composition theorems for multiparty
computation we can assume that the OPRF protocol and
the secure 2-DNF evaluation protocol are given as in the
ideal model. This simulation is indistinguishable from the
execution of the real protocol.

If the PSI-X protocol outputs 0 we know that Client and
Server input sets A and B are disjoint. C∗ simultates the
Client’s view of the protocol by first generating a set of ran-
dom values for OPRF(B) as before. Then the bit vector
UAi is created randomly so that Xi = s(EUAi · EUBi) is
non-zero with probability P (the error probability) and is 0
otherwise. Then Xi is sent as before. Again the OPRF pro-

9



tocol and the secure 2-DNF evaluation protocol are given
as in the ideal model. This simulation is computationally
indistinguishable from the Client’s view of the real PSI-X
protocol execution.

4.2 Full PSI-P Protocol
The main idea is to use PSI-X to determine, for each sec-

ond attribute value di, whether the elements in A that map
to each second attribute value di intersect with B. Such ele-
ments of the second attribute are then transferred to Client
using PSI-DT. The full protocol is depicted in Fig. 5 and
described below.

LetD = {di | (ai, di) ∈ DB} denote a set of distinct second-
value attribute values, such that |D| = k ≤ n. Let ε de-
note a dummy value. Server first builds a vector V com-
prised of elements of D, padded with n− k dummy values,
such that |V | = n, and then shuffles it. For each d = Vi,
Server computes its support, defined as: support(d) = {ai ∈
A | (ai, di) ∈ DB}, with support(ε) = ∅. Then, support
is padded such that the size of the ensuing vector is n. The
padding scheme pad(·) that we suggest is to use elements
from a subset of U disjoint from the possible values in A
and B and agreed upon by Client and Server. Next, Client
and Server engage in a PSI-X protocol with respective in-
puts B and pad(support(Vi))). After this is done for each
element of V , Client and Server engage in a final PSI-DT
protocol for the elements of V that resulted in PSI-X output
1.

False positives in PSI-X executions result in elements of
D being incorrectly transferred. This can be alleviated by
tuning the number of rounds in PSI-X.

Theorem 8. Let Server’s input be DB = {(a1, d1), . . . , (an, dn)}
and Client’s input be B = {b1, . . . , bm}. PSI-P is a ran-
domized algorithm so that at the end of the protocol Client
learns a set Pr such that Pr ⊃ {di | ∃(i, j) 3 bj = ai}. With
probability at least 1 − nPR equality holds, i.e. Pr = {di |
∃(i, j) 3 bj = ai}, where PR is the error probability of the
PSI-X sub-protocol.

The proof follows directly from the prior discussion and
Theorem 5.

PSI-P uses as subroutines PSI-X and PSI-DT. It now fol-
lows from Theorem 7

Theorem 9. Given a secure OPRF protocol, a private
PSI-DT protocol and under the Subgroup Decision Assump-
tion, PSI-P privately computes Pr ⊃ {di | ∃(i, j) 3 bj = ai}.
With probability at least 1 − nPR, no additional element
beyond the actual projection is revealed, i.e. Pr = {di |
∃(i, j) 3 bj = ai}, where PR is the error probability of the
PSI-X sub-protocol.

There are n executions of PSI-X with sets of size m and
n and one execution of PSI-DT with a set of size n.

Theorem 10. The number of ciphertext multiplication op-
erations CP is given by

CP ≈
mn2 log −n

log 1−PP

log2 2
+CDT(n) ∈ O

(
mn2 log

n

− log 1− PP

)
,

for a desired total probability of false positive PP, and with
CDT the cost of the PSI-DT execution.

Proof. See Appendix B

Although considerably more expensive than the construc-
tion given in Sect. 3.4, PSI-P protects privacy of both Server
and Client and does not disclose any other information than
the projection.

Some elements in its construction help achieve that. Firstly,
there are n rounds of PSI-X instead of k (although n − k
of these rounds are dummy rounds) so that client does not
learn k, the number of different data elements. Additionally,
the support of (possibly dummy) data elements are padded
to sets of size n so that client does not learn the histogram of
data items. Finally, the data transfer operation is done after
the n rounds of PSI-X so as to not give information on the
server about the result of the individual PSI-X executions.

5. EXPERIMENTS

5.1 PSI-P-H and PSI-P-F
We implemented PSI-P-H (Fig. 2) and PSI-P-F (Fig. 3) in

order to have a practical measure of their efficiency. We used
a custom fast implementation of PSI-DT that uses OPRF
as a building block for PSI-P-F. Experiments were run on
an Intel i7-4710HQ CPU.

Figures 6, 7, and 8 represent the cost of PSI-P-H and
PSI-P-F for different values of m and n = 100 for when the
intersection A ∩ B is respectively empty, half the size of B,
and the entire set B. The overhead of PSI-P-F with respect
to PSI-P-H corresponds to the second instance of PSI-P-
H within PSI-P-F. This second instance has a small fixed
cost, and depends linearly on the size of the intersection.
For PSI-P-H however, the size of the intersection does not
matter.

0 20 40 60 80 100
m

0

100

200

300

400

500

600

tim
e 

[m
s]

PSI-P-H
PSI-P-F

Figure 6: Comparison of the cost of PSI-P-H and
PSI-P-F for varying m with n = 100 and |A ∩B| = 0.

5.2 PSI-P
For PSI-X (Fig. 4) and PSI-P (Fig. 5), we used Relic [1], an

efficient library in C for cryptographic protocols. It is used
notably for the BGN encryption scheme in PSI-X. PSI-P
also uses our OPRF-based PSI-DT implementation. Exper-
iments are again run on an Intel i7-4710HQ CPU.

PSI-P is orders of magnitude slower than PSI-P-H and
PSI-P-F. The clear bottleneck is the number of BGN cipher-
text multiplications. Table. 2 shows time data for different
parts of PSI-P, under different parameters. The number of
rounds is fixed to R = 7 (this corresponds to a Pfail < 1% for
PSI-X). The intersection size |A ∩ B| is set to 1 arbitrarily,

10



PSI-P on input:

Client on input: Server on input:

B = {b1, . . . , bm} (A = {a1, . . . , an} ,
DB = {(a1, d1), . . . , (an, dn)})

D = {d | ∃a ∈ A : (a, d) ∈ DB}
|D| = k ≤ n
V ← shuffle(D1, . . . , Dk, ε, . . . , ε︸ ︷︷ ︸

n−k

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . loop for i = 1..n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xi = PSI-X(B, pad(support(Vi)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I ← {i | Xi = 1}

P = PSI-DT(I, {1, . . . , n}, V )

return P

Figure 5: PSI with Projection (PSI-P).

0 20 40 60 80 100
m

0

100

200

300

400

500

600

700

800

tim
e 

[m
s]

PSI-P-H
PSI-P-F

Figure 7: Comparison of the cost of PSI-P-H and
PSI-P-F for varying m with n = 100 and |A∩B| = m/2.

0 20 40 60 80 100
m

0

100

200

300

400

500

600

700

800

900

tim
e 

[m
s]

PSI-P-H
PSI-P-F

Figure 8: Comparison of the cost of PSI-P-H and
PSI-P-F for varying m with n = 100 and |A∩B| = m.

but this has no impact on the protocol efficiency (otherwise
this would constitute a leakage of CA). “BGN dot prod-
uct” corresponds to the EUAr · EUBr operation in Fig. 4.

“Other BGN”corresponds to BGN encryptions, decryptions,
and initialization in PSI-X. “PSI-DT” is the final operation
in PSI-P. Time reported are aggregated for the Client and
Server, but Server does most of the work, since it computes
the BGN dot products.

6. PSI-P WITH THRESHOLD CONDITIONS
In some scenarios it will be useful to transfer the addi-

tional item d only if there has been a match of Client’s
input B={b1, . . . , bm} for at least t elements with Server’s
input A={a1, . . . , an} for a threshold t. For example A may
contain 300 domain names which are associated with a par-
ticular attack campaign. Although connecting with one do-
main in A may be inconclusive, if there were more than 20
connections from the Client’s network this might be strong
evidence that an intrusion took place and consequently that
additional data d should be sent to Client.

Our framework can handle threshold conditions naturally
by applying a t-out-of-n Shamir secret sharing scheme to d.
For each matching indicator, using PSI-P-H, a (different)
share of d is transferred to Client. Client can then recon-
struct d if and only if he learned at least t shares.

This yields a practical threshold scheme for (1) transfer-
ring additional data if and only a threshold condition is met
and (2) not revealing the matching indicators themselves.
The privacy guarantees of this solution are likely sufficient
in many practical scenarios.

However there is still some information leakage. In addi-
tion to d (the only data Client should learn if conditions are
met), Client also learns threshold t and how many shares for
reconstructing d he actually received (which could be more
than t). We believe the question how to reduce informa-
tion leakage in threshold scenarios is an interesting, open
problem for future work.

7. RELATED WORK
The initial set of PSI and related protocol constructs was

suggested by Freedman et al. [14]. It was based on oblivi-

11



Table 2: Times (in seconds) of different parts of the PSI-P protocol.

n m Total time BGN dot product Other BGN PSI-DT Remaining operations

3 3 3.05 2.29 (75.01%) 0.67 (21.86%) 0.10 (3.12%) 0.00 (<0.01%)

5 5 13.79 11.33 (82.20%) 2.35 (17.08%) 0.10 (0.72%) 0.00 (<0.01%)

10 10 107.43 91.35 (85.04%) 15.96 (14.85%) 0.12 (0.11%) 0.00 (<0.01%)

20 20 843.76 722.90 (85.68%) 120.74 (14.31%) 0.12 (0.01%) 0.00 (<0.01%)

5 20 53.45 45.41 (84.97%) 7.88 (14.74%) 0.16 (0.29%) 0.00 (<0.01%)

20 5 211.56 179.96 (85.06%) 31.53 (14.91%) 0.07 (0.03%) 0.00 (<0.01%)

ous polynomial evaluation (OPE). Kissner & Song [22] soon
thereafter proposed another set of somewhat more efficient
PSI-like OPE-based protocols, applicable to 2-part as well as
larger group settings, i.e., more than just Client and Server.
Jarecki & Liu [19], Hazay & Lindell [15] and De Cristofaro &
Tsudik [10] each proposed various efficient linear-complexity
OPRF-based PSI techniques secure in the Honest-but-Curious
(HbC) adversary model. Dachman-Soled et al. [6] Hazay &
Nissim [16], and De Cristofaro et al. [9] constructed (rel-
atively efficient) PSI protocols secure in the malicious ad-
versary model. Huang et al. [18] designed a PSI protocol
based on garbled circuits, which is allegedly faster than the
fastest OPRF-based PSI protocols, at least for a high secu-
rity parameter. These claims have been since disputed in
[11]. There also several PSI protocols based on Bloom Fil-
ters, such as [13, 21, 23]. We do not consider them due to
extra information leakage as far as false positives.

Several PSI-CA protocols have been proposed thus far.
The PSI protocol in [14] can be extended to PSI-CA with
similar complexity. [17] presents a PSI-CA protocol based
on [14] with sub-quadratic complexity. [22] proposed a PSI-
CA protocol for groups of n ≥ 2. Also, [28] constructed
a multi-party PSI-CA protocol, based on commutative one-
way hash functions and Pohlig-Hellman encryption [25]. It
incurs heavy (quadratic) computation and communication
complexities. [4] presents a 2-party PSI-CA protocol where
inputs are certified sets; it computes the cardinality of (cer-
tified) set intersection and incurs quadratic communication
and computation complexity. The most efficient PSI-CA
protocol is [7] offering linear bandwidth and computational
complexities.

To the best of our knowledge however, the concept of Pri-
vate Set Intersection with Projection is new.

8. CONCLUSION
This paper introduces the concept of Private Set Intersec-

tion with Projection (PSI-P). We construct several practi-
cal, linear time protocols that approximate PSI-P’s privacy
guarantees and suffice in many practical scenarios. We also
provide a new construction for PSI-P with full privacy that
is slightly less efficient. The key building block is a new
primitive we call Existential Private Set Intersection (PSI-
X). PSI-X answers the basic question whether two sets A
and B have an element in common without revealing any-
thing else.

These constructions address important challenges in col-
laborative network security by making the sharing and pro-
tective use of sensitive IOCs (Indicators of Compromise) less

risky.

9. REFERENCES
[1] D. F. Aranha and C. P. L. Gouvêa. RELIC is an

Efficient LIbrary for Cryptography.
https://github.com/relic-toolkit/relic.

[2] M. Bellare, D. Pointcheval, and P. Rogaway.
Authenticated key exchange secure against dictionary
attacks. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages
139–155. Springer, 2000.

[3] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating
2-DNF formulas on ciphertexts. In Theory of
Cryptography Conference, pages 325–341. Springer,
2005.

[4] J. Camenisch and G. M. Zaverucha. Private
intersection of certified sets. In Financial
Cryptography, 2009.

[5] J. Carter and M. N. Wegman. Universal classes of
hash functions. Journal of Computer and System
Sciences, 18(2):143 – 154, 1979.

[6] D. Dachman-Soled, T. Malkin, M. Raykova, and
M. Yung. Efficient Robust Private Set Intersection. In
ACNS, 2009.

[7] E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and
private computation of cardinality of set intersection
and union. In Cryptology and Network Security, pages
218–231. Springer, 2012.

[8] E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and
private computation of cardinality of set intersection
and union. http://eprint.iacr.org/2011/141.pdf,
August 2013.

[9] E. De Cristofaro, J. Kim, and G. Tsudik.
Linear-Complexity Private Set Intersection Protocols
Secure in Malicious Model. In Asiacrypt, 2010.

[10] E. De Cristofaro and G. Tsudik. Practical private set
intersection protocols with linear complexity. In
Financial Cryptography, 2010.

[11] E. De Cristofaro and G. Tsudik. Experimenting with
Fast Private Set Intersection. In TRUST, 2012.
Available from http://eprint.iacr.org/2012/054.

[12] K. Dennesen. Hide and seek: How threat actors
respond in the face of public exposure, 2016. RSA
2016 Conference.

[13] C. Dong, L. Chen, and Z. Wen. When private set
intersection meets big data: an efficient and scalable
protocol. In CCS, 2013.

12



[14] M. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In Eurocrypt,
2004.

[15] C. Hazay and Y. Lindell. Efficient protocols for set
intersection and pattern matching with security
against malicious and covert adversaries. In TCC,
2008.

[16] C. Hazay and K. Nissim. Efficient Set Operations in
the Presence of Malicious Adversaries. In PKC, 2010.

[17] S. Hohenberger and S. Weis. Honest-verifier private
disjointness testing without random oracles. In PET,
2006.

[18] Y. Huang, D. Evans, and J. Katz. Private Set
Intersection: Are Garbled Circuits Better than
Custom Protocols? In NDSS, 2012.

[19] S. Jarecki and X. Liu. Efficient Oblivious
Pseudorandom Function with Applications to
Adaptive OT and Secure Computation of Set
Intersection. In TCC, 2009.

[20] S. Jarecki and X. Liu. Fast secure computation of set
intersection. In Security and Cryptography for
Networks, pages 418–435. Springer, 2010.

[21] F. Kerschbaum. Outsourced private set intersection
using homomorphic encryption. In AsiaCCS, 2012.

[22] L. Kissner and D. Song. Privacy-preserving set
operations. In Crypto, 2005.

[23] D. Many, M. Burkhart, and X. Dimitropoulos. Fast
private set operations with sepia. Technical Report
345, http://sepia.ee.ethz.ch/publications/setops
TIK-Report-345.pdf, 2012.

[24] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Eurocrypt,
1999.

[25] S. Pohlig and M. Hellman. An improved algorithm for
computing logarithms over GF(p) and its
cryptographic significance. IEEE Transactions on
information Theory, 24(1), 1978.

[26] R. P. Stanley. Enumerative combinatorics. vol. 1, 1997.

[27] Exec. order no. 13636, 3 c.f.r. Improving critical
infrastructure cybersecurity., 2013.

[28] J. Vaidya and C. Clifton. Secure set intersection
cardinality with application to association rule mining.
Journal of Computer Security, 13(4), 2005.

[29] M. Yung. From mental poker to core business: Why
and how to deploy secure computation protocols?,
2015. Keynote at 22nd ACM Conference on Computer
and Communications Security (CCS 2015), Denver.

APPENDIX
A. PSI-DT WITH DEDUPLICATION

The PSI-DT with Deduplication protocol presented in
Section 3.3 is depicted in Figure 9

B. PROOFS
Proof of Theorem 6. We have CX = RN . We also

have that PX = PR, and therefore R = logPX
logP

, with P the
false positive probability for one round. This is given by

P = 1−
(

1− 1

N

)mn
≈ 1− e−mn/N .

This approximation is good for mn large. We can thus as-
sume (for large mn) that

CX =
logPX

log(1− e−mn/N )
N (3)

Deriving CX with respect to N gives

∂CX

∂N
= logPX

[
mn

N (1− emn/N ) log2(1− e−mn/N )

+
1

log(1− e−mn/N )

]
,

which is 0 when N = mn
log 2

. For this choice of N we have

P = 1/2. Substituting in Eq. (3) gives the claimed result.
To complete the proof we need to show that Eq. (3) has

a global minimum for N = mn
log 2

. To see this it suffices to

show that Eq. (3) is convex. Note that the function f1 :

x 7→ log(1− e−x) is concave (its second derivative − ex

(ex−1)2

is negative). f2 : x 7→ 1
log(1−e−x)

is concave (composition a

concave function (f1) with a concave, non-increasing func-
tion (y 7→ 1

y
on the negatives, f1 being negative when x is

positive)). f3 : x 7→ logPX
log(1−e−x)

is convex (multiplication of

a concave function by a negative number). f4 : (x,N) 7→
Nf3(x/N) = N logPX

log(1−e−x/N )
is the perspective of f3 and is

convex (the perspective of a convex function is convex).

Proof of Theorem 10. With PX the individual false
positive probability of the PSI-X invocations, we have

PP = 1− (1− PX)n.

For a total false positive probability of PP, we thus have

PX = 1− (1− PP)
1
n .

The cost is given by

CP = nCX(m,n, PX) + CDT(n)

= −
mn2 log

(
1− (1− PP)

1
n

)
log2 2

+ CDT(n)

with CX computed as in Theorem 6. For large values of n,
we further have

lim
n→∞

− log
(

1− (1− PP)
1
n

)
= logn− log log

1

1− PP
+O

(
1

n

)
≈ log

n

log 1
1−PP

,

which concludes the proof.

13



PSI-DT with Deduplication on input: two party protocol PSI-DT(·, ·)

Client on input: Server on input:

B = {b1, . . . , bm} (A = {a1, . . . , an} ,
DB = {(a1, d1), . . . , (an, dn)})

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tag Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DB
A

= {}; DBT
= {}

for j = 1..n :

if @(t, dj) ∈ DBT

t←$ {0, 1}`

add (t, dj) to DB
T

add (aj , t) to DB
A

T = {t | ∃(t, d) ∈ DBT}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . First instance of PSI-DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DT
A

= {(a, t) ∈ DBA | a ∈ B}

PSI-P-DT

B A,DBA

n,DTA
m

T
′

= {t | ∃(a, t) ∈ DTA}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Second instance of PSI-DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DT
T

= {(t, d) ∈ DBT | ∃(a, t) ∈ DTA}

PSI-P-DT

pad(T ′) T,DBT

k,DTT min(m,n)

DT = {(a, d) | ∃t ∈ T :

(a, t) ∈ DTA ∧ (t, d) ∈ DTT}
return (n,DT ) return m

Figure 9: PSI-DT with Data Deduplication.

14


