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Abstract. A major open problem is to protect leveled homomorphic encryption
from adaptive attacks that allow an adversary to learn the private key. The only
positive results in this area are by Loftus, May, Smart and Vercauteren. They use
a notion of “valid ciphertexts” and obtain an IND-CCA1 scheme under a strong
knowledge assumption, but they also show their scheme is not secure under a
natural adaptive attack based on a “ciphertext validity oracle”. However, due to
recent cryptanalysis their scheme is no longer considered secure.

The main contribution of this paper is to explore a new approach to achieving
this goal, which does not rely on a notion of “valid ciphertexts”. The idea is to
generate a “one-time” private key every time the decryption algorithm is run, so
that even if an attacker can learn some bits of the one-time private key from each
decryption query, this does not allow them to compute a valid private key.

This is the full version of the paper. The short version, which appeared in Provsec
2016, presented a variant of the Gentry-Sahai-Waters (GSW) levelled homomor-
phic encryption scheme. Damien Stehlé pointed out an attack on our variant of
this scheme that had not been anticipated in the Provsec paper; we explain the
attack in this full version. This version of the paper also contains a new “dual”
version of the GSW scheme. We give an explanation of why the known attacks
no longer break the system. It remains an open problem to develop a scheme for
which one can prove IND-CCA1 security.

1 Introduction

It is well-known that access to a decryption oracle can lead to attacks on basic Regev [28]
or Gentry-Peikert-Vaikuntanathan (GPV) [17] encryption, as well as various homomor-
phic encryption schemes [12,13,15,20,30]. These attacks allow an adversary to learn
the private key, and so they are more serious than attacks that learn some information
about messages.

* An early version of this paper appeared in Provsec2016. The current version has been com-
pletely revised and contains significant new material.
** Most work done while visiting The University of Auckland.



If homomorphic encryption is not required then there are general methods to obtain
IND-CCAZ2 encryption from lattice problems (see [17], for example). However, these
approaches are not compatible with homomorphic encryption. Hence, it is of major
interest to obtain CCA1-secure variants of these schemes and this problem seems to be
very difficult.

Loftus, May, Smart and Vercauteren [20] have considered the security of the pri-
vate key of Gentry’s homomorphic encryption scheme based on ideal lattices [16] (and
some variants of it [29]) under adaptive attacks. They show that the private key can be
determined if one has access to a decryption oracle. They give a variant of the Smart-
Vercauteren cryptosystem [29] for which the private key seems to be secure even when a
decryption oracle is present; this result is based on a notion of “valid ciphertext”, which
is checked by the decryption algorithm, and the security relies on a very strong knowl-
edge assumption. Subsequently the computational assumption underlying the Smart-
Vercauteren cryptosystem (the short principal ideal problem) has been broken [5,6,14],
and so this scheme is no longer considered secure. Hence the problem of IND-CCA1
levelled homomorphic encryption remains an open problem.

Loftus et al emphasise the relevance of ciphertext validity attacks (CVA). This
model allows an attacker to have access to an oracle that determines whether or not
a ciphertext is valid. They show that it is possible for an adversary to decrypt a chal-
lenge ciphertext with the help of the CVA oracle (but at least the private key remains
secure, and this is not a CCA1 attack but a CCA2 attack).

Loftus et al argue that CCA1 and CVA attacks on homomorphic encryption schemes
are realistic in practice (they write in Section 6 of [20] that “Such an oracle can often be
obtained in the real world by the attacker observing the behaviour of a party who is fed
ciphertexts of the attacker’s choosing”). For example, if a user is storing an encrypted
database in the cloud and making queries to it, then an attacker could send ciphertexts of
its choosing in response. If these ciphertexts are invalid then the user might re-send the
same query until a valid ciphertext is received in response. Such a situation precisely
gives a CVA oracle. Bleichenbacher’s use of a CVA oracle to attack certain variants
of RSA is well-known [7]. Hence, we believe that this issue is serious and that it is
important to develop techniques to secure the private key of homomorphic encryption
schemes.

In this paper we consider a different approach to the problem. Rather than relying
on a notion of “valid ciphertexts”, we avoid the risk of private key exposure by using
“one-time” private keys. The idea is that, even if an attacker can learn some bits of
the one-time private key from each decryption query, there should be no way for the
attacker to combine the information from multiple decryption queries to compute an
actual private key.

The idea of one-time secret keys can be implemented with many lattice-based cryp-
tosystems, such as those based on LWE by Brakerski et al [8,10,11], but it only gives
rise to a somewhat homomorphic scheme. We focus our attention on the Gentry-Sahai-
Waters (GSW) scheme, since it can achieve leveled homomorphic encryption without
any key switching; see Section 3 for a description of this scheme. This is important,
since it is trivially impossible to achieve CCA1-security for any scheme that uses key-



switching or bootstrapping or any other method where the public key contains encryp-
tions of secret information.

The short version of this paper, published at Provsec 2016, gives a variant of the
GSW scheme that allows multiple secret keys. We present this scheme in Section 4.
We give an argument using the left-over hash lemma that this scheme resists one of
the standard adaptive attacks. However, Damien Stehlé pointed out an attack on that
version of our scheme. We present this attack and give some analysis of it in Sections 3.3
and 5.2.

In Section 6 we present a “dual” version of the GSW scheme and show how this can
be used with multiple secret keys. We explain how this scheme seems to avoid adaptive
attacks. Unfortunately we are not able to prove IND-CCA1 security of this scheme.
Indeed, proving IND-CCA1 security of homomorphic encryption is an extremely chal-
lenging unsolved problem. The nearest to a solution is the result of Loftus et al [20],
which uses a very strong knowledge assumption and is now broken anyway.

To summarise, we have a general approach to protecting homomorphic encryption
schemes of a certain type from adaptive attacks. Using the left-over hash lemma and
an argument about projections of vector spaces we have a theoretical framework for
understanding why a scheme resists adaptive attacks of a certain type. We hope that our
ideas are a stepping-stone to a scheme with a proof of IND-CCAT security.

The paper is organised as follows. Section 2 recalls some basic notions in the sub-
ject. Section 3 presents the Gentry-Sahai-Waters (GSW13) scheme. Section 4 presents
our new scheme, while Section 7 explains why this scheme is resistant to the known
adaptive attack. In the conclusions section we discuss whether our ideas might also be
useful in the context of leakage resilience and side-channel protection.

2 Preliminaries

In this section we introduce some notations and recall the learning with errors problem.
We also prove Theorem 2, which is an important tool for our main result.

2.1 Notation

We let N denote the natural numbers. For n € N, [n] denotes the set {1,--- ,n}. Fora
real number = € R, we let | x| denote the largest integer not greater than z, and |z] :=
|z + %J denote the integer closest to x, with ties broken upward. Let X be a random
variable with mean value p: E[X] = p, Here the operator E denotes the average or
expected value of X. The standard deviation of X is the quantity 6 = /E[(X — u)?].
Throughout our paper, by convention, vectors are assumed to be in column form and
are written using bold lower-case letters, e.g. x. For row vectors we use the transpose
x”". We use bold upper-case letters like R to denote matrices, and sometimes identify
a matrix with its ordered set of column vectors. We denote the horizontal concatena-
tion of vectors and/or matrices using a vertical bar, e.g., [R|Rx]. We sometimes apply
functions entry-wise to vectors, e.g., | x| rounds each entry of x to its nearest integer.
Inner products and norms: We denote the standard Euclidean inner product of
two vectors vy and v by (vi,v2) = vIvy. We will be using norms in many of the



inequalities in this work. For v = (vy,---,v,)T and p > 1, the [, norm is ||v]|, =
/> vilp, the log norm is ||v]|oo = max{|v1],- -+, |v,|}, the Iy norm is ||v|l; =
> | |vi| and the Euclidean norm is ||v|s = v/(v,v) = />, |v;]2. For a vector v
we let ||v|| denote its I3 norm.

We use the following variant of the leftover hash lemma [19].

Theorem 1. (Matrix-vector leftover hash lemma [11] Lemma 2.1) Let A € N, n € N,
qg € N, and m > n log(q) + 2\ Let A & Zy*™ be a uniformly random matrix, let

r & {0,1}™ and y & 77 Then:
A((A, AT 1), (Ay)) <27 (M)

where A(A, B) denotes the statistical distance between the distributions A and B.

2.2 Discrete Gaussians

The modern approach [28,26] to lattice cryptography relies on Gaussian-like probability
distributions over lattices. In our constructions we need to analyze the behavior of error
elements sampled from Gaussian distributions. Here we recall the relevant definitions.

Definition 1. (/1] Def.7) Let L be a subset of Z'™. For a vector c € R™ and a positive
parameter o € R, define:

pa,c(x) = exp (_WHX_QCH) and po,c(L> = Z pU,C(x)

g
xeL

The discrete Gaussian distribution over L with center c and parameter o is

Poc(y)
Vy €L, DL,O',C Yy) = -
W)= elD)

For notational convenience, ps o and Dy, 5o are abbreviated as p, and D,. We write
D7 for Dgm 4.0.

Definition 2. ([11] Def.2.1) ( B-bounded distributions). A distribution ensemble {x s, } nen,
supported over the integers, is called B-bounded if:

Pr [|z| > B] < 279™
QU(an

For a distribution ensemble x = x(\) over the integers, and integers bounded B =
B(\), we say that x is B-bounded if Pr .\ [|z] < B(A)].

For the analysis of our scheme we require some bounds on the norms of vectors
sampled from Gaussian distributions.

Lemma 1. ([21] Lemma 4.4)

1. For¥ k>0, Prlle| > ko,e < D] < 2exp(—£);
2. ForVk >0, Prl|e| > koy/m,e < D] < k™ exp(Z(1 — k?)).

Remark 1. Throughout the paper, we suppose o > 2+/n. Therefore, if € < D then
we have, on average, that ||e|| =~ y/mo. Lemma 1 (2) implies that ||e|| < 20+/m with
overwhelming probability.



2.3 Learning with Errors

The learning with errors problem is the main computational assumption underlying the
GSW cryptosystem and our variant of it.

Definition 3. (Learning with Errors Distribution) For avector s € Z; called the secret,
the LWE distribution As  over Zy x ZLg is sampled by choosing a € Zy uniformly at
random, choosing e < X, and outputting (a,b = (s,a) + e (mod q)).

There are two main versions of the LWE problem: search version, which is to find
the secret given LWE samples, and decision version, which is to distinguish between
LWE samples and uniformly random ones.

Definition 4. (Search-LW E,, ; \ m) Given m independent samples (a;,b;) € Zy x Z,
drawn from As  for a uniformly random s € Zy; (fixed for all samples), find s.

Definition 5. (Decision-LW E,, 4y, m) Given m independent samples (a;,b;) € ZZIL X
Zq where every sample is distributed according to either: (1) As  for a uniformly
random s € Zg (fixed for all samples), or (2) the uniform distribution, distinguish
which is the case (with non-negligible advantage).

Regev and others [28,26,25,27] show that the LWE problem is as hard as approxi-
mating the shortest vector problem in lattices (for appropriate parameters).
The following theorem is a key result used to show the security of our scheme.

Theorem 2. Let m > n € N, let ¢ € N and let x be a discrete Gaussian distribution
on 7 such that the (n,q, x, m)-LWE problem is hard. Let t be an integer such that
t = O(log(n)). Define two distributions X and Y as follows.

— X is the distribution on m x (t + n) matrices
[by]- - [b|B]
where B € Zy**™ is chosen uniformly at random and where, for all 1 < i <1,
b; =Bt; +e; (mod q)

where t; is sampled uniformly from Zy and e; is sampled from a discrete Gaussian
distribution .

— Y is the uniform distribution on Z?X(tJrn).

Then the two distributions X and Y are computationally indistinguishable.

Proof. Let D be probabilistic polynomial-time adversary that can distinguish X from
Y with non-negligible advantage. For 1 < ¢ < t 4 1 we introduce intermediate distri-
butions & given by

(] -+ [bj_y[bi| - - [by|B]

where b; is as above and b/, is uniformly chosen from Zy'.Hence X1 = X and Xy 11 =

V.



By assumption, D can distinguish X; from X}, with noticeable advantage € and
s0, by a standard hybrid argument, there is some ¢ such that D can distinguish X; from
X;+1 with some noticeable advantage at least €/t.

It is then easy to see that D gives an LWE distinguisher: given an LWE challenge
(B,y) one samples bf,...,b._; uniformly and samples b;;1,...,b; as specified
above (so they are from an LWE distribution, all for different choices of the secret
vector) and then calls D on

[b/1| T |b;—1|}’\bz‘+1| -+ |by|BJ.

By assumption, no such distinguisher exists. Hence the theorem is proved. a

2.4 Leveled homomorphic Encryption

Definition 6. Fix a function L = L(\). An L-leveled homomorphic encryption scheme
Sor a class of circuits {Cy\} xen of depth L consists of four polynomial-time algorithms
(KeyGen, Enc, Dec, Eval) such that:

— The key-generation algorithm KeyGen is a randomized algorithm that takes the

security parameter 1* as input and outputs a public key pk and secret key sk.
— The encryption algorithm Enc is a randomized algorithm that takes a public key pk

and a message m € {0, 1} as input, and outputs a ciphertext c.

— The decryption algorithm Dec is a deterministic algorithm that takes the secret key
sk and a ciphertext c as input, and outputs a message m € {0,1}.

— The homomorphic evaluation algorithm Eval takes as input a public key pk, a cir-
cuit C € Cy, and a list of ciphertexts c1,- -+ , (), it outputs a ciphertext c*.

The following correctness properties are required to hold:
— For any ), any m € {0, 1}, and any (pk, sk) output by KeyGen(1*), we have
m = Dec(sk, (Enc(pk, m))).
— For any A, any my, -+ ,my, and any C € C), we have
C(my, -+ ,my) = Dec(sk, (Eval(pk, C, Enc(pk,m1),--- ,Enc(pk,m;))).
We use the standard notion of security against chosen-plaintext attacks.

Definition 7. A homomorphic encryption scheme is secure against chosen-plaintext at-
tacks (also called IND-CPA-secure) if for any polynomial-time adversary A the follow-
ing is negligible in \:

| Pr[A(pk, Enc(pk, 0)) = 1] — PrA(pk, Enc(pk, 1)) = 1]|,
where (pk, sk) < KeyGen(1?).

The notion of CCA1 security considers that the adversary A is given a public key
and then has access to a decryption oracle in the first phase of its attack. It can ask for
decryptions of any inputs of its choosing. In the second phase the adversary is given
a challenge ciphertext Enc(pk,b) and can no longer make queries to the decryption
oracle. The CCA1 security model is intended for analysing if an adversary can learn
the private key from making decryption queries. It is an appropriate model for studying
homomorphic encryption.



2.5 Basic Tools

We now recall some basic tools that were introduced by Brakerski, Gentry and Vaikun-
tanathan [9] and used in many more works such as [10,8,18].
Fix ¢,m € N. Letl = [log(q)] + 1,sothat2!~! < g < 2/, and N = m - I.

Definition 8. The algorithm PowersOf2 takes an m-dimensional vector v € 7' and
outputs an N -dimensional vector

-1 -1 T
(1}1,21}1,"',2 Ula"'avmazvma"'72 Um)
D N
inZg .

Definition 9. The algorithm BitDecomp takes as input a vector v € Zy* and outputs
an N-dimensional vector (V1 0, ,U10-1,"** »Um.0s*** > Umi—1)° € {0, 1} where
v;; 1s the j-th bit in v;’s binary representation (ordered from least significant to most
significant.) In other words,
-1
v; = Z 2j’l)i7j.
j=0

Definition 10. The algorithm BitDecomp ™! takes as input a vector
T N
V= (V10,7 V101, s Um0, 5 Umi—1) € Zy

and outputs the vector (Zé;%) 20 vy, Zé;t 27w ;)T € Z. Note that the input
vectors v need not be binary, the algorithm is well-defined for any input vector in Z" .

Definition 11. The algorithm Flatten takes as input a vector v € Zév and outputs an

N-dimensional binary vector (i.e. an element of {0, 1}V ). It is defined by Flatten(v) =
BitDecomp(BitDecomp™*(v)).

The following straightforward facts are given in [18].

Proposition 1. Leta,b € Z]" andleta’ € 7. Then (BitDecomp(a), PowersOf2(b)) =
(a,b) and

(a’, PowersOf2(b)) = (BitDecomp™*(a’), b)
= (BitDecomp(BitDecomp™~*(a’)), PowersOf2(b))
= (Flatten(a’), PowersOf2(b)).

These algorithms can be extended from vectors to matrices in the natural way.

One can express the above functions in terms of the gadget matrix G from Miccian-
cio and Peikert [23]. Define G = I, ® g € Z"*N where g = (1,2,4,...,2'"")T. For
v € Z7" we have PowersOf2(v) = vI'G. For v € ZY we have BitDecomp™!(v) =
Gv. For a € Z7" the algorithm BitDecomp(a) can be renamed as G~ (a). The above
definitions and results can therefore be expressed in the language of G and G~! as
follows.



Lemma 2. ([23] and [25] Lemma 2.1) For any N > m[logq] there exists a fixed
efficiently computable matrix G € Z;”XN and an efficiently computable determin-
istic “short preimage” function G~1(-) satisfying the following. On input a matrix
M e Zflnxm/ for any m/. the inverse function G~ (M) outputs a matrix G=1(M) €
{0, 135" such that GG~'(M) = M.

We can think of G as a special matrix with a “public trapdoor” that allows us to
solve the short integer solution SIS problem. We stress that G~ (-) is not itself a matrix
but rather an efficiently computable function.

3 Gentry-Sahai-Waters Homomorphic Encryption

In this section we describe the Gentry-Sahai-Waters (GSW13) homomorphic encryp-
tion scheme, then we sketch an adaptive attack on it similar to one due to Chenal and
Tang [12].

3.1 GSW13 Scheme

Let k be a security parameter and let L be the number of levels for the somewhat
homomorphic scheme. We describe the algorithms that form the GSW13 scheme [18].
The algorithm is originally defined in terms of the functions BitDecomp, BitDecomp ™!
and Flatten, but we tend to follow the formulation in [4,25] and so use the matrix G.

— GSW.Setup(1¥,1F):

1. Choose amodulus g of k = k(k, L) bits, parameter n = n(k, L) € N, and error
distribution x = x(k, L) on Z so that the (¢, n, x)-LWE problem achieves at
least 2* security against known attacks.

Choose a parameter m = m(k, L) = O(nlog(q));
2. Output: params = (n, ¢, x, m).
We also use the notation [ = |log(q)| + land N = (n+ 1) - .
- GSW.KeyGen(params):
1. Sample uniformly t = (t1,...,t,)7 « Zy and compute
S <= (17 *tT)T = (17 —t1,- - 7*tn)T € Zén+1)><l;
2. Generate a matrix B < Z7**" uniformly and a vector e < x"";

3. Compute b = Bt + e € Z" and construct the matrix A = (b | B) €

Zg~ (1) 45 the vector b followed by the n columns of B.

Observe that
As=(b|B)s= (Bt+e|B) (jt) —Bt+e-Bt—e.

4. Return sk < s and pk + A.
- C « GSW.Enc(params, pk, 11): In order to encrypt one-bit messages 1 € {0,1}:
1. Let G be the (n + 1) x N gadget matrix as above;



2. Sample uniformly a matrix R < {0, 1}™*;

3. Compute C = G + ATR (mod ¢) € Z{" TN,
In the original GSW paper this was written as Flatten(uI+BitDecomp(RA)) €
{0, 1}¥*N where I is an identity matrix.

- '+ GSW.Dec(params, sk, C):

1. Wehavesk =s € Z;‘“;

2. Let I be such that ¢/4 < 2/~ < ¢/2. Let C be the I-th column of C;

3. Compute z < (Cy,s) (mod ¢) in the range (—q/2,q/2];
Note that (Cy,s) = CT's and that

CTs = uGTs + RTAs
=p(1,2,4,--)" + RTe
and selecting the I-th column of C corresponds to selecting the /-th coordinate
of this vector, which is 2/~ + RTe.
4. Output p/ = ||x/2171]|.
Soif |z| < 2/72 < ¢/4 then return 0 and if |z| > 2/~2 then return 1.

- GSW.Eval(params, Cy,--- ,C)):
- GSW.Add(C,, C,): output

Ci+Cs = (1 + p12)G + AT(R; + Ry) € Z{"+IXN,

- GSW.Mult(Cy, Cz): Compute G~1(Csz) € {0,1}¥*¥ and output C;G~1(Cy).
Note that
CiG(C2) = (G +ATR,)G71(Cy)
= 1u1Cy + ATRIG71(Cy)
= 112G + ATRIG7HCy) + 11 ATR,
= 112G + AT (R1G7H(C2) + 1y Ry) € ZIn TN,

One may also compute a homomorphic NAND gate by outputting G—C;G~1(Cy).
Remark 2. Note that the formulation of the decryption algorithm in [25] is to choose an
appropriate vector w and compute sCG ~!(w7). This is considerably less efficient than
the original GSW decryption algorithm (both in terms of computation time and also the

size of the error term). Hence we employ the original GSW decryption algorithm for
our scheme.

There is also a variant of the scheme that handles messages in Z, when q is a power
of two. We refer to [18] for the details.

3.2 Security
A sketch proof is given in [18] of the following theorem.

Theorem 3. Let (n,q, x) be such that the \WE ,, , . assumption holds and let m =
O(nlog(q)). Then the GSW13 scheme is IND-CPA secure.

The main step in the proof is showing that (A, RA) is computationally indistin-
guishable from uniform.



3.3 Key Recovery Attacks

We now explain two adaptive attacks on the GSW scheme that allow to determine the
private key. Attacks of this type are well-known and are outside the security model of
the original paper [18].

Adaptive Attack 1: We now briefly review an adaptive key recovery attack similar to
the one by Chenal and Tang [12]. The adversary recovers the secret key s = (1, —t7)7
through a number of decryption oracle queries.

The attacker will call the decryption oracle on a matrix C of their choice, and the
oracle will return the “most significant bit” of (C,s) where Cj is the I-th column of
C and [ is known to the adversary. Technically it computes | CT's (mod ¢q)/2/71], and
this is essentially the most significant bit in the representation (ignoring signs).

The attack is therefore quite simple: one chooses C; = (0,0,...,0,M,0,...,0)T
for appropriate values M in appropriate positions and learns the entries of the secret
key bit-by-bit. For example, to compute ¢; € Z, one makes a decryption oracle query
on a matrix with C; = (0,1,0,...,0)”. Hence

<C], S> = —tl

and so one learns the most significant bit of ;. One can now re-scale (e.g., choose
C; =(0,2,0,...,0)) tolearn the most significant bit of 2(—¢;) (mod g), which yields
information about the next most significant bit (one has to take into account the modular
reduction if the most significant bit is 1). To separate positive and negative values one
can use vectors like C; = (M, 1,0,...,0), which provides the most significant bit of
(Cy,8) = M — t;. We omit further details here, and refer to [12,13,15] for discussion
of these sorts of attacks.

In the above description we have spoken of calling the decryption oracle on matrices
whose I-th column is a unit vector. Hence one might think that the attacks can be
avoided by rejecting any ciphertext of this form. But since the scheme is homomorphic,
one can always add a random encryption of zero to the ciphertext, so that the matrix C
looks just like any other matrix that might be passed to the decryption algorithm. One
can consider other variants of the decryption algorithm that try to determine whether
a ciphertext is “correctly formed”, as was done by Loftus et al [20], but instead we
consider a different approach to prevent such attacks.

Adaptive Attack 2: Attack 1 aimed to learn the value t in b = Bt + e. However, if
one can compute e then, using B and b then one can also determine t. So in this section
we give a method to determine e. The ideas in this section were pointed out to us by
Damien Stehlé.

To learn ¢; for any 1 < j < m we consider the j-th row of A, which we write as
a; = (bt +¢; (modq) | b;) € Zéx(nﬂ). We need to insert this row into the /-th
column of the ciphertext matrix, so set C; = a;‘-r and set the remaining columns of C
to be zero (again, this presentation is for simplicity, one can add to this matrix a random
encryption of zero to “hide” the attack).

10



Now, the decryption oracle computes

(Cr,8) = CTs =a;s
= (bjt+e; (modg)|b;),(1,—t")7T)
:bjt+6j7bjt:€j
and so returns || e;/2/=1]|. One can therefore learn the most significant bit of e; (which

is certainly O since e; is supposed to be small relative to g).
To extend the attack, choose an integer —g/2 < u < ¢/2 and repeat the attack

onaj; = a; + (u | 0,---,0). The decryption oracle therefore returns |[(e; + u
(mod g¢))/27~1]| and we can learn whether |e; + u| < 2/~2 or not.
By trying v = 1,2,4,---,2" one can determine the smallest power of two such

that e; + 2% > 272, This implies that 2/ =2 — 2k < ¢; < 2772 — 2k~1 and a binary
search style algorithm allows to determine e; exactly using about & further decryption
oracle queries.

4 Multiple Secret Scheme (MGSW)

We now describe our variant of the GSW13 scheme. First we give some motivation for
our design. Adaptive attack 1 exploits the fact that certain queries to the decryption or-
acle leak one bit of one component of the fixed secretkey s = (1, —t1,..., —t,)?. Our
main idea is to have a large set of possible secret keys. Each execution of the decryption
algorithm will generate a fresh random “one-time” secret key s. The decryption algo-
rithm itself does not change, and we do not introduce any notion of “valid ciphertext”,
so an attacker can still learn one bit of one component of the key used for decryption.
However, the main idea of our approach is that an attacker cannot iterate adaptive at-
tack 1 to learn an “entire” secret key, since each query gives information about a fresh
random key and these keys are uncorrelated with each other.

To achieve this we need to modify the key generation. Instead of choosing A of the
form [Bt + e|B] for a uniform t and a short vector e, we construct

Al = [Btl + 61|Bt2 + 62| cee |Btt + et\B]

where ti,...,t; are sampled uniformly in Zj and ey,...,e; are sampled from the

discrete Gaussian distribution ™. We will use the notation e; = (e; 1, .. ., ei,m)T. We
now define secret keys

s1 = (1,0,...,0,—t])T ..., sy = (0,...,0,1,—t])T

so that A’s; = e; (mod ¢) for all 1 < ¢ < ¢. Finally, every time the decryption
algorithm runs, it generates a fresh random one-time secret

t
S/: E )\Zsl
i=1

11



The point is that

t t
e/ = A/ f = Z )\iA/SZ‘ = Z)\iei
i=1

i=1

is a short vector if the integers \; are small (e.g., one could take the \; € {0,1} or
{—1,0,1} or from a discrete Gaussian distribution. There are at least 2' possible secret
keys, so t does not have to be very large to ensure that no secret key is ever used more
than once in a practical scheme.

We now give the formal details.

4.1 MGSW Scheme

— params < MGSW.Setup(1¥,1%)

1. Identical to GSW.Setup algorithm except that a parameter ¢ = O(log(n)) is
chosen (the number of secret keys);

2. Output params = (n, g, x,m,t) and letl = |log(q)] + 1and N = (¢t +n) - L.
- (pk,sk) + MGSW.KeyGen(params):

1. Sample uniformly t; < Zj, i € [t] and output
S; < (Iz | _tzT)T = (Oa e 717 e 707 _ti,h e 7_ti,n)T c Z2L+t7

where I; is the i-th row of the ¢ x ¢ identity matrix I and so the ¢-th coordinate
of s; equals 1;

2. Choose a matrix B < Zy"*™ uniformly and ¢ vectors e; <— x™ for i € [t];

3. Compute b; = Bt; +e; € ZI" and A’ = [by|- - - [b,[B] € Zi "7

4. Output pk + A’ and sk < {s1,...,s:}.

- C + MGSW.Enc(params, pk, ):

1. To encrypt a message ;1 € Zg,, sample uniformly a matrix R’ € {0, 1}™*%;

2. Compute and output the ciphertext C = G+ A'"R’ € Zg"th) N
G denotes the (n + t) x N-dimensional gadget matrix.

, where the

- 1/ < MGSW.Dec(params, sk, C):

1. Choose A1, ..., A; uniformly from {0, 1} such that they are not all zero, and

. t
generate a one-time key s’ = ) . A;s;;

2. Choose an integer 1 < ¢ < ¢ such that \; = 1 and set I = (i — 1)l + j such

that the i-th entry of the I-th column of G is 2771 where q/4 < 2971 < ¢/2;
3. Compute z = (Cy,s) (mod q) = CTs (mod ¢) in the range (—q/2, q/2];
4. Output p/ = |[x/2771]].

— The homomorphic operations are exactly the same as in the original scheme.

12



4.2 Correctness and Homomorphic Operations

In this section, we will analyze the scheme’s correctness and homomorphic operations,
following the arguments from [18].

The main change in the scheme is that a secret key is changed from s = (1, —t7)”
to a large set of secret keys of the form s’ = S°/_, A;s; with \; € {0,1}. We have
A’s; = e; (mod q) for all 1 < 4 < ¢ where e; is chosen from a discrete Gaussian
distribution. Writing € = A’s’ (mod ¢) for any choice of one-time secret key s’ we

have
t t
D odei]| <D0 Illlesl-
=1 =1

Since we may assume ||e;|| < 24/mo it follows that ||€'|] < 2t\/mo. Gentry, Sahai
and Waters consider B-bounded error vectors to show that decryption is correct. If
lleilloc = max{]e; ;|} < B then, by the same argument ||€’|| ., < B’ =tB.

To specify parameters we first fix a level L. The parameter n determines a number
of parameters o > 2y/n, t = O(log(n)), B = 100, B’ = tB. It is necessary to choose
(I,q) with 211 < ¢ < 2" and ¢ > 8B'((t 4+ n)l + 1)**!. Finally, one selects a large
enough parameter n so that the (n, ¢, D, ) — LWE problem is hard with these choices for
¢ and 0. Note that m > 2nlog(q) >t +n and N = (¢t 4+ n)l. These are the parameters
used to describe the MGSW key generation.

We say that a ciphertext C is at level ¢ if it has been formed by running the Evaluate
algorithm at most ¢ times on encryptions of messages. The Encrypt algorithm outputs
ciphertexts of level 0.

e[| = |A’S"]| =

Lemma 3. Let notation and parameters be as above. Let C be any ciphertext at level
t < L. Then the decryption algorithm returns the correct message 1.

Proof. Let s’ be any one-time key for the MGSW scheme, so that A’s’ = €’ (mod q)
where ||€/||o < B’. Write v/ = GT's’ = PowersOf2(s’). We prove the lemma by
induction.

First we consider level O ciphertexts C. We have

CTs = uGTs + R’ As/
_ MGTS/ +R/Te/

¢
=uv' + Z MR e, (mod q)

(3

The infinity norm of R’ e; is upper bounded by NB’ < ¢/8 < 27~2, hence de-
cryption is correct.

We now give the inductive step. Suppose we have two ciphertexts C; and Cs at
level < i, that encrypt messages p1 and ps € {0, 1}, respectively. (Please excuse the
abuse of notation.) By the inductive hypothesis, for j € {1,2} we have

C?S/ = /,[,jV/ —+ E]‘

13



where E; = RTe’ = YU MR, el satisfies | Ejlloc < tle ||| R|[s < (N +
1)+ B’. We consider the case of addition, and write C49¢ = C;+Cs. Then (C444)Ts/ =
(p1 + p2)v' + (E1 + Es). Since || By + Ealoo < 2(N +1)"1B" < (N +1)"*2B’ the
result follows.

We now consider ciphertext multiplication, which results in ciphertext CMu/t —

C1G~1(Cy) such that

cMult — 1o G + err,

where err := iy A’ R, + A} TR) - G71(Cy). So
(CMult)TS/ = pp2GTs' + uRj ey + G7H(C2)"Rie;  (mod g),
We have that Cs is an (n + t) x N binary matrix and pq € {0,1} and so

i Br + G HC) Balloe < Bl + N oo < (N +1)'42B.

The case of NAND is similar: Let C = G — C; - G~1(C5). Note that
CTS/ _ GTS/ _ (CMult)TS/.

By the same argument as above this has error bounded by (N + 1)i*2B’.
Hence, after L operations have been performed, the error terms are bounded by
(N + 1)+ B’ < ¢/8 and so decryption works correctly. O

4.3 IND-CPA Security

We show the scheme is IND-CPA secure based on the LWE assumption by using The-
orem 2 to show that the scheme is indistinguishable from the original GSW13 scheme,
and then applying Theorem 3.

Theorem 4. Let params = (n,q, x,m,t) be such that the LW E,, ; y m assumption
holds and m = O(nlog(q)). Then the MGSW scheme is IND-CPA secure.

Proof. The proof of security consists of two steps:

— Firstly, we apply Theorem 2 to show that, under the LWE assumption, the matrix
A’ = [by, - ,by,B] € Z;’Lx("ﬁ) is computationally indistinguishable from a
randomly chosen matrix.

— Then we apply the arguments from the proof of Theorem 3, namely that A’" - R/
is indistinguishable from uniform assuming the hardness of LW E,, ¢ \ m.

This completes the sketch of the proof. a

S Adaptive attacks on the Multiple Secret Scheme

5.1 Security Against Adaptive Attack 1

In this section we discuss how Adaptive Attack 1 on the GSW scheme is prevented by
our countermeasure.

14



The crux of our argument is that the one-time keys are distributed uniformly from
the point of view of the decryption oracle, and so are independent of the actual secret
basis. In terms of linear algebra (assuming for the moment that g is prime), the one-time
keys all lie in a vector subspace K of dimension ¢ inside the much larger space Zj;. (Not
all elements of the space K are valid secret keys; only the ones that correspond to short
linear combinations of the basis are allowed.) However, the attacker just gets a single bit
of an inner product of the one-time key with the vector coming from the ciphertext. One
can think of the inner product with C; as giving a projection (linear map) Lc, : Zq —
Zq4. So the adversary only sees one bit of one projection of the secret. Even though the
subspace K is small, the probability that K lies in the kernel of this projection is equal
to the probability that C; is chosen in the orthogonal complement K+ of K. Since K
has dimension ¢ in an n-dimensional space, the dimension of K 1 is n — . Hence the
probability that a randomly chosen Cj is such that K is in the kernel of the projection
Lc, is ¢ t/q"™ = 1/¢*, which will be negligible. Of course, C; is not random but is
chosen by the adversary. However, the adversary does not know K and so is unlikely
to be able to do better than choosing random vectors. In our argument we will therefore
assume that the projection is surjective. Under this assumption it suffices to argue that
the distribution of the projected value is close to uniform and so is independent on
the secret vectors. This is sufficient to deduce that the attack cannot work, since the
information revealed by the decryption oracle is therefore independent of the choice of
secret keys.

First note that the one-time secret key is of the form

A1
t .
Z AiS; = )\ S ZZ
i=1 t
Do Aiti
The first ¢ entries carry no information about the long-term secret t1, ..., t;.
We now fix a linear map L : Zy — Zg (corresponding to an inner product with
C1). We assume that ¢’ of the vectors sy, ...,s; do not lie in ker(L) where ¢ ~ ¢t

(a random vector lies in ker(L) with probability 1/q so a given set of [ vectors lie in
ker(L) with probability 1/¢'). When making a decryption oracle query with ciphertext
C7 the adversary gets one bit of information about the value

Since ti,...,t; are sampled uniformly from Z we can model L(s1), ..., L(s;) as
corresponding to ¢’ non-zero values uniformly sampled from Z,,.

We now want to argue that the information leaked from an oracle query cannot
provide any information about the secret values s;. Our argument is inspired by the left-
over hash lemma (Theorem 1) in the one-dimensional case. The left-over hash lemma
states that the distribution (L(s1), ..., L(s¢), Y, AiL(s;)) is indistinguishable from the
uniform distribution on ZZ‘H, where the distribution is taken over uniform choices for
L(s;) and over uniformly sampled \; € {0,1}. Indeed, an extension of the left-over
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hash lemma states that the distribution (L(s1),..., L(s;), w1, ..., w,), where w; =
> i \jiL(si) (mod ¢) for 1 < j < w, is indistinguishable from uniform. Suppose,
for a contradiction, that given a value w € Z4 one could determine some information
about possible values for L(s;) such that w = Y. A\;L(s;) (mod ¢). Then one would
have a distinguisher D that, on input (I1,...,[;, w) checks whether or not the values I;
are potentially consistent with the value w. The left-over hash lemma implies that no
such distinguisher exists, and hence even if given u exact values w; = Y. \;;L(s;)
(mod ¢) one cannot learn anything about the values L(s;). Since a decryption query
returns even less information (just one bit of this value), it follows that there is no
algorithm to learn s; from decryption queries.

More precisely, if t' > log(q) + 2k then the statistical difference between the distri-

bution on Z, given by Z:/:l AiL(s;) and the uniform distribution is at most 2~*. The
adversary does not even see the whole value, but only one bit of it. This means that the
value output by the decryption oracle is indistinguishable from a uniform value. Since
a uniform value is independent of the long-term secret key t1, . . ., t;, it follows that the
adversary cannot learn a secret key from making queries of this form.

To achieve security one can take ¢ > log(g) + 3k, but this is likely to be overkill
in practice. Since ¢ grows like n” it is possible to satisfy this condition while also
satisfying the necessary condition t = O(log(n)) for Theorem 2. An open problem is
to give a more precise analysis on distribution of a single bit of such a linear projection,
and hence obtain a smaller value for £.

5.2 Adaptive Attack 2

Recall that the aim of this attack is to learn e and this is done by setting the I-th column
of C to be the transpose of the j-th row a; of A and setting all other columns of C to
be zero. The difference in this MGSW case is that the value I varies, and is not known
to the attacker.

First note that

aj = (bjt1 +e15,bjta +e2j,...,bjt: +etj,bj)

and that the one-time secret key is s’ = (A1, A2, ..., Ar, >_; Ait;)T. Let I’ be such that
q/4 < 2"'~1 < ¢/2 and put a; in the I’-th column of C and set all other columns to
be zero. The attacker hopes that the decryption algorithm chooses \; = 1 and I = I'.
There is a 1/2 probability that A; = 1, and on average there will be about ¢/2 indices
such that A\; = 1. Hence, the probability that the decryption oracle chooses I = I’ is
roughly (1/2)(2/t) = 1/t.

If I = I’ then the decryption oracle computes

T /
C;s' =ajs

= Z Az(b_]tz + 61'7]') — bj Z Aiti
t
= 617j + Z)\iei’j (HlOd q)
=2
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In other words, the attacker can “see” e; ; but with a noise term E = 2222 Ai€ij
added. Note that the e; ; terms are fixed and the distribution of the noise term £ is over
the choices of \;. Nevertheless, since the e; ; were originally sampled from a discrete
Gaussian it follows that the mean value of E will be close to 0 and the distribution of
FE will be similar to a Gaussian. Hence, it is natural to hope that the E terms can be
“averaged away” by making repeated decryption oracle queries.

More precisely, the attacker will choose an appropriate integer —¢/2 < u < ¢/2
and call the decryption oracle on a matrix C whose I’-th column is the transpose of
a; = a; + (u | 0,---,0). The decryption oracle (assuming it uses I = I’) therefore
computes e1 j +u+E (mod ¢) where E is the noise term, and returns || (e1 ; +u+ E
(mod q))/27~*]|. The attacker therefore learns whether |e; ; + u + E| < 2172 or
not. Repeating the same query (and again requiring that I = I’) will give the same
computation but with a different value for the noise E. Hence, one should be able to
learn the most significant bits of e ; after sufficiently many queries.

Computing e, ; exactly using this approach is probably unrealistic, at the very least
since the mean value of the distribution of the E is not known to an attacker. But
once enough information about e; is obtained by the attacker then they can finish the
cryptanalysis by solving a much easier instance (B, b’ = Bt; + €’) of LWE, where
lle’l] < |le1]], using a lattice algorithm.

It is clear that this attack is much harder to mount than it was on the original scheme.
So our multi-key system has provided some protection against adaptive attacks. Never-
theless, the attack has the potential to completely break the scheme and so we need to
consider a different solution.

6 Dual Multiple Secret Scheme (DMGSW)

We now develop a dual version of the GSW scheme in the multi-secret-key case. Since
we are using the dual scheme, the security now depends on the inhomogeneous short
integer solution problem (ISIS) rather than LWE.

Definition 12. (Inhomogeneous Short Integer Solution Problem (ISIS)) Let ¢,n,m € N
with m > n. Let x be a distribution on Z. Define the ISIS distribution on Zy X Zy*™
by

(Bt (mod ¢),B)

where B is a uniformly chosen n X m matrix over Zq and t <= x™ is an integer vector
of length m.

The (decisional) (m,q, x,n)-ISIS problem is to distinguish samples (u, B) taken
Jrom the ISIS distribution from samples taken from the uniform distribution on Z; x
Zy>™.

Ajtai [3] (also see Micciancio [22]) has shown that there exist distributions y such
that the (m, ¢, x, n)-ISIS problem is hard for appropriately chosen parameters. Indeed,
one can take  to be a discrete Gaussian distribution or even the uniform distribution
on {0, 1} (see [24]).
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Theorem 5. Let m > n € N, let ¢ € N and let x be a discrete Gaussian distribution
on 7 such that the (m,q, x,n)-ISIS problem is hard. Let t be an integer such that
t = O(log(m)). Define two distributions X and Y as follows.

— X is the distribution on n X (t + m) matrices
[wy] - - [uy[B]
where B € ngm is chosen uniformly at random and where, forall 1 <1 <1t,
u; = Bt; (mod q)

where t; is sampled from a discrete Gaussian distribution x™.

— Y is the uniform distribution on Z;LX(H_T"’).

Then the two distributions X and ) are computationally indistinguishable.

Proof. Let D be a probabilistic polynomial-time adversary that can distinguish X from
Y with non-negligible advantage. For 1 < ¢ < ¢ 4 1 we introduce intermediate distri-
butions &; given by

1

(|- gy [l - - [uy B

where u; is as above and u;, is uniformly chosen from ZZ. Hence A} = X and X1 =
Y.

By assumption, D can distinguish X; from X}, with noticeable advantage ¢ and
s0, by a standard hybrid argument, there is some ¢ such that D can distinguish X; from
X;+1 with some noticeable advantage at least €/¢.

It is then easy to see that D gives an ISIS distinguisher: Given an ISIS challenge
(y,B) one samples uj,...,u;_; uniformly and samples u;1,...,u; from the ISIS
distribution) and then calls D on

()] o [y [wiga |- [u B,

By assumption, no such distinguisher exists. Hence the theorem is proved. a

6.1 Dual MGSW Scheme (DMGSW Scheme)

We now describe our dual variant of the GSW13 scheme. Recall that the original GSW
scheme has public key A = (Bt + e, B) based on LWE and ciphertext based on the
ISIS-like problem ATR. Just as with Regev’s encyption scheme, the dual scheme has
public key (BT, BTT) based on ISIS and the ciphertext is based on the LWE-like
instance BR + X.

- params < DMGSW.Setup(1*,1%):

1. Choose a modulus ¢ = ¢(k), lattice dimension parameter m = m(k, L),
parameter n and distribution xy = x(k, L), appropriately chosen in order to
achieve at least 2F security against known ISIS attacks;

2. Letl = |logq] + 1 and N = (¢ + m)l and output params = (m, q, x, n).
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- (pk,sk) + DMGSW.KeyGen(params):
- Sample t! = (¢;1,--- ,t;,) from x™ and compute e; = (I, | —t7)T where
I, is the ¢th row of the ¢ X ¢ identity matrix;
- Sample uniformly a matrix B € Zj*™ and compute u; = Bt; for 1 <14 <t
Set A =[uy || u |B] €z Note that Ae; = 0;
- Output the public key A and the private key (e1,...,e;).
- C < DMGSW.Enc(params, pk, u1) where o € {0,1}:
1. Sample a uniform matrix R < ZQXN and X + !
2. Compute C = puG + ATR + X (mod q) € ZYT™*Y where G is the (¢ +
m) X N gadget matrix;
3. Return C.

t+m)XN.
b

Remark 3. If we used the original GSW formulation then we would have writ-
ten C as

Flatten(uI + BitDecomp(ATR + X))
= BitDecomp(BitDecomp ™' (uI) + ATR + X)
= BitDecomp(uG + ATR + X) (mod q).

- w' < DMGSW.Dec(params, sk;, C):

1. Choose Ai,---,A; in Z such that they are not all zero and generate a one-
time secret key €' = 22:1 A;€e; such that ||€’|| is short. Note that Ae’ = 0
(mod gq).

There are several ways one might choose the \;. One approach would be to
sample them uniformly from {0, 1}. This leads to good values for |€’| and
it is the approach used in our analysis. Another approach would be to choose
them from a discrete Gaussian distribution on Z with small standard deviation,
and this might lead to a higher security scheme (see discussion in Section 7).
Finally, one could apply some form of rejection sampling to the resulting vec-
tors €', in order to control their size and also the extent to which they leak
information about the vectors e;.

2. Determine an integer 1 < I = (i — 1)l + j < ¢l such that \; = 1 and
21 e (q/4,q/2);

3. Let C; be the I-th column of C and compute u = (Cy,€’) = Cte’ (mod g).
Note that

CTe/ — ,uGTe' 4 RTA/e/ +XTe/
=pnGTe +XTe'.

Hence
Cte’ = 1(0,0,...,0,29710,...00¢' + E = p\2 "'+ E

where E = X7T¢’ is a small noise term.
4. Return ||u/2771]| € {0,1}.
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- DMGSW.Eval(params, Cy, - - - , C;): The homomorphic operations are exactly the
same as in the original scheme.
- DMGSW.Add(C, Cs): output

Ci+Co= (1 +p2)G+AT(R; +Ry) + (X1 +Xy) € fo*m)XN;

- DMGSW.Mult(Cy, Cz): Compute the N x N matrix G~ (C;) and compute
and output C;G~1(Cy).
Note that
CiG(C2) = (11G + ATR; + X;)G(C»)
= mCy + ATR;G7(Cy) + X1G7H(Cy)
= 2G4+ (ATR1G71(Cs) + 11 ATR,)
+(X1G7H(Cy) + uXs) € ZITMHN,

errorMult

- DMGSW.NAN D(Cy, Cz): Compute G~!(C3) and output G—C; G~ (Cy).

6.2 Correctness

In this subsection, we determine parameters for the correctness of decryption and homo-
morphic operations. In this section we assume €' = 25:1 A;e; is formed by sampling
Ai € {0,1} uniformly. Recall that the e; have entries chosen from a discrete Gaussian
distribution x with standard deviation o which is B-bounded for some integer such
as B = 6o. We also have |le;|| < 2y/mo with overwhelming probability. Hence the
entries of €’ are bounded by B’ = ¢B. It also follows that ||e/|| < 2v/tmao.

We say that a ciphertext C is at level 0 if it is the output of the encryption algorithm
on some message. We say that a ciphertext C is at level ¢ > 1 if it has been formed by
running the Evaluate algorithm at most 7 times level O ciphertexts.

Definition 13. We say that a ciphertext C € th+m)XN is E-noisy if
CTe/ _ ,uGTe/ + XTe/
where || XTe'||o < E.

Note that if C is an E-noisy ciphertext with £ < ¢ /8 then decryption works cor-
rectly as CTe’ = 277! + e (mod ¢) with |e] < E < ¢/8 < 2972 and so

CTe’ (mod q)
gkt = ate

1 1
where —3<e< 3.

Lemma 4. Let x be a B-bounded distribution on Z. Suppose E > tB +mB?. Then a
ciphertext at level 0 is E-noisy.
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Proof. We have C == G + ATR + X where X is sampled from x(**™)*N Write
X as [))((#} where X# € Z*N and X* € Z™*N. Recall that € = (A1,..., )\ |
=3 At

‘We therefore have

XTe' = (X#)"(Ar, .. M) =) M(XH)Tt

and we want to bound the I-th entry of this (coming from the I-th row of X7, which is
the transpose of the I-th column X; of X).
Since || X732 < 2¢/mo and [t; |2 < 2y/mo the Cauchy-Schwarz inequality shows
that
|(X5)Tt;| < 4mo? < mB2.

We also have |(Xj¢)T()\1, ..., At)T| < tB. So the error is bounded in infinity norm by
tB + mB2. O

Now we turn our attention to homomorphic operations. The idea is to ensure that a
level ¢ ciphertext is (N + 1)"E-noisy where E is the level zero noise, and so if (N +
1)EE < q/8 then decryption is correct even after performing L levels of operations.

Lemma 5. Let notation and parameters be as above (in particular, E > tB + mB?).
Let C be any ciphertext at level i < L. Then C is (N + 1) E-noisy.

Proof. Let C; and Cs be two ciphertexts that are noisy encryptions of 1, o € {0,1}
and such that (C;)7e’ = u;GTe’ + E; fori = 1,2.

Consider adding the two ciphertexts. Suppose both ciphertexts have level ¢ and their
noise is bounded by (N + 1)*E in the infinity norm. We compute C4% = C; 4 Cs.
Note that

(CHDTe = (1 + p2)GT € + (Er + E,)
and || E1 + Eslloo < [|E1lco + || E2lloe < 2(N +1)°E < (N + 1)*T!E. So the claim
is true in this case.

Now consider multiplication. We compute CM** = C;G~1(C3). Note that

(CMNTe = ppaGTe’ + GTH(Co) By + po By
and
IGTHCo) By + p2Bale < [GTHC2)" Eilloo + 12 B2l o0 < N[ Bl + | Ba|o-
The result follows. The same calculation holds for NAND gates. O

Suppose that ¢/8 > (N + 1)© E and consider the evaluation of a Boolean circuit of
depth L consisting of NAND gates. The input is level zero ciphertexts that are E-noisy.
We have shown that at each level the noise is multiplied by a factor of at most (N +1),.
Therefore the error terms in the final ciphertext have norm bounded by (N + 1) “Fand
decryption works correctly.
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6.3 Security of the Dual Scheme

The security of the DMGSW scheme is based on the ISIS and LWE assumptions. We
now show that the DMGSW scheme is IND-CPA-secure under the ISIS assumption by
using Theorem 5 to show that the scheme is secure.

Theorem 6. The DMGSW scheme with t = O(log(n)) is IND-CPA-secure under the
(m, q, x,n)-ISIS assumption and the LWE assumption.

Proof. (Sketch) The proof of security consists of two steps, which can be represented
as game hops. The first game hop is to replace the public key with a uniformly chosen
matrix A. The second game hop is to replace the ciphertext with a uniformly chosen
matrix C. It is immediate that an adversary cannot have non-negligible advantage in the
IND-CPA game when C is a uniformly chosen matrix, since then C is independent of
the message (. It is necessary to show that the adversary behaviour is the same across
the game hops.

— Hybrid one: In this game we replace the public key with a uniform matrix. En-
cryption of the challenge ciphertext is the same as in the scheme. If the success
probability of the adversary has non-neglible difference between these two games
then the adversary is an algorithm that can distinguish the ISIS instance of the real
public key from a uniformly chosen matrix.

By the ISIS assumption and Theorem 5 no such algorithm exists.

— Hybrid two: In this game we replace the ciphertext C by a uniformly sampled
matrix in Z((IHm)XN. If the success probability of the adversary in this game is
noticeably different from its success probability in Hybrid 1 then we have a distin-
guisher between the LWE distribution AR + X (mod ¢) and uniform. By the
LWE assumption there is no such polynomial-time distinguisher.

Finally, the game in Hybrid 2 is independent on the message bit p, and so the ad-
versary can have zero advantage in this game. a

7 Security of the Dual Multi-Secret GSW Scheme Against
Adaptive Attacks

The main observation is that there are no error terms, so Adaptive Attack 2 does not
occur. However, we still have to worry about a version of Attack 1. We will show that
a similar argument to that given in Section 5.1 can be used to show that known attacks
do not apply to the dual scheme.

The arguments rely on a Gaussian version of the leftover hash lemma, rather than
the uniform case used earlier. The following theorem is a special case of Theorem 2 of
Agrawal, Gentry, Halevi and Sahai [2].

Theorem 7. (One Dimensional Leftover Hash Lemma) Let €,0 € R be such that
€ > 0 and o > C for some absolute constant (see [2]). Let t > 10log(8t'%c) and
s' > 4tlog(1/e). Then the statistical distance between the following two distributions
is bounded by 2e.
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— Choose a length t vector X € Z! with entries chosen from the discrete Gaussian
distribution on 7! with parameter o and a length t vector z € 7' with entries
chosen from a discrete Gaussian distribution on 7t with parameter s' and compute
and output X" z.

— Choose and output an element from the discrete Gaussian distribution on Z with
parameter o's'.

Recall that the one-time secret key is
AL
e = Z)\,»ei = At € Zf;Lm

- Zﬁzl Ait;

The decryption algorithm computes (Cy,e’) = CTe’ (mod ¢). Hence we still have to
imagine an attacker who inserts a chosen vector into the I-th column of the matrix C
and makes a decryption query. As with the attack in Section 5.1, the adversary does not
know I, but can guess this value with high probability. Indeed, with probability 1/2 we
have A\; = 1 and, by setting all other columns of C to be zero, one can ensure that the
decryption oracle only returns a non-zero value when A\; = 1.

We use the same formulation as introduced in Section 5.1. Hence we write L :
Z?m — Z, for the linear map corresponding to multiplication by C¥. An attacker
will obtain one bit of

t t

L(e) = Z)\iL(ei) = Z)\iL((Iia_tzT)T)'

=1 i=1

As in Section 5.1 we can argue that almost all of the vectors (I;,—t7)7 are not in
the kernel of L. There are two cases to consider, depending on whether L preserves
“shortness” of vectors.

The first case is when the values L(e;) behave like uniformly chosen entries in
Zg4. In this case, the analysis from Section 5.1 based on the left-over-hash lemma (and
an assumption that L is surjective and does not vanish on most of the secret keys) is
sufficient to deduce that the information on L(e’) is independent of the values L(e;)
and so an adversay cannot learn the private key from queries of this form.

The second case occurs if, for example, L is a projection L((wy, ..., wiim)?) =
w; onto a single coordinate t < ¢ < ¢+ m. In this case the values L(e;) will be samples
from a discrete Gaussian and one cannot use the left-over-hash lemma to justify that
L(e€’) carries no information about the L(e;). Instead, for this case we apply Theorem 7.
In this case we need to assume the \; are sampled themselves from a discrete Gaussian
distribution x with parameter s. Suppose an attacker sees 22:1 A;L(e;) where the
L(e;) are sampled independently from the discrete Gaussian distribution x. Then The-
orem 7 states that for t = O(log(m)) (this is because o = O(y/m) for the hardness of
LWE and so t = O(log(c)) = O(log(m))) then this integer is indistinguishable from a
sample from a discrete Gaussian with parameter 2. Now, in our application the L(e;)
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are fixed rather than independently sampled, but are also not provided to the adversary.
Instead, the adversary view is simply 22:1 A;L(e;) with distribution inherited from
(A1,...,At) € X', but the Gaussian left-over-hash lemma still gives an assurance that
this value is independent of the L(e;). Further, as explained earlier, the attacker only
sees one bit rather than the entire value 2221 XiL(e;), and so we have good evidence
that the scheme resists attacks of this type.

8 Conclusion

We have given two variants of the GSW13 scheme and discussed adaptive attacks on
them. The most secure scheme is a multi-key version of the dual GSW scheme, and we
give evidence why this scheme should resist adaptive attacks.
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