
On the Security Notions
for Homomorphic Signatures

Dario Catalano1, Dario Fiore2, and Luca Nizzardo2

1 Dipartimento di Matematica e Informatica, Università di Catania, Italy.
catalano@dmi.unict.it

2 IMDEA Software Institute, Madrid, Spain.
{dario.fiore, luca.nizzardo}@imdea.org

Abstract. Homomorphic signature schemes allow anyone to perform computation on signed data in
such a way that the correctness of computation’s results is publicly certified. In this work we analyze the
security notions for this powerful primitive considered in previous work, with a special focus on adaptive
security. Motivated by the complications of existing security models in the adaptive setting, we consider
a simpler and (at the same time) stronger security definition inspired to that proposed by Gennaro and
Wichs (ASIACRYPT’13) for homomorphic MACs. In addition to strength and simplicity, this definition
has the advantage to enable the adoption of homomorphic signatures in dynamic data outsourcing
scenarios, such as delegation of computation on data streams. Then, since no existing homomorphic
signature satisfies this stronger notion, our main technical contribution are general compilers which turn
a homomorphic signature scheme secure under a weak definition into one secure under the new stronger
notion. Our compilers are totally generic with respect to the underlying scheme. Moreover, they preserve
two important properties of homomorphic signatures: context-hiding (i.e. signatures on computation’s
output do not reveal information about the input) and efficient verification (i.e. verifying a signature
against a program P can be made faster, in an amortized, asymptotic sense, than recomputing P from
scratch).

1 Introduction

Digital signatures are a fundamental cryptographic primitive for guaranteeing the authenticity of
digital information. In a digital signature scheme, a user Alice can use her secret key sk to generate a
signature σm on a message m, and a user Bob can use Alice’s public key pk to check the authenticity
of (m,σm). The standard security notion of digital signatures, unforgeability against chosen message
attacks, says that an attacker who has access to a collection of signatures on messages of his choice
cannot produce a signature on a new message. This notion essentially means that signatures must
be non-malleable in the sense that, from a signature on m one cannot derive a signature on some
m′ 6= m.

Even if in the most popular applications one wishes such a strong notion of non-malleability,
there are application scenarios where some form of malleability can become very useful, paradox-
ically even for signature schemes. A notable example is that of homomorphic signatures, a notion
first proposed by Desmedt [16] and Johnson et al. [24], and later properly formalized by Boneh and
Freeman [6]. This is what we study in this work.

Homomorphic Signatures. In homomorphic signatures, a user Alice can use her secret key sk
to generate signatures σ1, . . . , σn on a collection of messages (m1, . . . ,mn) – a so-called dataset.
Then the interesting feature of this primitive is a (publicly computable) Eval algorithm that takes
the signatures σ1, . . . , σn and a program P, and outputs a signature σP,m on the message m =
P(m1, . . . ,mn) as the output of P. It is crucial that σP,m is not a signature on just m, but on m

as output of the program P. The latter observation indeed makes sure that signatures are not “too
malleable”, but they rather have a controlled malleability. This means that a user Bob will use
Alice’s public key pk to check the triple (P,m, σP,m) and get convinced of whether m is the corret
output of P on messages previously signed by Alice.

In addition to this interesting functionality, what makes this primitive attractive is the follow-
ing set of features. First, homomorphic signatures must be succinct, meaning that their size must
be significantly smaller than the size of the input dataset.3 Second, Bob can verify computation’s
outputs without needing to know the original dataset, a very appealing feature when considering
computations on very large datasets that could not be stored locally by verifiers. Third, homomor-
phic signatures are composable, in the sense that signatures obtained from Eval can be fed as inputs
to new computations. Using composability, one can, for example, distribute different subtasks to
several untrusted workers, ask each of them to produce a proof of its local task, and use these
proofs to create another unique proof for the final job (as in the MapReduce approach). All these
features make homomorphic signatures an interesting candidate to be used for securely delegating
computation on previously outsourced data.

If the functionality of homomorphic signatures can be explained as above, defining the security
notion of this primitive is a more delicate task. The following paragraphs provide an explanation
of the security notions and then give an overview of our results. We warn the reader that the
explanations in the introduction intentionally hide some details of the model for ease of exposition.
A detailed formalization appears in Section 3.

Security of Homomorphic Signatures. Properly defining security for homomorphic signatures
is tricky. Clearly, an homomorphic signature cannot meet the usual unforgeability requirement [22]
as the primitive does allow the adversary to come up (honestly) with new signatures. The first sat-
isfactory security definition was proposed by Boneh and Freeman in [6]. Intuitively, a homomorphic
signature is secure if an adversary who knows the public key can only come up with signatures that
are either obtained from the legitimate signer Alice, or they are obtained by running Eval on the
signatures obtained by Alice. In other words, the adversary can only do what is in the scope of the
public evaluation algorithm. Slightly more in detail, this new unforgeability game can be explained
as follows. During a training phase the adversary A is allowed to see the signatures of messages
belonging to different datasets. The adversary then wins the game if she can produce either (1)
a signature on a message m belonging to some previously unseen dataset (this is called a Type
1 forgery), or (2) for some previously seen dataset ∆ = {m1, . . . ,mn}, she manages to produce
a triplet (P, σ,m), such that σ verifies correctly but m 6= P(m1, . . . ,mn) (this is called a Type 2
forgery). Again explained in words, this definition means that the adversary can cheat either by
claiming an output on a dataset that she never saw/queried, or by claiming an incorrect output of
a given program P, executed on a collection of messages for which she saw signatures.

A noteworthy caveat of the Boneh and Freeman [6] definition is the requirement that the
adversary submits all the messages belonging to each queried dataset. Namely, for each queried
dataset ∆, A has to ask exactly n signing queries.4 In this work, because of this limitation, we call
this notion semi-adaptive security.

3 Without the succinctness requirement homomorphic signatures are trivial to realize as one can simply set σ =
(P, (m1, σ1), . . . , (m`, σ`)).

4 We remark that the original Boneh-Freeman definition imposes the even stronger restriction that these n messages
are queried all at once.

2

To overcome this limitation, Freeman [18] later proposed a stronger notion where the adversary
is allowed to adaptively query messages one by one, and even to sprinkle queries from different
datasets. In this work, because of its increased adaptivity, we call the notion in [18] adaptive
security.

The shortcomings of adaptive security. Adaptive security, while very natural, has a dark side.
Loosening the query-all requirement implies that the adversary might provide a forgery (P, σ,m)
that corresponds to a previously seen dataset ∆, but for which A did not ask signing queries on
all the inputs of P. For instance, A might pretend to have a signature on m 6= P(m1,m2) without
having ever made a query on m2. The issue in this case is that it is not even possible to define what
is the correct output of P in order to say whether the adversary has cheated (i.e., if m is a correct
output or not). To deal with this issue, Freeman proposed a notion of “well-defined program” which
characterizes when the output of P can be defined in spite of missing inputs. The idea is simple
and intuitively says that a program is well defined if the missing inputs do not change its outcome
(e.g., P(m1, ·) is constant). Freeman’s definition then considered a forgery also one that passes
verification for a P not well-defined, and called such a forgery Type 3.

Type 3 forgeries are however nasty animals. Not only they are very hard to work with (as the
security definition turns complicated), but they also make the outcome of the security experiment
not efficiently computable. In fact, when considering general functions it may not be possible to
check the well-definedness of P in polynomial time. This can be solved when P is a linear [18] or a
low degree polynomial [8,14], but the issue remains for the more general case, e.g., polynomial size
circuits. In particular, this issue can generate troubles when proving the security of homomorphic
signatures as well as when using them in larger protocols (as simply testing whether an adversary
returned a forgery may not be doable in polynomial time).

1.1 Our contribution

The state of the art of security notions for homomorphic signatures, as discussed above, seems quite
unsatisfactory. Having expressive, yet easy to use, definitions is indeed a fundamental step towards
a better understanding of cryptographic primitives.

A Stronger and Simpler Security Notion. To address the issues of adaptive security, we
consider a new security notion that is both simpler and stronger than the one in [18]. This notion,
that we call strong adaptive security, is the public key version of the one proposed by Gennaro and
Wichs [21] for homomorphic message authenticators (the secret key equivalent of homomorphic
signatures).5 Strong adaptive security deals with the case of programs with missing inputs in a
simple way: if the triplet (P,m, σ) returned by the adversary verifies correctly and some inputs
of P were not queried during the experiment, then it is considered a forgery (we call it a Type 3
Strong forgery).

Compared to previous notions, strong adaptive security has several advantages. First, the win-
ning condition of the experiment is efficiently computable, thus avoiding the issues that may arise
when proving and using homomorphic signatures. Second, the new forgery definition is arguably
much simpler to state and work with. Finally, being a strengthening of adaptive security, homomor-
phic signature schemes that are strong adaptive secure can be used in more application scenarios
as discussed before.

5 With some adaptations to deal with multiple datasets which was not considered in [21].

3

Realizing Strong Adaptive Security, Generically. If we aim for strong adaptive security to
be the “right” strong notion to use for homomorphic signatures, then we face the problem that
virtually all existing schemes are not secure under this strong notion. This is the case for those
schemes that support linear or low-degree polynomials and were proven secure under the adaptive
notion of [18], as well as for the recently proposed leveled homomorphic scheme for circuits [23]
which is only semi-adaptive secure. Notably, all these constructions break down in the new security
experiment as they do not tolerate adversaries that issue Type 3 Strong forgeries. The only scheme
which stands security in this stronger model is a recent proposal of Elkhiyaoui et al. [17] which
supports constant-degree polynomials and relies on multilinear maps in the random oracle model.

To remedy this situation, our main contribution is to show that strong adaptive security can be
easily achieved without additional assumptions and in the standard model. Specifically, our main
result is a generic compiler that, starting from an homomorphic signature scheme Σ satisfying
semi-adaptive security, converts Σ into a strong adaptive secure scheme that supports the same
class of functions.

The compiler uses, as additional building block, a semi-adaptive secure signature scheme ΣOR

that supports OR operations over Z2. Clearly, if Σ supports arbitrary boolean circuits, then ΣOR

can be instantiated using Σ itself. In such a case, our result is thus providing a transformation that
“bootstraps” semi-adaptive security to strong adaptive security. If, on the other hand, ΣOR cannot
be instantiated using Σ, our result still provides a way to get strong adaptive security, under the
additional assumption that semi-adaptive secure OR-homomorphic signatures exist.

Nevertheless, since very few concrete examples of OR-homomorphic signatures are known (es-
sentially, only one [23]) we asked whether a similar result could be obtained out of some more
widely studied primitives. Along this direction, our second result is another compiler that combines
a semi-adaptive secure scheme Σ together with a semi-adaptive secure linearly-homomophic signa-
ture ΣLH that works for messages over a large ring, say Zp. This combination yields a homomorphic
signature scheme that is strong adaptive secure and supports the same class of functions supported
by Σ. A limitation of this second transformation is that it applies only to schemes that are leveled
homomorphic (i.e., for circuits of bounded depth). As an interesting feature, however, this result
shows that strong adaptive security can be obtained from linearly-homomorphic schemes, a class of
constructions for which many constructions are known (most of which are also way more efficient
in practice than [23]).

Both our transformations hold in the standard model, and they preserve two properties of homo-
morphic signatures: context-hiding and efficient-verification (so, security can be upgraded without
penalties). The former deals with privacy and informally says that signatures on computation’s
outputs do not reveal information on the inputs. The latter instead fully enables the use of homo-
morphic signatures for verifiable delegation of computation, by requiring that verifying a signature
for a program P is asymptotically faster (in an amortized, offline-online sense) than recomputing
P from scratch.

We point out that our compilers are completely generic with respect to the semi adaptive secure
scheme. This means, for instance, that when applied to the recent (leveled) fully homomorphic
solution of [23] they lead to homomorphic signature schemes for general circuits achieving strong
adaptive security.

On the Importance of Strong Adaptive Security. As an important application of (strong)
adaptive secure homomorphic signatures, we mention certified computation on streaming data. Con-
sider a scenario where a user Alice outsources a stream of data m1,m2, . . . to an untrusted Cloud,

4

so that the Cloud can compute a program P on the current snapshot (m1, . . . ,mi) and post the
result publicly (e.g., on a third party website). Using homomorphic signatures, Alice can sign each
element of the data stream, while the Cloud can compute a homomorphic signature σP,yi on every
computed result yi = P(m1, . . . ,mi) and post (yi, σP,yi). This way, anyone with the only knowledge
of Alice’s public key is able to check the results validity. Notably, the Cloud can produce the certi-
fied results in a completely non-interactive fashion, and no communication between Alice and the
verifiers is needed (except, of course, for sending the public key). In such a scenario, where datasets
grow dynamically and one performs computations on their current version, (strong) adaptive se-
curity is fundamental as it prevents the cloud from claiming to have results computed on dataset
elements that it did not receive (yet). This is particularly relevant in scenarios where there is no
communication between the signer and the verifiers, who may not be aware of the current status of
the outsourced stream. Furthermore, strong adaptive security is important in the case of very large,
potentially unbounded, datasets (as in the streaming case) as one cannot assume that the adversary
queries the whole dataset. This actually shows an inherent limitation of semi-adaptive security: this
latter model cannot cope with dataset of arbitrarily large, possibly exponential, size. Indeed, to fit
the requirements of the definition, polynomially bounded adversaries would be required to ask an
equal (yet impossibly large) number of signing queries.

1.2 Other related work

The notion of homomorphic signature was (informally) suggested by Desmedt [16] and later more
formally introduced by Johnson et al. [24]. The special case of linearly homomorphic signatures
was first considered by Boneh et al. [5] as a key tool to prevent pollution attacks in network coding
routing mechanisms. Following this work, several papers further studied this primitive both in the
random oracle [20,7,6,10], and in the standard model [2,12,3,13,18,4,11]. In the symmetric setting
realizations of linearly homomorphic MACs have been proposed by Agrawal et al. in [1].

Several recent works also considered the question of constructing homomorphic authenticators
(i.e., signatures and/or MACs) supporting more expressive functionalities. Boneh and Freeman in
[6] proposed an homomorphic signature scheme for constant degree polynomials, in the random
oracle model. Gennaro and Wichs [21] presented a construction of fully homomorphic MACs based
on fully homomorphic encryption in a restricted adversarial model where no verification queries are
allowed. Catalano and Fiore [8] proposed a much more efficient homomorphic MAC solution that,
while capturing a less expressive class of functionalities (i.e. arithmetic circuits of polynomially
bounded degree), allows for verification queries. This latter result was further generalized in [9]. All
these constructions of homomorphic MACs achieve adaptive security.

In the asymmetric setting, Catalano, Fiore and Warinschi [14] proposed a homomorphic signa-
ture that achieves adaptive security in the standard model, works for constant degree polynomials
and is based on multilinear maps. Moreover, Gorbunov, Vaikuntanathan and Wichs [23] recently
proposed the first homomorphic signature construction that can handle boolean circuits of bounded
polynomial depth; their scheme is secure in the semi-adaptive model, and is based on standard lat-
tices.

Finally, we notice that a work from Chase et al. [15] considered a problem similar to the one
addressed in this work (i.e., elaborating a definition that allows one to establish, in an efficient way,
when the signature produced by the adversary is a valid forgery). They deal with this problem by
formalizing the idea that the adversary “must know” the function and the input that were used
to obtain the forgery. To formalize this idea, their definition asks for the existence of a black-box

5

extractor that must extract this information from what is in the view of the game and the output
of the adversary. Unfortunately, this type of definition is impossible to achieve when one considers
the case of succinct homomorphic signatures for n-ary functions, as we do in our paper. The reason
is simply that the extractor should extract an amount of information (such as the function input)
that is much larger than what is in its input.

2 Preliminaries

Notation. We denote with λ ∈ N a security parameter. A probabilistic polynomial time (PPT)
algorithm A is a randomized algorithm for which there exists a polynomial p(·) such that for every
input x the running time of A(x) is bounded by p(|x|). We say that a function ε : N → R+

is negligible if for every positive polynomial p(λ) there exists λ0 ∈ N such that for all λ > λ0:

ε(λ) < 1/p(λ). If S is a set, x
$← S denotes the process of selecting x uniformly at random in S.

If A is a probabilistic algorithm, y
$← A(·) denotes the process of running A on some appropriate

input and assigning its output to y. For a positive integer n, we denote by [n] the set {1, . . . , n}.

3 Homomorphic Signatures

In this section we recall the definition of homomorphic signatures. This definition extends the one
by Freeman in [18] in order to work with the general notion of labeled programs [21].

Labeled Programs [21]. A labeled program P is a tuple (f, τ1, ..., τn) such that f :Mn →M is
a function of n variables (e.g., a circuit) and τi ∈ {0, 1}∗ is a label of the i-th input of f . Labeled
programs can be composed as follows: given P1, . . . ,Pt and a function g :Mt →M, the composed
program P∗ is the one obtained by evaluating g on the outputs of P1, . . . ,Pt, and it is denoted as
P∗ = g(P1, . . . ,Pt). The labeled inputs of P∗ are all the distinct labeled inputs of P1, . . . ,Pt (all
the inputs with the same label are grouped together and considered as a unique input of P∗).
Let fid :M→M be the identity function and τ ∈ {0, 1}∗ be any label. We refer to Iτ = (fid, τ)
as the identity program with label τ . Note that a program P = (f, τ1, · · · , τn) can be expressed as
the composition of n identity programs P = f(Iτ1 , · · · , Iτn).

Definition 1 (Homomorphic Signature). A homomorphic signature scheme HSig consists of a
tuple of PPT algorithms (KeyGen,Sign,Ver,Eval) with the following syntax:

KeyGen(1λ,L) the key generation algorithm takes as input a security parameter λ, a description of
the label space L (which fixes the maximum data set size N), and outputs a public key vk and a
secret key sk. The public key vk contains a description of the message space M and the set F
of admissible functions.

Sign(sk, ∆, τ,m) the signing algorithm takes as input a secret key sk, a data set identifier ∆ ∈
{0, 1}∗, a label τ ∈ L, a message m ∈M, and it outputs a signature σ.

Eval(vk, f, σ1, . . . , σn) the evaluation algorithm takes as input a public key vk, a function f ∈ F
and a tuple of signatures {σi}ni=1 (assuming that f takes n inputs). It outputs a new signature
σ.

Ver(vk,P, ∆,m, σ) the verification algorithm takes as input a public key vk, a labeled program P =
(f, τ1, . . . , τn) with f ∈ F , a dataset identifier ∆, a message m ∈ M, and a signature σ. It
outputs either 0 (reject) or 1 (accept).

6

A homomorphic signature scheme is required to satisfy the properties of authentication correctness,
evaluation correctness and succinctness that we describe below. The security property is discussed
slightly later in Section 3.1.

Authentication Correctness. Intuitively, a homomorphic signature scheme has authentication
correctness if the signature generated by Sign(sk, ∆, τ,m) verifies correctly for m as the output
of the identity program Iτ on a dataset with identifier ∆. More formally, a scheme HSig satis-
fies the authentication correctness property if for a given label space L, all key pairs (sk, vk) ←
KeyGen(1λ,L), any label τ ∈ L, dataset identifier ∆ ∈ {0, 1}∗, and any signature σ ← Sign(sk, ∆,
τ,m), Ver(vk, Iτ , ∆,m, σ) outputs 1 with all but negligible probability.

Evaluation Correctness. Intuitively, this property says that running the evaluation algorithm
on signatures (σ1, . . . , σt) such that each σi verifies for mi as the output of a labeled program
Pi and a dataset with identifier ∆, produces a signature σ which verifies for g(m1, . . . ,mt) as
the output of the composed program g(P1, . . . ,Pt) and same dataset ∆. More formally, fix a key

pair (vk, sk)
$← KeyGen(1λ,L), a function g :Mt →M, and any set of program/message/signature

triples {(Pi,mi, σi)}ti=1 such that Ver(vk,Pi, ∆,mi, σi) = 1. Ifm∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt),
and σ∗ = Eval(vk, g, σ1, . . . , σt), then Ver(vk,P∗, ∆,m∗, σ∗) = 1 holds with all but negligible prob-
ability.

Succinctness. A homomorphic signature scheme is said to be succinct if, for a fixed security
parameter λ, the size of signatures depends at most logarithmically on the size of the input dataset.

More formally, HSig satisfies succinctness if there exists a polynomial p(λ) such that for all (vk, sk)
$←

KeyGen(1λ,L), all (m1, . . . ,mt) ∈Mt, all (τ1, . . . , τt) ∈ Lt, any ∆ ∈ {0, 1}∗, and all functions f ∈ F ,

if σi
$← Sign(sk, ∆, τi,mi) and σ←Eval(vk, f, σ1, . . . , σt), then |σ| ≤ p(λ) · log t.

3.1 Security

At an intuitive level, a homomorphic signature is secure if an adversary, without knowledge of
the secret key, can only come up with signatures that it obtained from the signer, or signatures
that are obtained by running the Eval algorithm on signatures obtained from the legitimate signer.
Formalizing this intuition turns out to be tricky and leaves space to different possibilities.

In what follows we present three different security notions for homomorphic signatures that
we call semi-adaptive, adaptive, and strong adaptive, respectively. These notions share the same
security experiment between an adversary A and a challenger, and the only difference lies in what
is considered a forgery. The security experiment, denoted ExpUF

A,HSig(λ), proceeds as described
below:

Key Generation The challenger runs (vk, sk)
$← KeyGen(1λ,L) and gives vk to A.

Signing Queries A can adaptively submit queries of the form (∆, τ,m), where ∆ is a data set
identifier, τ ∈ L, and m ∈M. The challenger proceeds as follows:
– if (∆, τ,m) is the first query with the data set identifier ∆, the challenger initializes an

empty list T∆ = ∅ for ∆.
– If T∆ does not already contain a tuple (τ, ·) (i.e., A never asked for a query (∆, τ, ·)), the

challenger computes σ
$← Sign(sk, ∆, τ,m), returns σ to A and updates the list T∆ ←

T∆ ∪ (τ,m).
– If (τ,m) ∈ T∆ (i.e., the adversary had already queried the tuple (∆, τ,m)), the challenger

replies with the same signature generated before.

7

– If T∆ contains a tuple (τ,m′) for some message m′ 6= m, then the challenger ignores the
query. Note that this means that a tuple (∆, τ, ·) can be queried only once.

Forgery The previous stage is executed until the adversary A outputs a tuple (P∗, ∆∗,m∗, σ∗).
The experiments outputs 1 if the tuple returned by A is a forgery, and 0 otherwise.

To complete the description of the experiment, it remains to define when a tuple (P∗, ∆∗,m∗, σ∗)
is considered a forgery. We give below three different forgery definitions; each of them yields a
corresponding security notion for the homomorphic signature scheme.

Semi-Adaptive Secure Homomorphic Signatures. Informally speaking, in the semi-adaptive
security game a forgery is one where either (1) the dataset ∆∗ is “new” (i.e., no signing query
(∆∗, ·, ·) was ever made during the game), or (2) the claimed output m∗ of P∗ is not the correct
one. The crucial aspect of this definition is that to identify what is a correct output, one assumes
that the adversary has fully specified the inputs of P∗, namely A has asked for signatures on
(∆∗, τ∗i ,mi), for all i = 1 to n. More formally,

Definition 2 (Semi-Adaptive Security). We define Expsemi-Ad-UF
A,HSig (λ) as the security experi-

ment which proceeds as ExpUF
A,HSig(λ) with the addition that the tuple (P∗ := (f∗, τ∗1 , . . . , τ

∗
n), ∆∗,m∗, σ∗)

returned by the adversary A is considered a forgery if Ver(vk,P∗, ∆∗,m∗, σ∗) = 1 and either one of
the following conditions hold:

Type 1: The list T∆∗ has not been initialised during the game.
Type 2: For all i ∈ [n], ∃ (τi,mi) ∈ T∆∗ and m∗ 6= f∗(m1, . . . ,mn).

Let Advsemi-Ad-UF
A,HSig (λ) = Pr[Expsemi-Ad-UF

A,HSig (λ) = 1] be the advantage of A against the semi-adaptive
security of scheme HSig. We say that a homomorphic signature scheme HSig is semi-adaptive secure
(or simply secure) if for every PPT adversary A there exists a negligible function ε(λ) such that
Advsemi-Ad-UF

A,HSig (λ) ≤ ε(λ).

We stress that in the above security experiment the adversary A is restricted to produce Type
2 forgeries where all the inputs of the labeled program have been queried during the experiment.
This notion works well for applications where the dataset is signed in one shot (as in the earlier
proposals of homomorphic signatures [6]), or where one computes on the signed data only after
the whole dataset has been filled up. In contrast, in those applications where the dataset is signed
incrementally and one performs computations in between (e.g., in streaming applications), semi-
adaptive security falls short of providing good guarantees. The issue is that in such a dynamic
setting the adversary may claim a forgery with a labeled program containing a label τ∗ that was
not queried during the game. In this case, the input of P∗ is no longer specified and defining whether
the adversary’s output is a forgery is not captured by Definition 2.

From the literature, we note that the schemes in [5,20,6,23] are proven under a weaker version
of semi-adaptive security where the messages of every dataset have to be queried all at once.6

Adaptive Secure Homomorphic Signatures. The issue of adversaries who claim programs in
which some of the inputs are missing in the forgery stage was recognized earlier on by Freeman
[18]. To deal with this issue, he proposed a notion of “well-defined programs” which characterizes
when the output of a program can be defined in spite of missing inputs. The idea is rather simple
and intuitively says that a program is well-defined if the missing inputs do not change its outcome.

6 Actually, the authors of [23] mention that the proof of their scheme can be modified to hold under a definition
with adaptive queries to data items, corresponding to the semi-adaptive security presented in this paper.

8

Definition 3 (Well-Defined Labeled Program [18]). A labeled program P∗ = (f∗, τ∗1 , . . . , τ
∗
n)

is well-defined with respect to a list T = {(τi,mi)}i if one of the two following cases holds:

– ∀i = 1, . . . , n : (τ∗i ,mi) ∈ T .
– ∃ j ∈ {1, · · · , n} s.t. (τj , ·) /∈ T , and for all possible choices of m̃j ∈ M such that (τj , ·) /∈ T
f∗(m′1, . . . ,m

′
n) is the same, where m′i = mi for all i s.t. (τi,mi) ∈ T and m′i = m̃i otherwise.

With the above notion of well-defined programs, adaptive security can be defined as follows.

Definition 4 (Adaptive Security [18]). We define ExpAd-UF
A,HSig(λ) as the security experiment

which proceeds as ExpUF
A,HSig(λ) with the addition that the tuple (P∗ := (f∗, τ∗1 , . . . , τ

∗
n), ∆∗,m∗, σ∗)

returned by the adversary A is considered a forgery if Ver(vk,P∗, ∆∗,m∗, σ∗) = 1 and either one of
the following conditions hold:

Type 1: The list T∆∗ has not been initialized during the game.
Type 2: P∗ is well-defined with respect to T∆∗, and m∗ 6= f∗(m′1, . . . ,m

′
n) where m′i = mi for all

i s.t. (τi,mi) ∈ T∆∗ and m′i = m̃ (for some arbitrary m̃ ∈M), otherwise.
Type 3: P∗ is not well-defined with respect to T∆∗.

Let AdvAd-UF
A,HSig(λ) = Pr[ExpAd-UF

A,HSig(λ) = 1] be the advantage of A against the adaptive security of
scheme HSig. We say that a homomorphic signature scheme HSig is adaptive secure if for every
PPT adversary A there exists a negligible function ε(λ) such that AdvAd-UF

A,HSig(λ) ≤ ε(λ).

Comparing the above definition of adaptive security with the semi-adaptive definition presented
earlier, we note the following: Type 1 forgeries are identical in both definitions. Type 2 forgeries
are similar: intuitively, they both capture the case when the adversary cheats on the result of P∗,
except that Definition 4 addresses the case of missing inputs by defining what is, in this case, a
correct output (using the notion of well-defined program). Finally, Type 3 forgeries are introduced
in Definition 4 to address the remaining case in which P∗ may have different outputs, yet the
forgery verifies correctly.

From the literature, the schemes in [18,2,12,13,10,14,11] are proven under the adaptive security
notion presented above.

Strong Adaptive Secure Homomorphic Signatures. The good of the adaptive definition
given above is that it addresses the issue of labeled programs with unspecified inputs by modeling
when an adversary is cheating. The modeling of Definition 4 however comes at the price of a
rather cumbersome security definition. Well-defined programs are certainly not the most intuitive
notion to work with. In addition, besides simplicity, the main issue with the above notion is that
deciding whether the tuple returned by the adversary is a forgery may not be doable in polynomial
time. Indeed, making this test would require to execute f∗ on all possible values of the missing
inputs (that may be exponentially many). In the case when admissible functions are low-degree
arithmetic circuits over a large field, it has been shown that well-defined programs can be tested
probabilistically, and that Type 3 forgeries can be reduced to Type 2 ones [9]. However, for general
circuits the inefficient test issue remains and can generate troubles when proving the security of
homomorphic signature schemes as well as when using them in larger protocols (as simply testing
whether an adversary returned a forgery – wins – may not be doable in polynomial time).

To address this issue, in what follows we consider a stronger and much simpler security definition.
This notion is obtained by extending the notion of semi-adaptive security (Definition 2) with a very
simple notion of Type 3 forgeries. The latter are just forgeries where the labeled program contains
a “new” label. The formal definition follows.

9

Definition 5 (Strong Adaptive Security). We define Expstrong-Ad-UF
A,HSig (λ) as the security ex-

periment which proceeds as ExpUF
A,HSig(λ) except that the tuple (P∗ := (f∗, τ∗1 , . . . , τ

∗
n), ∆∗,m∗, σ∗)

returned by the adversary A is considered a forgery if Ver(vk,P∗∆∗ ,m∗, σ∗) = 1 and either one of
the following conditions hold:

Type 1: The list T∆∗ has not been initialized during the game.

Type 2: For all i ∈ [n], ∃ (τi,mi) ∈ T∆∗ and m∗ 6= f∗(m1, . . . ,mn).

Type 3 Strong: there exists j ∈ {1, . . . , n} such that (τ∗j , ·) /∈ T∆∗.

Let Advstrong-Ad-UF
A,HSig (λ) = Pr[Expstrong-Ad-UF

A,HSig (λ) = 1] be the advantage of A against the strong
adaptive security of scheme HSig. We say that a homomorphic signature scheme HSig is strong
adaptive secure if for every PPT adversary A there exists a negligible function ε(λ) such that

Advstrong-Ad-UF
A,HSig (λ) ≤ ε(λ).

It is easy to see that the security notion of Definition 5 now allows to detect forgeries in
polynomial time, and is without doubt much simpler than Definition 4. Basically, this notion is
the public-key equivalent of the security notion proposed by Gennaro and Wichs [21] for fully-
homomorphic MACs (with some cosmetic changes due to the handling of multiple datasets).

Relation between security notions. We note that the three security definitions presented in this
Section are increasingly strong. Definition 4 is strictly stronger than Definition 2: while all forgeries
in Expsemi-Ad-UF

A,HSig (λ) are also forgeries in ExpAd-UF
A,HSig(λ), the converse is not true as any forgery in

ExpAd-UF
A,HSig(λ) where the labeled program P∗ contains an unqueried label is not considered a forgery

in Expsemi-Ad-UF
A,HSig (λ).

Definition 5 is strictly stronger than Definition 4. In one direction, any Type 1 and Type 3 forgery
in ExpAd-UF

A,HSig(λ) yields, respectively, a Type 1 and a Type 3 Strong forgery in Expstrong-Ad-UF
A,HSig (λ),

and a Type 2 forgery in ExpAd-UF
A,HSig(λ) becomes either a Type 2 forgery or a Type 3 Strong forgery

in Expstrong-Ad-UF
A,HSig (λ). In the other direction, there exist forgeries in experiment Expstrong-Ad-UF

A,HSig (λ)

that are not considered so in ExpAd-UF
A,HSig(λ). We show this by considering the following adver-

sary A. A asks signing queries (∆, τ1,m1), (∆, τ2,m2) and obtains signatures σ1, σ2; it computes
σ∗←Eval(vk,×, σ1, σ2), and outputs (P∗ := (f, τ1, τ2, τ3), ∆,m1 · m2), where f is the function
f(x, y, z) = x(y+z)−xz.7 As one can see, the output of A is a Type 3 Strong forgery, since τ3 is a la-
bel which has never been queried, while it is not a forgery in ExpAd-UF

A,HSig(λ), since P∗ := (f, τ1, τ2, τ3)
is well-defined with respect to the set of queries T∆ = {(τ1,m1), (τ2,m2)}, and m1 ·m2 is the correct
output.

In addition to the fact that the security notions are strictly separated, we also note that by
using a counterexample such as the one above it is possible to show that previously proposed
homomorphic signatures (e.g., [6,14,23]) are not strong adaptive secure.

3.2 Context Hiding

As an additional property, homomorphic signatures can be required to satisfy a privacy property
called context-hiding [6]. Very intuitively, a homomorphic signature is context hiding if signatures
on functions’ outputs do not reveal information about the originally signed inputs. Here we recall

7 Any other function where the third input cancels out would work. Furthermore, although in the given example it
is trivial to recognize that P is well-defined, this may not be the case for general functions.

10

the definition of context-hiding as given in [11, full version]. The notion in [11] generalizes the one
proposed by Gorbunov, Vaikuntanathan and Wichs [23] to the setting of labeled programs. We
defer the interested reader to the discussion in [11] for details on the differences and its relation to
other prior context-hiding definitions.

Definition 6 (Context-Hiding [11]). An homomorphic signature scheme for labeled programs
supports context-hiding if there exist additional PPT procedures σ̃ ← Hide(vk,m, σ) and HVerify(vk,P,
∆,m, σ) such that:

• Correctness: For any (vk, sk) ← KeyGen(1λ,L) and any tuple (P, ∆,m, σ) such that Ver(vk,P,
∆,m, σ) = 1, we have that if σ̃ ← Hide(vk,m, σ) then HVerify(vk,P, ∆,m, σ̃) = 1.
• Unforgeability: The signature scheme is secure when we replace the original verification algoritm

Ver with HVerify in the security game.
• Context-Hiding Security: There is a simulator Sim such that, for any fixed (worst-case) choice

of (sk, vk) ∈ KeyGen(1λ,L), any labeled program P = (f, τ1, . . . , τ`), data-set ∆ and messages
m1, . . . ,m`, there exists a function ε(λ) such that for any distinguisher D it holds

| Pr[D(I,Hide(vk,m, σ)) = 1]− Pr[D(I, Sim(sk,P, ∆,m) = 1] |= ε(λ)

where I = (sk, vk,P, ∆, {mi, σi = Sign(sk, ∆, τi,mi)}`i=1), m = f(m1, . . . ,m`), σ←Eval(vk, σ1, . . . ,
σ`), and the probabilities are taken over the randomness of Sign,Hide and Sim. If ε(λ) is negligi-
ble then the scheme is said to have statistical context-hiding, otherwise, if ε(λ) = 0, the scheme
has perfect context-hiding.

3.3 Efficient Verification

We recall the notion of homomorphic signatures with efficient verification introduced in [14]. This
property is interesting as it enables the use of homomorphic signatures for verifiable delegation of
computation in the amortized model of [19]. The property states that the verification algorithm can
be split in two phases: an offline phase where, given the verification key vk and a labeled program
P, one precomputes a concise key vkP ; an online phase in which vkP can be used to verify signatures
w.r.t. P and any dataset ∆. To achieve (amortized) efficiency, the idea is that vkP can be reused an
unbounded number of times, and the online verification is cheaper than running P. More formally:

Definition 7 (Efficient Verification). Let HSig = (KeyGen, Sign,Ver,Eval) be a homomorphic
signature scheme for labeled programs. HSig satisfies efficient verification if there exist two additional
algorithms (VerPrep,EffVer) such that:

VerPrep(vk,P): given in input the verification key vk and a labeled program P = (f, τ1, . . . , τn), the
verification preparation algorithm generates a concise verification key vkP .

EffVer(vkP , ∆,m, σ): on input a verification key vkP , a data set identifier ∆, a message m ∈ M
and a signature σ, the efficient verification algorithm outputs 0 (reject) or 1 (accept).

The above algorithms are required to satisfy the following two properties:

Correctness. Let (sk, vk)
$← KeyGen(1λ,L) be honestly generated keys, and (P, ∆,m, σ) be any

program/dataset/message/signature tuple with P such that Ver(vk,P, ∆,m, σ) = 1. Then, for every

vkP
$← VerPrep(vk,P), EffVer(vkP , ∆,m, σ) = 1 holds with all but negligible probability.

Amortized Efficiency. Let P = (f, τ1, . . . , τn) be a labeled program and ∆ be a dataset identifier,
let (m1, . . . ,mn) ∈Mn be any vector of inputs, and let t(n) be the time required to compute f(m1,
. . . ,mn). If vkP←VerPrep(vk,P), then the time required for EffVer(vkP , ∆,m, τ) is t′ = o(t(n)).

11

4 A Generic Transformation from Semi-Adaptive to Strong Adaptive Security

In this Section we show a technique that allows one to turn a semi-adaptive unforgeable homomor-
phic signature into one that satisfies strong adaptive security. Specifically, our main result is stated
in the following theorem:

Theorem 1. If Σ is a semi-adaptive unforgeable fully (resp. leveled) homomorphic signature scheme
for boolean circuits, then there exists a strong adaptive unforgeable homomorphic signature scheme
Σ̂ that supports the same class of functions. Furthermore, if Σ satisfies context-hiding (resp. effi-
cient verification) so does Σ̂.

The core of our result is a general transformation which shows how to combine a semi-adaptive
secure scheme Σ together with a semi-adaptive secure scheme ΣOR that supports only OR oper-
ations over Z2. This combination yields a homomorphic signature scheme that is strong adaptive
secure and supports the same class of functions supported by Σ.

Clearly, if Σ supports the evaluation of boolean circuits, then ΣOR can be instantiated using Σ.
In this case, our result provides a way to bootstrap the security of Σ from semi-adaptive to strong
adaptive. This yields our main result above.

In the case where ΣOR cannot be instantiated using Σ (e.g., Σ is not expressive enough),
our transformation still provides a recipe to obtain strong adaptive security using a separate OR-
homomorphic scheme. However, motivated by the lack of many candidates of OR-homomorphic
signature schemes (concretely, [23] is the only available one), we investigated how to obtain a
similar transformation by using schemes that have been studied more widely. Our second result is a
transformation which can combine a semi-adaptive secure scheme Σ together with a semi-adaptive
secure linearly-homomophic signature ΣLH that works for messages over a large ring, say Zp. This
combination yields a homomorphic signature scheme that is strong adaptive secure and supports
the same class of functions supported by Σ. A limitation of this second transformation is that
it applies only to schemes that are leveled homomorphic (i.e., for circuits of bounded depth). On
the other hand, the advantage is that strong adaptive security can be obtained by using linearly-
homomorphic schemes, a class of constructions that has received significant attention, of which we
know many constructions [2,12,3,13,18,4,10,11], most of which are way more efficient in practice
than [23]. As for the efficiency of the scheme resulting from our transformations, it basically depends
on the efficiency of the scheme one starts from. In the worst case, however, the efficiency loss is
comparable to executing the original algorithms twice.

4.1 Strong Adaptive Security from OR-Homomorphic Signatures

Here we present our first transformation. The tools we start from are a homomorphic signature
scheme Σ := (Σ.KeyGen, Σ.Sign, Σ.Ver, Σ.Eval) for a class C of circuits8, and a homomorphic
signature ΣOR := (ΣOR.KeyGen, ΣOR.Sign, ΣOR.Ver, ΣOR.Eval) that works over message space Z2

and supports homomorphic OR operations. More precisely, ΣOR must support circuits that are
composed only of OR gates and have the same depth as those in C. Using Σ and ΣOR in a black
box way, we build a scheme Σ̂ which supports evaluation of circuits in C. Moreover, assuming only
semi-adaptive security of both Σ and ΣOR, we show that Σ̂ is strong adaptive secure.

8 For the sake of this transformation, they can be either boolean or arithmetic circuits.

12

Σ̂.KeyGen(1λ,L). Run the key generation algorithms (vk, sk)← KeyGen(1λ,L) and (vkOR, skOR)←
ΣOR.KeyGen(1λ,L), and output (v̂k, ŝk) := ((vk, vkOR), (sk, skOR)).

Σ̂.Sign(ŝk, ∆, τ,m). The signing algorithm uses the secret key to compute σ ← Sign(sk, ∆, τ,m)
and σOR ← ΣOR.Sign(skOR, ∆, τ, 0), and outputs σ̂ := (σ, σOR).
Note that the OR-homomorphic component σOR of the signature signs the bit 0. Although the
usefulness of this component will become more clear in the security proof, the intuition is that
this component keeps track of those labels that are used throughout the computation.

Σ̂.Eval(v̂k, f, σ̂1, . . . , σ̂n). We describe the homomorphic evaluation of f in a gate-by-gate fashion,
distinguishing the cases of unary and binary gates. One can easily see that the construction
generalizes to n-ary gates. Describing the evaluation gate-by-gate is also useful to see that our
transformation allows for arbitrary composition of signatures (i.e., running Σ̂.Eval on outputs
of Σ̂.Eval).
At every gate g, one proceeds as follows.
Unary Gates. Let g be an unary gate and let σ̂1 := (σ1, σOR,1) be the input. We com-

pute the output signature σ̂out := (σout, σOR,out) by computing σout ← Σ.Eval(vk, g, σ1)
and σOR,out←σOR,1. Basically, we evaluate g over the Σ component, while for the OR-
homomorphic component we simply evaluate an identity function.

Binary Gates. Let g be a binary gate and let σ̂1 := (σ1, σOR,1) and σ̂2 := (σ2, σOR,2) be
its two inputs. We compute the output signature σ̂out := (σout, σOR,out) by first evaluating
σout ← Σ.Eval(vk, g, σ1, σ2) and then evaluating σOR,out ← ΣOR.Eval(vkOR,OR, σOR,1, σOR,2).
Basically, we evaluate the binary g over the Σ components, while for the OR-homomorphic
components we perform their homomorphic OR.

By proceeding over f in a gate-by-gate fashion, eventually we obtain a signature σ̂ := (σ, σOR),
and Σ̂.Eval returns σ̂.
At this point, it is worth mentioning that the evaluation algorithm of our transformation gener-
ates (σ, σOR) such that σ = Σ.Eval(vk, f, σ1, . . . , σn) and σOR = ΣOR.Eval(vkOR, fOR, σOR,1, . . . σOR,n),
where fOR is an “OR version” of the circuit f obtained by changing any unary gate with an
identity gate and any binary gate with an OR gate.

Σ̂.Ver(vk,P, ∆,m, σ̂). Parse P = (f, τ1, . . . , τn) and σ̂ := (σ, σOR). Next, define POR := (fOR, τ1, . . . , τn),
where fOR is the circuit composed only of OR (and identity) gates, obtained from f as described
above. Then check if Σ.Ver(vk,P, ∆,m, σ) = 1 and ΣOR.Ver(vkOR,POR, ∆, 0, σOR) = 1. If both
the verification runs output 1, then output 1, otherwise output 0.

In the following theorem we show that our generic scheme Σ̂ satisfies strong adaptive security,
as long as the schemes Σ and ΣOR are only semi-adaptive secure.

Theorem 2. Assume that Σ is a semi-adaptive secure homomorphic signature scheme for a class
of circuits C, and that ΣOR is a semi-adaptive secure homomorphic signature with message space
Z2 and supporting OR circuits. Then the scheme Σ̂ described above is a strong-adaptive secure
homomorphic signature for C. Furthermore, if both Σ and ΣOR satisfy context-hiding (resp. efficient
verification), then so does Σ̂.

Proof. First of all, it is easy to see that the correctness and succinctness of Σ̂ are granted by the
respective properties of Σ and ΣOR. Second, before showing the security, we provide an intuition
about context-hiding and efficient verification (details appear in Appendix A). For context-hiding
the idea is that, since every signature of Σ̂ consists of a signature of the scheme Σ and a signature
of the scheme ΣOR, context-hiding on the two components easily implies context-hiding of the

13

resulting signatures of Σ̂.9 For efficient verification, we observe that the verification algorithm of Σ̂
simply consists of running verification of both Σ and ΣOR. Hence, if the latter two algorithms admit
an efficient verification mechanism, this mechanism can also be used to obtain efficient verification
in Σ̂.

Now we focus on the main result, which is the strong adaptive security of Σ̂.

Let Expstrong-Ad-UF
A,Σ̂

(λ) be the strong adaptive security experiment. In this experiment we let

T3 be the event that the adversary A comes up with a Type 3 Strong forgery. Then we have

Advstrong-Ad-UF
A,Σ̂

(λ) ≤Pr[Expstrong-Ad-UF
A,Σ̂

(λ) = 1 |T3]+

+ Pr[Expstrong-Ad-UF
A,Σ̂

(λ) = 1 | ¬T3].

To show that the above advantage is negligible for any PPT A, in the following lemmas we provide
negligible bounds for both the quantities on the right hand side.

Lemma 1. For any PPT A there is a PPT B such that Pr[Expstrong-Ad-UF
A,Σ̂

(λ) = 1 | ¬T3] =

Advsemi-Ad-UF
B,Σ (λ).

Proof. If T3 does not happen, in Expstrong-Ad-UF
A,Σ̂

(λ) the adversary A can win by coming up with

a forgery of either Type 1 or Type 2. In this case, we can easily build a reduction B which uses a
forgery from A in order to break the semi-adaptive security of Σ.

B receives a public key vk for Σ from its challenger, generates on its own a key-pair (vkOR, skOR)
for ΣOR, and finally sends (vk, vkOR) to A. Whenever A makes a signing query, B uses skOR to
compute the signature component σOR, while it obtains σ by forwarding the same query to its
challenger. So, it sends to A the signature σ̂ := (σ, σOR). When A outputs a Type 1 (resp. Type
2) forgery (P∗ := (f∗, τ∗1 , . . . , τ

∗
n), ∆∗,m∗, σ̂∗ := (σ∗, σ∗OR)), B outputs (P∗ := (f∗, τ∗1 , . . . , τ

∗
n),

∆∗,m∗, σ∗) as a Type 1 (resp. Type 2) forgery for the scheme Σ.

Lemma 2. For any PPT A there is a PPT B′ such that Pr[Expstrong-Ad-UF
A,Σ̂

(λ) = 1 |T3] = Advsemi-Ad-UF
B′,ΣOR

(λ).

Proof. This is the case where we use OR-homomorphic signatures in order to handle Type 3 forg-
eries. The reduction B′ works as follows.

Key Generation B′ receives a public key vkOR of ΣOR from its challenger CΣOR
; then B runs

(vk, sk)← Σ.KeyGen(1λ,L) and sends v̂k = (vk, vkOR) to A.

Signing Queries Whenever A asks for a signature on (∆, τ,m), B′ computes on its own the
signature σ ← Σ.Sign(sk, ∆, τ,m) and makes a signing query (∆, τ, 0) to CΣOR

getting back a
signature σOR. It then sends to A the signature σ̂ := (σ, σOR).

Forgery Assume that A outputs a Type 3 Strong forgery (P∗ = (f∗, τ∗1 , . . . , τ
∗
n), ∆∗,m∗, σ̂∗). By

definition of Type 3 Strong forgery, there exists a non-empty subset J ⊂ [n] of indices such that,

for all j ∈ J , the label τ∗j has not been queried by A during the experiment Expstrong-Ad-UF
A,Σ̂

(λ).

So, B′ chooses any index ĵ ∈ J and then makes the following additional signing queries to its
challenger: {(∆∗, τ∗j , 0)}j∈J\ĵ , (∆∗, τ∗

ĵ
, 1).

9 It is interesting to note that, even if signatures σOR only sign 0 (so, they do not contain information on the actual
messages), context hiding on ΣOR is still required for the proof to go through.

14

Let σ̂∗ := (σ∗, σ∗OR). By definition of Type 3 Strong forgery we have thatΣOR.Ver(vkOR,P∗OR, ∆
∗, 0, σ∗OR) =

1, where P∗OR := (f∗OR, τ
∗
1 , . . . , τ

∗
n) and f∗OR is the OR version of the circuit f∗, as computed in

the verification algorithm Σ̂.Ver.
B′ returns (P∗OR, ∆

∗, 0, σ∗OR) as its forgery.

To conclude the proof we claim that the above tuple is a Type 2 forgery against the scheme ΣOR.
To see this, first notice that B′ has made signing queries for all the labels τ∗1 , . . . , τ

∗
n. Second, we

claim that 0 6= y where y is the correct output obtained by computing f∗OR on the inputs queried
by B′ to its challenger, i.e., obtained by feeding 0 in all input wires of f∗OR labeled by τ∗i for i 6= ĵ,
and 1 in the input wire labeled with τ∗

ĵ
.

To argue that y 6= 0, note that fOR(x1, . . . , xn) can be written as
∨n
j=1 xj and thus y = xĵ = 1.

Therefore, we have shown that whenever A breaks the strong adaptive security of Σ̂ by producing
a Type 3 Strong forgery, B′ can break the semi-adaptive security of ΣOR by producing a Type 2
forgery. This concludes the proof. ut

4.2 Strong Adaptive Security from Linearly-Homomorphic Signatures

Here we present our second transformation. This transformation is similar to the one of Section 4.1:
it incorporates signatures from a second homomorphic signature scheme in order to handle Type
3 forgeries. However, instead of a OR-homomorphic scheme, here we use a linearly-homomorphic
one. More in detail, our constructions takes in a homomorphic signature scheme Σ := (Σ.KeyGen,
Σ.Sign, Σ.Ver, Σ.Eval) that supports circuits of polynomial depth at most d and fan-in 2,10 and
an additive-homomorphic signature ΣLH := (ΣLH.KeyGen, ΣLH.Sign, ΣLH.Ver, ΣLH.Eval) that works
over message space Zp, where p > 2d. Using Σ and ΣLH in a black box way, we build a scheme Σ′

which supports the same circuits as Σ, and assuming only semi-adaptive security of Σ and ΣLH,
we show that Σ′ is strong adaptive secure.

The scheme Σ′ is defined as follows:

Σ′.KeyGen(1λ,L). Run both (vk, sk) ← Σ.KeyGen(1λ,L) and (vkLH, skLH) ← ΣLH.KeyGen(1λ,L),
and output (vk′, sk′) := ((vk, vkLH), (sk, skLH)).

Σ′.Sign(sk′, ∆, τ,m). The signing algorithm uses sk′ to compute σ ← Sign(sk, ∆, τ,m) and σLH ←
ΣLH.Sign(skLH, ∆, τ, 0), and outputs σ′ := (σ, σLH).

Σ′.Eval(vk′, f, σ′1, . . . , σ
′
n). As in the previous section, we describe the homomorphic evaluation of

f in a gate-by-gate fashion, distinguishing the cases of unary and binary gates. At every gate
g, one proceeds as follows.
Unary Gates. Let g be an unary gate and let σ′1 := (σ1, σLH,1) be the input. We com-

pute the output signature σ′out := (σout, σLH,out) by computing σout ← Σ.Eval(vk, g, σ1)
and σLH,out←σLH,1. Basically, we evaluate g over the Σ component, while for the linearly-
homomorphic component we simply evaluate an identity function.

Binary Gates. Let g be a binary gate and let σ′1 := (σ1, σLH,1) and σ′2 := (σ2, σLH,2) be
its two inputs. We compute the output signature σ′out := (σout, σLH,out) by first evaluating
σout ← Σ.Eval(vk, g, σ1, σ2) and then evaluating σLH,out ← ΣLH.Eval(vkLH,+, σLH,1, σLH,2).
Basically, we evaluate the binary g over theΣ components, while for the linearly-homomorphic
components we perform their homomorphic addition.

10 We describe the transformation for fan-in 2 only for ease of exposition. It is easy to see that the same technique
would work for constant fan-in c setting up p > cd.

15

By proceeding over f in a gate-by-gate fashion, eventually we obtain a signature σ′ := (σ, σLH),
and Σ′.Eval returns σ′.
We note that the evaluation algorithm of our transformation generates (σ, σLH) such that
σ = Σ.Eval(vk, f, σ1, . . . , σn) and σLH = ΣLH.Eval(vkLH, f+, σLH,1, . . . , σLH,n), where f+ is an
“additive version” of the circuit f obtained by changing any unary gate with an identity gate
and any binary gate with an additive gate.

Σ′.Ver(vk,P, ∆,m, σ′). Parse P = (f, τ1, . . . , τn) and σ′ := (σ, σLH). Next, define P+ := (f+, τ1, . . . , τn),
where f+ is the additive circuit obtained from f as described above. Then check ifΣ.Ver(vk,P, ∆,m, σ) =
1 and ΣLH.Ver(vkLH,P+, ∆, 0, σLH) = 1. If both the verification runs output 1, then output 1,
otherwise output 0.

In the following theorem we show that our generic scheme Σ′ satisfies strong adaptive security,
as long as the schemes Σ and ΣLH are only semi-adaptive secure.

Theorem 3. Assume that Σ is a semi-adaptive secure homomorphic signature scheme for cir-
cuits of polynomial depth at least d and fan-in 2, and that ΣLH is a semi-adaptive secure linearly-
homomorphic signature scheme whose message space is Zp, with p > 2d. Then the scheme Σ′

described above is a strong-adaptive secure homomorphic signature. Furthermore, if both Σ and
ΣLH satisfy context-hiding (resp. efficient verification), then so does Σ′.

Proof. First of all, it is easy to see that the correctness and succinctness of Σ′ are granted by
the respective properties of Σ and ΣLH. The inheritance of context-hiding and efficient verification
follows in the same way as for the scheme Σ̂ of the previous section.

Below we focus on the main result, which is the strong adaptive security of Σ′. The structure
of the proof is the same as the proof of Theorem 2; the main difference is the handling of Type 3
Strong forgeries that here is done by using the semi-adaptive security of ΣLH.

Let Expstrong-Ad-UF
A,Σ′ (λ) be the strong adaptive security experiment. In this experiment we let

T3 be the event that the adversary A comes up with a Type 3 Strong forgery. Then we have

Advstrong-Ad-UF
A,Σ′ (λ) ≤Pr[Expstrong-Ad-UF

A,Σ′ (λ) = 1 |T3]+

Pr[Expstrong-Ad-UF
A,Σ′ (λ) = 1 | ¬T3].

To show that the above advantage is negligible for any PPT A, in the following lemmas we provide
negligible bounds for both the quantities on the right hand side.

Lemma 3. For any PPT A there is a PPT B such that Pr[Expstrong-Ad-UF
A,Σ′ (λ) = 1 | ¬T3] =

Advsemi-Ad-UF
B,Σ (λ).

Proof. The proof is essentially the same as that of Lemma 1 and thus is omitted.

Lemma 4. For any PPT A there is a PPT B′ such that Pr[Expstrong-Ad-UF
A,Σ′ (λ) = 1 |T3] = Advsemi-Ad-UF

B′,ΣLH
(λ).

Proof. The reduction B′ works as follows.

Key Generation B′ receives a public key vkLH of ΣLH from its challenger CΣLH
; then B runs

(vk, sk)← Σ.KeyGen(1λ,L) and sends vk′ = (vk, vkLH) to A.
Signing Queries Whenever A asks for a signature on (∆, τ,m), B′ computes on its own the

signature σ ← Σ.Sign(sk, ∆, τ,m) and makes a signing query (∆, τ, 0) to CΣLH
getting back a

signature σLH. It then sends to A the signature σ′ := (σ, σLH).

16

Forgery Assume that A outputs a Type 3 Strong forgery (P∗ = (f∗, τ∗1 , . . . , τ
∗
n), ∆∗,m∗, (σ∗)′). By

definition of Type 3 Strong forgery, there exists a non-empty subset J ⊂ [n] of indices such that,

for all j ∈ J , the label τ∗j has not been queried by A during the experiment Expstrong-Ad-UF
A,Σ′ (λ).

So, B′ chooses any index ĵ ∈ J and then makes the following additional signing queries to its
challenger: {(∆∗, τ∗j , 0)}j∈J\ĵ , (∆∗, τ∗

ĵ
, 1).

Let (σ∗)′ := (σ∗, σ∗LH). By definition of Type 3 Strong forgery we have thatΣ′.Ver(vkLH,P∗+, ∆∗, 0, σ∗LH) =
1, where P∗+ := (f∗+, τ

∗
1 , . . . , τ

∗
n) and f∗+ is the additive version of the circuit f∗, as computed in

the verification algorithm Σ′.Ver.
Finally, B′ returns (P∗+, ∆∗, 0, σ∗LH) as its forgery.

To conclude the proof we claim that the above tuple is a Type 2 forgery against the scheme ΣLH.
To see this, first notice that B′ has made signing queries for all the labels τ∗1 , . . . , τ

∗
n. Second, we

claim that 0 6= y where y is the correct output obtained by computing f∗+ on the inputs queried by

B′ to its challenger, i.e., obtained by feeding 0 in all input wires of f∗+ labeled by τ∗i for i 6= ĵ, and
1 in the input wire labeled with τ∗

ĵ
.

To argue that y 6= 0, note that f∗+(x1, . . . , xn) can be written as
∑n

j=1 γτ∗i ·xi, and (by our choice

of the xi’s) y = γτ∗
ĵ
. Moreover, for every i we have that 1 ≤ γτ∗i < 2d. The latter fact is granted

by our assumption that the circuits of Σ′ (and thus f∗+ too) have fan-in 2 and depth at most d.
Hence using our choice of p > 2d we also have that y = γτ∗

ĵ
6= 0 mod p. Therefore, we have shown

that whenever A breaks the strong adaptive security of Σ′ by producing a Type 3 Strong forgery,
B′ can break the semi-adaptive security of ΣLH by producing a Type 2 forgery. This concludes the
proof. ut

References

1. S. Agrawal and D. Boneh. Homomorphic MACs: MAC-based integrity for network coding. In M. Abdalla,
D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors, ACNS 09, volume 5536 of LNCS, pages 292–305. Springer,
June 2009.

2. N. Attrapadung and B. Libert. Homomorphic network coding signatures in the standard model. In D. Catalano,
N. Fazio, R. Gennaro, and A. Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 17–34. Springer, Mar.
2011.

3. N. Attrapadung, B. Libert, and T. Peters. Computing on authenticated data: New privacy definitions and
constructions. In X. Wang and K. Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 367–385.
Springer, Dec. 2012.

4. N. Attrapadung, B. Libert, and T. Peters. Efficient completely context-hiding quotable and linearly homomorphic
signatures. In K. Kurosawa and G. Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 386–404. Springer,
Feb. / Mar. 2013.

5. D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signature schemes for network coding.
In S. Jarecki and G. Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 68–87. Springer, Mar. 2009.

6. D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions. In K. G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168. Springer, May 2011.

7. D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new tools for lattice-based
signatures. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors, PKC 2011, volume 6571 of LNCS,
pages 1–16. Springer, Mar. 2011.

8. D. Catalano and D. Fiore. Practical homomorphic MACs for arithmetic circuits. In T. Johansson and P. Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 336–352. Springer, May 2013.

9. D. Catalano, D. Fiore, R. Gennaro, and L. Nizzardo. Generalizing homomorphic MACs for arithmetic circuits.
In H. Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 538–555. Springer, Mar. 2014.

10. D. Catalano, D. Fiore, R. Gennaro, and K. Vamvourellis. Algebraic (trapdoor) one-way functions and their
applications. In A. Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 680–699. Springer, Mar. 2013.

17

11. D. Catalano, D. Fiore, and L. Nizzardo. Programmable hash functions go private: Constructions and applications
to (homomorphic) signatures with shorter public keys. In CRYPTO 2015. Springer, 2015. Full version at:
https://eprint.iacr.org/2015/826.

12. D. Catalano, D. Fiore, and B. Warinschi. Adaptive pseudo-free groups and applications. In K. G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 207–223. Springer, May 2011.

13. D. Catalano, D. Fiore, and B. Warinschi. Efficient network coding signatures in the standard model. In M. Fis-
chlin, J. Buchmann, and M. Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 680–696. Springer, May
2012.

14. D. Catalano, D. Fiore, and B. Warinschi. Homomorphic signatures with efficient verification for polynomial
functions. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 371–
389. Springer, Aug. 2014.

15. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable signatures: New definitions and dele-
gatable anonymous credentials. In 2014 IEEE 27th Computer Security Foundations Symposium, pages 199–213.
IEEE, 2014.

16. Y. Desmedt. Computer security by redefining what a computer is. NSPW, 1993.
17. K. Elkhiyaoui, M. Önen, and R. Molva. Online-offline homomorphic signatures for polynomial functions. Cryp-

tology ePrint Archive, Report 2015/954, 2015. http://eprint.iacr.org/.
18. D. M. Freeman. Improved security for linearly homomorphic signatures: A generic framework. In M. Fischlin,

J. Buchmann, and M. Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 697–714. Springer, May 2012.
19. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to un-

trusted workers. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 465–482. Springer, Aug.
2010.

20. R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin. Secure network coding over the integers. In P. Q. Nguyen and
D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 142–160. Springer, May 2010.

21. R. Gennaro and D. Wichs. Fully homomorphic message authenticators. In K. Sako and P. Sarkar, editors,
ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 301–320. Springer, Dec. 2013.

22. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Comput., 17(2):281–308, 1988.

23. S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic signatures from standard lattices.
In 47th ACM STOC. ACM Press, 2015.

24. R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic signature schemes. In B. Preneel, editor,
CT-RSA 2002, volume 2271 of LNCS, pages 244–262. Springer, Feb. 2002.

A Context Hiding and Efficient Verification of Σ̂

Lemma 5. Assume that Σ := (Σ.KeyGen, Σ.Sign, Σ.Ver, Σ.Eval) and ΣOR := (ΣOR.KeyGen, ΣOR.Sign,
ΣOR.Ver, ΣOR.Eval) are an homomorphic and OR homomorphic signature scheme respectively, and
let both Σ and ΣOR support context hiding in the sense of Definition 6. Then, the homomorphic
signature scheme Σ̂, output of the black box transformation described in Section 4.1 supports context
hiding as well.

Proof. Since Σ and ΣOR support context hiding, we know that by definition there exist additional
PPT procedures Σ.Hide, Σ.HVerify, ΣOR.Hide, ΣOR.HVerify which satisfy correctness and unforge-
ability in the sense of Definition 6. Moreover, there exist two simulators Σ.Sim and ΣOR.Sim that
satisfy the context hiding security property. What we do is thus to show how to build the corre-
sponding procedures Σ̂.Hide, Σ̂.HVerify and the simulator Σ̂.Sim for the homomorphic signature
scheme Σ̂. Since any signature in Σ̂ is of the form σ̂ := (σ, σOR), we define Σ̂.Hide(v̂k,m, σ̂) :=
(Σ.Hide(vk,m, σ), ΣOR.Hide(vkOR, 0, σOR)) and Σ̂.HVerify(v̂k,P, ∆,m, σ̂) := Σ.HVerify(vk,P, ∆,m,
σ) ∧ΣOR.HVerify(vkOR,POR, ∆, 0, σOR).

It is not hard to see that correctness and unforgeability with respect to Σ̂.Hide and Σ̂.HVerify
follows from the same properties of the corresponding procedures of Σ and ΣOR. Similarly, we define
the simulator Σ̂.Sim as Σ̂.Sim(ŝk,P, ∆,m) := (Σ.Sim(sk,P, ∆,m), ΣOR.Sim(skOR,POR, ∆, 0)). The

18

http://eprint.iacr.org/

context hiding of this simulator follows immediately from that of the two simulators that are used
to define it.

Remark 1. It is interesting to mention that, although in the construction the signature component
σOR signs 0 (and is thus independent of the actual message), a context hiding property for ΣOR is
still needed for the proof to go through. One reason for this is that in a homomorphic signature
scheme signatures may change form (and distribution) after applying the evaluation algorithm, and
context hiding actually requires that such output distribution is simulatable. That is why we need
context hiding for ΣOR. Nevertheless, we note that in our specific case where the input messages
are fixed, much simpler context hiding mechanisms could be applied, such as requiring signatures
to be deterministically generated (e.g., using a PRF) and letting the simulator simply reconstruct
such signatures and apply evaluation.

Lemma 6. Assume that Σ := (Σ.KeyGen, Σ.Sign, Σ.Ver, Σ.Eval) and ΣOR := (ΣOR.KeyGenΣOR.Sign,
ΣOR.Ver, ΣOR.Eval) are an homomorphic and OR homomorphic signature scheme respectively, and
let both Σ and ΣOR satisfy efficient verification in the sense of Definition 7. Then, the homomor-
phic signature scheme Σ̂, output of the black box transformation described in Section 4.1 satisfies
efficient verification as well.

Proof. Since Σ and ΣOR satisfy efficient verification, there exist additional algorithms (Σ.VerPrep,
Σ.EffVer) and (ΣOR.VerPrep, ΣOR.EffVer) which satisfy correctness and amortized efficiency in the
sense of Definition 7. What we do is thus to show how to build the corresponding algorithms
(Σ̂.VerPrep, Σ̂.EffVer) for Σ̂. Since any signature in Σ̂ is of the form σ̂ := (σ, σOR), we define
Σ̂.VerPrep(v̂k,P) as the algorithm that runs Σ.VerPrep(vk,P) and ΣOR.VerPrep(vkOR,POR), and
outputs v̂kP := (vkP , vkOR,POR

). Then we define Σ̂.EffVer(v̂kP , ∆,m, σ̂) as the algorithm that out-
puts 1 if and only if both Σ.EffVer(vkP , ∆,m, σ) = 1 and ΣOR.EffVer(vkOR,POR

, ∆, 0, σOR) = 1. It
is trivial to see that the new algorithms are correct if so are the efficient verification algorithms of
Σ and ΣOR. The efficient verification property instead follows from the fact that Σ̂.EffVer simply
runs two algorithms that are guaranteed to have each running time at most o(t(n)).

19

	On the Security Notions for Homomorphic Signatures
	Introduction
	Our contribution
	Other related work

	Preliminaries
	Homomorphic Signatures
	Security
	Context Hiding
	Efficient Verification

	A Generic Transformation from Semi-Adaptive to Strong Adaptive Security
	Strong Adaptive Security from OR-Homomorphic Signatures
	Strong Adaptive Security from Linearly-Homomorphic Signatures

	Context Hiding and Efficient Verification of "0362

