
A Novel Multi-factor ID-based Designated
Verifier Signature scheme

Michael Scott

Cryptographic Researcher
MIRACL Labs

mike.scott@miracl.com

Abstract. In a classic digital signature scheme, the global community is
capable of verifying a signature. In a designated verifier scheme (DVS),
only the designated verifier has this capability. In a DVS scheme the
signer themselves “designates” the entity that will have the capability
of verifying their signature. In a pure identity-based signature scheme
a Trusted Authority is introduced, and is responsible for issuing secret
signing keys to all participants. In our proposed scheme it is this TA,
not the signer, that designates the verifier, and to this end the TA issues
the designated verifier with its own secret. Finally we propose a vari-
ation that supports non-repudiation, plus a hardware-free multi-factor
signature capability.

1 Introduction

The concept of a designated signature scheme is quite simple: Instead of anyone
being able to verify a digital signature, only a particular designated verifier
entity now has that capability. This clearly protects some aspects of the signer’s
privacy – no-one other than the designated verifier is in a position to confirm
if the signature is genuine and valid. Indeed a purported and plausible looking
“signature” will not impress anyone, as it could have been generated by anyone.

A designated verifier signature scheme is expected to arise in a context where
the signer has willingly entered into an arrangement with the designated verifier,
as in for example the relationship between a citizen and their Bank. A clearly
desirable property is that in the event of the signer trying to repudiate their
signature, the designated verifier can make available a “proof” that can (a)
convince any third party (including the signer) that the signature is indeed valid,
while ideally (b) not revealing the secret which confers on them the unique ability
to verify signatures.

But this causes a problem: Unfortunately to qualify as a classic strong desig-
nated signature scheme (SVDS), for historical reasons such a scheme is expected
to also have the rather strange property of “non-transferability” [12]. This re-
quires that the verifier cannot convince any third party that the signature is valid,
as they may themselves have created it. One justification for non-transferability
is that it ensures that the designated verifier is the only entity that can ever be

convinced of the validity of the signature, and that the signature cannot therefore
be abused outside of that closed relationship.

Unfortunately this undermines our faith in such a scheme as being a useful
form of digital signature as we know it, where the properties of non-repudiation
and non-forgeability are taken for granted. Non-transferability clearly under-
mines both of these important properties. Since such a signature cannot at any
stage be proven to be valid to any third party, then it is clearly of limited utility.
It seems that the property of “non-transferability” may be a classic example of
attempting to make a feature out of what is in reality a weakness.

Indeed Shao [14], in a view shared by [15] and [11], has rather scathingly
pointed out that the classic SDVS is no better than a message authentication
scheme or HMAC. “Therefore, the studies of so-called designated verifier sig-
natures, originating from Jakobsson, developed by Saeednia, followed by many
researchers, have gone astray.” Shao then goes on to attempt to reclaim the idea
of a “Strong Designated Verifier Signature” (SDVS), and to put it on a sounder
footing, by abandoning the non-transferability property.

Some authors [16] and [11] have attempted to square the circle by keeping
the non-transferability “property” and introducing a trusted arbiter who can
tell who really signed the message (the signer or the designated verifier) in case
of a dispute between them. However we would contend that introducing an-
other party that needs to be trusted does not really help, and in any event is
unnecessary. It is simpler just to drop the non-transferability property.

We note that very recently Duong et al describe an SDVS scheme in the spirit
of Shao without once mentioning non-transferability, and emphasising instead
the non-deniability property [8].

Here we describe an ID-based SDVS scheme without non-transferability. In
our proposed solution a Distributed Trusted Authority (D-TA) infrastructure
will be required which confirms identities and issues shares of the secret keys. In
a Banking setting the Bank itself would naturally control one component of this
infrastructure, but one or more external identity provisioners should be involved
as well.

First we design a simple system. Then we add a non-repudiation feature (not
normally possible with Identity-Based signature). Finally we show how such a
signature method can be made “multi-factor”, so for example a customer can
sign using a software token and a memorised PIN number. We would suggest
that this is a better solution than currently deployed alternatives, which typically
require the bank to issue an expensive hardware device to each customer.

2 A Basic Scheme

Our basic scheme is based on a Identity-Based signature proposal by Cha and
Cheon [6] (and independently by Yi [17]), based on type-1 bilinear pairings on
elliptic curves. The most common types of pairing are the so-called type-1 and
type-3 pairings [9]. A type-1 pairing G1 × G1 → GT maps a pair of points in
a prime order elliptic curve group G1 of order q, to an element of order q in a

2

finite extension field GT . A type-3 pairing G1 × G2 → GT does the same, but
takes its inputs from points in two different elliptic curve groups G1 and G2, of
the same order q.

The standard notion for security in this signature context context is unforge-
ablity under chosen message attack. Cha and Cheon were able to prove this in
the random oracle model assuming the hardness of the Computational Diffie-
Hellman (CDH) problem in the group G1 [6]. See also [5]. For our purposes we
need to shift from a type-1 pairing to the more efficient type-3 pairing context,
which in turn requires a change in the hardness of the underlying assumption,
from CDH to co-CDH* [7]. This later assumption takes into account the involve-
ment of points from two separate elliptic curve groups.

– Setup. A Trusted Authority (TA) chooses a type-3 pairing friendly elliptic
curve and publishes its parameters. The TA generates a random secret s for
use with a particular designated verifier and a fixed public generator Q ∈ G2.
A hash function H(.) is provided which hashes and maps identity strings to a
point in G1. A second hash function h(.) hashes an input of arbitrary length
into a digest of size less than q.

– Key Extract - verifier. The secret key issued to the designated verifier by the
TA is the point sQ ∈ G2.

– Key Extract - signer. For a signer Alice with identity IDa, the associated
ID-based public key is A = H(IDa). The secret key issued by the TA to
Alice is the point sA ∈ G1.

– Sign. To sign a message m, Alice generates a random x, calculates A =
H(IDa), U = xA, V = −(x + h(IDa|m|U))sA, and the signature as the
tuple (IDa, U, V).

– Verify. To verify Alice’s signature on m calculate A = H(IDa) and g =
e(V,Q).e(U + h(IDa|m|U)A, sQ), and if g = 1 accept the signature, other-
wise reject it.

Observe that there can be no ambiguity as to who created the signature;
the verifier secret is in the group G2, whereas all signing keys must be in G1.
But this simple system has a number of short-comings. Clearly the TA is in
a position to create a signature on any message, and thus signatures might be
repudiated by exploiting a perceived key-escrow issue. One partial solution to
this problem is to distribute the TA functionality, and establish a D-TA. For
example a pair of D-TAs can generate their own independent secrets s1 and s2,
and separately issue s1A and s2A to Alice, and s1Q and s2Q to the designated
verifier. Both clients and verifier simply add these components together to form
their full secrets.

Nevertheless a conspiracy of D-TAs can still forge signatures. To provide full
non-repudiation, we turn to ideas from Certificateless Cryptography [3].

3 A scheme with non-repudiation

The setup and verifier key extraction is as above. We highlight the changes in
red.

3

– Key Extract - signer. Alice generates a random z, and calculates a non-ID-
based public key Pa = z−1Q, and presents the composite identity IDa|Pa

to the trusted authority, which constructs the ID-based public key as A =
H(IDa|Pa), and returns the secret key sA ∈ G1. Alice then modifies her
secret key to be zsA, and deletes z and sA.

– Sign. To sign a message m, Alice generates a random x, calculates A =
H(IDa|Pa), U = xA, V = −(x+h(IDa|m|U))zsA, and the signature as the
tuple (IDa, Pa, U, V).

– Verify. To verify the signature on m, independently calculate A =
H(IDa|Pa). Next calculate g = e(V, Pa).e(U + h(IDa|m|U)A, sQ). If g = 1
accept the signature, otherwise reject it.

Certificateless cryptography [3] does not increase the number of secrets to be
protected compared with pure Identity-Based cryptography, but it does intro-
duce a new individualised public key Pa. It is assumed that the TA (or equiv-
alently at least one component of a D-TA) will not get involved in an attack
involving replacement of these public keys. The authors of [3] argue that this is
essentially the same level of trust we have in a PKI Certificate Authority (CA)
not to issue false certificates. Hence their schemes are “certificateless”, as public
keys gain no extra security from being embedded into a certificate. For digital
signatures to have the non-repudiation property, an assumption of this kind is
regarded as acceptable, and does not invalidate the legality of PKI signatures.
Therefore here we assume that at least one of our independent D-TAs has the
same level of integrity as a CA.

3.1 Resolving disputes

In the case where a signer nonetheless tries to refute their signature, there is a
need for transparency in the verification process. This would seem to require the
release of the designated verifier’s secret to a third party who could demonstrate
to the satisfaction of all that the signature were indeed valid. A defaulting signer
may hope that the verifier is unwilling to release this secret to any third party,
as to do so may undermine their own security. What is needed is an alternate
proof of the validity of a specific signature, that does not require this secret.

The D-TA can act as a panel of arbiters, who can supply such a proof. It
is clearly important to know the provenance of a proof, otherwise a defaulting
signer may present a random “proof” which they know will fail, enabling them
to repudiate their signature. Therefore an interactive proof between a judge and
the D-TAs in the presence of interested parties, is appropriate.

The judge presents to each of the D-TAs the message m and, from the
signature, IDa, Pa and U . Assuming a pair of D-TAs, the first DTA returns
X1 = s1(U+h(IDa|m|U)A) and the second returnsX2 = s2(U+h(IDa|m|U)A),
where A = H(IDa|Pa). The value of X = X1 +X2 constitutes the proof. The
judge checks that

e(V, Pa).e(X,Q)
?
= 1

4

If this is true, then the signature is valid, otherwise it is not. In practise the
fact that such a proof can be provided if required, would be enough to discourage
disputes.

4 A multi-factor variation

Multi-factor methods of signature are often required by organisations like Banks,
and normally require that customers be provisioned with an expensive hardware
token. Here we suggest a cheaper software-only solution.

Consider the possibility of splitting a private key used for digital signature
into two parts, say a 4-digit PIN number and a software token. Both components
would need to be recombined in order to form a signature. In a normal digital
signature scheme clearly this will not work – an attacker who captures the soft-
ware token simply has to try every possible PIN number until the private key
formed by combining token and PIN matches the user’s public verification key.

But in our ID-based designated verifier scheme, the single verification key is
in fact now a secret known only to the designated verifier. So a software-only
2-factor signature becomes a possibility.

Consider the scenario where an attacker has access to the token and a valid
signature. Is this sufficient to find the PIN via an off-line attack? Consider again
our basic scheme. Now choose a PIN number α and break the secret into the
token sA−αA and the PIN derived component αA, which must be recombined
by simple addition to affect a signature.

Definition 1. (XDH assumption [13], [4]) The Decisional Diffie-Hellman
assumption in the group G1: Given the five group elements P, aP, bP, abP, cP ∈
G1, distinguish between the tuples {aP, bP, abP} and {aP, bP, cP}, for random
a, b, c ∈ Fq

Theorem 1. An adversary who has captured a token and a valid signature can-
not determine the PIN, assuming that the XDH problem is hard.

Proof. Let c = h(IDa|m|U) and A = H(IDa). Assume the existence of an
Oracle which can solve this problem: When presented with the input tuple
{A, xA, c, (x + c)sA, (s − α)A} derived from a signature on m and a captured
token, it responds with the correct value of α.

We will show that such a capability can be used to solve the decisional
Diffie-Hellman problem in the group G1. That this problem is hard is the XDH
assumption.

Recall that the decisional Diffie-Hellman problem is to distinguish with
probability greater than chance the input distributions {xA, yA, zA} and
{xA, yA, xyA} where x, y, z are random elements in Fq.

Given access to our Oracle this decisional problem can be solved by gener-
ating a random c < q and α < 104, and submitting the tuple {A, xA, c, zA +
cyA, yA− αA} to the Oracle.

5

If z = xy, then this tuple is {A, xA, c, (x+ c)yA, (y − α)A}, and our Oracle
will return the same α, and we can report that the input represents a valid
Diffie-Hellman triple.

On the other hand if z ̸= xy, then the Oracle will either fail (as it cannot
find a PIN within the expected 4-digit range) and return ⊥, or return the wrong
value for α, α′ = α+ (z − xy)/(x+ c) mod q, in which cases we report that the
input is not a valid Diffie-Hellman triple.

Since the XDH problem is assumed to be hard, we must assume that no such
Oracle exists, and therefore the PIN is safe from an off-line dictionary attack.

The same idea can be easily extended to our scheme that supports non-
repudiation, with the client secret split into the token zsA − αA and the PIN
derived component αA. However we observe that this idea will not work with
other Identity-Based signature schemes. For example if applied to the scheme
due to Hess [10] considered in [3] the PIN can be discovered via an off-line
dictionary attack.

The extension of the idea from 2-factor to multi-factor is straightforward.

5 Discussion

A conspiracy of D-TAs can re-create sQ, and therefore can verify signatures. As
a consequence, such a conspiracy that gains access to client tokens can calculate
the associated PINs. We do not believe that this constitutes a realistic attack,
requiring as it does the subversion of all of the D-TAs and breaches of individual
client security.

While a conspiracy of D-TAs can forge individual signatures, the security risk
is equivalent to that posed by a corrupt Certificate Authority in a PKI signature
context. Recall that in this situation the existence of a pair of digital signatures
on the same message associated with the same identity, but with different public
keys, suffices to expose such a conspiracy [3].

Revocation can be supported either as described in [3], or using the concept
of “time permits”, which are publicly issued by the D-TAs on, for example, a
daily basis. See below.

6 Application

It has been assumed that as part of the solution to the challenge of secure
multi-factor authentication, some kind of hardware vault like a Trusted Platform
Module (TPM) is required on the client side. Typical solutions such as that
proposed by the FIDO alliance [1] require the protection of a PKI-like signing
key on the client device, which is used to sign a random challenge issued by the
server every time the client wishes to authenticate. Ideally for an optimal user
experience this signing key should be activated from the hardware vault by the
entry of a low entropy secret like a PIN number, or a biometric which matches
a template stored inside the vault. We should point out that this process is

6

two-step rather than two-factor. An attacker who can gain access to the TPM,
either by successful hacking, or by way of a manufacturer’s back-door, can gain
immediate access to the secret, with no need of a PIN or a biometric. As a bonus
they might capture the biometric template as well. It would appear not to be
possible to conveniently implement such functionality entirely in software on the
client side. As is well known the cryptographic protection of a PKI private key
in software requires the use of a very user-unfriendly high-entropy pass-phrase,
a process made famous by PGP [2].

Our proposed solution is genuinely two-factor/multi-factor. Furthermore a
software only implementation on the client side is now perfectly feasible, which
reduces the cost dramatically and removes the need to trust a hardware manufac-
turer. For a two-factor solution the token is stored unencrypted on the device,
and the PIN is memorised by its owner. This is at the cost to the server of
protecting a single secret for use in signature verification.

As a full featured non-repudiable signature scheme the method would we sug-
gest have application beyond simple authentication, in contexts where a multi-
factor signature capability were desirable, as in our original banking scenario.

References

1. The FIDO alliance. https://fidoalliance.org/.
2. The international PGP home page. http://www.pgpi.org/.
3. S. Al-Riyami and K. Paterson. Certificateless public key cryptography. Cryptology

ePrint Archive, Report 2003/126, 2003. http://eprint.iacr.org/2003/126.
4. L. Ballard, M. Green, B. de Medeiros, and F. Monrose. Correlation-resistant

storage via keyword-searchable encryption. Cryptology ePrint Archive, Report
2005/417, 2005. http://eprint.iacr.org/2005/417.

5. M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based
identification and signature schemes. In Eurocrypt 2004, volume 3027 of Lecture
Notes in Computer Science, pages 268–286. Springer-Verlag, 2004.

6. J. Cha and J. Cheon. An identity-based signature from gap Diffie-Hellman groups.
In PKC 2003, volume 2567 of Lecture Notes in Computer Science, pages 18–30.
Springer-Verlag, 2003.

7. S. Chatterjee and A. Menezes. On cryptographic protocols employing asymetric
pairings. Discrete Applied Mathematics, 159(13):1311–1322, 2011.

8. D. Duong, W. Susilo, and V. Trinh. A new approach to keep the privacy informa-
tion of the signer in a digital signature scheme. Information, 11(260), 2020.

9. S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156:3113–3121, 2008.

10. F. Hess. Efficient identity based signature schemes based on pairings. In SAC
2002, volume 2595 of Lecture Notes in Computer Science, pages 310–324. Springer-
Verlag, 2003.

11. X. Hu, W. Wenan, H. Xu, J. Wang, and C. Ma. Strong designated verifier sig-
nature schemes with undeniable property and their applications. Security and
Communication Networks, 2017.

12. S. Saeednia, S. Kremer, and O. Markowitch. An efficient strong designated verifier
signature scheme. In ICISC 2003, volume 2971 of Lecture Notes in Computer
Science, pages 40–54. Springer-Verlag, 2003.

7

13. M. Scott. Authenticated ID-based key exchange and remote log-in with simple
token and PIN number. Cryptology ePrint Archive, Report 2002/164, 2002. http:
//eprint.iacr.org/2002/164.

14. Z. Shao. Strong designated verifier signature scheme: new definition and construc-
tion. Cryptology ePrint Archive, Report 2010/490, 2010. http://eprint.iacr.

org/2010/490.
15. B. Yang, Y. Yu, and Y. Sun. A novel construction of SDVS with secure disavowa-

bility. Cluster Comput, 16:807–815, 2013.
16. X. Yang, G. Chen, T. Li, R. Liu, M. Wang, and C. Wang. Strong designated veri-

fier signature scheme with undeniability and strong unforgeability in the standard
model. Appl. Sci., 9(2062), 2019.

17. X. Yi. An identity-based signature scheme from the Weil pairing. IEEE Commu-
nications Letters, 7(2):76–78, 2003.

Time Permits

A Time Permit in its most common usage is simply a blob of data issued on
request to a registered signer on the actual date D when they are asked to, or
wish to, sign a document. It is obtained by summing components issued by each
individual D-TA. Since the time permit is tied to an individuals pre-registered
identity, it need not be protected in any way, and is of no value to an adversary.
However without one, a valid signature cannot be formed. Therefore revocation
is achieved by simply not issuing a Time Permit. Furthermore this date D now
forms part of the signature, and so the verifier now has a cryptographic assurance
of the date on which the signature was created.

We describe the mechanism for the basic scheme – the extension to the
scheme with non-repudiation is straightforward. The public key for Alice is now
formed by Alice as A = H(IDa) + H2(D|IDa) where H2(.) is a hash function
distinct from, but with the same range as, H(.). The time permit issued for Alice
would be of the form T = sH2(D|IDa), which must be added to Alices secret
key sA. So the signature on a message m is now the tuple {IDa, D, U, V }, where
U = xA, and V = −(x + h(IDa|m|U))(sA + T). The verifier uses the claimed
date from the signature and the identity string IDa to construct Alice’s public
key.

8

