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Abstract. Public key encryption with equality test (PKEET) is a cryp-
tosystem that allows a tester who has trapdoors issued by one or more
users Ui to perform equality tests on ciphertexts encrypted using public
key(s) of Ui. Since this feature has a lot of practical applications in-
cluding search on encrypted data, several PKEET schemes have been
proposed so far. However, to the best of our knowledge, all the existing
proposals are proven secure only under the hardness of number-theoretic
problems and the random oracle heuristics.

In this paper, we show that this primitive can be achieved not only
generically from well-established other primitives but also even with-
out relying on the random oracle heuristics. More precisely, our generic
construction for PKEET employs a two-level hierarchical identity-based
encryption scheme, which is selectively secure against chosen plaintext
attacks, a strongly unforgeable one-time signature scheme and a cryp-
tographic hash function. Our generic approach toward PKEET has sev-
eral advantages over all the previous works; it directly leads the first
standard model construction and also directly implies the first lattice-
based construction. Finally, we show how to extend our approach to the
identity-based setting.

Keywords: Public key encryption with equality test, identity-based en-
cryption with equality test, standard model

1 Introduction

Public key encryption with equality test (PKEET), which was first introduced
by Yang et al. [23], is a public key encryption (PKE) scheme that allows to
perform an equality test on encrypted data using different public keys as well
as the same public key. In PKEET schemes, each user issues a trapdoor for
equality tests to a tester, and henceforth the tester is able to check the equality



between ciphertexts of users who issued the trapdoor to him.4 This property is of
use in various practical applications, such as keyword search on encrypted data,
encrypted data partitioning for efficient encrypted data management, personal
health record systems, and so on.

As a very similar primitive to PKEET, we may recall public key encryption
with keyword search (PKEKS) due to Boneh et al. [6]. In PKEKS schemes, each
user issues a token for a keyword to the tester using his/her private key, and
henceforth the tester is able to perform an equality test between a message in
a ciphertext of the user and the keyword in the issued token. Hence, it can be
utilized to check the equality between ciphertexts of the same user. However,
the most important feature of PKEET beyond PKEKS is to support equality
tests on ciphertexts between different users.

Let us consider more concrete application scenario of PKEET to elaborate
advantages of PKEET over PKEKS. In an email service, suppose each user
stores his/her emails to the server as encrypted. To support keyword search over
encrypted emails efficiently, encrypted keywords are appended to stored emails.
The server needs to monitor stored emails to maintain the security of the system.
To this end, the server may need to test equality among encrypted keywords. If
the system exploits PKEKS for this functionality, the server can perform equality
tests on encrypted keywords by using a token for a keyword, issued by the owner
of ciphertexts. However, the server needs a different token for each user and each
keyword and so it should interact with each user whenever it has a new keyword
to be monitored. On the contrary, if the system exploits PKEET, the server can
generate a ciphertext of a keyword by himself and perform equality tests.

To support equality tests on encrypted data required for the above scenario,
one may consider to exploit other types of encryption schemes, such as deter-
ministic encryption and fully homomorphic encryption, to name a few. However,
they are faced with the obstacles that PKEKS has. We will discuss more about
relations of PKEET to other primitives including PKEKS in Section 1.2. On
the other hand, apart from the above scenario, PKEET can also be utilized
as a building block to design advanced cryptographic constructions, e.g., group
signatures with controllable linkability [19].

Due to its wide applicability, since Yang et al. proposed the first PKEET
realization, various subsequent constructions [20, 22, 17, 16, 11, 15, 14, 12] have
been proposed to improve performance or to support advanced functionality.
We note that, however, all the existing proposals are proven secure only un-
der the hardness of specific number-theoretic problems and the random oracle
heuristics. There is a lot of literature discussing the limitations of the random
oracle model (e.g., [8, 10, 13]) and thus, it is highly desirable to achieve each
primitive (PKEET in our case) without relying on the random oracle heuristics
from both theoretical and practical standpoints.

4 While Yang et al.’s construction [23] allows anyone to perform equality tests on
ciphertexts, all subsequent works consider the existence of the tester.
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1.1 Our Contribution

In this paper, our main contribution is a proposal for PKEET schemes. The
proposed construction has several advantages over all the previous PKEET con-
structions. First, our construction does not rely on the random oracle heuristics.
Second, our construction does not rely on underlying mathematical structures
in the sense that we do not require any number-theoretic assumptions for the
security of the proposed construction. More precisely, we employ a 2-level hi-
erarchical identity-based encryption (HIBE) scheme, which is selectively secure
against the chosen-plaintext attacks, a strongly unforgeable one-time signature
scheme and a cryptographic hash function. Finally, our construction can be eas-
ily extended to the identity-based setting since it already employs HIBE as a
building block. As a result, we also obtain the first identity-based encryption
with equality test (IBEET) in the standard model.

As direct applications of our generic construction, we can obtain PKEET
constructions that are proven secure under various types of assumptions, such
as pairing-based, lattice-based, and RSA-based ones. In particular, for example,
we may obtain a PKEET construction from lattices by exploiting a strongly
unforgeable lattice-based signature scheme (e.g., [18]) and a 2-level lattice-based
HIBE scheme (e.g., [2, 3]), which satisfies the indistinguishability under selective
identity, chosen plaintext attacks (IND-sID-CPA). To the best of our knowledge,
it is the first PKEET scheme whose underlying assumptions are solely lattice-
based.

There exists a very recent work by Lee et al. [12] that has a similar goal to
ours. We clearly note that Lee et al.’s approach is not completely generic in the
sense that it essentially uses the computation Diffie-Hellman (CDH) assumption.
Furthermore, Lee et al. proved the security of their scheme only in the random
oracle model.

Overview of Our Generic Construction. Let us explain a high level intuition
for our generic PKEET construction. We begin with a trivial insecure construc-
tion and then modify it subsequently. Suppose that each user has a 2-level HIBE
scheme HIBE = (Setup,KeyExt, Enc,Dec). To generate a ciphertext of a mes-
sage M , we design an encryption algorithm that performs the following steps. It
first selects a random string str from a set {0, 1}∗ as a second level identity and
generates two ciphertexts

C0 = Enc(mpk, [0.str],M) and C1 = Enc(mpk, [1.str], H(M))

where mpk is a master public key of HIBE , H is a hash function, and [ID1.ID2]
denotes an identity whose i-th level identity is IDi for i = 1, 2. This process
outputs (str, C0, C1) as a ciphertext of the message M . The decryption algorithm
is straightforward; it first generates the secret keys related to str, decrypts C0

and C1 by using generated secret keys, and outputs Dec(C0) if H(Dec(C0)) =
Dec(C1).

Once a trapdoor algorithm issues a secret key of the identity 1 to the tester,
he can generate a secret key of the identity [1.str] by himself. Using this, he
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may perform an equality test by decrypting C1 parts of ciphertexts and then
comparing H(M) values. On the other hand, the user who has the master secret
key of HIBE as his/her secret key, can generate a secret key of the identity [0.str]
and obtain the correct message by using it to decrypt C0. However, the above
construction does not satisfy the security against adaptive chosen ciphertext
attacks (CCA2). Although C0 and C1 are linked by str and there is a process
to check the link between C0 and C1 during the execution of the decryption
algorithm, it is not enough to prevent chosen ciphertext attacks. In fact, the
adversary can obtain the message in C0 by requesting a query on a modified
ciphertext (str, C0, ·) to the decryption oracle in the security game. To prevent
such a chosen ciphertext attack, almost all previous PKEET constructions in
the random oracle model (including the semi-generic one [12]) have embedded
an instance of the CDH problem.

To achieve the CCA2 security in a generic way, we borrow an idea of the
Canetti, Halevi, and Katz (CHK) transformation to obtain a CCA2 secure PKE
scheme from an IND-sID-CPA secure identity-based encryption (IBE) scheme
using a strongly unforgeable one-time signature scheme in the standard model.
We first assign a signature scheme to each user. By adapting their technique, we
modify our encryption algorithm so that it first generates a pair of a signing key
and a verification key (sks, vks) and uses the verification key vks as the second
level identity, instead of a random string str. After generating two ciphertexts,

C0 = Enc(mpk, [0.vks],M) and C1 = Enc(mpk, [1.vks], H(M)),

it additionally generates a signature σ on the ciphertexts C0 and C1 using a
signing key sks. Thereafter, it outputs

(vks, C0, C1, σ)

as a ciphertext.
Informally, we can regard that an adversary has to succeed in forging a

signature on some message with respect to the verification key in the chal-
lenge ciphertext, in order to receive the correct response from a decryption
oracle query on a ciphertext obtained by modifying the challenge ciphertext.
We show that our construction achieves one-wayness under adaptive chosen ci-
phertext attacks (OW-CCA2) against Type-I adversaries, who have a trapdoor
for equality tests, and the indistinguishability under adaptive chosen ciphertext
attacks (IND-CCA2) against Type-II adversaries, who do not have a trapdoor, if
the exploited HIBE scheme is IND-sID-CPA secure and the exploited signature
scheme is strongly unforgeable in the standard model. As a result, we obtain the
first PKEET construction in the standard model.

Finally, we discuss an extension of our construction to the identity-based set-
ting by replacing a 2-level HIBE scheme with a 3-level one. In our modification,
the first level of the employed 3-level HIBE scheme is reserved for an identity,
while its second and third levels play the same roles as the first and second lev-
els of our PKEET construction, respectively. The derived outcome is the first
IBEET construction in the standard model as well.
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1.2 Related Works

In this subsection, we look at some primitives related to PKEET. We also intro-
duce existing works related to the technique used in our construction.

PKE/IBE with Equality Test. Yang et al. [23] first introduced the concept
of PKEET, which allows anyone to check whether two ciphertexts contain the
same message or not, under different public keys as well as the same public
key. Following their work, Tang [22] proposed a variant, so called all-or-nothing
PKEET, which allows only testers authorized by two users to perform equality
tests on all ciphertexts of those users. Subsequently, there have been proposed
various PKEET constructions [20, 21, 17, 16, 11, 14, 12] to improve performance
or to support advanced functionality.

In the identity-based setting, Ma [15] proposed a system model for IBEET,
which is an identity-based version of Tang’s all-or-nothing PKEET model, and
presented an instantiation of IBEET. Later, Lee et al. [12] showed that their
semi-generic construction for PKEET can be extended to the identity-based
setting and the derived outcome achieves better security than Ma’s scheme.

On the other hand, all existing PKEET/IBEET schemes are constructed
in the random oracle model. Moreover, all previous proposals rely on specific
number-theoretic assumptions.

PKE/IBE with Keyword Search. PKE with keyword search (PKEKS) is a
PKE scheme that supports the functionality to perform an equality test between
a keyword embedded in a tag and a message in a ciphertext [6]. It is quite similar
to PKEET in the sense that both are able to check the equality on encrypted
data. However, the main difference between the two schemes is that PKEKS
allows tests on ciphertexts under only a fixed public key related to the issued
tag, whereas PKEET allows equality tests on ciphertexts under different public
keys as well as the same public key.

Abdalla et al. [1] considered an extension of PKEKS to the identity-based
setting, which has similar features to those of IBEET. As similar with the relation
between PKEKS and PKEET, IBE with keyword search (IBEKS) also allows
to perform equality tests on ciphertexts under a fixed identity related to the
issued tag, whereas IBEET allows equality tests on ciphertexts under different
identities as well as the same identity.

Deterministic Encryption. The notion of deterministic encryption was first
initiated by Bellare et al. [4]. For testers, PKEET has the very similar feature to
deterministic encryption in the sense that it supports equality tests on cipher-
texts, although PKEET is a probabilistic encryption. Hence, PKEET can be
exploited to many applications of deterministic encryption. On the other hand,
in the view of others who do not have a trapdoor, PKEET works just like tradi-
tional PKE schemes and so it is expected that PKEET achieves better security
than deterministic encryption. Further, as the same as PKEKS, deterministic
encryption supports equality tests between ciphertexts of the same user only.

Transformation from (H)IBE to Other Primitives. In our construction,
we borrow the strategy of the CHK transformation that obtains a CCA2 secure
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PKE scheme from an IND-sID-CPA secure IBE scheme with exploiting strongly
unforgeable one-time signatures. We note that there is a generic transforma-
tion to obtain a PKEKS scheme using an IBE scheme. In [1], Abdalla et al.
provided a transformation of an anonymous IBE scheme to a secure PKEKS
scheme. Further, as similar to ours, they also extended their transformation to
the identity-based setting by replacing the underlying IBE scheme with an HIBE
one. However, its design principle is quite different from ours: For example, while
our construction uses a verification key of the underlying signature scheme as
an identity and encrypts a message using it, their transformation generates a
random message and encrypts it with a keyword in PKEKS as an identity.

1.3 Organization of the Paper

Section 2 presents basic definitions of several components exploited in our con-
structions. In Section 3, we introduce syntax and the security model of PKEET.
Section 4 provides our PKEET scheme and Section 5 analyzes its security. We
discuss about extensions of our construction in Section 6 and give concluding
remarks in Section 7. The details about formal definitions of IBEET and our
IBEET construction are given in Appendices.

2 Preliminaries

In this section, we look at basic definitions of components that will be exploited
to design our PKEET schemes.

Notation. Throughout the paper, λ denotes a security parameter. For an algo-
rithm A, A→ a and A 6→ a denote that A outputs a and A does not, respectively.
A function ν : N → R is negligible in λ if for all positive polynomials p(·) and
sufficiently large λ, ν(λ) ≤ 1

p(λ) . negl(λ) represents a negligible function in λ.

Hierarchical Identity-Based Encryption. We begin with presenting the def-
inition of HIBE and its security notion, which will be utilized as a building block
of our generic construction for PKEET schemes.

Definition 1 (Hierarchical Identity-Based Encryption). A hierarchical
identity-based encryption (HIBE) scheme consists of the following four proba-
bilistic polynomial-time (PPT) algorithms:

– Setup(λ): On input a security parameter λ, it outputs a pair of a master pub-
lic key and a master secret key (mpk,msk). It is assumed that mpk contains
the message space M and the identity space I.

– KeyExt(skID, ID′): It takes a secret key skID of an identity ID and ID’s
descendant ID′ (that is, ID is a prefix of ID′) as inputs and outputs a secret
key skID′ of the identity ID′. If ID′ is a first-level user, then skID should be
the master secret key msk.
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– Enc(mpk, ID,M): It takes mpk, a recipient’s identity ID, and a message
M ∈M as inputs and outputs a ciphertext ct.

– Dec(skID, ct): It takes a secret key skID of an identity ID and a ciphertext ct
as inputs and outputs a message M ′.

We say an HIBE scheme is correct if for any output (mpk,msk) of Setup(λ),
message M ∈ M, identity ID′ ∈ I, and output skID′ of KeyExt(skID, ID′) with
any ID′’s ancestor ID, it holds

Pr[Dec(skID′ , Enc(mpk, ID′,M))→M ] = 1,

where the probability goes over all randomness values used in all corresponding
algorithms. Furthermore, we require that for any identity ID, its delegated secret
keys obtained from its any ancestor have the same distribution. We remark that
an IBE scheme is an HIBE scheme where all identities are at level 1.

For our construction, we need a selective identity secure HIBE scheme against
chosen plaintext attacks.

Definition 2 (IND-sID-CPA). An IBE or HIBE scheme E = (Setup,KeyExt,
Enc,Dec) is IND-sID-CPA secure if for any PPT adversary A, the advantage
of the following game between the adversary A and the challenger C is negligible
in the security parameter λ:

1. Init: A outputs a target identity ID∗.

2. Setup: C runs Setup(λ)→ (mpk,msk), forwards the master public key mpk
to A, and keeps the master secret key msk private.

3. Phase 1: A may issue private key queries on IDi, which is neither ID∗

nor an ancestor of ID∗, polynomially many times. To respond to queries, C
runs the KeyExt algorithm to generate a secret key skIDi

of the requested
identity IDi and returns skIDi

to A.

4. Challenge: A outputs two messages M0,M1 of the same length and forwards
C them. C selects a random bit b ∈ {0, 1}, runs Enc(mpk, ID∗,Mb) → ct∗b ,
and passes ct∗b as the challenge ciphertext to A.

5. Phase 2: A may issue private key queries on IDi, which is neither ID∗ nor
an ancestor of ID∗, polynomially many times. C responds as in Phase 1.

6. Guess: A outputs b′ ∈ {0, 1}.

We say A wins if b = b′ and the advantage of A in the above game is defined to

AdvIND-sID-CPA
A,E (λ) :=

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
We remark that in the above game, if A sends a target identity ID∗ together

with two messages M0, M1 at the challenge step, not at the beginning of the
game, then we say that a scheme E is IND-ID-CPA secure.

Signatures. To achieve the CCA2 security of our PKEET construction, we will
borrow the strategy of the CHK transformation [9] that was originally proposed
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to convert IND-sID-CPA secure IBE schemes into CCA2 secure PKE schemes
with employing a strongly unforgeable one-time signature scheme in the standard
model. Here, we describe the formal definition of signature schemes and provide
its security notion required for our construction.

Definition 3 (Digital Signature Scheme). A digital signature scheme con-
sists of the following three PPT algorithms:

– G(λ) : It takes a security parameter λ as an input and outputs a pair of a
verification key and a signing key (vks, sks).

– S(sks,M) : On input the singing key sks and a message M , it outputs a
signature σ.

– V(vks,M, σ) : It takes the verification key vks, a message M , and a signa-
ture σ as inputs, and returns 1 or 0.

We say that a digital signature scheme is correct if for any output (vks, sks)
of G(λ) and any message M , it holds

Pr[V(vks,M, S(sks,M))→ 1] = 1,

where the probability goes over all randomness values used in all corresponding
algorithms. We also say that a digital signature is one-time if for each verification
key the signing algorithm runs only once; that is, in the following security model,
we may assume that the adversary attacking a one-time signature scheme can
issue a signing query only once.

Definition 4 (Strong Unforgeability). A signature scheme Sig = (G,S,V)
is strongly unforgeable under an adaptive chosen message attack if for any PPT
adversary A, the probability that the adversary wins in the following game with
the challenger C is negligible in the security parameter λ:

1. Setup: C runs G(λ) → (vks, sks), passes the verification key vks to A, and
keeps the signing key sks private.

2. Signature Queries: A issues signing queries on messages Mi polynomially
many times. For each Mi, C runs S(sks,Mi)→ σi and sends σi to A. These
queries may be requested adaptively so that each query may depend on the
replies to the previous queries.

3. Output: A outputs a pair (M,σ).

The adversary wins if V(vks,M, σ) → 1 and (M,σ) is not generated during the
signature query phase.

Properties of Hash Functions. To show the correctness and security of our
construction, we will exploit the following properties of hash functions.

Definition 5 (One-way Functions). A function H is one-way if the following
two conditions hold:

1. There exists a polynomial-time algorithm to compute H.
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2. For any PPT algorithm A, it holds that

Pr[A(λ,H, y)→ x such that H(x) = y] ≤ negl(λ)

where y = H(x′) for a randomly chosen x′ from the domain.

Definition 6 (Collision Resistant Hash Functions). A family of hash func-
tions {Hs} is collision resistant if the following three conditions hold:

1. There exists a PPT algorithm Gen(λ) that outputs an index s.

2. There exists a polynomial-time algorithm to compute Hs.

3. For any PPT algorithm A, it holds that

Pr[Gen(λ)→ s,A(s)→ (x, x′) such that x 6= x′ and Hs(x) = Hs(x
′)] ≤ negl(λ).

3 Syntax and Security Model

In this section, we review the concept of PKEET and its security model. There
have been several types of definitions of PKEET with slight differences. Among
them, our system model follows the concept of all-or-nothing PKEET scheme,
proposed by Tang [22].

3.1 Syntax

System Model for Our PKEET. Our PKEET system consists of users (e.g.,
senders and receivers) and testers (e.g., the server): In the system, a sender
encrypts a data using a receiver’s public key and sends a ciphertext to the re-
ceiver. The receiver may decrypt his/her ciphertexts using his/her secret key
and/or store ciphertexts at the server. Once the receiver wants to delegate the
test capability for all of his/her ciphertexts, he/she issues a trapdoor for equality
tests to a tester who can access to the server that stores encrypted data. Here-
after, the tester is able to perform equality tests on ciphertexts under the public
key of the receiver who delegated the test authority for his/her ciphertexts to
the tester.

Definitions of PKEET. Before giving a definition of PKEET, we first note
that PKEET is a multi-user setting and we assume that each user is assigned
an index i for 1 ≤ i ≤ N , where N is the number of users in the system. We
use Ui to denote the i-th user. Furthermore, for notational convenience, we use
a subscripted index to indicate keys and ciphertexts for each user, e.g., pki is a
public key for user Ui.

Definition 7 (Public Key Encryption with Equality Test). A public key
encryption with equality test (PKEET) consists of six polynomial-time algo-
rithms (Setup,KeyGen,Enc,Dec,Td,Test), specified as follows.
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– Setup(λ): On input a security parameter λ, it outputs a system parame-
ter params, which includes the message spaceM. It is assumed that all other
algorithms take params as an input implicitly, though it is not stated.

– KeyGen(params): It takes params as an input and outputs a pair of user’s
public and secret keys (pk, sk).

– Enc(pk,M): It takes pk and a message M ∈ M as inputs, and outputs a
ciphertext ct.

– Dec(sk, ct): It takes sk and a ciphertext ct as inputs, and outputs a mes-
sage M ′ or ⊥.

– Td(ski): On input a secret key ski of a user Ui, it outputs a trapdoor tdi.

– Test(tdi, cti, tdj , ctj): It takes two ciphertexts cti and ctj and two trapdoors
tdi and tdj as inputs, and outputs 0 or 1.

Correctness. Basically, PKEET is a PKE scheme, so that we require that for
any Setup(λ) → params and KeyGen(params) → (pki, ski) and for any message
M ∈M and index i, Dec(ski,Enc(pki,M)) = M always holds. For the function-
ality of Td and Test algorithms, we require the following two additional condi-
tions to be satisfied. For any Setup(λ) → params, KeyGen(params) → (pki, ski),
KeyGen(params)→ (pkj , skj), Td(ski)→ tdi, Td(skj)→ tdj , Enc(pki,Mi)→ cti,
and Enc(pkj ,Mj)→ ctj with Mi,Mj ∈M,

1. Pr
[
Test(tdi, cti, tdj , ctj) → 1

]
= 1 if Mi = Mj , regardless of whether i = j

or i 6= j;

2. Pr[Test(tdi, cti, tdj , ctj)→ 1] is negligible in the security parameter λ for any
ciphertexts ct′i and ct′j such that Dec(ski, ct

′
i) 6= Dec(skj , ct

′
j).

3.2 Security Model

For the security of PKEET, we consider two different scenarios according to
whether the adversary has a trapdoor for the target user or not. In case where
the adversary has the trapdoor for the equality test, we cannot expect the
indistinguishability-based security notion for PKEET, and, probably, the one-
wayness is the best achievable security. Otherwise, we can define the indistin-
guishability security notion for PKEET.

More precisely, we consider the following two types of adversaries for our
PKEET system model.

– Type-I adversary: This type of adversaries has the trapdoor for the target
user’s ciphertexts and so the adversary can perform an equality test with
the challenge ciphertext. Hence, we consider that the aim of the adversary
is to reveal the message contained in the challenge ciphertext.

– Type-II adversary: This type of adversaries has no trapdoor for the target
user’s ciphertexts and so the adversary cannot perform an equality test with
the challenge ciphertext. Hence, we consider that the aim of the adversary
is to distinguish whether the challenge ciphertext contains which message
between two candidates.
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We first provide the formal security definition for PKEET constructions
against Type-I adversaries below.

Definition 8 (OW-CCA2 against Type-I Adversaries). A PKEET scheme
is OW-CCA2 secure against Type-I adversaries if for any PPT adversary A, the
success probability of A in the following game with the challenger C is negligible
in the security parameter λ: Let Ut be the target user.

1. Setup: C runs Setup(λ) → params and sends the system parameter params
to A. Then, C runs KeyGen(params) → (pki, ski) for 1 ≤ i ≤ N and passes
all pki’s to A.

2. Phase 1: A may query the following oracles polynomially many times adap-
tively and in any order. The constraint is that an index t cannot be queried
to the key extraction oracle Osk.
– Osk : an oracle that on input an index i, returns the Ui’s secret key ski.

– ODec : an oracle that on input a pair of an index i and a ciphertext cti,
returns the output of Dec(ski, cti) using the Ui’s secret key ski.

– OTd : an oracle that on input an index i, returns tdi by running Td(ski)→
tdi with the Ui’s secret key ski.

3. Challenge: C chooses a random message M from the message space M,
runs Enc(pkt,M)→ ct∗t , and sends ct∗t to A.

4. Phase 2: For A’s queries, C responds as in Phase 1. The constraints for
A’s queries are that
(a) the index t cannot be queried to the key extraction oracle Osk;

(b) the pair of the index t and the ciphertext ct∗t cannot be queried to the
decryption oracle ODec.

5. Guess: A outputs M ′.

The adversary A wins in the above game if M = M ′ and the success probability
of A is defined to

AdvOW-CCA2
A,PKEET (λ) := Pr[M = M ′].

Remark 1. (Constraint on the message space) If the size of the message space
is polynomial in the security parameter or the min-entropy of the message dis-
tribution is much lower than the security parameter, a Type-I adversary who
has a trapdoor for the challenge ciphertext, can reveal the message in the chal-
lenge ciphertext in polynomial time or sufficiently small exponential time in the
security parameter, by performing equality tests with the challenge ciphertext
and other ciphertexts of all messages, generated by himself. To prevent these
trivial attacks, it is assumed that the size of the message space is exponential
in the security parameter and the min-entropy of the message distribution is
sufficiently higher than the security parameter.

Now, we present the formal security definition for PKEET constructions
against Type-II adversaries.
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Definition 9 (IND-CCA2 against Type-II Adversaries). A PKEET scheme
is IND-CCA2 secure against Type-II adversaries if for any PPT adversary A,
the advantage of A in the following game with the challenger C is negligible in
the security parameter λ: Let Ut be the target user.

1. Setup: This step is the same as that of the OW-CCA2 security game in
Definition 8.

2. Phase 1: This step is almost the same as that of the OW-CCA2 security
game in Definition 8, except that the constraint is that an index t cannot be
queried to the trapdoor extraction oracle OTd as well as the key extraction
oracle Osk.

3. Challenge: A chooses two message M0,M1 ∈ M of the same length and
passes C them. C selects a random bit b ∈ {0, 1}, runs Enc(pkt,Mb)→ ct∗t,b,
and sends ct∗t,b to A.

4. Phase 2: For A’s queries, C responds as in Phase 1. The constraints for
A’s queries are that
(a) the index t cannot be queried to the key extraction oracle Osk and the

trapdoor extraction oracle OTd;

(b) the pair of the index t and the ciphertext ct∗t,b cannot be queried to the

decryption oracle ODec.

5. Guess: A outputs b′.

The adversary A wins in the above game if b = b′ and the advantage of A is
defined to

AdvIND-CCA2
A,PKEET (λ) :=

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
3.3 Extension to Identity-Based Settings

One can easily extend the definition of PKEET to the identity-based setting. Let
us briefly point out differences only. (Refer to Appendix A for formal definitions
of IBEET.) The setup algorithm Setup outputs a pair of a master public key mpk
and a master secret key msk, instead of a system parameter params. The key
generation algorithm KeyGen takes mpk and an identity ID, and outputs a secret
key of the identity ID, skID. All other algorithms are almost the same as the
public key setting, except a slight adjustment for an identity instead of a public
key.

In the security model, there is a small but important difference. In the
PKEET setting, the number of all possible users are N and all corresponding
public keys should be sent to the adversary. Here, we implicitly assume that N
is polynomially bounded in λ. However, in the identity-based setting, we do not
restrict which identities will be joined in the system among exponentially many
candidates. That is, the adversary can decide who will join in by asking a secret
key of an identity to the corresponding oracle during the security game. The rest
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part in the security model remains almost unchanged, except a fine-tuning for
an identity instead of a public key. We note that such a small difference between
the numbers of manipulable users in systems should be carefully handled in the
security proof. Hence, in the security proof for PKEET, one may assume that
the simulator knows the target public key pkt in advance at the beginning of
the simulation, at the price of polynomial reduction loss. However, in the se-
curity proof for IBEET, if one would like to make a construction that achieves
the adaptive ID security, not the selective ID security, one may not be able to
assume that the simulator knows the target identity at the very beginning of the
simulation because there are exponentially many candidates. It causes a situa-
tion that our IBEET construction should employ an IND-ID-CPA secure HIBE
scheme, whereas our PKEET construction employs an IND-sID-CPA secure one.

4 Our PKEET Construction

In this section, we present our construction for PKEET by exploiting traditional
2-level HIBE schemes and signature schemes. Hereafter, [ID1.ID2] denotes an
identity of a 2-level HIBE schemeHIBE = (Setup,KeyExt, Enc,Dec) where ID1

is the first level identity and ID2 is the second level identity. [M0‖M1] denotes
the concatenation of messages M0 and M1.

Our Strategy. Our design strategy is based on the transformation from an IND-
sID-CPA secure IBE scheme into an IND-CCA2 secure PKE scheme in the stan-
dard model, proposed by Canetti, Halevi, and Katz (CHK) [9], which has a ci-
phertext of the form ct = (vks, C, σ), where G(λ)→ (vks, sks), Enc(mpk, vks,M)→
C, and S(sks, C) → σ for a signature scheme Sig = (G,S,V) and an IBE
scheme IBE = (Setup,KeyExt, Enc,Dec). More precisely, in the encryption
algorithm constructed by the CHK transformation, it performs as follows: 1)
generate a pair of a signing key and a verification key (vks, sks), 2) encrypt a mes-
sage M using the encryption algorithm Enc of the underlying IBE scheme IBE
with a verification key vks as an identity, and finally 3) sign the obtained IBE
ciphertext C using the signing key sks. Then, the resulting scheme is an IND-
CCA2 secure PKE scheme if the underlying signature scheme Sig is strongly
unforgeable and the underlying IBE scheme IBE is IND-sID-CPA secure.

In our construction, to support an equality test, we apply the CHK transfor-
mation to two ciphertexts of a message and its hash value at once using a 2-level
HIBE scheme instead of an IBE scheme. For given a signature scheme Sig =
(G,S,V) and a 2-level HIBE scheme HIBE = (Setup,KeyExt, Enc,Dec), the
proposed encryption process for a message M is as follows: 1) G(λ)→ (vks, sks),
2) Enc(mpk, [0.vks],M)→ C0, 3) Enc(mpk, [1.vks], H(M))→ C1 for a hash func-
tion H, 4) S(sks, [C0‖C1])→ σ, and 5) output ct = (vks, C0, C1, σ).

A ciphertext of the above construction includes two ciphertexts C0, C1 of
the underlying HIBE scheme. The former is an encryption of the message, so
it enables to obtain the exact message by decrypting it using a decryption key
for the identity [0.vks]. On the other hand, the latter is an encryption of a hash
value of the message, so it enables to perform an equality test by decrypting it
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using a decryption key for the identity [1.vks] and comparing with them of other
ciphertexts.

Informally, when the underlying signature scheme is strongly unforgeable
and the underlying HIBE scheme is IND-sID-CPA secure, if the adversary does
not have a decryption key for the identity [1.vks

∗] that is used in the challenge
ciphertext, then the proposed scheme still remains to be IND-CCA2 secure as
constructions obtained by the CHK transformation. Otherwise, all the situation
is the same as the previous, except that the adversary additionally knows the
hash value of the message, H(M). Therefore, it cannot achieve the indistin-
guishability between messages, but we expect the one-wayness of the message
information if H is a one-way function.

Description. We provide a full description of our PKEET construction below.

– Setup(λ) : Given a security parameter λ, generate

1. a 2-level HIBE scheme HIBE = (Setup,KeyExt, Enc,Dec),

2. a hash function H : {0, 1}∗ → M for the message space M of HIBE ,
and

3. a digital signature scheme Sig = (G,S,V).

It outputs a system parameter params = {H,HIBE ,Sig}. We implicitly set
the message space of our PKEET scheme to the message spaceM of HIBE .

– KeyGen(params) : On input params, it runs Setup(λ) → (mpk,msk) and
outputs a public key pk = mpk and a secret key sk = msk.

– Enc(pk,M) : It takes pk and a message M ∈M as inputs and runs

1. G(λ)→ (vks, sks),

2. Enc(pk, [0.vks],M)→ C0,

3. Enc(pk, [1.vks], H(M))→ C1, and

4. S(sks, [C0‖C1])→ σ.

It outputs a ciphertext ct = (vks, C0, C1, σ).

– Dec(sk, ct) : On input ct, parse ct to (vks, C0, C1, σ). Then, it performs as
follows:

1. Run KeyExt(sk, [i.vks])→ sk[i.vks] for i = 0, 1.

2. Decrypt C0 and C1 by running Dec(sk[0.vks], C0)→M ′ and Dec(sk[1.vks],
C1)→ h′.

3. If h′ = H(M ′) and V(vks, [C0‖C1], σ) → 1, then output M ′. Otherwise,
output ⊥.

– Td(ski) : It takes a user Ui’s secret key ski as an input, runs KeyExt(ski,
1)→ ski,1, and outputs tdi = ski,1.
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– Test(tdi, cti, tdj , ctj): It takes trapdoors tdi, tdj and ciphertexts cti, ctj for
users Ui, Uj , respectively, as inputs. For k = i, j,

1. parse ctk to (vks,k, Ck,0, Ck,1, σk),

2. run KeyExt(tdk, [1.vks,k])→ skk,[1.vks,k], and

3. run Dec(skk,[1.vks,k], Ck,1)→ h′k.

If h′i = h′j , then output 1. Otherwise, output 0.

Correctness. The following theorem demonstrates the correctness of our PKEET
construction.

Theorem 1. Our PKEET construction is correct if the underlying HIBE scheme
HIBE and signature scheme Sig are correct, and the employed hash function H
is collision resistant.

Proof. Let ct = (vks, C0, C1, σ) be a valid ciphertext of message M obtained by
running Enc(pk,M) where pk is a public key generated by running KeyGen(params)
and params is an outcome of the Setup algorithm. That is, G(λ) → (vks, sks),
Enc(pk, [0.vks],M) → C0, Enc(pk, [1.vks], H(M)) → C1, and S(sks, [C0‖C1])
→ σ. Because HIBE is correct,

Dec(sk[0.vks], C0) = Dec(sk[0.vks], Enc(pk, [0.vks],M))

→M ′ = M

and

Dec(sk[1.vks], C1) = Dec(sk[1.vks], Enc(pk, [1.vks], H(M)))

→ h′ = H(M)

where sk[i.vks] is an outcome of KeyExt(sk, [i.vks]) for i = 0, 1. So, it holds h′ =
H(M ′). In addition, because Sig is correct,

V(vks, [C0‖C1], σ) = V(vks, [C0‖C1],S(sks, [C0‖C1]))→ 1.

Hence, Dec(sk, ct) always outputs the correct message M .
Let ctk = (vks,k, Ck,0, Ck,1, σk) be a valid ciphertext of user Uk, obtained

by performing Enc(pkk,Mk) where pkk is a user Uk’s public key generated by
running KeyGen(params) and params is an outcome of the Setup algorithm for
k = i, j. Then, because HIBE is correct,

Dec(skk,[1.vks,k], Ck,1)→ h′k = H(Mk)

where skk,[1.vks,k] is an outcome of KeyExt(skk, [1.vks,k]) for k = i, j. Hence, if
Mi = Mj , then h′i = H(Mi) = H(Mj) = h′j and so the Test algorithm always
outputs 1. On the other hand, if Dec(ski, cti) 6= Dec(skj , ctj), then Mi 6= Mj

and so h′i = H(Mi) 6= H(Mj) = h′j with overwhelming probability because H
is collision resistant. Hence, the Test algorithm outputs 0 with overwhelming
probability.

From the above, it is proved that our proposed construction is correct. ut
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5 Security Analysis

In this section, we look into the security of our PKEET construction against
Type-I and Type-II adversaries. We first show that our scheme is IND-CCA2
secure against Type-II adversaries who do not have a trapdoor for equality tests
on all target user’s ciphertexts.

Theorem 2 (IND-CCA2). If HIBE is an IND-sID-CPA secure 2-level HIBE
scheme and Sig is a strongly unforgeable one-time signature scheme, then the
proposed PKEET scheme exploiting HIBE and Sig is IND-CCA2 secure against
Type-II adversaries in the standard model.

More precisely, if there is no PPT adversary that breaks the strong unforge-
ability of one-time signature scheme Sig with at least εSig success probability and
there is no PPT adversary that breaks the IND-sID-CPA security of HIBE with
at least εHIBE advantage, then for any PPT adversary that breaks the IND-
CCA2 security of the proposed PKEET construction, its advantage is bounded

above by 2εHIBE +
3εSig

2
.

Proof. We prove by using the standard hybrid argument. Let N be the num-
ber of users in the system and t be the index of the target user. Let ct∗t =
(vks

∗
,t, C

∗
t,0, C

∗
t,1, σ

∗
t ) be the challenge ciphertext for the user Ut.

We begin with defining the following three games and denote by Gi the event
that the adversary A wins in Gamei.

Game0: This game is the same as the original IND-CCA2 security game in
Definition 9.

Game1: This game is almost the same as Game0, except that if A queries the
oracle ODec(t, ·) on ctt = (vks,t, Ct,0, Ct,1, σt) such that vks,t = vks

∗
,t, ctt 6= ct∗t ,

and V(vks,t, [Ct,0‖Ct,1], σt) → 1, then the challenger C stops an interaction and
sets A’s answer at random.

Game2: This game is almost the same as Game1, except for the challenger’s
response in the challenge phase. Recall that the original challenge ciphertext
ct∗t (in Game0 and Game1) has the form (vks

∗
,t, C

∗
t,0, C

∗
t,1, σ

∗
t ), where G(λ) →

(vks
∗
,t, sks

∗
,t), Enc(pkt, [0.vks

∗
,t],Mb) → C∗t,0, Enc(pkt, [1.vks

∗
,t], H(Mb)) → C∗t,1,

S(sks
∗
,t, [C

∗
t,0‖C∗t,1]) → σ∗t , and b is a random bit chosen by C. At the begin-

ning of the challenge phase, A issues two messages M0 and M1. Then, C tosses
two unbiased coins a and b. If a = 0, C computes the challenge ciphertext by
using Mb and H(M1−b), instead of Mb and H(Mb). Otherwise (a = 1), C uses
M1−b and H(Mb) for generating C0 and C1, respectively.

Let the advantage of A in Gamei be εi for i = 0, 1, 2. That is, εi =
∣∣∣Pr[Gi]−

1

2

∣∣∣ for i = 0, 1, 2. Then, we prove the theorem by using a sequence of lemmas.

Lemma 1. ε0 − ε1 < 3εSig
2 .
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Proof. We begin with defining an event E1. In Game1, C should stop and output
a random guess for A’s output if A issues a decryption query on the target
user Ut’s ciphertext ctt = (vks,t, Ct,0, Ct,1, σt) such that vks,t = vks

∗
,t, ctt 6= ct∗t ,

and V(vks,t, [Ct,0‖Ct,1], σt)→ 1. Denote such the situation by E1.

From the definitions of E1, ε0, and ε1, we find a relation among Pr[E1], ε0,
and ε1 as follows.

ε1 =
∣∣∣Pr[G1]− 1

2

∣∣∣
=

∣∣∣Pr[G1|E1] Pr[E1] + Pr[G1|¬E1] Pr[¬E1]− 1

2

∣∣∣
=

∣∣∣1
2

Pr[E1] + Pr[G0 ∧ ¬E1]− 1

2

∣∣∣
=

∣∣∣1
2

Pr[E1] + Pr[G0]− Pr[G0 ∧ E1]− 1

2

∣∣∣
≥

∣∣∣Pr[G0]− 1

2

∣∣∣− ∣∣∣1
2

Pr[E1]− Pr[G0 ∧ E1]
∣∣∣

≥
∣∣∣Pr[G0]− 1

2

∣∣∣− 3

2
Pr[E1]

= ε0 −
3

2
Pr[E1].

The third equality holds since Pr[G1|E1] =
1

2
and Pr[G0 ∧ ¬E1] = Pr[G1 ∧ ¬E1].

Hence, we have

Pr[E1] ≥ 2

3
(ε0 − ε1). (1)

Now, we are going to show that Pr[E1] < εSig, which leads an inequality
among ε0, ε1, and εSig. In Game1, what A causes the event E1 is that A suc-
ceeds in forging a signature on some message with respect to the verification
key vks

∗
,t. Here, vks

∗
,t appears only in the challenge ciphertext. So, one can easily

embed an instance of the strong unforgeability game for the underlying signa-
ture scheme Sig into Game1; that is, one can construct another simulator SSig
that breaks the strong unforgeability of Sig by using A in Game1. One lets SSig
behave normally as the challenger of Game1 for all situations, except for the
challenge ciphertext generation. Once SSig generates the challenge ciphertext,
it embeds the verification key of the strong unforgeability game for Sig as vks

∗
,t

in the challenge ciphertext. It normally generates ciphertexts C∗t,0 and C∗t,1 of a
message Mb and its hash value H(Mb), respectively, by selecting b ∈ {0, 1} at
random. It then requests a signature of the message [C∗t,0‖C∗t,1] to the signing
oracle that is given to SSig in the strong unforgeability game. If the event E1

occurs, what A returns is exactly a forged signature on some message, which is
different from [C∗t,0‖C∗t,1], with respect to the target verification key vks

∗
,t. Hence,

Pr[E1] should be less than εSig by the assumption that there is no PPT adversary
that breaks the strong unforgeability of Sig with at least εSig success probability.
Finally, putting this together with Equation (1), we have the following inequality
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stated in the lemma,

ε0 − ε1 <
3

2
εSig. (2)

ut

Lemma 2. ε1 − ε2 < 2εHIBE .

Proof. We construct a simulator SHIBE that breaks the IND-sID-CPA security of
HIBE by using A. Denote the challenger of the IND-sID-CPA security game for
HIBE by CHIBE . First, we describe SHIBE and then analyze its advantage later.
SHIBE generates a pair of a signing key and a verification key (sks

∗
,t, vks

∗
,t) by

running the key generation algorithm G of the signature scheme Sig. SHIBE tosses
a coin α ∈ {0, 1} and passes [α.vks

∗
,t] as the target (2-level) identity to CHIBE .

Once receiving the master public key mpk of HIBE from CHIBE , SHIBE sets a
user Ut’s public key pkt to mpk, runs the key extraction algorithm Setup(λ)→
(pki, ski) for all 1 ≤ i 6= t ≤ N , and passes the system parameter params =
{H,HIBE ,Sig} and all pki’s for 1 ≤ i ≤ N to A.

As for the query responses, SHIBE utilizes her own oracles provided by CHIBE .
If A issues a decryption query on a valid ciphertext using vks

∗
,t, then SHIBE

stops the interaction with A and sets A’s output to be a random coin. For
all the other decryption queries to ODec, SHIBE responds by accessing the key
extraction oracle served by CHIBE . For all other queries Osk(i) and OTd(i) with
i 6= t, SHIBE responds by using ski’s. We note that A will not issue a secret key
extraction query Osk(t) and a trapdoor query OTd(t) for the target user Ut in
the IND-CCA2 security game.

In the challenge phase, A chooses and sends M0 and M1 to SHIBE . According
to α, which is chosen by SHIBE at the beginning of the simulation, the challenge
ciphertext for A is differently computed: If α = 0, then SHIBE sends M0 and
M1 to CHIBE , receives C∗t,0,b that is a ciphertext of the message Mb with respect
to the target identity [0.vks

∗], where b is a random bit chosen by CHIBE . Then,
SHIBE selects a random bit β ∈ {0, 1} and sends A

ct∗t = (vks
∗
,t, C

∗
t,0,b, C

∗
t,1,β = Enc(pkt, [1.vks

∗
,t], H(Mβ)), σ∗t ),

where S(sks
∗
,t, [C

∗
t,0,b‖C∗t,1,β ])→ σ∗t . Similarly, if α = 1, then SHIBE sends H(M0)

andH(M1) to CHIBE , and receives C∗t,1,b that is a ciphertext of the messageH(Mb)
with respect to the target identity [1.vks

∗
,t], where b is a random bit chosen by

CHIBE . Then, SHIBE selects a random bit β ∈ {0, 1} and sends A

ct∗t = (vks
∗
,t, C

∗
t,0,β = Enc(pkt, [0.vks

∗
,t],Mβ), C∗t,1,b, σ

∗
t ),

where S(sks
∗
,t, [C

∗
t,0,β‖C∗t,1,b]) → σ∗t . After the challenge phase, SHIBE can re-

spond to all decryption queries correctly as before the challenge phase. Finally,
SHIBE forwards A’s output b′ to CHIBE .

From now on, let us analyze our simulation SHIBE . It is trivial to show that
all the simulated transcripts are identical to the viewpoint of A in Game1,
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except the challenge ciphertext. As for the challenge ciphertext, if b = β, the
challenge ciphertext has the same form as that of Game1. Otherwise (that is,
b 6= β), it is the challenge ciphertext of Game2. Hence, the advantage of SHIBE
can be computed as follows.

εHIBE > AdvIND-sID-CPA
SHIBE ,HIBE(λ)

=
∣∣∣Pr[b′ = b]− 1

2

∣∣∣
=

∣∣∣1
2

(
Pr[b′ = b|b = β] + Pr[b′ = b|b 6= β]

)
− 1

2

∣∣∣
=

1

2

∣∣∣Pr[G1] + Pr[G2]− 1
∣∣∣

=
1

2

∣∣∣(Pr[G1]− 1

2

)
+

(
Pr[G2]− 1

2

)∣∣∣
≥ 1

2

(∣∣∣Pr[G1]− 1

2

∣∣∣− ∣∣∣Pr[G2]− 1

2

∣∣∣)
=

1

2
(ε1 − ε2).

ut

Lemma 3. ε2 = 0.

Proof. In the challenge phase, C computes the challenge ciphertext differently
according to the choice of a. If a = 0, C uses Mb and H(M1−b) for generating
C0 and C1, respectively. Otherwise (a = 1), C uses M1−b and H(Mb). Even
when messages are known to A, A cannot find the value b correctly since a is
completely hidden from the viewpoint of A. Hence, ε2 = 0. ut

Overall, putting all the results of lemmas, we have

ε0 ≤ 2εHIBE +
3εSig

2
.

ut

The following theorem shows that our PKEET construction is OW-CCA2
secure against Type-I adversaries who have a trapdoor for equality tests on all
target user’s ciphertexts.

Theorem 3 (OW-CCA2). If HIBE is an IND-sID-CPA secure 2-level HIBE
scheme, H is a one-way hash function, and Sig is a strongly unforgeable one-
time signature scheme, then the proposed PKEET scheme exploiting H, HIBE,
and Sig, is OW-CCA2 secure against Type-I adversaries in the standard model.

More precisely, if there is no PPT adversary that breaks one of the strong
unforgeability of Sig, the one-wayness of H, and the IND-sID-CPA security of
HIBE with at least εSig success probability, εH success probability, and εHIBE
advantage, respectively, then for any PPT adversary that breaks the OW-CCA2
security of the proposed PKEET, its success probability is bounded above by
4εHIBE + εH + εSig.
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Proof. Similarly to the IND-CCA2 security proof of Theorem 2, we use the
standard hybrid argument and begin with defining two games. Let N be the
number of users in the system and t be the index of the target user. Let ct∗t =
(vks

∗
,t, C

∗
t,0, C

∗
t,1, σ

∗
t ) be the challenge ciphertext for the target user Ut. Denote

by Gi the event that the adversary A wins in Gamei.

Game0: This game is the same as the original OW-CCA2 security game in
Definition 8.

Game1: This game is almost the same as Game0, except that if A queries
ODec(t, ·) on ctt = (vks,t, Ct,0, Ct,1, σt) such that vks,t = vks

∗
,t, ctt 6= ct∗t , and

V(vks,t, [Ct,0‖Ct,1], σt) → 1, then the challenger C stops an interaction and sets
A’s answer at random.

We show that the adversarial success probability gap between the above two
games is less than εSig. In Game1, C should stop and output a random guess
if A issues a decryption query on a ciphertext ctt = (vks,t, Ct,0, Ct,1, σt) such
that vks,t = vks

∗
,t, ctt 6= ct∗t , and V(vks,t, [Ct,0‖Ct,1], σt) → 1. Denote such the

situation by E1. We assume that there exists an adversary A such that its success
probability in Gamei is εi for i = 0, 1. That is, εi = Pr[Gi] for i = 0, 1. Then,
we find a relation among Pr[E1], ε0, and ε1 as follows:

ε1 = Pr[G1]

= Pr[G1|E1] Pr[E1] + Pr[G1|¬E1] Pr[¬E1]

=
1

|M|
Pr[E1] + Pr[G0 ∧ ¬E1]

≥ 1

|M|
Pr[E1] + Pr[G0]− Pr[E1]

≥ ε0 − Pr[E1].

Hence, we have

Pr[E1] ≥ ε0 − ε1. (3)

We can show that Pr[E1] < εSig by using the same argument given in the
proof of Theorem 2 and so we omit the details. Therefore, we finally have an
inequality

ε0 − ε1 < εSig. (4)

Next, we compute the success probability of A in Game1. To this end, we
first analyze A’s behaviour on anomalous inputs, which will be used for analysis
of our main simulation. We call this pre-simulation PS. In PS, the overall role
of the simulator is exactly the same as a normal challenger in Game1, except
the challenge ciphertext. For the challenge ciphertext, the simulator chooses two
different messages M ′0 and M ′1 at random, generates ciphertexts C ′∗t,0 and C ′∗t,1
of messages M ′0 and H(M ′1), respectively. All other steps for generating the
challenge ciphertext are the same as those of the normal challenger. Here, we
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cannot expect how A behaves on this anomalous transcript, but we can find an
upper bound of the probability that A outputs M ′1 by considering another game
to break the one-wayness of H using A. The reduction is quite straightforward.
One can just embed the instance of the one-wayness game into a message of C ′∗t,1,
instead of H(M ′1). Since M ′1 is used only for C ′∗t,1 in the challenge ciphertext, the
simulation for the other parts is straightforward. From this simulation, we have

Pr[A →M ′1 in PS] < εH . (5)

Now, we are ready to construct a main simulator SHIBE that breaks the
IND-sID-CPA security of HIBE by using A. Denote the challenger of the IND-
sID-CPA security game for HIBE by CHIBE . First, SHIBE chooses a target
verification key vks

∗
,t by running G(λ)→ (vks

∗
,t, sks

∗
,t). Next, SHIBE sends [0.vks

∗]
as the target (2-level) identity to CHIBE . Once SHIBE receives the system pa-
rameter mpk of HIBE , it sets pkt to mpk, runs the key extraction algorithm
Setup(λ) → (pki, ski) for all 1 ≤ i 6= t ≤ N , and passes the system param-
eter params = {H,HIBE ,Sig} and all pki’s for 1 ≤ i ≤ N to A. SHIBE can
respond to all decryption oracle queries, secret key extraction queries, and trap-
door queries correctly as in the proof of Theorem 2. In particular, differently
from the adversary in the proof of Theorem 2, it is allowed that A issues a trap-
door query on the index of the target user Ut and SHIBE can answer by querying
on the secret key for the identity 1 to the key extraction oracle of HIBE .

In the challenge phase, SHIBE chooses M0 and M1 at random, sends them
to CHIBE , and then receives C∗t,0,b that is a ciphertext of the message Mb with
respect to the target identity [0.vks

∗], where b is a random bit chosen by CHIBE .
SHIBE selects a random bit β ∈ {0, 1} and sends A

ct∗t = (vks
∗
,t, C

∗
t,0,b, C

∗
t,1,β = Enc(pkt, [1.vks

∗
,t], H(Mβ)), σ∗t ),

where S(sks
∗
,t, [C

∗
t,0,b‖C∗t,1,β ]) → σ∗t . After the challenge phase, SHIBE can re-

spond to all queries correctly as before the challenge phase. Finally, A may
output either a message M ′ or ⊥ to SHIBE . If M ′ = Mβ , then SHIBE returns
b′ = β to CHIBE . Otherwise, SHIBE sets a bit b′ at random and returns it to
CHIBE .

It is trivial to show that all the simulated transcripts are identical to the
viewpoint of A in Game1, except the challenge ciphertext. If b = β, the sim-
ulated transcripts are identical to the real transcripts including the challenge
ciphertext. Otherwise, both are not identical and hence we cannot expect A’s
behaviour exactly. However, we can obtain some probability about A’s output
in this case from the result of the simulation PS. By using this, we compute the
advantage of SHIBE as follows.∣∣∣Pr[b′ = b]− 1

2

∣∣∣
=

∣∣∣1
2

(
Pr[b′ = b|b = β] + Pr[b′ = b|b 6= β]

)
− 1

2

∣∣∣
=

∣∣∣1
2

(
Pr[A →Mb ∨ (A 6→Mb ∧ b′ = b)|b = β] + Pr[b′ = b|b 6= β]

)
− 1

2

∣∣∣
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=
∣∣∣1
2

(
Pr[A →Mb|b = β] + Pr[(A 6→Mb ∧ b′ = b)|b = β] + Pr[b′ = b|b 6= β]

)
− 1

2

∣∣∣
=

∣∣∣1
2

(
Pr[G1] +

1

2
Pr[A 6→Mb|b = β] + Pr[b′ = b|b 6= β]

)
− 1

2

∣∣∣
=

∣∣∣1
2

(
Pr[G1] +

1

2
(1− Pr[G1]) + Pr[b′ = b|b 6= β]

)
− 1

2

∣∣∣
=

1

2

∣∣∣1
2

Pr[G1] + Pr[b′ = b|b 6= β]− 1

2

∣∣∣
=

1

2

∣∣∣1
2

Pr[G1] + Pr[A 6→Mβ ∧ b′ = b|b 6= β]− 1

2

∣∣∣
=

1

2

∣∣∣1
2

Pr[G1] +
1

2
Pr[A 6→Mβ |b 6= β]− 1

2

∣∣∣
=

1

2

∣∣∣1
2

Pr[G1] +
1

2
(1− Pr[A →Mβ |b 6= β])− 1

2

∣∣∣
=

1

4

∣∣∣Pr[G1]− Pr[A →Mβ |b 6= β]
∣∣∣

>
1

4
(Pr[G1]− εH)

where G1 denotes the event that A wins in Game1. The fourth and eighth equal-
ities hold because b′ is independently and randomly chosen from the set {0, 1}
if M ′ 6= Mβ for A’s output M ′ at the last step and the last inequality holds
because of Equation (5).

Hence, we have 1
4 (ε1 − εH) < εHIBE . Therefore, putting this with Equa-

tion (4), we obtain ε0 < 4εHIBE + εH + εSig. ut

6 Discussion

In this section, we provide an extension of our PKEET construction to the
identity-based setting. We also present a comparison of ours with the previous
results.

6.1 Extension to IBE with Equality Test

Because our PKEET construction already exploits a 2-level HIBE scheme, one
can easily extend it to the identity-based setting by just employing a 3-level
HIBE scheme for the underlying HIBE scheme. In our transformation to the
identity-based setting, the first level of the underlying HIBE scheme is utilized
for a user’s identity ID, and the second and third levels are reserved for the
roles of the first and second levels in our PKEET construction, respectively. Se-
curity analysis for our IBEET construction is almost the same as that of our
PKEET construction, provided in Section 5. The main difference is the security
requirement of the underlying HIBE scheme: While the IND-sID-CPA security
is sufficient for our PKEET construction, the IND-ID-CPA security is required
for the identity-based setting. As a result, we obtain the first IBEET construc-
tion that achieves one-wayness under adaptive identity and adaptive chosen ci-
phertext attacks (OW-ID-CCA2) against Type-I adversaries and achieves the
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Table 1. Comparison of Our PKEET with Existing Schemes

[23] [22] [16] Ours (with [5] +[7])

Comp of Enc 3Exp 5Exp 6Exp 1Pairing + 14Exp

Dec 3Exp 2Exp 5Exp 9Pairing + 11Exp

Test 2Pairing 4Exp 2Pairing + 2Exp 6Pairing + 10Exp

Size of PK |G| 2|G| 3|G| 5|G|
CT 3|G|+ |Zp| 4|G|+ |Zp|+ 2λ 5|G|+ |Zp| (2λ+ 15)|G|+ |Zp|
TD − |Zp| |Zp| 3|G|

Security Type-I OW-CCA2 OW-CCA2 OW-CCA2 OW-CCA2

Type-II − IND-CCA2 IND-CCA2 IND-CCA2

Standard Model No No No Yes

Assumptions CDH CDH CDH CDH+DBDH

Legends: Comp: computational complexity, Enc: encryption algorithm, Dec: decryp-
tion algorithm, Test: test algorithm, PK: public key, CT: ciphertext, TD: trapdoor,
Exp: cost for an exponentiation, Pairing: cost for a pairing computation, λ: secu-
rity parameter, CDH: computational Diffie-Hellman assumption, DBDH: decisional
Diffie-Hellman assumption

indistinguishability under adaptive identity and adaptive chosen ciphertext at-
tacks (IND-ID-CCA2) against Type-II adversaries in the standard model. We
provide the details of the description of our IBEET construction and its security
proofs in Appendix B.

6.2 Comparison of Our PKEET Construction with Previous Works

We provide a comparison of our PKEET construction with previous schemes. For
our scheme, we exploit Boneh and Boyen’s IND-sID-CPA HIBE (BB-HIBE) [5]
and Boneh, Shen, and Waters’ strongly unforgeable signature (BSW-Sig) [7] as
underlying HIBE and signature schemes, respectively. We note that for a level-
` user, the BB-HIBE scheme requires (2` + 1)Exp, 1Pairing + (` + 2)Exp, and
(`+1)Pairing for key generation, encryption, and decryption, respectively, where
Pairing and Exp denote costs for computing a pairing and an exponentiation,
respectively. The sizes of a ciphertext and a private key for a level-` user are (2+
`)|G| and `|G|, respectively, where |G| denotes a bit size required for representing
an element in the underlying group G. The security of their scheme relies on
decisional bilinear Diffie-Hellman (DBDH) assumptions. On the other hand, the
BSW-Sig scheme requires 1Exp, 6Exp, and 3Pairing + 1Exp for key generation,
signing, and verification, respectively. The bit sizes of a verification key and a
signature are (n+ 5)|G| and 2|G|+ |Zp|, respectively, where n is the output size
of the utilized hash function and p is the order of the underlying group G. Its
security relies on computational Diffie-Hellman (CDH) assumptions.
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Table 1 presents a comparison of ours with previous works. The second,
third, fourth, and last columns describe the features of Yang et al.’s original
PKEET [23], Tang’s all-or-nothing PKEET [22], Ma et al.’s PKEET [16] by
considering a Type-1 authorization only in their paper, and ours, respectively.
We set the output size of the utilized hash functions to 2λ for the security
parameter λ. The table shows that ours has the worst performance among them
in terms of both computational complexity and parameter size. The performance
of ours in the table heavily relies on that of the underlying signature and HIBE
schemes. Thus, we believe that more efficient underlying schemes improve the
performance of ours further. On the other hand, we remark that our PKEET
construction is the first one in the standard model.

7 Conclusion

In this paper, we provided a generic construction of PKEET by exploiting a
2-level HIBE scheme, a traditional signature scheme, and a cryptographic hash
function. Our proposed scheme is OW-CCA2 secure against Type-I adversaries
who have a trapdoor for equality tests and is IND-CCA2 secure against Type-
II adversaries who do not have if the exploited HIBE scheme is IND-sID-CPA
secure, the exploited one-time signature scheme is strongly unforgeable, and the
exploited hash function is one-way in the standard model. As a result, we obtain
the first PKEET construction that is secure in the standard model. Finally,
we discussed an extension of our PKEET construction into the identity-based
setting.

While our construction has an advantage that is generic in the sense that it
does not require any number-theoretic assumption explicitly, there may be room
for improvement in terms of efficiency. Thus, it would be interesting to design
efficient PKEET schemes in the standard model.
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A Syntax and System Model for IBEET

In this section, we provide basic definitions of IBEET, including a system model
for IBEET, a definition of an IBEET scheme, and its security definitions.

System Model for Our IBEET. Our IBEET system consists of multiple
users (e.g., senders and receivers), the key generation center (KGC), and tester(s)
(e.g., the server): As traditional IBE schemes, once a user requests his/her secret
key to the KGC by sending his/her identity, the KGC issues a user’s secret key
according to the user’s identity to the user. The rest is almost the same as that of
our PKEET system model. A sender encrypts a data using a receiver’s identity
and sends a ciphertext to the receiver. The receiver may decrypt his/her cipher-
texts using his/her secret key and/or store ciphertexts at the server. When the
receiver wants to delegate the test capability for all of his/her ciphertexts, he/she
issues a trapdoor for equality tests to a tester who can access the server that
stores his/her ciphertexts. From that moment, the tester can perform equality
tests on ciphertexts under the identity of the receiver who delegated the test
authority to the tester.

Definitions of IBEET. Below, we present the formal definition of IBEET
schemes under our system model.

Definition 10 (Identity-Based Encryption with Equality Test). An identity-
based encryption with equality test (IBEET) consists of the following six polynomial-
time algorithms (Setup,Extract,Enc,Dec,Td,Test):

– Setup(λ): On input a security parameter λ, it outputs a public parameter pp
and a master secret key msk. We note that pp includes the information of
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the message space M and it is assumed that all other algorithms take pp as
an input implicitly, though it is not stated.

– Extract(pp,msk, ID): It takes pp, msk, and an identity ID ∈ {0, 1}∗ as in-
puts, and outputs a user ID’s secret key dID.

– Enc(pp, ID,M): It takes pp, an identity ID, and a message M ∈M as inputs
and outputs a ciphertext ct.

– Dec(pp, dID, ct): It takes pp, a user ID’s secret key dID and a ciphertext ct
as inputs and outputs a message M ′ or ⊥.

– Td(dID): On input a user ID’s secret key dID, it outputs a trapdoor tdID.

– Test(tdIDi , ctIDi , tdIDj , ctIDj ): It takes two ciphertexts ctIDi , ctIDj and two
trapdoors tdIDi , tdIDj for identities IDi, IDj, respectively, as inputs, and
outputs 0 or 1.

Correctness. Since IBEET is an IBE scheme, it should be guaranteed the
correctness of the decryption algorithm: For any identity ID and message M ∈
M,

Dec(pp, dID,Enc(pp, ID,M)) = M

should always hold where Setup(λ)→ (pp,msk) and Extract(pp,msk, ID)→ dID.
For the functionality of Td and Test algorithms, we also require the follow-

ing two additional conditions to be satisfied: For any identities IDi, IDj and
messages Mi,Mj ∈M,

1. Pr[Test(tdIDi
, ctIDi

, tdIDj
, ctIDj

)] = 1 if Dec(pp, dIDi
, ctIDi

) = Dec(pp, dIDj
,

ctIDj ) 6=⊥,

2. Pr[Test(tdIDi , ctIDi , tdIDj , ctIDj )] is negligible in the security parameter if
Dec(pp, dIDi

, ctIDi
) 6= Dec(pp, dIDj

, ctIDj
),

where Setup(λ) → (pp,msk), Extract(pp,msk, IDi) → dIDi
, Extract(pp,msk,

IDj) → dIDj
, Enc(pp, IDi,Mi) → ctIDi

, Enc(pp, IDj ,Mj) → ctIDj
, Td(dIDi

)
→ tdIDi

, and Td(dIDj
)→ tdIDj

.

Security Definitions. As the same as the security definitions of our PKEET
system model, we consider two types of adversaries for our IBEET system model,
Type-I adversaries who have the trapdoor for the target identity and Type-II
adversaries who do not have the trapdoor information. We first describe the
formal security definition for IBEET constructions against Type-I adversaries.

Definition 11 (OW-ID-CCA2 against Type-I Adversaries). An IBEET
scheme is OW-ID-CCA2 secure against Type-I adversaries if for any PPT ad-
versary A, the success probability of A in the following game with the challenge C
is negligible in the security parameter λ:
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1. Setup: C runs Setup(λ)→ (pp,msk) and sends the public parameter pp to
A.

2. Phase 1: A may query the following oracles polynomially many times and
adaptively and in any order.

– OExt: an oracle that on input an identity ID, returns a user ID’s secret
key dID.

– ODec: an oracle that on input an identity ID and a ciphertext ct, runs
Dec(pp, dID, ct)→M ′ and outputs M ′.

– OTd: an oracle that on input an identity ID, runs Td(dID) → tdID and
outputs tdID.

3. Challenge: A submits a target identity ID∗, which was never queried to the
OExt oracle in Phase 1. C chooses a random message M from the message
space M, runs Enc(pp, ID∗,M)→ ct∗ID∗ , and sends ct∗ID∗ to A.

4. Phase 2: For A’s queries, C responds as in Phase 1. The constraints for
A’s queries are that

(a) the target identity ID∗ cannot be queried to the secret key extraction
oracle OExt;

(b) the pair of the target identity ID∗ and the challenge ciphertext ct∗ID∗
cannot be queried to the decryption oracle ODec.

5. Guess: A outputs M ′.

The adversary A wins in the above game if M = M ′ and the success probability
of A is defined to

AdvOW-ID-CCA2
A,IBEET (λ) := Pr[M = M ′].

Now, we present the definition of the IND-ID-CCA2 security of IBEET
schemes against Type-II adversaries.

Definition 12 (IND-ID-CCA2 against Type-II Adversaries). An IBEET
scheme is IND-ID-CCA2 secure against Type-II adversaries if for any PPT ad-
versary A, the advantage of A in the following game with the challenge C is
negligible in the security parameter λ:

1. Setup: This step is the same as that of the OW-ID-CCA2 security game in
Definition 11.

2. Phase 1: This step is the same as that of the OW-ID-CCA2 security game
in Definition 11.

3. Challenge: A selects a target identity ID∗, which was never queried to the
OExt and OTd oracles in Phase 1, and two messages M0,M1 of the same
length and passes ID∗, M0, M1 to C. C chooses a random bit b ∈ {0, 1}, runs
Enc(pp, ID∗,Mb)→ ct∗ID∗,b and sends ct∗ID∗,b to A.
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4. Phase 2: For A’s query, C responds as in Phase 1. The constraints for A’s
queries are that
(a) the target identity ID∗ cannot be queried to the secret key extraction

oracle OExt and the trapdoor extraction oracle OTd;

(b) the pair of the target identity ID∗ and the challenge ciphertext ct∗ID∗
cannot be queried to the decryption oracle ODec.

5. Guess: A outputs b′ ∈ {0, 1}.

The adversary A wins if b = b′ in the above game and the advantage of A is
defined to

AdvIND-ID-CCA2
A,IBEET (λ) :=

∣∣∣Pr[b = b′]− 1

2

∣∣∣.
B Our IBEET Construction

In this section, we present a description of our IBEET construction using a 3-
level HIBE scheme, a strongly unforgeable one-time signature scheme, and a
cryptographic hash function. Then, we look into the security of the proposed
IBEET scheme against Type-I and Type-II adversaries.

Throughout this section, [ID1.ID2.ID3] denotes a 3-level identity where IDi

is the i-th level identity for i = 1, 2, 3.

B.1 Our IBEET Scheme

Description. We describe our IBEET construction below.

– Setup(λ): It take a security parameter λ as an input and performs as follows:
1. Generate

(a) a 3-level HIBE scheme HIBE = (Setup,KeyExt, Enc,Dec),

(b) a hash function H : {0, 1}∗ → M for the message space M of the
HIBE scheme, and

(c) a digital signature scheme Sig = (G,S,V).

2. Run Setup(λ)→ (mpk,msk).

3. Output a public parameter pp = (HIBE , H, Sig,mpk) and keep a master
secret key msk = msk private.

– Extract(pp,msk, ID): On input pp,msk, and an identity ID, it runsKeyExt(msk, ID)→
dID and outputs a user ID’s secret key dID.

– Enc(pp, ID,M): It takes pp, ID, and a message M as inputs and runs

1. G(λ)→ (vks, sks),

2. Enc(mpk, [ID.0.vks],M)→ C0,
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3. Enc(mpk, [ID.1.vks], H(M))→ C1,

4. S(sks, [C0‖C1])→ σ.

It outputs a ciphertext ct = (vks, C0, C1, σ).

– Dec(pp, dID, ct): On input a ciphertext ct, parse ct to (vks, C0, C1, σ). Then,
it performs as follows:

1. Run KeyExt(dID, [ID.i.vks])→ d[ID.i.vks] for i = 0, 1.

2. Decrypt C0 and C1 by runningDec(d[ID.0.vks], C0)→M ′ andDec(d[ID.1.vks],
C1)→ h′.

3. If h′ = H(M ′) and V(vks, [C0‖C1], σ) → 1, then output M ′. Otherwise,
output ⊥.

– Td(dID): It takes a user ID’s secret key dID as an input, runs KeyExt(dID,
[ID.1])→ d[ID.1], and returns tdID = d[ID.1].

– Test(tdIDi
, ctIDi

, tdIDj
, ctIDj

): It takes trapdoors tdIDi
, tdIDj

and ciphertexts ctIDi
,

ctIDj
for users IDi, IDj , respectively, as inputs. For k = i, j,

1. parse ctIDk
to (vks,IDk

, CIDk,0, CIDk,1, σIDk
),

2. run KeyExt(tdIDk
, [IDk.1.vks,IDk

])→ d[IDk.1.vks,IDk
],

3. run Dec(d[IDk.1.vks,IDk
], CIDk,1)→ h′k.

If h′i = h′j , then output 1. Otherwise, output 0.

Correctness. The following theorem shows the correctness of our IBEET con-
struction.

Theorem 4. Our IBEET construction is correct if the underlying HIBE scheme
HIBE and signature scheme Sig are correct, and the employed hash function H
is collision resistant.

Proof. Let ct = (vks, C0, C1, σ) be a valid ciphertext obtained by running Enc(pp,
ID,M) for any identity ID and a message M , where pp is a public parameter ob-
tained by running Setup(λ). That is, G(λ)→ (vks, sks), Enc(mpk, [ID.0.vks],M)→
C0, Enc(mpk, [ID.1.vks], H(M)) → C1, and S(sks, [C0‖C1]) → σ. Since HIBE is
correct,

Dec(d[ID.0.vks], C0) = Dec(d[ID.0.vks], Enc(mpk, [ID.0.vks],M))

→M ′ = M

and

Dec(d[ID.1.vks], C1) = Dec(d[ID.1.vks], Enc(mpk, [ID.1.vks], H(M)))

→ h′ = H(M)
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where d[ID.i.vks] is an outcome of KeyExt(dID, [ID.i.vks]) for i = 0, 1. Hence,
h′ = H(M ′) always holds. Further, since Sig is correct,

V(vks, [C0‖C1], σ) = V(vks, [C0‖C1],S(sks, [C0‖C1]))→ 1.

Therefore, Dec(pp, dID, ct) always outputs the correct message M .
Let ctIDk

= (vks,IDk
, CIDk,0, CIDk,1, σIDk

) be a valid ciphertext, obtained by
running Enc(pp, IDk,Mk) for any identity IDk and message Mk with k = i, j,
where pp is the public parameter generated by running Setup(λ). Since HIBE
is correct,

Dec(d[IDk.1.vks,IDk
], CIDk,1)→ h′k = H(Mk)

where d[IDk.1.vks,IDk
] is an outcome of KeyExt(dIDk

, [IDk.1.vks,IDk
]) for k = i, j.

Hence, if Mi = Mj , then h′i = H(Mi) = H(Mj) = h′j and so the Test algorithm
always outputs 1. On the other hand, if Dec(pp, ski, cti) 6= Dec(pp, skj , ctj), then
Mi 6= Mj and so h′i = H(Mi) 6= H(Mj) = h′j with overwhelming probability
because H is collision resistant. Therefore, the Test algorithm outputs 1 with
negligible probability.

From the above, it is proved that our IBEET construction is correct. ut

B.2 Security Analysis

Now, we investigate the security of our IBEET constructions against Type-I
and Type-II adversaries. The following theorem demonstrates that our IBEET
construction is IND-ID-CCA2 secure against Type-II adversaries who do not
have a trapdoor for an equality test on the challenge ciphertext.

Theorem 5 (IND-ID-CCA2). If HIBE is an IND-ID-CPA secure 3-level
HIBE scheme and Sig is a strongly unforgeable one-time signature scheme, then
the proposed IBEET scheme exploiting HIBE and Sig is IND-ID-CCA2 secure
against Type-II adversaries in the standard model.

More precisely, if there is no PPT adversary that breaks the IND-ID-CPA
security of HIBE with at least εHIBE advantage and there is no PPT adversary
that breaks the strong unforgeability of Sig with at least εSig success probabil-
ity, then for any PPT adversary that breaks the IND-ID-CCA2 security of the

proposed IBEET scheme, its advantage is bounded above by 2εHIBE +
3εSig

2
.

Proof. The proof of this theorem is very similar to that of Theorem 2, which
shows the IND-CCA2 security of our PKEET construction. Similarly to the
proof of Theorem 2, we begin with defining the following three games.

Game0: This game is the same as the original IND-ID-CCA2 security game
in Definition 12. Denote the challenge ciphertext for the target identity ID∗ by
ct∗ID∗ = (vks

∗
,ID∗ , C

∗
ID∗,0, C

∗
ID∗,1, σ

∗
ID∗).

Game1: This game is almost the same as Game0, except that if A queries the
oracle ODec(ID∗, ·) on ctID∗ = (vks,ID∗ , CID∗,0, CID∗,1, σID∗) such that vks,ID∗ =
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vks
∗
,ID∗ , ctID∗ 6= ct∗ID∗ and V(vks,ID∗ , [CID∗,0‖CID∗,1], σID∗) → 1, then the chal-

lenger C stops the interaction and sets A’s answer at random.

Game2: This game is almost the same as Game1, except for the challenger’s
response in the challenge phase. In Game0 and Game1, the original cipher-
text ct∗ID∗ has the form (vks

∗
,ID∗ , C

∗
ID∗,0, C

∗
ID∗,1, σ

∗
ID∗) where G(λ)→ (vks

∗
,ID∗ , sks

∗
,ID∗),

Enc(mpk, [ID∗.0.vks
∗
,ID∗ ],Mb)→ C∗ID∗,0, Enc(mpk, [ID∗.1.vks

∗
,ID∗ ], H(Mb))→ C∗ID∗,1,

and S(sks
∗
ID∗ , [C

∗
ID∗,0‖C∗ID∗,1]) → σ∗ID∗ , and b is a random bit chosen by C. On

the other hand, at the beginning of the challenge phase in Game2, A issues a
target identity ID∗ and two messages M0,M1, and sends C them. Then, C tosses
two unbiased coins a and b. If a = 0, C generates the challenge ciphertext by
using Mb and H(M1−b), instead of Mb and H(Mb), respectively. Otherwise, C
uses M1−b and H(Mb) for generating C0 and C1, respectively.

Let εi be the advantage of A in Gamei for i = 1, 2, 3. Then, we obtain the
following relations among εi’s:

(i) ε0 − ε1 <
3εSig

2
,

(ii) ε1 − ε2 < 2εHIBE ,

(iii) ε2 = 0.

We note that the relations (i) and (iii) can be obtained from slight modifications
of proofs of Lemmas 1 and 3, respectively, adapted to the identity-based setting.
However, for the relation (ii), we need a more careful modification from the proof
of Lemma 2: While our PKEET scheme requires the IND-sID-CPA security of
HIBE , our IBEET scheme requires the IND-ID-CPA security. Hence, by con-
sidering this difference, the simulator SHIBE in the proof of Lemma 2 should be
adjusted.

The following is the full description of SHIBE ’s behaviour for the security
analysis of our IBEET construction. We construct a simulator SHIBE that breaks
the IND-ID-CPA security ofHIBE by usingA. Denote the challenger of the IND-
ID-CPA security game for HIBE by CHIBE . Once SHIBE receives the master
public key mpk of HIBE from CHIBE , SHIBE generates a hash function H and a
one-time signature Sig, and sends a public parameter pp = (HIBE , H, Sig,mpk)
to A. As for A’s queries, SHIBE can respond correctly by exploiting her own
oracles provided by CHIBE .

In the challenge phase, A chooses a target identity ID∗ and two messages
M0, M1, and sends SHIBE them. SHIBE first runs G(λ)→ (vks

∗
,ID∗ , sks

∗
,ID∗) and

tosses a coin α ∈ {0, 1}. Depending on the value α, the challenge ciphertext
for A is differently computed: If α = 0, SHIBE sends CHIBE a (3-level) target
identity [ID∗.α.vks

∗] along with two messages M0 and M1. Once SHIBE receives
the challenge ciphertext C∗ID∗,0,b for a random bit b chosen by CHIBE , SHIBE
selects a random bit β ∈ {0, 1} and sends A

ct∗ID∗ = (vks
∗
,ID∗ , C

∗
ID∗,0,b, C

∗
ID∗,1,β = Enc(mpk, [ID∗.1.vks,ID∗ ], H(Mβ)), σ∗ID∗)
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where S(sks
∗
,ID∗ , [C

∗
ID∗,0,b‖C∗ID∗,1,β ])→ σ∗ID∗ . On the other hand, if α = 1, SHIBE

sends CHIBE a (3-level) target identity [ID∗.α.vks
∗] along with two messages

H(M0) and H(M1), not M0 and M1, respectively. Once SHIBE receives the
challenge ciphertext C∗ID∗,1,b for a random bit b chosen by CHIBE , SHIBE selects
a random bit β ∈ {0, 1} and sends A

ct∗ID∗ = (vks
∗
,ID∗ , C

∗
ID∗,0,β = Enc(mpk, [ID∗.0.vks,ID∗ ],Mβ), C∗ID∗,1,b, σ

∗
ID∗)

where S(sks
∗
,ID∗ , [C

∗
ID∗,0,β‖C∗ID∗,1,b])→ σ∗ID∗ .

After the challenge phase, SHIBE responds to A’s all queries as before the
challenge phase. The difference between before and after the challenge phase
is that if A issues a decryption query on a valid ciphertext using vks

∗
,ID∗ , then

SHIBE stops the interaction with A and sets A’s output to be a random coin.
We note that A cannot issue a key extraction query OExt on the challenge iden-
tity ID∗, a decryption query ODec on the pair of the challenge identity and
ciphertext (ID∗, ct∗ID∗), and a trapdoor extraction query OTd on the challenge
identity ID∗. For all other queries, SHIBE can respond correctly by accessing her
own oracles offered by CHIBE .

Finally, once A outputs an answer b′, SHIBE forwards b′ to CHIBE . We omit
the analysis of the advantage of SHIBE , but it is the same as that in the proof of
Lemma 2 if the notation AdvIND-sID-CPA

SHIBE ,HIBE(λ) is replaced with AdvIND-ID-CPA
SHIBE ,HIBE(λ).

Overall, from (i), (ii), and (iii), we have

ε0 ≤ 2εHIBE +
3εSig

2
.

ut

Next, we show that our IBEET construction is OW-ID-CCA2 secure against
Type-I adversaries who have a trapdoor for an equality test on the challenge
ciphertext.

Theorem 6 (OW-ID-CCA2). If HIBE is an IND-ID-CPA secure 3-level
HIBE scheme, H is a one-way hash function, and Sig is a strongly unforgeable
one-time signature scheme, then the proposed IBEET scheme exploiting HIBE,
H, and Sig, is OW-ID-CCA2 secure against Type-I adversaries in the standard
model.

More precisely, if there is no PPT adversary that breaks one of the IND-ID-
CPA security of HIBE, the one-wayness of H, the strong unforgeability of Sig
with at least εHIBE advantage, εH success probability, and εSig success probability,
respectively, then for any PPT adversary that breaks the OW-ID-CCA2 security
of the proposed IBEET construction, its success probability is bounded above by
4εHIBE + εH + εSig.

Proof. The proof of this theorem is very similar to that of Theorem 3, which
shows the OW-CCA2 security of our PKEET construction. Similarly to the proof
of Theorem 3, we begin by defining the following two games.
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Game0: This is the same as the original OW-ID-CCA2 security game in Defi-
nition 11. Denote the challenge ciphertext for the target identity ID∗ by ct∗ID∗ =
(vks

∗
,ID∗ , C

∗
ID∗,0, C

∗
ID∗,1, σ

∗
ID∗).

Game1: This game is almost the same as Game0, except that if A queries the
oracle ODec(ID∗, ·) on ctID∗ = (vks,ID∗ , CID∗,0, CID∗,1, σID∗) such that vks,ID∗ =
vks
∗
,ID∗ , ctID∗ 6= ct∗ID∗ and V(vks,ID∗ , [CID∗,0‖CID∗,1], σID∗) → 1, then the chal-

lenger C stops the interaction and sets A’s answer at random.

Let εi be the success probability of A in Gamei for i = 0, 1. First, using a
similar argument in the proof of Theorem 3, we obtain the relation

ε0 − ε1 < εSig. (6)

Second, as in the proof of Theorem 3, we can define the simulation PS, which
is exactly the same as a normal challenger in Game1, except that the simulator
chooses two different messages M ′0, M ′1 at random and generates two ciphertexts

C∗ID∗,0 = Enc(mpk, [ID∗.0.vks
∗
,ID∗ ],M

′
0) and

C∗ID∗,1 = Enc(mpk, [ID∗.1.vks
∗
,ID∗ ], H(M ′1))

where ID∗ is the challenge identity and (vks
∗
,ID∗ , sks

∗
,ID∗) is an outcome of the

algorithm S(λ). Then, we have the relation

Pr[A →M ′1 in PS] < εH (7)

as in the proof of Theorem 3.
Finally, we can evaluate the success probability of the adversary A in Game1

by constructing a simulator SHIBE that breaks the IND-ID-CPA security of
HIBE using A. SHIBE is very similar to that in the proof of Theorem 3, but
we need a careful modification by considering that the security requirement of
HIBE for our IBEET construction is the IND-ID-CPA security, not the IND-
sID-CPA security, as in the proof of Theorem 5. We provide the full description
of SHIBE ’s behaviour below.

Denote the challenger of the IND-ID-CPA security game forHIBE by CHIBE .
Once SHIBE receives the master public key mpk of HIBE from CHIBE , SHIBE
generates a hash function H and a one-time signature Sig, and sends a public pa-
rameter pp = (HIBE , H, Sig,mpk) to A. As for A’s queries, SHIBE can respond
correctly by using her own oracles offered by CHIBE .

In the challenge phase, A sends a target identity ID∗ to SHIBE . Then, SHIBE
selects two messages M0 and M1 at random, runs G(λ) → (vks

∗
,ID∗ , sks

∗
,ID∗),

and sends CHIBE a 3-level target identity [ID∗.0.vks
∗
,ID∗ ] along with two mes-

sages M0,M1. Once SHIBE receives C∗ID∗,0,b that is a ciphertext of the message
Mb with respect to the target identity [ID∗.0.vks

∗
,ID∗ ], where b is a random bit

chosen by CHIBE , SHIBE selects a random bit β ∈ {0, 1}, and sends

ct∗ID∗ = (vks
∗
,ID∗ , C

∗
ID∗,0,b, C

∗
ID∗,1,β , σ

∗
ID∗)
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to A where C∗ID∗,1,β = Enc(mpk, [ID∗.1.vks
∗
,ID∗ ], H(Mβ)) and S(sks

∗
,ID∗ , [C

∗
ID∗,0,b‖

C∗ID∗,1,β ])→ σ∗ID∗ .
After the challenge phase, SHIBE responds to A’s all queries as before the

challenge phase. The difference between before and after the challenge phase
is that if A issues a decryption query on a valid ciphertext using vks

∗
,ID∗ , then

SHIBE stops the interaction with A and sets A’s output to be a random coin.
We note that A cannot issue a key extraction query OExt on the target iden-
tity ID∗, a decryption query ODec on the pair of the challenge identity and
ciphertext (ID∗, ct∗ID∗). For all other queries, SHIBE can respond correctly by
accessing her own oracles offered by CHIBE .

Finally, A outputs either a message M ′ or ⊥ to SHIBE . If M ′ = Mβ , then
SHIBE returns b′ = β to CHIBE . Otherwise, SHIBE sets a bit b at random and
returns it to CHIBE . The analysis of the advantage of SHIBE is exactly the same
as in the proof of Theorem 3 and so we have

1

4
(ε1 − εH) < εHIBE . (8)

Therefore, from Equations (6)-(8), we obtain ε0 < 4εHIBE + εH + εSig. ut
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