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Abstract

Yao’s garbling scheme is one of the basic building blocks of crytographic protocol design. Origi-
nally designed to enable two-message, two-party secure computation, the scheme has been extended
in many ways and has innumerable applications. Still, a basic question has remained open through-
out the years: Can the scheme be extended to guarantee security in the face of an adversary that
corrupts both parties, adaptively, as the computation proceeds?

We answer this question in the affirmative. We define a new type of encryption, called functionally
equivocal encryption (FEE), and show that when Yao’s scheme is implemented with an FEE as the
underlying encryption mechanism, it becomes secure against such adaptive adversaries. We then
show how to implement FEE from any one way function.

Combining our scheme with non-committing encryption, we obtain the first two-message, two-
party computation protocol, and the first constant-round multiparty computation protocol, in the
plain model, that are secure against semi-honest adversaries who can adaptively corrupt all parties.
A number of extensions and applications are described within.
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1 Introduction

Secure multi-party computation (MPC) protocols allow a set of mutually distrustful parties to engage
in a joint computation for evaluating an agreed-upon function of their local inputs, while preserving
the privacy of their inputs up to what is revealed by the function. First envisioned by Yao [Yao82], and
realized in a sequence of breakthrough protocols starting with [Yao86, GMW87, BGW88, CCD88, GL90],
the concept evolved into a vibrant discipline that is one of the standard bearers of cryptography.
Indeed, today we have a mature theory of secure distributed computation, with highly optimized and
innovative protocols in a variety of models and settings. We also have a number of real-world systems,
both academic and commercial, that use this rich theory to better society.

Still, even today, we are unable to provide satisfactory answers to some very basic challenges in se-
cure computation. One of these challenges is providing adequate security and efficiency guarantees in
the natural setting where protocol participants become corrupted during the course of the computation,
and furthermore the identities of the corrupted parties are determined adversarially and adaptively as
the computation unfolds. In particular, while security in this setting (traditionally called adaptive secu-
rity) has been extensively studied, the following very basic question has remained unanswered:

How many rounds are required for adaptively secure multiparty computation?

We first focus on the very basic case of two parties with honest-but-curious corruptions. Even here
there is a large gap between the best-known protocols and what is potentially possible: In the static
case (where parties are either compromised from the start or remain compromised throughout), the
Yao garbled circuit protocol [Yao86, Rog91] provides a classic two-message solution with no trusted
setup other than authenticated communication. The protocol can be easily extended to withstand
adaptive corruptions in settings where parties can effectively erase sensitive local information. It can
also be easily extended to withstand adaptive corruption of one of the parties even without having to
trust effective erasure of data, e.g. by encrypting the communication using non-committing encryption
[CFGN96]. However, in the pertinent case where local data cannot be erased in a trustworthy way,
and where both parties can be eventually compromised, the best known solution so far that does not
use additional trusted setup takes O(d) rounds, where d is the depth of the evaluated circuit [GMW87,
CLOS02a]. The case where both parties are eventually compromised is of interest in settings where the
analyzed protocol is a component in a larger system and one wants to provide security guarantees for
the system even when both participants are compromised. It is also instrumental in providing leakage
resilience guarantees, as discussed in more detail later on.

The situation is similar in the multi-party setting: With static corruptions, as well as adaptive
corruptions with erasures, and all-but-one adaptive corruptions without erasures, we have constant
rounds solutions [BMR90, IPS08, GS12]. However, when all parties can eventually be corrupted and
trustworthy erasure is not available, the O(d)-rounds protocol of [GMW87, CLOS02a] is essentially the
best known.

The same dichotomy translates also to the case of Byzantine corruptions in the plain model with
respect to non-concurrent security [Can00, Gol04].

We note that in the common reference string model (namely, when the parties are given access to
a common string that was sampled by a trusted party from a predetermined special distribution) we
do have constant rounds adaptively secure two-party and multi-party computation protocols that do
not need trustworthy data erasure and withstand eventual corruption of all parties and Byzantine fault
[GP14, DKR14, CGP15, CP16]. In fact these protocols are even UC-secure. On the down side, all of
these protocols are based the heavy machinery of indistinguishability obfuscation.
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1.1 Our results

We show constant-rounds, adaptively secure protocols in all the above cases. Our protocols use min-
imal hardness assumptions - analogous assumptions to those needed for obtaining static security.
Specifically:

Theorem (informal): Assume existence of non-committing encryption schemes. Then there exist:

• A minimum interaction (i.e., two-message) two-party general function evaluation protocol that with-
stands adaptive honest-but-curious corruption of both parties. The protocol is in the plain model and does
not use data erasures.

• A constant-round multiparty general function evaluation protocol in the plain model that withstands
adaptive honest-but-curious corruption of all parties.

Assuming in addition collision resistant hashing and dense cryptosystems, there exist:

• A constant-round multiparty general function evaluation protocol in the plain model that withstands adap-
tive Byzantine corruption of all parties, in the non-concurrent security model [Can00].

• A constant-round UC-secure multiparty general function evaluation protocol in the common random string
model, in face of adaptive Byzantine corruption of all parties.

Application to leakage tolerant computation. [GJS11, BCH12]. A more nuanced (and considerably
stronger) level of security for multi-party computation protocols considers adversaries who, in addition
to corrupting parties, can obtain (presumably via side channel attacks) some partial information on the
internal states of all parties. Still, this information is obtained from each party individually. Security
against such attacks requires that, for any l, any adversary that learns vector of values of some function
with l-bit output, applied, individually, to the state of each party, can be simulated “in the ideal model”
given only l bits of information on the input and output of each party individually. Thus, the notion of
leakage tolerance provides “graceful degradation” guarantees, bounding the rate of degradation of
security with the increase in leakage1.

It is currently known how to realize only weaker variants of this strong requirement. One signif-
icantly weaker variant only requires that the leakage from the state of each individual party can be
simulated given the inputs and outputs of all parties, pooled together [BGJ+13]. Another variant allows
corruption of only some of the parties [BDL14].

We show that a variant of our multi-party protocol provides the first leakage-tolerant protocol that
tolerates any level of leakage from any number of parties, and where the information learned in each
leakage operation is simulatable given only the inputs and outputs of the victim party alone. As in
[BDL14], our protocol requires an input-independent leak-free preprocessing stage. However, while in
[BDL14] the preprocessing stage suffices for evaluating the function on multiple inputs, our prepro-
cessing stage suffices only for a single evaluation. In contrast, while [BDL14] work in the common
reference string model, our protocol works in the plain model. This also gives the first compiler of gen-
eral circuits to two-component leakage resilient circuits in the Only Computation Leaks (OCL) model
[MR04, GR10] — albeit with the caveat that the offline preprocessing stage suffices only for a bounded
number of evaluations. The currently best solution requires a polynomial number of components
[GR10]:

1Leakage tolerance should not be confused with a related but different notion of a leakage resilience, which states that the
adversary shouldn’t learn anything about the secret - say, about the message in case of encryption - even if several bits of the
secret key are leaked.
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Theorem (informal): If there exist non-committing encryption schemes then there exists a multi-party leakage
tolerant general function evaluation protocol in the plain model. The protocol consists of an off-line leak-free stage,
followed by an on-line stage where leakage can be obtained from all parties. Both stages take a constant number
of rounds.

1.2 Our Techniques

Yao’s two-party protocol. We first recall Yao’s protocol for two-party circuit evaluation. Yao’s proto-
col consists of two main components: a garbling scheme and oblivious transfer (OT). Recall that a garbling
scheme allows to transform a circuit C and an input x into their garbled versions C̃, x̃. Given C̃ and x̃, it
should be possible to compute y = C(x). On the other hand, security guarantees that C̃, x̃ do not reveal
anything about x (except for what is revealed by the output y). This is formalized by requiring that the
simulator produces good-looking garbled values C̃ and x̃, given only C and y (but not x). To be useful
in Yao two-party protocol, the garbling scheme needs an additional property called bit-decomposability,
which states that it should be possible to garble each input bit separately, i.e. without knowing other
input bits nor the circuit.

The Yao protocol for evaluating C(x1, x2) for a public circuit C then proceeds as follows. One of
the parties (the garbler G) generates the garbled circuit C̃ and its own garbled input x̃1 and sends C̃, x̃1
to the other party (the evaluator E). To enable evaluation C̃(x̃1, x̃2), E should also get x̃2; however,
G doesn’t know x2 and cannot garble it directly. Instead, G sends x̃2 to E via OT: For each position
i = 1, . . . , |x2|, G garbles both input value 0 and and input value 1. Next, G lets E learn exactly one
of the two garbled bits for each input location i. E chooses to take the bit which corresponds to its
input value for that location. After E receives x̃2, it can evaluate the garbled circuit C̃(x̃1, x̃2) and learn
the output y. Since OT can be implemented in two messages (one message from E to G, and then one
message from G to E), the resulting protocol requires only two messages.

Static security of this protocol (i.e. security against either an a-priori corrutped G or an a-priori
corrupted E) follows from security of the garbling scheme and the OT.

Specifically, if the garbler is corrupted, the simulator learns the garbler’s input x1 and generates the
garbled circuit and garbled input honestly. If the evaluator is corrupted, or if nobody is corrupted, the
simulator shows the simulated garbled circuit and simulated garbled input.

The challenge of adaptive security. Recall that in the setting of adaptive security, the adversary can
corrupt parties as the protocol proceeds; upon each corruption, the adversary learns the whole internal
state (e.g. inputs and random coins) of that party. In the ideal world the simulator obtains only the
input and output of the corrupted party and has to produce consistent random coins of that party.
Furthermore, inputs and outputs are learnt only at the time of corruption.

The above static-corruptions simulation of the Yao protocol fails in in the adaptive setting, even if
ideally secure communication is provided. To illustrate the problem, consider the adversary that waits
until the protocol is finished, then corrupts the evaluator E, and then the garbler G. Upon corruption of
E, the simulator S is given E’s input x2 and output y and is required to present the garbled circuit and
both garbled inputs; however, S doesn’t know G’s input x1 at this point, and therefore can only present
the simulated garbled circuit and inputs. Upon corruption of G, however, the adversary expects to see
G’s internal state - and in particular randomness which was used to garble the circuit and inputs. Now
S is in trouble: not only does it have to convince that the (simulated) garbled circuit was generated
honestly - which is already hard for S to do - it also needs to make sure that the simulated garbled
input x̃1 looks like a garbling of the value x1, which S just learned.

Equivocal garbling schemes. We get around this difficulty by constructing a scheme that allows the
simulator to generate “fake garbled circuits” and “fake garbled inputs” that can be later consistently
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“opened” (by presenting consistent randomness of the garbling) to a given input x. We call such
garbling schemes equivocal. In a bit more detail, an equivocal garbling scheme allows the simulator to
first generate a garbled circuit Ĉ together with garbled input x̂, given only C and y = C(x). Later, given
x, the simulator generates a fake randomness of the garbling that makes Ĉ, x̂ look like a real garbling
of C, x. 2

Our equivocal garbling scheme can then be used in a straightforward way, together with adaptively
secure OT and non-committing encryption, to obtain our first main result, namely adaptively secure,
two-message, two-party computation.

Our equivocal garbling scheme is a modification of the traditional Yao garbling scheme; thus, we
first recall how the latter works. Given a public circuit C and an input x, for each wire w in C, the
garbler chooses two random labels, k0

w and k1
w, where each label is a λ-bit string, λ being the security

parameter. Then for each gate g in C, the garbler prepares four ciphertexts c00
g , c01

g , c10
g , c11

g , where cb1,b2
g

is an encryption of kb3
w3 under a combination of the keys kb1

w1 and kb2
w2 , where w1, w2 are the input wires

to g, w3 is the output wire of g, and b3 = g(b1, b2) is the value of the output bit of gate g on input bits
b1, b2 (there are several standard ways to implement the underlying encryption mechanism using any
one way function). Output gates encrypt output bits instead of labels.

Each garbled gate consists of the four ciphertexts listed in random order, and the garbled circuit C̃
consists of all garbled gates. The garbled input x̃ consists of labels for input wires corresponding to
bits of x, i.e. kxi

i for every i = 1, . . . , |x|. Given garbled circuit and garbled input, the circuit can be
evaluated gate by gate, by decrypting an appropriate ciphertext and learning the label for its output
wire.

This scheme satisfies the standard (i.e. non-equivocal) definition of the garbling scheme. Indeed,
to simulate the garbled circuit given C and y, the simulator, instead of encrypting k0

w, k1
w for each gate,

will encrypt the same random label kw four times (output gates should instead encrypt y). The input
is garbled by giving ki for i = 1, . . . , |x|. Intuitively, this simulation is good, since evaluation results in
y, and since the adversary can only decrypt one ciphertext per gate, which decrypts to a random label,
just like in the real case. However, this scheme is not equivocal: if the simulator has to explain how
ciphertexts were generated, then it has to show randomness of encryption and all keys, but in this case
the adversary would see that all four ciphertexts encrypt the same label.

This problem would be solved if the simulator was able to pretend that a ciphertext c, encrypting
kw, actually encrypts a different value k̄w. And indeed, the first attempt to solve this problem may
be to use non-committing encryption (NCE) for generating the four ciphertexts that comprise each
garbled gate. (Recall that NCE allows the simulator to generate “dummy ciphertexts” c that can be
later opened to any message m in some domain. In the case of symmetric encryption, which suffices
here, this means demonstrating a dummy ciphertext c and then, given a message m, demonstrating a
key km and random input rm for the encryptor such that Enc(m, km, rm) = c and Dec(km, c) = m. )

If the garbling scheme is instantiated with NCE, it indeed becomes equivocal: roughly, the simu-
lator can generate dummy ciphertexts first, but “open” them appropriately later, so that they appear
encrypting kw, kw, kw, and k̄w. However, we know that for NCE the key size must be at least the message
size [Nie02]. Since each label for an input wire to a gate is used to encrypt two out of four ciphertexts,
we have that with NCE the labels for the input wire to a gate must be at least twice as long as the labels
for the output wire. This means that circuits of at most logarithmic depth can be garbled in polynomial
time. (In fact, for such circuits the one-time-pad provides a perfect NCE with statistical security.)

A number of attempts to save on the length of NCE keys, at the price of limiting the equivocation
capabilities, have been proposed, although in a different context [HJO+

16], [GWZ09]. We note that nei-
ther of these methods seem to suffice in our setting. We give more details at the end of the introduction
in section 1.3.

2We do not use the term adaptive garbling since this term has already been used in the literature to denote a very different
form of adaptivity for garbling schemes [GKR08, BHR12]. See section 1.3 for details.
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Functionally equivocal encryption (FEE). We avoid this exponential blowup in label size by using a
new type of symmetric encryption scheme, which we call functionally equivocal encryption (FEE). FEE
behaves much like symmetric NCE, except that the keys are significantly shorter — at the price of
somewhat restricted equivocation capabilities. That is, consider the case where the plaintext space is
large ({0, 1}l), but we want to “open” dummy ciphertexts to messages only from a much smaller, but
still exponential, subset R ⊂ {0, 1}l , where |R| = 2n, and n << l. (Say, R may be the set of English
sentences, or the range of a pseudorandom generator from λ bits to 2λ bits.) If NCE is used, keys still
have to be as long as l; in FEE length of keys instead depends on n which is much shorter than l. It
turns out that such a scheme can be constructed for any set R which has a short description - that is,
for which there exists an efficient circuit f : {0, 1}n → R which enumerates its elements.

At a high level, the syntax of FEE is the following: an encryption algorithm can encrypt any message
m ∈ {0, 1}l (for technical reasons, encryption also needs to know parameters of f , i.e. its description
size, input size, and output size). The simulator can fix a set R, which it wants to equivocate to,
by choosing its description function F, and simulate a dummy ciphertext c ← Sim( f ). Later the
simulator can open c to any m′ ∈ R, as long as it knows preimage x such that f (x) = m′, by running
(rEnc, k) ← Sim(c, x, f ). However, for our garbling scheme we need a slightly different syntax, as we
describe below.

More formally, an instance of an FEE scheme is parameterized by the length parameters s, n, l,
where {0, 1}l is the message space, n is equivocality parameter (i.e. the size of set R we want to
equivocate to is 2n), and s is the size of description of the function f : {0, 1}n → R, which defines the
set. In addition to standard key generation, encryption and decryption algorithms, there is a simulator
that operates in three steps, where each step involves a different algirithm as follows.

First, the simulator uses algorithm SimEnc to generate dummy ciphertexts. Let f be a function from
n bits to l bits with description size s. Algorithm SimEnc takes as input a description of this function
and generates a dummy ciphertext c f together with a trapdoor.

Then, the simulator uses algorithm Equiv to generate a dummy (symmetric) key. Algorithm Equiv
takes the trapdoor and a value x ∈ {0, 1}n and generates a dummy key kx such that Dec(kx, c f ) = m,
where m = f (x).

Finally, the simulator uses algorithm Adapt to generate dummy randomness for the encryption
process. Algorithm Adapt takes the trapdoor, x, and kx, and outputs dummy randomness rx such that
Enc(kx, m, rx) = c f , where m = f (x).

The values kx, rx, c f should be distributed indistinguishably from a real key, real randomness and
real ciphertext in the process of encryption and decryption of m. In particular, the function f and the
value x should remain hidden even given m, kx, rx, c f . We also stress that the function f is used only
in the generation of dummy values. Real encryption and decryption works for arbitrary messages in
{0, 1}l , and does not need to know f .

Importantly, besides security we also require efficiency; that is, FEE keys should have size n · poly(λ)
- potentially much shorter than NCE keys for l-bit messages, which size has to be at least l. This
efficiency requirement will make sure that the size of labels (i.e. FEE keys) in the garbled circuit
doesn’t grow with the depth of the circuit, thus allowing to garble any polynomial-sized circuit C. At
the same time, we will be able to prove security of the garbling, given this limited equivocation, as we
describe below.

From FEE to equivocal garbling. Our equivocal garbling scheme uses FEE as the underlying encryp-
tion mechanism. The garbling process is the standard one: the garbler chooses FEE keys and generates
garbled gates as double-encryptions of the next level keys (the difference is that FEE encryption needs
to know parameters of the function f to be used in equivocation; these parameters are some fixed
polynomials in |C|, λ, and |x|). The simulation however is done differently: the idea is to have the
adaptive simulator S for the garbling scheme choose the functions for the different dummy ciphertexts
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so that it can later equivocate the keys, plaintexts and randomness to complete the simulation.
This is done as follows. At the first stage of the simulation (i.e. when the simulator has to produce

C̃, x̃, given C and y), the simulator chooses at random one label kw for each wire in the circuit C; these
labels will be the active labels, namely the wire labels that are exposed to the adversary at this stage.
Next, the simulator computes the simulated garbled gates, in sequence, gate by gate from the output
wire of the circuit to the input wires, in topological order (we remark that this sequentiality is imposed
for exposition purposes only not crucial, we later show how to garble all gates in parallel.)

Let g be a gate with input wires w1, w2 and output wire w3. The four ciphertexts c00
g , ..., c11

g are com-
puted, using an FEE scheme, as follows. The simulator chooses a random index among 00, 01, 10, 11,
say, 00. Then c00

g is set to be a real FEE encryption of kw3 with keys kw1 and kw2 (the output gate instead
encrypts y). The other three ciphertexts c01

g , c10
g , c11

g are dummy ciphertexts, created using the SimEnc

procedure of the FEE scheme with respect to special functions f 01, f 10, f 11, which will be explained
later and which will help the simulator in equivocation.

The simulator presents these FEE ciphertexts as the garbled circuit, and gives k1, . . . , k|x| as the
garbled input.

At the second stage of the simulation, i.e. when the simulator has to present randomness used
to garble, the simulator first will set each inactive key to be k̄w = Equiv(x, tdw), and give it to the
adversary. Thus the adversary now possesses all keys, both active and inactive, and therefore can
decrypt all ciphertexts and check whether the gates were garbled correctly. We construct functions f
such that the gates will indeed appear correct to the adversary: namely, each gate will encrypt one
key 3 times and the other key once (assuming a NAND gate), and furthermore, one of these keys will
exactly be kw3 , and the other key will be k̄w3 (where w3 is an output wire of the gate). Finally, it will be
consistent with the computation, in particular, if w3 gets assigned 1 in the computation C(x), then kw3

appears in 3 ciphertexts of a NAND gate; it w3 is 0, then only once. To achieve this, we define functions
f b1b2 as follows (with hardwired values b1, b2, C, wire indices w1, w2, w3, the active labels kw1 kw2 kw3 , and
a trapdoor value tdw3 that comes from the FEEs associated with the gate g′ that takes wire w3 as input.):

Given input x, do:

• Evaluate C(x) and find the bit assignments σ1, σ2, σ3 to wires w1, w2, w3, respectively.

• Associate the label kw3 (hardwired) with bit σ3. Compute k̄w3 = Equiv(x, tdw3) and
associate it with the bit 1− σ3 (We call k̄w3 the inactive label for wire w3.)

• Return a label according to the logical value of the gate. That is, if the gate is a NAND
gate and (b1 ⊕ σ1)NAND (b2 ⊕ σ2) = σ3 then output the active label kw3 . Else, output
the inactive label k̄w3 .

To illustrate why the gate looks like a normal Yao garbled gate under keys kw1 , k̄w1 , kw2 , k̄w2 , consider
the example where w1 was assigned 0, w2 was assigned 1, and w3 was assigned 0NAND 1 = 1 by the
computation C(x). Thus, the job of the simulator is to open four ciphertexts so that they encrypt kw3

three times and k̄w3 only once, since active key kw3 should look like a label for 1. To simplify things, let
us ignore the fact that ciphertexts are double encryptions; let us pretend that all four ciphertexts are
only encrypted once - under kw1 and k̄w1 . Since our goal is to demonstrate how inactive key k̄w1 will
decrypt things correctly, we focus on ciphertexts which are encrypted under this key, namely, c10 and
c11.(Recall that c00 will be decrypted correctly to kw3 under kw1 , kw2 , since it was an honest encryption.
The other ciphertext, c01, is a dummy ciphertext under keys kw1 and k̄w2 . The inactive key k̄w2 will
make sure it decrypts appropriately, using a mechanism similar to described above.)

First let’s see how these two ciphertexts should be decrypted: since c00 is the active ciphertext cor-
responding to wire assignments 0, 1, c10 should correspond to 1, 1, (indeed, c00 and c10 are ciphertexts
for the opposite bits of w1, but the same bit of w2) and thus it should pretend to encrypt the key for
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1NAND 1 = 0, i.e. k̄w3 . Similarly, c11 should correspond to 1, 0, and thus it should pretend to encrypt
the key for 1NAND 0 = 1, i.e. active key kw3 .

Now let’s compare to how these ciphertexts will be decrypted. Since c10 was generated under the
function f 10, decrypting it with k̄w1 = Equiv(x) will result in f 10(x); c11 will decrypt to f 11(x). A closer
look at these functions reveals that f 10(x) and f 11(x) are exactly k̄w3 and kw3 , as it should be. Indeed,
each f takes hardcoded active kw3 , computes inactive key k̄w3 , and decides which to output, using, in
fact, exactly the same reasoning as the one we used above to decide which key should be the output!

While in the actual proof we have to deal with slightly more complicated functions due to the fact
that each cb1b2 is a double encryption, the idea is exactly the same: let functions f evaluate C(x) and
themselves decide, what to output.

It remains for the simulator to explain randomness of encryption; this is done by running the Adapt
algorithm of the FEE on input x, along with the appropriate keys and trapdoors.

Finally, we comment on the sizes of the keys, since this was the reason why we couldn’t simply use
NCE. Since each function f takes x as input, the size of equivocable set is 2|x|, and by the property of
NCE, the key size only depends on |x|, but not on the plaintext size (in fact, with our implementation
of FEE the key size will be just λ|x|). Thus, even though each key has to equivocate two plaintexts of
size |k| each and would otherwise have to grow, with FEE the key size can be set to λ|x| throughout
the circuit.

Constructing FEE. We construct FEE using the Yao garbled circuits again — whereas this time it is
the standard, statically secure version. In a nutshell, a real FEE key k is a simulated garbled input in
the Yao garbled circuit, i.e. a set of n random labels for the input wires of a garbled circuit with n-bit
input. A real FEE ciphertext encrypting message m with respect to the key k is a simulated garbled
circuit (consistent with labels from k) with output m. Decryption works by evaluating the ciphertext
(i.e. the simulated garbled circuit with output m) using the key (i.e. simulated input), which results in
m.

A simulated FEE ciphertext for function f is a real garbling of f . A simulated FEE key, equivocating
c for message m (such that f (x) = m for some x), is a real garbled input x. Indeed, note that the real
ciphertext and the key are indistinguishable from simulated by security of the garbling scheme; in
particular, decrypting the simulated ciphertext (i.e. a real garbled f ) with the simulated key (i.e. a real
garbled x) results in computing f (x) = m.

In a bit more detail, recall that an FEE scheme is parameterized by s, n, l where 2l is the size of the
plaintext space, 2n is the size of the set R of messages that a dummy ciphertext can open to, and s is
the size of the description of the function f : {0, 1}n → R. The scheme proceeds as follows. Let Us,n,l be
the universal circuit that takes an s-bit description of a function f from n to l bits, and an n-bit value x,
and outputs the l-bit value f (x). The key k consists of n labels k1, ..., kn, where as usual each label is a
random λ-bit string. To encrypt an l-bit message m, let Im describe the constant function that outputs
m on all inputs, and construct a simulated (using the static simulator) garbled evaluation of U(Im, 0n),
where the n labels that correspond to the input of Im are the key k1, ..., kn. Specifically, the ciphertext
consists of one label for each wire of Us,n,l , except for the labels that correspond to the 0n input. The
FEE ciphertext also contains four ciphertexts per gate of Us,n,l . One of these four ciphertexts is an
encryption of the output label using the two input labels as the key, and the other three ciphertexts
are just random strings. The ciphertexts are computed using a standard symmetric encryption scheme
that is compatible with Yao static garbling.

Decryption amounts to evaluating the garbled circuit in the ciphertext using the labels k1, ..., kn in
the key for the input wires.

To generate a dummy ciphertext c f for function f , prepare a real Yao static garbling of the circuit
U( f , ·), along with one label for each function wire and two labels for each input wire. c f consists of
the garbled gates and the labels for the function wire for U( f , ·), and the trapdoor consists of the two
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labels for each input input wire for U( f , ·).
To demonstrate a key kx such that Dec(kx, c f ) = f (x), give the label for each input wire for U( f , ·)

that corresponds to input value x. To show randomness rx such that Enc(kx, f (x), rx) = c f , give the
randomness used to encrypt the active ciphertext in each garbled gate in c f . The other three ciphertexts
in each garbled gate are presented as randomly chosen strings.

It can be seen that all the FEE properties are met. In particular, the tuple m = f (x), kx, rx, c f
is indistinguishable from m, k, r, c where k, r are random and c = Enc(k, m, r). (We note that above
account is a bit of of an oversimplification of the definition and construction of FEE. See more details
within.)

Two-party secure computation. Constructing two-party secure computation from equivocal garbling
in secure channel setting (which can be implemented using any NCE), given adaptively secure OT (e.g.
OT based on augmented NCE [CLOS02a]) is straightforward: First P2 (the evaluator) sends the first
message in n 1-out-of-2 OTs to P1 (the garbler). Then P1 generates the garbled circuit and sends it to
P2. P1 then sends the second OT messages, where P2’s input to the ith OT is his ith input bit, and P1’s
inputs to the ith OT are the two labels for the ith input wire for P2. Finally P2 evaluates the garbled
circuit and announces the results.

Here we will describe the simulation for the harder case (where the adversary waits until the
protocol ends, then corrupts the evaluator, and then the garbler). Since we assumed secure channels,
the simulator doesn’t need to do anything until the first corruption. When the evaluator is corrupted,
the simulator learns x2 and y, simulates the garbled input x̃1, x2 (without even using x2), and simulates
the garbled circuit for output y. It also simulates OT messages (for OT output x̃2). When the garbler
is corrupted, the simulator learns x1 (and therefore now it knows the whole input x1x2), and uses the
simulator of equivocal garbling to come up with randomness used to garble the circuit (in particular,
both sets of keys). Next it uses OT simulator to simulate random coins of OT for inputs k0

w, k1
w for each

input wire of P2.

The multiparty case. Our muliparty protocol is a variant of the BMR protocol [BMR90]. Recall that
the idea of the BMR protocol is to have the parties jointly generate a single garbled circuit in such a
way that all parties obtain all the garbled gates, and in addition each party Pi obtains one label for each
input wire that’s associated with itself. The label will correspond to Pi’s input value for this wire. Then
the parties broadcast their labels to each other (without the association between labels and values, of
course). Finally each party locally evaluates the garbled circuit and obtains the output value. Since
all gates can be garbled in parallel, the number of rounds of the protocol corresponds to the number
of rounds needed to evaluate a single garbled gate. If generic MPC is used (e.g. [GMW87]) then the
number of rounds is proportional to the security parameter. To get around that, BMR use the structure
of Yao garbling to come up with a constant rounds protocol. Essentially, each party chooses labels and
encrypts them locally, and the only computation that’s joint is the xoring of the plaintexts, the additive
sharing of the labels, and the choice of the random ordering of the four ciphertexts in each garbled
gate. This simple computation can indeed be done in a constant number of rounds.

We keep this structure; however now we are faced with a number of additional challenges. First,
since each of the four ciphertexts associated with a garbled gate now consists of multiple “individual
ciphertexts”, where each individual ciphertext is generated by a single party, it is not a priori clear how
to make sure that the functions embedded in the dummy ciphertexts can be evaluated on the entire
input to the computation. Indeed, it does not suffice that each of the ciphertexts has access to the input
of only one party. Furthermore, since now all parties generate ciphertexts, the simulator now has to
generate simulated encryption randomness whenever any party is corrupted — even before the entire
input is known.

We get around these problems by designing different functions to be embedded in the dummy
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ciphertexts. In a nutshell, each party contributes one FEE ciphertext to each of the four ciphertexts
for each gate. The function embedded in each dummy ciphertext has two modes: in the “random”
mode, the function outputs a predetermined random value. In the “compute” mode, the function
expects to get the full input to the circuit, and returns the appropriate output label xored with the all
the predetermined random values. Later on, the simulator will make sure that the keys exhibited for
all but the last party to be corrupted activate the random mode in their functions. The keys presented
by the last party to be corrupted activate the “compute” mode of the embedded function. This way,
overall, the labels of the simulated garbled circuits play the same role as in the two-party case.

The Byzantine case. We compile our BMR-style honest-but-curious multiparty protocol to a protocol
that withstands Byzantine faults. This is done in two steps: First we obtain a constant-rounds protocol
in the CRS model. This is done generically using the [CLOS02a] compiler. Note that this compiler pre-
serves adaptive security while increasing the number of rounds by a factor of at most 3. Any hardness
assumption that implies augmented NCE suffices. (In contrast, all existing constant-rounds adaptively
secure multiparty computation protocols in the CRS model use indistinguishability obfuscation in an
essential way.)

The second step replaces the CRS modeling with the constant-rounds adaptively secure coin tossing
protocol of [GS12]. (Recall that while the overall protocol of [GS12] only obtains adaptive security for
all-but-one corruptions, their underlying coin tossing protocol is indeed secure even if all parties are
eventually corrupted.) We note that in order to be able to use the [GS12] protocol the CRS must be
“public coins” - i.e. it should essentially be uniformly distributed. We can still use [CLOS02a] to do
that, at the price of assuming dense cryptosystems. In addition, the [GS12] protocol uses collision
resistant hash functions.

Obtaining leakage resilience. As discussed earlier in the introduction, we also construct a variant of
the above multiparty protocol that’s leakage tolerant as in [BCH12, BDL14]. It was shown in [BCH12]
that any adaptively secure protocol where the simulation is oblivious is also leakage tolerant. Here
oblivious simulation means that the simulated state of each corrupted party must be computed “lo-
cally”, based only on the input and output of that party, plus perhaps some joint randomness that
was sampled ahead of time and is available upon corruption of any party. In particular, the simulated
state of a party cannot depend on the input or output of another party, even if that party is already
corrupted.

Following [BDL14], we assume that the parties can first interact in a leak-free environment to
sample some joint random state before the inputs are known. A first thought might be to simply run
the above BMR-style protocol, where the initial sampling of the garbled circuit is done in the leak-free
stage, and furthermore all randomness other than the output of that computation is erased. However
note that the simulation in that protocol is inherently non-oblivious, since the simulator of the last
party to be corrupted need to know the inputs of all parties.

We thus construct a new protocol that implements the BMR paradigm in a very different way. We
start by extending the notion of FEE to the setting where each key and each ciphertext is generated
jointly by a several participants. We call this new notion “Functional Equivocal Group Encryption
(FEGE)”. Now, rather than having each of the four ciphertexts in a garbled gate consist of multiple
individual FEE ciphertexts, we let each one of these four ciphertexts be a single FEGE ciphertext that
was generated by all the parties. This allows creating dummy ciphertexts that embed functions f
that depend on values encoded in different pieces of the joint “group key”. Now, when each party is
corrupted, the simulator for that party will make sure that the simulated labels associated with that
party will encode the input of that party. This way, as soon as all parties are corrupted, the overall
input to f will encode the entire input to the circuit and the same functional equivocation mechanism
will operate when the simulated garbled circuit is evaluated.
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We can only make this idea work in the setting where the joint sampling of the labels takes place in
a leak-free environment where all randomness except for the output of the preprocessing stage can be
erased. Still, we obtain the first multiparty computation protocols in the plain model where all parties
can be eventually corrupted, and the simulation is oblivious (modulo the initial offline sampling stage).

Public-key FEE. We extend FEE to the public-key setting. Similarly to symmetric FEE, a public-key
FEE, or PK-FEE scheme is parameterized by the set Fs,n,l of functions from n bits to l bits, whose
description size is at most s bits. (Again, we consider the case where n << l.) Key generation,
encryption and description are standard, where the size of the public and private keys is Oλ(n) and
the size of ciphertexts is Oλ(s).

The algorithms for generating dummy ciphertexts and dummy encryption randomness have sim-
ilar functionality as in the symmetric case. The algorithm for generating dummy secret keys is now
naturally extended to generate not only a dummy decryption key; rather it should generate dummy
randomness for the key generation algorithm, that will be consistent with the existing public encryp-
tion key and the dummy decryption key.

PK-FEE can be used to shorten the size of keys beyond what is possible in the case of standard
non-committing encryption (NCE), while preserving the ability to generate dummy ciphertexts that
can be opened to messages of choice. The ability to choose f and x separately provides additional
flexibility. For instance, if f is a pseudorandom generator from n to l bits, then the scheme can be
used to encrypt arbitrary l-bit messages, and then to generate dummy ciphertexts that later open to
random-looking l-bit messages, and get away with keys of size Oλ(n).

We construct PK-FEE from symmetric FEE and NCE, as follows. Key generation generates a keypair
(ke, kd) for an NCE scheme for encrypting a key for the symmetric FEE scheme, namely Oλ(n) bits. To
encrypt a message m ∈ {0, 1}l , choose an FEE key k, compute c1 = FEE.Enc(k, m), c2 = NCE.Enc(ke, k),
and let c = c1, c2. Decryption is done accordingly.

To generate a dummy ciphertext for function f run FEE.SimEnc( f ) to obtain c f and NCE.Sim to
obtain a dummy ciphertext c̃, and output c f , c̃, along with the state information from both simulators
as trapdoor.

To generate a dummy key kx for value x ∈ {0, 1}n, first obtain kx = FEE.Equiv(x, td), where td is the
trapdoor generated by FEE.SimEnc. Next use NCE.Sim again to obtain the key generation randomness
that leads to decryption of c̃ to kx.

Finally, to generate encryption randomness, run FEE.Adapt(x, kx, td) and NCE.Sim again. The
definition of security and the analysis follow naturally.

1.3 Related notions

Some definitions, mentioned in the introduction and related to our work, have very subtle differences
between them, and similar names. In this section we comment on the differences.

Definitions related to FEE. Recall that the reason for introducing FEE was to shorten the NCE secret
key, by limiting equivocation. We remark that somewhere equivocal encryption [HJO+

16] and somewhat
non-committing encryption [GWZ09] were introduced to achieve very similar goals (although not in the
context of equivocal garbling). Despite the fact that our definition of FEE is similar in spirit, it is in fact
a stronger primitive. We underline that previous definitions do not seem to suffice for our construction
of equivocal garbling.

Roughly, somewhere equivocal encryption allows to encrypt l bits such that later bits in n predeter-
mined positions, but not other bits, can be equivocated; the secret key has to be proportional to n, but
not l (where n is significantly smaller than l). This is a special case of FEE for 2n-sized set R with fixed
l − n bits. However, our construction of equivocal garbling requires equivocating to more complicated
sets.
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Somewhat non-committing encryption is closer to our FEE, since it allows to explain a dummy cipher-
text for l-bit messages as any message from a predetermined set of size 2n; however, the construction
of [GWZ09] works only for polynomial-sized sets, since their communication is proportional to 2n.
In contrast, for our construction we need to be able to equivocate to sets of size 2|x|, which could be
exponential. In addition, their construction is an interactive protocol, rather than a non-interactive
encryption required in Yao garbled circuits.

Definitions of adaptive garbling. Note that our equivocal garbling is essentially an adaptively secure
garbling, where “adaptive security” means security against adaptive corruptions. That is, the garbling
should remain secure even if the adversary prefers to see the communication first (i.e. the garbled
circuit and garbled input), and later corrupt the garbler and see its internal state (i.e. randomness used
to garble the circuit).

However, we prefer to use a different name - equivocal garbling - since the term “adaptive garbling”
was used to denote a different security definition. Adaptive garbling, or garbling with adaptive choice of
inputs [GKR08, BHR12], requires that the garbled circuit and input can be simulated even though the
input is chosen after the adversary sees the garbled circuit. That is, they allow the adversary to first
determine C and see garbled C̃, and only then determine x and see x̃. C̃ should be simulatable given
only C, and x̃ should be then simulated given in addition y = C(x), but not x.

This definition is incomparable to our definition of equivocal garbling: indeed, in adaptively-
chosen-inputs garbling the simulator doesn’t have to simulate random coins of the party. On the
other hand, here x can be chosen adaptively by the adversary after seeing C̃, whereas in equivocal gar-
bling x has to be fixed in advance. (Such selective choice of inputs suffices for two party computation,
since in the Yao protocol both inputs of the parties are already fixed by the time the garbled circuit has
to be generated, i.e. after the first message is sent).

2 Definitions

A garbling scheme. Intuitively, a garbling scheme takes a circuit C and an input x and generates their
garbled versions C̃, x̃ such that:

• Given C̃, x̃, it is possible to compute y = C(x);

• C̃, x̃ don’t reveal anything about x except y = C(x).

The latter requirement is formalized by requiring that the simulator, who only knows C and y, can
simulate the garbled circuit C̃ and the garbled input x̃ without knowing x.

In this paper we consider definitions of garbling with additional property called bit decomposability,
which states that each bit of input x can be garbled without knowing other bits. This property will
be required both for constructing FEE from statically secure garbling and for constructing two-party
computation from adaptively secure garbling.

Definition 1 (Statically Secure Garbling Scheme). We say that (Gen,GarbleProg,GarbleInp,Eval) is a stati-
cally secure garbling scheme, if the following properties hold:

• Correctness:

Pr[r ← {0, 1}|r| ; K ← Gen(1λ); C̃ ← GarbleProg(K, C; r); {x̃i}n
i=1 ← GarbleInp(K, xi, i) :

Eval(C̃, x̃) = C(x)] > 1− negl(λ);

• Static security: There exists a PPT algorithm Sim, such that any PPT adversary A wins the following
game with at most negligible advantage:
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1. A(1λ) gives a circuit C and an input x to the challenger;

2. The challenger flips a bit b.
If b = 0:

– It chooses random key K ← Gen(1λ) and randomness of garbling r;
– It sets (C̃ ← GarbleProg(K, C; r), {x̃i}n

i=1 ← GarbleInp(K, xi, i);
– It sends C̃, x̃ to the adversary.

If b = 1:

– It sets y = C(x);
– It runs the simulator (C̃, x̃)← Sim(1λ, C, y)
– It sends C̃, x̃ to the adversary.

3. The adversary outputs a bit b′.

The adversary wins if b = b′.

We will require one additional property of the statically-secure garbling scheme which is oblivious-
ness. Roughly speaking, this property requires that there be a mechanism to reveal an honestly com-
puted garbling as one that was computed by the simulation. A standard garbling mechanism using
the Yao’s garbling scheme computed using an encryption scheme which has pseudorandom ciphertexts
can be shown to have this obliviousness property. On a high level it will suffice for the simulator to
generate the inactive garbled rows as random strings and have the real ciphertexts in the inactive rows
of an honestly computed garbling revealed as random strings. We define this obliviousness property
next.

Oblivious sampling. There exists a PPT algorithm oSamp such that for any polynomial-time circuit
C and for all input output pairs (x, y) such that C(x) = y it holds that the following two distributions
are indistinguishable.

{r ← {0, 1}|r| ; K ← Gen(1λ); C̃ ← GarbleProg(K, C; r); x̃ ← GarbleInp(K, x) : (oSamp(r, K, x), C̃, x̃)}

{R← {0, 1}|R| ; (C̃, x̃)← Sim(1λ) : (R, C̃, x̃)}

2.1 Equivocal Garbling Scheme

Definition 2 (Equivocal garbling scheme). We say that (GarbleProg,GarbleInp,Eval) is an equivocal (adap-
tively secure) garbling scheme, if the following properties hold:

• Correctness:

Pr[r ← {0, 1}|r| ; K ← Gen(1λ); C̃ ← GarbleProg(K, C; r); {x̃i}n
i=1 ← GarbleInp(K, xi, i) :

Eval(C̃, x̃) = C(x)] > 1− negl(λ);

• Security: There exists a pair of PPT algorithm (Sim1,Sim2), such that any PPT adversary A wins the
following game with at most negligible advantage:

1. A gives a circuit C and an input x to the challenger;

2. The challenger flips a bit b.
If b = 0:

– It chooses random garbling key K and randomness r;
– It sets (C̃ ← GarbleProg(K, C; r), {x̃i}n

i=1 ← GarbleInp(K, xi, i);
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– It sends C̃, x̃, K, r to the adversary.

If b = 1:

– It sets y = C(x);
– It runs the simulator (C̃, x̃, state)← Sim1(C, y)
– It runs the simulator (K, r)← Sim2(state, x)
– It sends C̃, x̃, K, r to the adversary.

3. The adversary outputs a bit b′.

The adversary wins if b = b′.

As explained before (see section 1.3), we reiterate here that our notion of equivocal garbling is
different from the notion of adaptive garbling that requires security against an adaptive choice of
inputs [GKR08, BHR12].

2.2 Convention for Garbling Schemes

We rely heavily on the Yao garbling scheme. We will follow some conventions when we describe
garbling schemes.

• λ denotes the security parameter.

• We will use C to denote a circuit with description size |C|.

• Suppose C has an n-bit input and 1-bit output. The wires are numbered from 1 through m where
we assume that wires are from 1 to n are input wires, and wire m is an output wire. We use κ to
denote the size of keys k0

w, k1
w for each wire w.

• We denote by bitw the bit assigned to wire w by the computation C(x).

• Typically, when we discuss a particular gate g, we use the notation α, β to denote the wire num-
bers of the input wires of the gate and γ the wire number for the output wire of the same gate.

• Induction. We will carry out induction by demonstrating as base case that the property holds
for the input wires of the circuit. Then in an induction step we show that if for any gate the
property holds for the input wires of a gate then it holds for the output wire of that gate. Then by
considering a standard topological ordering of the gates the property will hold for output wires
by the principle of mathematical induction.

A common property (invariant) that we will repeatedly use in this work is the following: for
every wire there will be three bits associated, bitw that will represent the “actual” value flowing
through that wire, λw a hidden masks and Λw the visible masks. We will maintain the invariant
that bitw = λw ⊕ Λw. These masks have been so labelled to reflect what is visible and hidden
from the evaluator of the garbled circuit.

• A garbled circuit comprises of garbled gates and each garbled gate comprises of 4 garbled rows.
The garbled rows will be permuted according to the visible masks.

• We call keys kbitw
w (participating in the computation C(x)) active keys, and the other key for wire

w, namely, k1⊕bitw
w as inactive keys. Analogously, the garbled row that corresponds to two active

keys will be called the active rows and the remaining three rows as inactive rows.
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Left Column Right Column

Key kb⊕λα
α k

b′⊕λβ

β

Ciphertext cbb′
g,left cbb′

g,right

Share sbb′
g,left sbb′

g,right

Table 1: Quick reference for convention for contents of Row (b, b′) in Gate g.

• Point-and-permute. For a gate with input wires α, β and output wire γ, in row (b, b′) for
b, b′ ∈ {0, 1}, we will use keys corresponding b ⊕ λα and b′ ⊕ λβ and we will encrypt the key
corresponding to v = g(b⊕ λα, b′ ⊕ λβ) and mask v⊕ λγ. According to this convention, it is easy
to see that the active row determined by bitα and bitβ is (Λα = bitα ⊕ λα, Λβ = bitβ ⊕ λβ) and the
value encrypted will be g(bitα, bitβ).

A note on how the garbled rows are computed. Typically in a Yao garbling scheme the key (or
message) to be encrypted in a row will be “double encrypted”, i.e. first encrypted with the key for
wire β and next with key for wire α. We use a different double encryption: we will apply XOR-based
secret sharing to the key: kγ = sleft⊕ sright, and encrypt one share with the one key and the other share
with the other key, thus obtaining a pair of ciphertexts cleft, cright. Table 1 describes how the shares and
ciphertexts will be denoted for a gate g with input wires α, β and output wire γ in Row (b, b′). Without
loss of generality α will be the left wire and β will be the right wire.

Gate g looks like:

Gg =


(c00

g,left, c00
g,right),

(c01
g,left, c01

g,right),
(c10

g,left, c10
g,right),

(c11
g,left, c11

g,right)

3 Functionally Equivocal Encryption

In this section we define and construct the symmetric-key encryption called functionally equivocal en-
cryption (FEE). This encryption is adaptively secure, meaning that the simulator can generate a dummy
ciphertext (without knowing the plaintext m ∈ M) and later equivocate it to some plaintext m′: that is,
it can show encryption randomness rEnc and the key k which are consistent with plaintext m′ and the
simulated ciphertext.

What makes FEE different from a non-committing encryption is that the equivocation is limited:
the simulator cannot equivocate to any m′ ∈ M, it can only equivocate to messages in the range of some
function f ( f has to be determined at the moment when the simulated ciphertext is generated). That
is, the simulated ciphertexts (generated with respect to a function f ) can be equivocated to a message
m′ only if m′ = f (x) for some x; x can be thought of as a “a short description” of m′ with respect to
a function f . Another important difference is that FEE keys are succinct: that is, the size of the key
only depends on the size of description x (which we call equivocation parameter) , and not the size of the
plaintext, which could be much larger.

3.1 Definitions

We present two definitions of FEE. In the first, basic, definition we present FEE as a natural general-
ization of non-committing encryption. Our second definition is a “garbling-friendly” definition, where
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we do several syntactic changes and consider security with respect to several functions. We will be
using the second definition in our main construction of equivocal garbling.

Basic definition. We first describe the syntax:

• Key generation. Gen(1λ, 1n; rGen) takes as input security parameter λ, equivocation parameter n,
and randomness of size poly(λ, n). It sets the key k = rGen and outputs it.

Note that the key size only depends on equivocation parameter and security parameter, but not
on the plaintext size.

• Encryption. Enck( f , m; rEnc) outputs an encryption of m using randomness rEnc and key k.

• Decryption. Deck(c) decrypts ciphertext c using key k and outputs plaintext m.

• Ciphertext simulation. Sim1( f , rSim) uses its random coins to generate a simulated ciphertext
ceq together with a trapdoor td which can later be used for equivocation of ceq to any f (x).

• Equivocation. Sim2(td, f , x, ceq) uses the equivocation trapdoor td and a short description x
of plaintext f (x) to generate a key keq and randomness req consistent with ciphertext ceq and
plaintext f (x); that is, Enckeq(params( f ), f (x); req) = ceq and Deckeq(ceq) = f (x).

Definition 3. (Functionally equivocal encryption: basic definition.)
A tuple of algorithms (Gen,Enc,Dec,Sim1,Sim2) is a functionally equivocal encryption for a message space

M = {0, 1}l with equivocation parameter n, if the following properties hold:

• Correctness. For any m ∈ M Pr[Deck(Enck( f , m; r)) = m : r ← {0, 1}|r| , k ← Gen(1λ, 1n)] >
1− negl(λ).

• Security. For every PPT adversary A on input 1λ, there exists a negligible function ν(·) such that the
probability that it wins the following game with challenger C(1λ) is at most 1

2 + ν(λ).

1. The adversary A sends a circuit f : {0, 1}n → M and an input x ∈ {0, 1}n to C;

2. C computes the plaintext m← f (x) and chooses a bit b at random.

3. If b = 0, C generates the real distribution:

– C samples random FEE key k using Gen(1λ, 1n) and picks encryption randomness rEnc.
– C sets ci ← Enck( f , m; rEnc), where params( f ) = (| f |, n, l).
– C sends (k, rEnc, c) to the adversary A.

4. If b = 1, C generates the simulated distribution:

– C simulates the ciphertext (ceq, td)← Sim1( f , rSim) using random rSim;
– C equivocates (keq, req)← Sim2(td, f , x, ceq);
– C sends (keq, req, ceq) to the adversary A.

5. A outputs a bit b′ and wins if b = b′.

• Succinctness: The size of the key is polynomial in λ, n and independent of l.
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Garbling-friendly definition. Our construction of equivocal garbling will require a slightly modified
definition of FEE, which we present here. The main differences are:

1. We split Sim1 into two separate algorithms SimTrap (which generates the trapdoor) and SimEnc
(which simulates a ciphertext). We also split Sim2 into two separate algorithms Equiv (which
equivocates the key) and Adapt (which equivocates randomness of encryption).

2. We consider security with respect to multiple ciphertexts (possibly corresponding to different
functions f1, . . . , ft); that is, the simulator should present a single equivocated key keq which
decrypts multiple ciphertexts c1, . . . , ct to f1(x), . . . , fn(x) for a single description x.

3. We require that the encryption algorithm doesn’t need to know the function f , and only needs
to know its parameters params( f ), which consist of description size | f |, its input length and its
output length.

We describe the syntax:

• Key generation. Gen(1λ, 1n; rGen) takes as input security parameter λ, equivocation parameter n,
and randomness of size poly(λ, n). It sets the key k = rGen and outputs it.

Note that the key size only depends on equivocation parameter and security parameter, but not
on the plaintext size.

• Encryption. Enck(params, m; rEnc) interprets params as function description size | f |, input length
n and output length l. It outputs an encryption of m with respect to parameters params using
randomness rEnc and key k.

• Decryption. Deck(c) decrypts ciphertext c using key k and outputs plaintext m.

• Ciphertext simulation. Simulating a ciphertext comprises of two algorithms (SimTrap,SimEnc)
where SimTrap on input (1λ, 1n; rtd) outputs the trapdoor td and SimEnc on input ( f , td; rSim)
outputs a ciphertext c with respect to a function f .

• Equivocation. Equiv(x, td) uses the equivocation trapdoor td to generate a single fake key keq
so that each simulated ciphertext ceq,i, which was generated with respect to some function fi and
trapdoor td, decrypts to fi(xi) under keq.

• Randomness sampling. Adapt( f , td, rSim, x) generates randomness req, such that
Enckeq(params( f ), f (x); req) = c, where c = SimEnc( f , td; rSim).

Definition 4. (Garbling-friendly FEE). A tuple of algorithms (Gen,Enc,Dec, SimTrap,SimEnc,Equiv,Adapt)
is a garbling-friendly functionally equivocal encryption, if the following properties hold:

• Correctness. For any m ∈ M Pr[Deck(Enck( f , m; r)) = m : r ← {0, 1}|r| , k ← Gen(1λ, 1n)] >
1− negl(λ).

• t-functional security. For every PPT adversary A on input 1λ, there exists a negligible function ν such
that the probability that it wins the following game with challenger C(1λ) is at most 1

2 + ν(λ).

1. The adversary A sends t functions f1, . . . , ft (where each fi maps n bits to li bits) and an input
x ∈ {0, 1}n to C;

2. C computes the messages {mi ← fi(x)}i=1,...,t.

3. Next it generates keys and ciphertexts in two different ways:
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– C samples random FEE key k using Gen(1λ, 1n) and random strings rEnc,1, . . . , rEnc,n. For
1 ≤ i ≤ t, it computes

ci ← Enck(paramsi, mi; rEnc,i)

where paramsi ← (| fi|, n, li).
– C computes ciphertexts using SimEnc as follows:

td← SimTrap(1λ, 1n; rtd),
ci ← SimEnc( fi, td; rSim,i) ∀ 1 ≤ i ≤ t

Next it computes keq ← Equiv(x, td) and

req,i ← Adapt( fi, td, rSim,i, x) ∀ 1 ≤ i ≤ t.

4. C tosses a coin b.

– If b = 0, C sends (k, (c1, rEnc,1), . . . , (ct, rEnc,t)) to A.
– If b = 1, C sends (keq, (ceq,1, req,1), . . . , (ceq,t, req,t)) to A.

5. A outputs a bit b′.

A wins if b = b′.

3.2 Overview of FEE construction

We now construct a FEE scheme using oblivious version of Yao garbled circuits; oblivious means that a
real garbled circuit can be claimed simulated by presenting convincing random coins of the simulation.

An overview. First we describe how to achieve the basic definition. On a high-level the construction
works as follows:

The key k of the scheme with equivocation parameter n will be a simulated garbled input x̃, where
|x| = n (recall that simulated x̃ can be generated without knowing x). The encryption of m with respect
to f under key x̃ will be a simulated garbled circuit f̃ (consistent with simulated garbled x̃), for output
set to m. To decrypt a ciphertext ( f̃ ) using the key (x̃), evaluate Eval( f̃ , x̃). Note that this evaluation
results in m.

To simulate the ciphertext, the simulator generates the real garbled circuit f̃ and sets the trapdoor
to be the garbling key. To equivocate FEE key k to plaintext f (x), generate a real garbled input x̃ using
the garbling key. Note that the simulated ciphertext decrypts to f (x) under key x̃, since decryption
runs evaluation of real garbled circuit f̃ on real garbled input x̃.

Finally, to simulate randomness of encryption, we use obliviousness of the Yao scheme and generate
random coins of the simulation which are consistent with the real garbled circuit f̃ .

Garbling-friendly FEE. Now we explain how to achieve garbling-friendly FEE. First note that the
scheme can support multiple functions, since it is possible to generate a single garbled input x and
many garbled circuits consistent with it.

To make encryption independent of description of f , we apply a universal transformation: namely,
the key is still the simulated garbled input, but the ciphertext will be the garbled universal circuit
together with the simulated garbled function f̃ . The simulator can instead generate the ciphertext by
creating real garbled circuit and garbling f honestly.

Finally, a closer look at the structure of Yao garbled circuits reveals that we can indeed achieve
syntactic changes of garbling-friendly definition.
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3.3 Construction of FEE

We now provide a formal description of the algorithms. Let (GenCPA,EncCPA,DecCPA) be a private-
key encryption scheme with pseudorandom ciphertexts. Furthermore, we need the property that
decrypting a random string with the key results in pseudorandom plaintext. We note that the PRF-
based scheme (r, Fk(r)⊕m) satisfies this property.

Key Generation: Gen on input (1λ, 1n; rGen) outputs n independent keys k1, . . . , kn sampled using
GenCPA(1λ) along with n random bits Λ1, . . . , Λn.

Encryption: Enc with key k = (k1, . . . , kn) on input (params = (| f |, n, l), m; rEnc), where |m| = l, gener-
ates ciphertext c as follows:

1. Let U be universal circuit which takes input of size n and function of size | f | as input, and
outputs an output of size |m|.

2. Consider an arbitrary topological order of the gates in U and label them in order 1, . . . , s.

3. Let W be the number of wires in the circuit that are given labels 1, . . . , W so that all input
wires are listed first and output wires are listed last. Sample a random bit Λw and a random
key kw using GenCPA(1λ) for every wire n + 1 ≤ w ≤W that is not an output wire.

4. For g = 1 to s:

Garble gate g: Let α, β be the input wire numbers and γ be the output of gate g. Let d be the
length of ciphertexts when encrypting messages of length |kw| twice. Compute garbled
gate Gg = (R00

g , R01
g , R10

g , R11
g ) as follows: Let c = EncCPAkα

(EncCPAkβ
(kγ||Λc)) if the output of

the gate is not an output wire. If it is an output wire, let c = EncCPAkα
(EncCPAkβ

(mj)) where

the output wire corresponds to the jth output bit of the function and m = m1 · · ·mn. For
0 ≤ b, b′ ≤ 1, set

Rbb′
g =

{
c if Λα = b and Λβ = b′

r ← {0, 1}d o.w.

5. Set simulated f̃ to be (kn+1, . . . , kn+| f |) together with (Λn+1, . . . , Λn+| f |).

6. Finally, set c = (G1, . . . , Gs, f̃ ).

Simulating ciphertexts. SimTrap(1λ, 1n; rtd) samples 2n keys using k0
j and k1

j for 1 ≤ j ≤ n using

GenCPA(1λ) and 2n random bits λ1, . . . , λn and outputs td = ((k0
1, k1

1, . . . , k0
n, k1

n), (λ1, . . . , λn)).

SimEnc on input ( f , td; rSim), where f : {0, 1}n → {0, 1}|m|, computes ceq as follows:

1. Let U be universal circuit which takes input of size n and function of size | f | as input, and
outputs an output of size |m|.

2. Consider an arbitrary topological order of the gates in the U and label them in order 1, . . . , s
where s is the number of gates in U.

3. Let W be the number of wires in the circuit that are given labels 1, . . . , W so that all input
wires are listed first. Sample a random mask λw and a pairs of random keys k0

w, k1
w using

GenCPA(1λ) for every wire n + 1 ≤ w ≤W that is not an output wire.

4. For g = 1 to s:
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Garble gate g: Let α, β be the input wire numbers and γ be the output of gate g. Compute
garbled gate Gg = (R00

g , R01
g , R10

g , R11
g ) as follows:

χ1 = kv
γ||(v⊕ λγ) where v = g(λα, λβ) R00

g = EncCPA
kλα

α
(EncCPA

k
λβ
β

(χ1))

χ2 = kv
γ||(v⊕ λγ) where v = g(1⊕ λα, λβ) R01

g = EncCPA
k1⊕λα

α
(EncCPA

k
λβ
β

(χ2))

χ3 = kv
γ||(v⊕ λγ) where v = g(λα, 1⊕ λβ) R10

g = EncCPA
kλα

α
(EncCPA

k
1⊕λβ
β

(χ3))

χ4 = kv
γ||(v⊕ λγ) where v = g(1⊕ λα, 1⊕ λβ) R11

g = EncCPA
k1⊕λα

α
(EncCPA

k
1⊕λβ
β

(χ4))

Let rbb′
g be the randomness used to compute the encryptions in Rbb′

g for b, b′ ∈ {0, 1}.

5. Set f̃ to be (k f1
n+1, . . . , k

f| f |
n+| f |) together with (λn+1 ⊕ f1, . . . , λn+| f | ⊕ f| f |).

6. Finally, set ceq = (G1, . . . , Gs, f̃ ).

Equivocation. Equiv on input (x, td) uses the trapdoor td = ((k0
1, k1

1, . . . , k0
n, k1

n), (λ1, . . . , λn)) to com-
pute the key keq = ((kx1

1 , λ1 ⊕ x1), . . . , (kxn
n , λn ⊕ xn)) where x = x1 · · · xn.

Randomness sampling. Adapt on input ( f , td, rSim, x) needs to generate a random string req so that
Enckeq(params = params( f ), f (x); req) = ceq. To generate req, it proceeds as follows:

1. Let ceq = (G1, . . . , Gs, f̃ ) where each Gg = (R00
g , R01

g , R10
g , R11

g ).

2. Reconstruct k0
w, k1

w, λw and the randomness used to generate each gate g from rSim. Compute
the real value in each wire when the input is x. Let bitw be the value in wire w. Set

Λw = λw ⊕ bitw.

3. For each gate g, the randomness used for Gg is the concatenation of the randomness used
for each row Rbb′

g (b, b′ ∈ {0, 1}) which is computed as follows: Let α, β be the input wires
and γ be the output wire. Let rbb′

g be the randomness used to compute Rbb′
g by SimEnc.

• For b, b′ ∈ {0, 1}, randomness for Rbb′
g : If Λα = b and Λβ = b′, then set r̃bb′

g = rbb′
g .

Otherwise set r̃bb′
g = Rbb′

g .

4. set randomness r f used to compute f̃ to be k f1
n+1, . . . , k

f| f |
n+| f | and the masks Λn+1, . . . , Λn+| f |.

5. Output req = {(r̃00
g , r̃01

g , r̃10
g , r̃11

g )}g∈[s], together with r f .

Theorem 1. (Gen,Enc, SimTrap, SimEnc,Equiv,Adapt) described above is a garbling-friendly functionally equiv-
ocal encryption scheme.

Proof. On a high-level, the proof of correctness and indistinguishability will follows from the stan-
dard properties of Yao garbling and the pseudorandomness of the ciphertexts computed using the
underlying CPA secure encryption scheme. We provide a formal proof below.

Correctness. Correctness of the scheme follows from the fact that with overwhelming probability the
simulated garbled circuit (for output m) on the simulated garbled input outputs m.
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Security. Recall that the definition of a FEE requires to show that honestly generated encryptions and
simulated encryptions along with the messages, random coins, and the key, are indistinguishable for t
messages f1(x), . . . , ft(x) where x ∈ {0, 1}n and fi is a function from {0, 1}n → {0, 1}`i for 1 ≤ i ≤ t.
More formally, we need to show that for any PPT adversary A the following two distributions are
indistinguishable:

Dn
0 = {( f1, . . . , ft, x)← A(1λ, 1n);

k← Gen(1λ, 1n);
ci ← Enck(paramsi, mi; rEnc,i) where paramsi ← (| fi|, n, li) ∀ 1 ≤ i ≤ t :
(k, (c1, rEnc,1), . . . , (ct, rEnc,t))}

Dn
1 = {( f1, . . . , ft, x)← A(1λ, 1n);

td← SimTrap(1λ, 1n);
ceq,i ← SimEnc( fi, td, rSim,i) ∀ 1 ≤ i ≤ t;
keq ← Equiv(td, x)

req,i ← Adapt( fi, td, rSim,i, x) ∀ 1 ≤ i ≤ t;
(keq, (ceq,1, req,1), . . . , (ceq,t, req,t))}

We will consider a sequence of hybrids starting from the simulation to the real encryption.

Hybrid Hn
1 . The output of this experiment is identical to Dn

1 .

Hybrid Hn
2 [j](1 ≤ j ≤ n+ | f1|+ . . .+ | ft|). For all possible input wire of any universal circuit Ui (where

Ui is a universal circuit for paramsi), we consider the hybrid Hn
2 [j]; it is identical to Hn

2 [j− 1] except
for that for every ciphertext ceq,i and every gate g that has j as one of its input wires, we make
the following modification:

Let Gg = (R00
g , R01

g , R10
g , R11

g ). Let (bitw, λw, Λw) be the real value, hidden mask and visible mask
computed for each wire 1 ≤ w ≤Wi of Ui . Let α = j, β be the input wires and γ the output wire
of gate g. Let (r00

g , r01
g , r10

g , r11
g ) be the randomness reported as in hybrid Hn

1 (i.e. real simulation).
Let xj be the jth bit of the input x. Then Λj = λj ⊕ xj.

In Hn
2 [j], for every ciphertext ci and every gate g that has j as its input wire, we replace Gg as

follows:

cb′ = EncCPA
k

xj
j

(EncCPA
k

b′⊕λβ
β

(kΛγ
γ ||Λγ)) with randomness rEnc;

(R̃bb′
g , r̃bb′

g ) =

{
(cb′ , rEnc) if b = Λj ⊕ xj
r ← {0, 1}d o.w.

for each bit b′. By our definition Hn
2 [0] = Hn

1 . In Hybrid Hn
2 [j] for 1 ≤ j ≤ n + | f1|+ . . . + | ft| we

replace all ciphertexts, that use inactive key for wire j as one of the encryption keys, to a random
string. After this modification there will be no ciphertext encrypted under this key in any gate.
Now, we can rely on the pseudorandomness property of encryptions under this key to argue
indistinguishability of Hn

2 [j] and Hn
2 [j + 1] for 0 ≤ j < n + | f1|+ . . . + | ft|. Therefore we have that

Hn
1 ≈ Hn

2 [n + | f1|+ . . . + | ft|]

Hybrid Hn
3 [i, g]. We consider a sequence of hybrids in the following order for every 1 ≤ i ≤ t and a

gate g in Ui, which does not contain an input wire of the circuit (as they have been taken care
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of in the previous hybrid). Hybrid Hn
2 [i, g] is identical to Hn

2 [i, g− 1] (if g > 1 and identical to
Hn

2 [i − 1, si−1] if g = 0) with the only exception that in ceq,i, the part corresponding to gate g is
modified as follows: Let ceq,i = (G1, . . . , Gs) and Gg = (R00

g , R01
g , R10

g , R11
g ). Let (biti

w, λi
w, Λi

w) be
the real value, hidden mask and visible mask computed for each wire 1 ≤ w ≤ Wi in Ui. Let
α, β be the input wires and γ the output wire of gate g. Let (r00

g , r01
g , r10

g , r11
g ) be the randomness

reported as in hybrid Hn
1 . In Hn

2 [i, g] we replace the randomness and Gg in ceq,i as follows:

c = EncCPA
kbit

i
α

α

(EncCPA

k
biti

β
β

(k
g(biti

α,biti
β)

γ ||Λγ)) with randomness rEnc

(R̃bb′
g , r̃bb′

g ) =

{
(c, rEnc) if b = Λα and b′ = Λβ

r ← {0, 1}` o.w.

We will inductively show the following:

Claim 2. For every i, we will show that Hn
3 [i, g] ≈ Hn

3 [i, g + 1] for 0 ≤ g < si.

Proof. Just as in the previous hybrid, indistinguishability follows from the pseudorandom ci-
phertext property of the underlying encryption scheme. Consider a gate g that contains no input
wire from the Circuit that has input wires α, β and output γ. We will prove that for any such
gate, in Hybrid Hn

3 [i, g − 1], k1⊕Λα
α and k

1⊕Λβ

β have been removed from all ciphertexts. We will

prove by induction that if the statement holds in Hybrid Hn
3 [i, g], the keys k1⊕biti

α
α and k

1⊕biti
β

β have
been removed from the ciphertexts, then for any gate g′ that contains γ as in input wire it holds
that in Hybrid Hn

3 (i, g′) the key k1⊕bitγ
γ would have been removed. We will show that we remove

this key in the current hybrid and then the induction hypothesis follows as g′ will always come
after g in the topological order. On a high-level, only the “active keys” will survive and the rows
encrypted using inactive keys will be set to random. This inductive step can be easily see from
the modification we do in Hybrid Hn

3 [i, g]. Namely, we replace three rows with a random string
and one row remains the same. The one row that remains the same is encrypted using the keys

kbit
i
α

α and k
biti

β

β . The remaining rows must be encrypted with at least one of the two keys k1⊕biti
α

α

and k
1⊕biti

β

β . This completes the proof of the inductive step.

Given our induction hypothesis, arguing that Hn
3 [i, g] ≈ Hn

3 [i, g + 1] are indistinguishable follows

directly from the pseudorandomness property under the keys k1⊕biti
α

α and k
1⊕biti

β

β (which have been
removed).

This concludes the proof of Theorem 1.

4 From Functionally Equivocal Encryption to Eqivocal Garbling

In this section we describe our construction of equivocal garbling according to Definition 2, based on a
functionally equivocal encryption (FEE), defined and built in Section 3. We start with an overview of
the construction, and then proceed with the formal description and the proof.

4.1 An Overview

Conventions. Let C be a circuit with description size |C| which takes as inputs n-bit strings. For
simplicity, we present our construction for circuits that output a single bit; however, our construction
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can be naturally extended to multiple-bit output circuits. We denote by m = n + gates(C) the total
number of “different” wires in C, i.e. if a gate has a fan-out more than 1, only one wire is counted. The
wires are numbered from 1 through m where we assume that wires are from 1 to n are input wires, and
wire m is an output wire. We use κ to denote the size of keys k0

w, k1
w for each wire w. We also denote by

bitw the bit assigned to wire w by the computation C(x). Typically, when we discuss a particular gate
g, we use the notation α, β to denote the wire numbers of the input wires of the gate and γ the wire
number for the output wire of the same gate.

Garbling. The garbling procedure will follow closely the standard Yao garbling scheme [Yao86] that
includes the so called point-and-permute feature [MNPS04a], except that we use an FEE scheme instead
of a CPA-secure encryption. Namely, the garbler first chooses a pair of FEE keys (k0

w, k1
w) for each wire

w of the circuit C. (We assume that output wires of the same gate are labeled with the same index w
and therefore are assigned the same pair of keys.)

Next the garbler garbles each gate using double encryption. Our double encryption of message m
will consist of an encryption of shares of the message m, sleft and sright such that sleft⊕ sright = m where
sleft will be encrypted under the key of the left wire entering the gate and sright using the right key. This
guarantees that with both left and right keys it is possible to reconstruct m, but having only one key
doesn’t reveal any information about m.

More precisely, the garbler generates the following 4 pairs of ciphertexts for each gate g:

c00
g,left = FEE.Enck0

α
(s00

g,left), c00
g,right = FEE.Enck0

β
(s00

g,right),

c01
g,left = FEE.Enck0

α
(s01

g,left), c01
g,right = FEE.Enck1

β
(s01

g,right),

c10
g,left = FEE.Enck1

α
(s10

g,left), c10
g,right = FEE.Enck0

β
(s10

g,right),

c11
g,left = FEE.Enck1

α
(s00

g,left), c11
g,right = FEE.Enck1

β
(s11

g,right),

where α, β are input wires and γ are output wires of the gate and sbb′
g,left and sbb′

g,right are random XOR

sharings of kg(b,b′)
γ . Ciphertexts for output gates encrypt output bits (padded to the size of the key)

instead of the key. Note that FEE is a randomized encryption; the garbler encrypts each of 8 ciphertexts
under freshly chosen randomness, which we omitted here for brevity.

As we said, the difference from the Yao garbled circuits is that Enc is an FEE scheme, which means
that encryption algorithm should also take as input parameters params of a function which image can
later be equivocated to. The garbler sets params to be (|F|, n, κ), where |F| is the size of functions F
described on figure 1. This guarantees that the simulator will be able to generate dummy ciphertexts
for plaintext size κ and later open them only to messages of the form f (x), where | f | = |F|, | f (x)| = κ
and |x| = n. Such limited equivocation is, on one hand, enough to show adaptive security, and on the
other hand, it guarantees that keys are not growing with the depth of the circuit. In particular the keys
are proportional to |x|.

Each garbled gate Gg consists of all 4 pairs of ciphertexts as described above, shuffled in random
order.

The garbled circuit consists of garbled gates
{

Gg
}

g∈[gates(C)]. The garbled input consists of keys
corresponding to input bits, i.e. (kx1

1 , . . . , kxn
n ).

Evaluation of the garbled circuit. The evaluator evaluates the circuit gate by gate, starting from
input gates. Assume the evaluator already learned keys kbitα

α , k
bitβ

β , assigned to input wires α, β of
gate g by C(x). The evaluator tries to decrypt each double encryption of this gate, using this pair
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of keys and only one double encryption will decrypt successfully.3 It gets sleft ← FEE.Deckbitαα
(cleft)

and sright ← FEE.Dec
k
bitβ
β

(cright) and learns two shares sleft, sright of the next key. It reconstructs the

key as k
g(bitα,bitβ)
γ = sleft ⊕ sright. The evaluator continues the process, until it learns the output of the

computation after decrypting the last gate.

Simulation. The simulation can be described in two parts: simulating the Garbled Circuit and simu-
lating the internal randomness.

Simulating the Garbled Circuit. The simulator starts with preparing active keys, i.e keys correspond-
ing to the execution C(x): for this it chooses a random key kw for each wire w of C. Also for each
wire it generates an FEE trapdoor tdw ← SimTrap, which later will be used to equivocate inactive
keys of all wires. For each gate the simulator randomly chooses which one of 4 rows will be
an active row (i.e. for which pair of ciphertexts the evaluator will know both keys), by choosing
random bits Λw for each wire w: for each gate, the active row will be row number (Λα, Λβ),
where α, β are input wires of that gate.

The simulator encrypts active pair of ciphertexts like in the real world, i.e. it secret shares kg and
sets

c
Λα,Λβ

g,left = FEE.Enckα
(s

Λα,Λβ

g,left ), c
Λα,Λβ

g,right = FEE.Enckβ
(s

Λα,Λβ

g,right).

Another row contains the double encryption c
Λα,1⊕Λβ

g,left , c
Λα,1⊕Λβ

g,right that should be encrypted under

the key kα selected for the active row, but under a different second key k̂β. Furthermore, each
encrypt shares that will add up to the intended key on wire γ. However, note that at the time of
creating the ciphertexts, the simulator does not know what key to encrypt in this row. Since the
key is secret shared it can of course encrypt a random share s

Λα,1⊕Λβ

g,left under the known key kα to

generate the left ciphertext c
Λα,1⊕Λβ

g,left . The right ciphertext is simulated using FEE simulator (to be
later opened in such a way that two shares xor to the correct key).

More precisely, we will generate the right ciphertext c
Λα,1⊕Λβ

g,right using SimEnc with respect to a

particular function that will later allow us to define both the key k̂β and the right message this
second ciphertext needs to be revealed as. In fact, the right ciphertext should encrypt masked key
s

Λα,1⊕Λβ

g,right = k⊕ s
Λα,1⊕Λβ

g,left , but at this moment the simulator doesn’t know whether the key should

be active kγ or inactive k̂γ as it will depend on the real bit assignment bitα, bitβ on wires α, β when
evaluated on the real input x. Therefore, to generate the ciphertexts in the row Λα, 1⊕ Λb, the
simulator does the following:

c
Λα,1⊕Λβ

g,left = FEE.Enckα
(s

Λα,1⊕Λβ

g,left ), c
Λα,1⊕Λβ

g,right = FEE.SimEnc(F
Λα,1⊕Λβ
g [s

Λα,1⊕Λβ

g,left ], tdβ),

where s
Λα,1⊕Λβ

g,left is a random string and FΛα,1⊕Λb is a specially crafted function that we describe in
Figure 1. The third row of ciphertexts is generated similar to the second, except that in this row
the key for wire β is the active key kβ which is known and the key for the other wire α and the
message is unknown. Therefore, this row will be:

3For the purpose of this overview, we assume that decrypting double ciphertext with the wrong pair of keys results in a
detectable failure. This can be achieved by appending 0λ string to the plaintext during encryption, and by verifying that the
last λ bits of the decrypted plaintext is 0λ during decryption. In our full construction however we don’t need this assumption
on the encryption scheme. We instead use a “point-and-permute” technique which tells the evaluator which one of 4 double
encryptions it needs to decrypt.
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c
1⊕Λα,Λβ

g,left = FEE.SimEnc(F
1⊕Λα,Λβ
g [s

1⊕Λα,Λβ

g,right ], tdα), c
1⊕Λα,Λβ

g,right = FEE.Enckβ
(s

1⊕Λα,Λβ

g,right ).

where s
1⊕Λα,Λβ

g,right is a random string and F1⊕Λα,Λb is described in Figure 1.

Simulating the last pair is slightly different, since it is encrypted under the inactive keys k̂α, k̂β,
neither of which are determined yet by the simulator. Thus, the simulator generates both cipher-
texts using FEE simulator. It simulates the first ciphertext with respect to a constant function that
always outputs a share s

1⊕Λα,1⊕Λβ

g,left , and the second with respect to a third function F
1⊕Λα,1⊕Λβ
g as

follows:

c
1⊕Λα,1⊕Λβ

g,left = FEE.SimEnc(Const1⊕Λα,1⊕Λβ [s
1⊕Λα,1⊕Λβ

g,left ], tdα),

c
1⊕Λα,1⊕Λβ

g,right = FEE.SimEnc(F
1⊕Λα,1⊕Λβ
g [s

1⊕Λα,1⊕Λβ

g,left ], tdβ).

where the function Const1⊕Λα,1⊕Λβ [s
1⊕Λα,1⊕Λβ

g,left ] ≡ s
1⊕Λα,1⊕Λβ

g,left and function F1⊕Λα,1⊕Λβ [mask] is the
third specially crafted function.

Finally, the gate looks like as follows:

Row number Left ciphertext FEE. Right ciphertext FEE.

(Λα, Λβ) Enckα
(s

Λα ,Λβ

g,left ) Enckβ
(s

Λα ,Λβ

g,right)

(Λα, 1⊕Λβ) Enckα
(s

Λα ,1⊕Λβ

g,left ) SimEnc(F
Λα ,1⊕Λβ
g [s

Λα ,1⊕Λβ

g,left ])

(1⊕Λα, Λβ) SimEnc(F
1⊕Λα ,Λβ
g [s

1⊕Λα ,Λβ

g,right ]) Enckβ
(s

1⊕Λα ,Λβ

g,right )

(1⊕Λα, 1⊕Λβ) SimEnc(Const1⊕Λα ,1⊕Λβ [s
1⊕Λα ,1⊕Λβ

g,left ]) SimEnc(F
1⊕Λα ,1⊕Λβ
g [s

1⊕Λα ,1⊕Λβ

g,left ])

Table 2: Garbled gate g generated by the simulator.

The ciphertexts for an output gate are generated in a similar way, with the difference that the
active double encryption encrypts the output y = C(x) instead of the key. In essence, these
functions will be the same as F, except that they output masked output bits instead of masked
keys for the next gate (See Figure 1).

The simulator reorders 4 ciphertexts in each gate according to (Λα, Λβ) and outputs them. Next
it outputs the active keys for the input wires (k1, . . . , kn) as a garbled input.

Simulation of the internal state of the garbler. When the simulator is given input x, it needs to present
inactive key k̂w for each wire w. It generates these keys by running k̂w ← FEE.Equiv(tdw; x) for
each gate w.

Intuitively, this is indistinguishable from real garbling, since each simulated garbled gate looks
like it was a real garbled gate generated using keys kα, k̂α, kβ, k̂β, where kα, kβ are active for the
computation C(x): Recall that the definition of FEE guarantees that the key k̂w generated as
FEE.Equiv(tdw; x) decrypts the ciphertext c = FEE.SimEnc(F) to F(x). This means that decrypting,
say, c

Λα,1⊕Λβ

g,right with k̂β results in F
Λα,1⊕Λβ
g [s

Λα,1⊕Λβ

right ](x), which is equal to the share that is either

kγ ⊕ s
Λα,1⊕Λβ

right or k̂γ ⊕ s
Λα,1⊕Λβ

right , depending on the assignment bitα, bitβ. Thus the second double

encryption will decrypt to the correct key (kγ or k̂γ) under kα, k̂β.

This in particular means that each garbled gate looks like a real garbled gate with active keys
kγ; for instance, if the gate was an AND gate and C(x) assigned, say, 1, 0 to wires α, β, then the
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Program F
Λα ,1⊕Λβ
g [mask](x)

Constants: C, g, kγ, tdγ.
1. Evaluate C(x) and learn bit assignments bitα, bitβ of input wires α, β of gate g.

2. Generate k̂γ ← FEE.Equiv(tdγ, x).
3. If g(bitα, bitβ) = g(bitα, 1⊕ bitβ) then output kγ ⊕mask;

4. else output k̂γ ⊕mask.

Program F
1⊕Λα ,Λβ
g [mask](x)

Constants: C, g, kγ, tdγ.
1. Evaluate C(x) and learn bit assignments bitα, bitβ of input wires α, β of gate g.

2. Generate k̂γ ← FEE.Equiv(tdγ, x).
3. If g(bitα, bitβ) = g(1⊕ bitα, bitβ) then output kγ ⊕mask;

4. else output k̂γ ⊕mask.

Program F
1⊕Λα ,1⊕Λβ
g [mask](x)

Constants: C, g, kγ, tdγ.
1. Evaluate C(x) and learn bit assignments bitα, bitβ of input wires α, β of gate g.

2. Generate k̂γ ← FEE.Equiv(tdγ, x).
3. If g(bitα, bitβ) = g(1⊕ bitα, 1⊕ bitβ) then output kγ ⊕mask;

4. else output k̂γ ⊕mask.

Program Const1⊕Λα ,1⊕Λβ [mask](x).

Pad the program to the size of programs F with dummy gates. Output mask.

Output gates: If g is an output gate, we will the same four functions described above with the
exception that we will use the actual value instead of the key in the output. For example, for the

function F
Λα ,1⊕Λβ
g [mask](x), we will output g(bitα, bitβ)⊕mask if g(bitα, bitβ) = g(bitα, 1⊕ bitβ) and

1⊕ g(bitα, bitβ)⊕mask otherwise.

Figure 1: Programs F.

garbled gate would decrypt to kγ, kγ, kγ and k̂γ (in some order) under keys kα, k̂α, kβ, k̂β. If bit
assignment was instead 1, 1, then the garbled gate would decrypt to kγ, k̂γ, k̂γ, k̂γ instead.

Finally, the simulator uses FEE.Inv to simulate random coins of all 8 ciphertexts per gate.

The simulator presents all randomness of encryption, 8 secret shares s per gate, and a pair of
keys per gate as internal state of the garbler.

A note on multiple fan-out. In our construction if a wire w is used as an input to multiple gates,
we will reuse the keys (i.e. keys kw, k̂w, trapdoors tdw) across all of them. This is possible, as our FEE
scheme accomodates reusing a single key to simulate multiple ciphertexts (each instantiated with a
different function). Furthermore, a key for a wire can be safely used as the left key in one gate and as
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an right key in another. This will not result in any increase in key sizes since we encrypt shares of the
key using the left and right key separately and the sizes of both the keys and the plaintexts remains the
same in every gate.4

A sketch of the security proof. Starting from the real execution, we will switch the key k̂w of each
wire from being honestly generated using Gen to a simulated key, starting from m − 1-th key5 and
traversing the circuit according to its topological sorting all the way to input keys. Namely, suppose
that we want to switch a key k̂w∗ = k1⊕bitw∗

w∗ to a simulated key. We perform the reduction to security
of the FEE scheme as follows. First we generate keys and encryption randomness for each wire w =

w∗+ 1, . . . , m− 1 according to the simulation (i.e generate kw honestly, but equivocate k̂w using trapdoor
tdw; randomness is equivocated via FEE.Adapt), and generate keys and encryption randomness for
wires w = 1, . . . , w∗ − 1 according to the real world (i.e. both keys are generated honestly, randomness
of encryption is truly random). Also we generate kw∗ and its ciphertexts honestly. Recall that the key
corresponding to wire w will be used in generating 2 · fanout ciphertexts where fanout is the number
gates that have one of its input wires as w∗. The functions that the adversary needs to provide in
the security game of FEE for all challenge encryptions (i.e. encryptions which should be generated
under the key k̂w∗), namely f1, . . . , f2·fanout, are set appropriately according to Figure 1. We play FEE
security game with an input x and functions f1, . . . , f2·fanout; note that the description of each function
Fg contains the trapdoor tdγ for an output wire of the gate g, but since we replace keys with simulated
keys in reverse topological order, we would have already switched the (other) key corresponding
to the output wire γ to simulated, and therefore trapdoors tdγ are well defined. The challenger in
the FEE game on input x and the functions, responds with 2 · fanout challenge ciphertexts, 2 · fanout
random coins of the encryption and a single key k̂w∗ ; these values are either real or simulated. The
experiment can be reconstructed by placing these ciphertexts in the garbled gates. Now, depending
on how the challenge ciphertexts were generated, the resulting experiments yield the corresponding
hybrid experiments.

Point-and-permute. In our construction we use a technique from [MNPS04b], which tells the eval-
uator which row out of 4 rows should be decrypted, in the same way as described in Section 3.
Namely, the garbler should additionally choose a bit λw per wire, and encrypt not only the key, but
“half of a pointer” to the correct row in the next gate. That is, each encryption is cb1⊕λα,b2⊕λβ =

Enc(kg(b1,b2)
c ||g(b1, b2)⊕ λγ), and keys for input bits now also contain pointers xw ⊕ λw. This way the

evaluator always knows a pointer Λα = bitα ⊕ λα and Λβ = bitβ ⊕ λβ, and therefore knows that it
should decrypt ciphertext cΛα,Λβ in the next gate. We refer to λα as the hidden mask and Λα as the
visible mask.

4.2 Full Description of the scheme

Notation. Let λ be security parameter. Let C be a circuit with description size |C| which takes as
inputs n-bit strings. We assume that the circuit outputs a single bit; our construction can be adapted
for multiple-bit outputs in a straightforward manner. We denote by m = n + gates(C) the total number
of “different” wires in C, i.e. if a gate has a fan-out more than 1, only one wire is counted. We assume
that wires from 1 to n are input wires, and wire m is an output wire. Let |F| be the description size of
circuits presented in Figure 1.

4If we had relied on encrypting the first message with one key followed by the other key, it could possibly result in
growing key sizes.

5Recall that m-th key doesn’t exist, since m-th wire is an output wire.
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Assumptions. We assume there is only one output gate. Our construction can be generalized to
multi-bit output circuits in a straightforward manner. We also assume without loss of generality that
all gates are fan-in two gates: we do this by changing NOT gates to XOR 1 gates and therefore replacing
the complete system (AND, OR, NOT) with another complete system (AND, OR, XOR 1), where 1 is
a constant gate. In the garbling scheme we can always implement a constant gate 1 by setting an
additional input wire which the garbler should always set to 1. That is, to garble input x in the circuit
with constant gate 1, the garbler should instead garble input x̃||1 in the circuit without constant gates.

Parameters of the FEE scheme. In Section 3 we showed that there exists an FEE scheme for inputs
of size n with key size κ = λn + 1.

Key generation: Gen(1λ, C, rGen) takes as input security parameter, the circuit, and randomness rGen
of size 2(m− 1)κ+m− 1. It interprets this randomness as 2(m− 1) random FEE keys (k0

1, . . . , k0
m−1, k1

1, . . . , k1
m−1)

of size κ (a pair of keys per wire, except the output wire of C) and m− 1 random bits λw. Output wires
of the same output gate are assigned the same pair of keys and the same values λw. Finally the program
outputs the garbling key K = (k0

1, . . . , k0
m−1, k1

1, . . . , k1
m−1, λ1, . . . , λm−1).

Circuit garbling: GarbleProg(K, C; rGarble) takes as input the garbling key K (which it interprets
as K = (k0

1, . . . , k0
m−1, k1

1, . . . , k1
m−1, λ1, . . . , λm−1)), the circuit C to be garbled, and randomness rGarble

which it interprets as random strings rgg used to encrypt each gate g. Each rgg consists of randomness
r00

g,left, r01
g,left, r10

g,left, r11
g,left, r00

g,right, r01
g,right, r10

g,right, r11
g,right, as well as 4 random values s00

g,right, s01
g,right, s10

g,right, s11
g,right.

The program sets params = (|F|, n, κ + 1). Next for every gate g with input wires α, β and output
wires γ it prepares the following 4 plaintexts:

M00
g = kg(0,0)

γ ||g(0, 0)⊕ λγ, s00
g,left = M00

g ⊕ s00
g,right

M01
g = kg(0,1)

γ ||g(0, 1)⊕ λγ, s01
g,left = M01

g ⊕ s01
g,right

M10
g = kg(1,0)

γ ||g(1, 0)⊕ λγ, s10
g,left = M10

g ⊕ s10
g,right

M11
g = kg(1,1)

γ ||g(1, 1)⊕ λγ, s11
g,left = M11

g ⊕ s11
g,right.

Then the program encrypts each plaintext under a pair of keys as follows:

c
λα,λβ

g,left = FEE.Enck0
α
(params, s00

g,left; r00
g,left), c

λα,λβ

g,right = FEE.Enck0
β
(params, s00

g,left; r00
g,right),

c
λα,1⊕λβ

g,left = FEE.Enck0
α
(params, s01

g,left; r01
g,left), c

λα,1⊕λβ

g,right = FEE.Enck1
β
(params, s01

g,left; r01
g,right),

c
1⊕λα,λβ

g,left = FEE.Enck1
α
(params, s10

g,left; r10
g,left), c

1⊕λα,λβ

g,right = FEE.Enck0
β
(params, s10

g,left; r10
g,right),

c
1⊕λα,1⊕λβ

g,left = FEE.Enck1
α
(params, s11

g,left; r11
g,left), c

1⊕λα,1⊕λβ

g,right = FEE.Enck1
β
(params, s11

g,left; r11
g,right).

The program sets each garbled gate Gg to be

Gg =


(c00

g,left, c00
g,right),

(c01
g,left, c01

g,right),
(c10

g,left, c10
g,right),

(c11
g,left, c11

g,right)

in this order. It outputs the garbled circuit C̃ =
{

Gg
}

g∈[gates(C)].
Bit-decomposable input garbling: GarbleInp(K, xi, i) takes as input the garbling key K (which

it interprets as K = (k0
1, . . . , k0

m−1, k1
1, . . . , k1

m−1, λ1, . . . , λm−1)), and i-th input bit xi together with its
position i. The program outputs a garbled i-th bit x̃i = (kx1

i , λi ⊕ xi).

Evaluation: Eval(C̃, x̃) works by evaluating keys kbit(w)
w (where bit(w) is a bit assigned to wire w by

the computation C(x)), going from input gates to an output gate. Assume the evaluator already knows
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Program F
Λα ,1⊕Λβ
g [mask](x)

Constants: C, g, kγ, tdγ, Λγ.
1. Evaluate C(x) and learn bit assignments bitα, bitβ of input wires α, β of gate g.

2. Generate k̂γ ← FEE.Equiv(tdγ, x).

3. If g(bitα, bitβ) = g(bitα, 1⊕ bitβ) then set M
Λα ,1⊕Λβ
g = kγ||Λγ;

4. else set M
Λα ,1⊕Λβ
g = k̂γ||1⊕Λγ.

5. Output M
Λα ,1⊕Λβ
g ⊕mask.

Program F
1⊕Λα ,Λβ
g [mask](x)

Constants: C, g, kγ, tdγ, Λγ.
1. Evaluate C(x) and learn bit assignments bitα, bitβ of input wires α, β of gate g.

2. Generate k̂γ ← FEE.Equiv(tdγ, x).

3. If g(bitα, bitβ) = g(1⊕ bitα, bitβ) then set M
1⊕Λα ,Λβ
g = kγ||Λγ;

4. else set M
1⊕Λα ,Λβ
g = k̂γ||1⊕Λγ.

5. Output M
1⊕Λα ,Λβ
g ⊕mask.

Program F
1⊕Λα ,1⊕Λβ
g [mask](x)

Constants: C, g, kγ, tdγ, Λγ.
1. Evaluate C(x) and learn bit assignments bitα, bitβ of input wires α, β of gate g.

2. Generate k̂γ ← FEE.Equiv(tdγ, x).

3. If g(bitα, bitβ) = g(1⊕ bitα, 1⊕ bitβ) then set M
1⊕Λα ,1⊕Λβ
g = kγ||Λγ;

4. else set M
1⊕Λα ,1⊕Λβ
g = k̂γ||1⊕Λγ.

5. Output M
1⊕Λα ,1⊕Λβ
g ⊕mask.

Program Const[const](x).

The program is padded to the size of programs F and is the function that outputs the constant const.

Figure 2: Functions used in FEE simulation

keys and external indices kα, Λα and kβ, Λβ for input wires of a gate. Then it sets the key and external

index kγ, Λγ of the output wire to be (kγ, Λγ) ← FEE.Deckα
(c

Λα,Λβ

g,left )⊕ FEE.Deckβ
(c

Λα,Λβ

g,right) and proceeds
to the next gate. After decrypting the output gate, the evaluator learns the output bit of the circuit.

Simulation:

Simulating garbled circuit and garbled input. Sim1(1λ, C) uses its knowledge of C to determine
the size of input n and the number of “different” wires m. It sets κ = λn + 1 to be the size of the key.
Then for each wire w of C except for the output wire the simulator chooses:

• random κ-bit FEE key kw;
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• random bit Λw;

• an FEE trapdoor tdw ← FEE.SimTrap(1λ, n).

Next the simulator garbles each gate g as follows: it sets params = (|F|, n, κ + 1) Then it computes

row (Λα, Λβ) : c
Λα ,Λβ

g,left = FEE.Enckα
(params, s

Λα ,Λβ

g,left ; r
Λα ,Λβ

g,left ),

c
Λα ,Λβ

g,right = FEE.Enckβ
(params, s

Λα ,Λβ

g,right ; r
Λα ,Λβ

g,right)

row (Λα, 1⊕Λβ) : c
Λα ,1⊕Λβ

g,left = FEE.Enckα
(params, s

Λα ,1⊕Λβ

g,left ; r
Λα ,1⊕Λβ

g,left ),

c
Λα ,1⊕Λβ

g,right = FEE.SimEnc (F
Λα ,1⊕Λβ

g,right [s
Λα ,1⊕Λβ

g,left ] ; r
Λα ,1⊕Λβ

Sim,g,right)

row (1⊕Λα, Λβ) : c
1⊕Λα ,Λβ

g,left = FEE.SimEnc (F
1⊕Λα ,Λβ
g [s

1⊕Λα ,Λβ

g,right ] ; r
1⊕Λα ,Λβ

Sim,g,left),

c
1⊕Λα ,Λβ

g,right = FEE.Enckβ
(params, s

1⊕Λα ,Λβ

g,right ; r
1⊕Λα ,Λβ

g,right )

row (1⊕Λα, 1⊕Λβ) : c
1⊕Λα ,1⊕Λβ

g,left = FEE.SimEnc (Const[s
1⊕Λα ,1⊕Λβ

g,left ] ; r
1⊕Λα ,1⊕Λβ

Sim,g,left ),

c
1⊕Λα ,1⊕Λβ

g,right = FEE.SimEnc (F
1⊕Λα ,1⊕Λβ
g [s

1⊕Λα ,1⊕Λβ

g,left ] ; r
1⊕Λα ,1⊕Λβ

Sim,g,right ).

where s
Λα,Λβ

g,left = (kγ||Λγ)⊕ s
Λα,Λβ

g,right, and s
Λα,Λβ

g,right are chosen at random.
The simulator sets each garbled gate Gg to be

Gg = (c00
g,left, c00

g,right, c01
g,left, c01

g,right, c10
g,left, c10

g,right, c11
g,left, c11

g,right),

in this order. It outputs the garbled circuit C̃ =
{

Gg
}

g∈[gates(C)]. It sets simulated garbled input
x̃ = ((k1, Λ1), . . . , (kn, Λn)).

The simulator sets its state to be k1, . . . , km−1, Λ1, . . . , Λm−1, td1, . . . , tdm−1, as well as Gg, r
Λα,Λβ

g,left , r
Λα,Λβ

g,right,

r
Λα,1⊕Λβ

g,left , r
Λα,1⊕Λβ

Sim,g,right, r
1⊕Λα,Λβ

Sim,g,left, r
1⊕Λα,Λβ

g,right , r
1⊕Λα,1⊕Λβ

Sim,g,left , r
1⊕Λα,1⊕Λβ

Sim,g,right , s
Λα,Λβ

g,right, s
Λα,1⊕Λβ

g,left , s
1⊕Λα,Λβ

g,right , s
1⊕Λα,1⊕Λβ

g,left , for ev-
ery gate g of C.

Simulating internal state of the garbler. Sim2(x, state) first sets k̂w ← FEE.Equiv(tdw, x) for wires
w = 1, . . . , m− 1. Next for every gate g it sets randomness of encryption to be

r
Λα,1⊕Λβ

g,right ← FEE.Adapt(F
Λα,1⊕Λβ
g [s

Λα,1⊕Λβ

g,left ], r
Λα,1⊕Λβ

Sim,g,right, x),

r
1⊕Λα,Λβ

g,left ← FEE.Adapt(F
1⊕Λα,Λβ
g [s

1⊕Λα,Λβ

g,right ], r
1⊕Λα,Λβ

Sim,g,left, x),

r
1⊕Λα,1⊕Λβ

g,left ← FEE.Adapt(Const[s
1⊕Λα,1⊕Λβ

g,left ], r
1⊕Λα,1⊕Λβ

Sim,g,left , x),

r
1⊕Λα,1⊕Λβ

g,right ← FEE.Adapt(F
1⊕Λα,1⊕Λβ
g [s

1⊕Λα,1⊕Λβ

g,left ], r
1⊕Λα,1⊕Λβ

Sim,g,right , x),

The simulator sets kbitw
w ← kw, k1⊕bitw

w ← k̂w for wires w = 1, . . . , m − 1 (where bitw is the bit
assigned to wire w by the computation C(x)). In addition, for every input wire w = 1, . . . , m− 1 it sets
λw = Λw ⊕ bitw.

Next it sets

s
Λα,1⊕Λβ

g,right = F
Λα,1⊕Λβ

g,right [s
Λα,1⊕Λβ

g,left ](x),

s
1⊕Λα,1⊕Λβ

g,right = F
1⊕Λα,1⊕Λβ

g,right [s
1⊕Λα,1⊕Λβ

g,left ](x).

The simulator outputs (k0
w, k1

w, λw) for each wire w = 1, . . . , m − 1, and r00
g,left, r01

g,left, r10
g,left, r11

g,left,
r00

g,right, r01
g,right, r10

g,right, r11
g,right, together with s00

g,right, s01
g,right, s10

g,right, s11
g,right, for each gate g as internal state

of the garbler.
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4.3 Proof

Correctness. Correctness follows from correctness of underlying encryption similar to the correct-
ness of Yao garbled circuit. Namely, it can be shown by induction that at each step the evaluator gets
the correct key kbitγ

γ and the correct pointer Λγ for the next gate’ row.

Security. We consider a sequence of hybrid experiments starting from real world experiment where
C̃, x̃, r are generated honestly to the simulated experiment where C̃, x̃ are simulated given only C and
output y = C(x), and r is equivocated to x. We consider m− 1 intermediate hybrids, where in hybrid
Hi we switch the key kbitm−i

m−i from real to simulated. Here we assume that wires are sorted according to
the topological order of the circuit, i.e. that output wires of each gate have larger index than both input
wires of that gate (note that our notation 1, . . . , n for input wires and m for an output wire is consistent
with topological order).

Hybrid H0. In this hybrid we change how the permutation of ciphertexts is generated, without
changing the distribution of the hybrid. Roughly speaking, instead of choosing λw at random and
setting Λw = λw ⊕ bitw, we choose Λw at random and set λw = Λw ⊕ bitw, which clearly results in the
same distributions. More precisely, recall that in the real execution we choose random λw for each wire
w and set each ciphertext cb1⊕λα,b2⊕λβ to be an encryption of kg(b1,b2)

γ ||λγ ⊕ g(b1, b2), for all bits b1, b2. In
this hybrid we instead choose a random bit Λw for each wire and set each ciphertext cb1⊕Λα,b2⊕Λβ to be

an encryption of k
g(bitα⊕b1,bitβ⊕b2)
γ ||Λγ ⊕ g(bitα ⊕ b1, bitβ ⊕ b2). When internal state of the garbler needs

to be presented, we set each λw to be Λw ⊕ bitw.
Hybrid 0 is identical to the real experiment.
Hybrid Hi, i = 1, . . . , m− 1. Denote the wire number m− i by w∗. We refer to k1⊕bitw∗

w∗ as the challenge
key, and to all (single-encryption) ciphertexts encrypted under this key as challenge ciphertexts. The
randomness and plaintexts of challenge ciphertexts are denoted as challenge randomness, and challenge
plaintexts. In this hybrid we switch k1⊕bitw∗

w∗ from real to simulated.
We choose m − 1 random bits Λw. For all wires w = 1, . . . , w∗ the we choose FEE keys k0

w, k1
w at

random. For all wires w = w∗+ 1, . . . , m− 1 we choose the key kbitw
w , which we denote as kw, at random

and choose the trapdoor for the other key as td← FEE.SimTrap(rw,SimTrap) with random coins rw,SimTrap.
For each w = w∗ + 1, . . . , m− 1 we set the other key k1⊕bitα

α ← FEE.Equiv(tdw, x); we denote it as k̂w.
Next we generate the garbled circuit as follows: for each gate g we set

M
Λα,Λβ
g = k

g(bitα,bitβ)
γ ||Λγ,

M
Λα,1⊕Λβ
g = k

g(bitα,1⊕bitβ)
γ ||Λγ ⊕ g(bitα, bitβ)⊕ g(bitα, 1⊕ bitβ),

M
1⊕Λα,Λβ
g = k

g(1⊕bitα,bitβ)
γ ||Λγ ⊕ g(bitα, bitβ)⊕ g(1⊕ bitα, bitβ),

M
1⊕Λα,1⊕Λβ
g = k

g(1⊕bitα,1⊕bitβ)
γ ||Λγ ⊕ g(bitα, bitβ)⊕ g(1⊕ bitα, 1⊕ bitβ).

We choose random values s0,0
g , s0,1

g , s1,0
g , s1,1

g and set

S0,0
g = s0,0

g ⊕M0,0,

S0,1
g = s0,1

g ⊕M0,1,

S1,0
g = s1,0

g ⊕M1,0,

S1,1
g = s1,1

g ⊕M1,1.

Next we send an input and functions to the challenger of the FEE security game. For this, we set the
input to be x and functions f1, . . . , fl to be functions corresponding to ciphertexts encrypted under key
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k̂w∗ (since each gate with input wire w∗ contains two such ciphertexts, there are l = 2 · fanout functions
in total, where fanout is fanout of the gate with output wires w∗). More specifically, we prepare the
following functions:

• For each gate g where k̂w∗ is used to encrypt left ciphertexts, prepare functions F
1⊕Λα,Λβ
g [s

1⊕Λα,Λβ
g ]

and Const[S
1⊕Λα,1⊕Λβ
g ].

• For each gate g where k̂w∗ is used to encrypt right ciphertexts, prepare functions F
Λα,1⊕Λβ
g [S

Λα,1⊕Λβ
g ],

F
1⊕Λα,1⊕Λβ
g [S

1⊕Λα,1⊕Λβ
g ].

Note that each function Fg has C, g, kγ, tdγ, Λγ (where γ is an output wire of g) in its description.
Since we switch keys to simulated according to the topological order of the circuit, output keys k̂γ of
gates where w∗ is an input wire are already switched to simulated, which means that their trapdoor
tdγ, and therefore the desecription if each required function F, is well defined.

The challenger of FEE security game responds with a key k̂w∗ , l ciphertexts and l randomness of
encryption, which are either real (encrypting F(x)) or simulated. More specifically, we get the following
values from the challenger:

• For each gate g where k̂w∗ is used to encrypt left ciphertexts:

– In the real case, we get

c
1⊕Λw∗ ,Λβ

g,left = FEE.Enck̂w∗
(params, S1⊕Λw∗ ,Λβ ; r

1⊕Λw∗ ,Λβ

g,left ),

c
1⊕Λw∗ ,1⊕Λβ

g,left = FEE.Enck̂w∗
(params, S

1⊕Λw∗ ,1⊕Λβ
g ; r

1⊕Λw∗ ,1⊕Λβ

g,left ),

We also get both randomness of encryption r
1⊕Λw∗ ,Λβ

g,left and r
1⊕Λw∗ ,1⊕Λβ

g,left .

– In the simulated case, we get

c
1⊕Λw∗ ,Λβ

g,left = FEE.SimEnc(F
1⊕Λw∗ ,Λβ
g [s

1⊕Λw∗ ,Λβ
g ], tdw∗ ; r

1⊕Λw∗ ,Λβ

Sim,g,left )

c
1⊕Λw∗ ,1⊕Λβ

g,left = FEE.SimEnc(Const[S
1⊕Λw∗ ,1⊕Λβ
g ], tdw∗ ; r

1⊕Λw∗ ,1⊕Λβ

Sim,g,left ).

We also get both randomness of encryption

r
1⊕Λw∗ ,Λβ

g,left ← FEE.Adapt(F
1⊕Λw∗ ,Λβ
g [s

1⊕Λw∗ ,Λβ
g ], r

1⊕Λw∗ ,Λβ

Sim,g,left ), x),

r
1⊕Λw∗ ,1⊕Λβ

g,left ← FEE.Adapt(Const[S
1⊕Λα,1⊕Λβ
g ], r

1⊕Λw∗ ,1⊕Λβ

Sim,g,left , x).

• For each gate g where k̂w∗ is used to encrypt right ciphertexts:

– In the real case, we get

cΛα,1⊕Λw∗
g,right = FEE.Enck̂w∗

(params, sΛα,1⊕Λw∗ ; rΛα,1⊕Λw∗
g,right ),

c1⊕Λα,1⊕Λw∗
g,right = FEE.Enck̂w∗

(params, s1⊕Λα,1⊕Λw∗
g ; r1⊕Λα,1⊕Λw∗

g,right ),

We also get both randomness of encryption rΛα,1⊕Λw∗
g,right and r1⊕Λα,1⊕Λw∗

g,right .
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– In the simulated case, we get

cΛα,1⊕Λw∗
g,right = FEE.SimEnc(FΛα,1⊕Λw∗

g [SΛα,1⊕Λw∗
g ], tdw∗ ; rΛα,1⊕Λw∗

Sim,g,right),

c1⊕Λα,1⊕Λw∗
g,right = FEE.SimEnc(F1⊕Λα,1⊕Λw∗

g [S1⊕Λα,1⊕Λw∗
g ], tdw∗ ; r1⊕Λα,1⊕Λw∗

Sim,g,right ).

We also get both randomness of encryption

rΛα,1⊕Λw∗
g,right ← FEE.Adapt(FΛα,1⊕Λw∗

g [SΛα,1⊕Λw∗
g ], rΛα,1⊕Λw∗

Sim,g,right), x),

r1⊕Λα,1⊕Λw∗
g,right ← FEE.Adapt(F1⊕Λα,1⊕Λw∗

g [S1⊕Λα,1⊕Λw∗
g ], r1⊕Λα,1⊕Λw∗

Sim,g,right , x).

• Finally, we get the key k̂w∗ , which is either randomly chosen or simulated as k̂w∗ ← FEE.Equiv(tdw∗ , x).

We then generate the garbled gate as follows:

1. The first pair of left encryptions (under active key kα) is generated as follows:

c
Λα,Λβ

g,left = FEE.Enckα
(params, SΛα,Λβ ; r

Λα,Λβ

g,left ),

c
Λα,1⊕Λβ

g,left = FEE.Enckα
(params, S

Λα,1⊕Λβ
g ; r

Λα,1⊕Λβ

g,left ).

2. Then we generate the second pair of left encryptions (under inactive key k̂α) as follows:

• If α > w∗ (i.e. the key k̂α is already simulated), then we set:

c
1⊕Λα,Λβ

g,left = FEE.SimEnc(F
1⊕Λα,Λβ
g [s

1⊕Λα,Λβ
g ], tdα; r

1⊕Λα,Λβ

Sim,g,left),

c
1⊕Λα,1⊕Λβ

g,left = FEE.SimEnc(Const[S
1⊕Λα,1⊕Λβ
g ], tdα; r

1⊕Λα,1⊕Λβ

Sim,g,left ),

and set equivocated randomness of encryption to be

r
1⊕Λα,Λβ

g,left = FEE.Adapt(F
1⊕Λα,Λβ
g [s

1⊕Λα,Λβ
g ], r

1⊕Λα,Λβ

Sim,g,left, x),

r
1⊕Λα,1⊕Λβ

g,left = FEE.Adapt(Constg[S
1⊕Λα,1⊕Λβ
g ], r

1⊕Λα,1⊕Λβ

Sim,g,left , x),

• If α < w∗ (i.e. the key k̂α is still honestly generated), then we instead generate these two
ciphertexts as

c
1⊕Λα,Λβ

g,left = FEE.Enck̂α
(params, S1⊕Λα,Λβ ; r

1⊕Λα,Λβ

g,left ),

c
1⊕Λα,1⊕Λβ

g,left = FEE.Enck̂α
(params, S

1⊕Λα,1⊕Λβ
g ; r

1⊕Λα,1⊕Λβ

g,left ).

• If α = w∗, then we use challenge ciphertexts c
1⊕Λw∗ ,Λβ

g,left , c
1⊕Λw∗ ,1⊕Λβ

g,left .

3. Similarly, we generate a pair of right ciphertexts under active key kβ as follows:

c
Λα,Λβ

g,right = FEE.Enckβ
(params, sΛα,Λβ ; r

Λα,Λβ

g,right),

c
Λα,1⊕Λβ

g,right = FEE.Enckβ
(params, s

Λα,1⊕Λβ
g ; r

Λα,1⊕Λβ

g,right ).
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4. Then we generate the second pair of right encryptions (under inactive key k̂β) as follows:

• If β > w∗ (i.e. the key k̂β is already simulated), then we set:

c
Λα,1⊕Λβ

g,right = FEE.SimEnc(F
Λα,1⊕Λβ
g [S

Λα,1⊕Λβ
g ], tdβ; r

Λα,1⊕Λβ

Sim,g,right),

c
1⊕Λα,1⊕Λβ

g,right = FEE.SimEnc(F
1⊕Λα,1⊕Λβ
g [S

1⊕Λα,1⊕Λβ
g ], tdβ; r

1⊕Λα,1⊕Λβ

Sim,g,right ),

and set equivocated randomness of encryption to be

r
Λα,1⊕Λβ

g,right = FEE.Adapt(F
Λα,1⊕Λβ
g [S

Λα,1⊕Λβ
g ], r

Λα,1⊕Λβ

Sim,g,right, x),

r
1⊕Λα,1⊕Λβ

g,right = FEE.Adapt(F
1⊕Λα,1⊕Λβ
g [S

1⊕Λα,1⊕Λβ
g ], r

1⊕Λα,1⊕Λβ

Sim,g,right , x).

• If β < w∗ (i.e. the key k̂β is still honestly generated), then we instead generate these two
ciphertexts as

c
Λα,1⊕Λβ

g,right = FEE.Enck̂β
(params, s

Λα,1⊕Λβ
g ; r

Λα,1⊕Λβ

g,right ),

c
1⊕Λα,1⊕Λβ

g,right = FEE.Enck̂β
(params, s

1⊕Λα,1⊕Λβ
g ; r

1⊕Λα,1⊕Λβ

g,right ).

• If β = w∗, then we use challenge ciphertexts cΛα,1⊕Λw∗
g,right , c1⊕Λα,1⊕Λw∗

g,right .

We set each garbled gate Gg to be 8 ciphertexts cb1,b2
g,left, cb1,b2

g,right generated above (for all bits b1, b2), and

we set the garbled circuit C̃ to be
{

Gg
}

g∈[gates(C)]. We set the garbled input to be k1, . . . , kn. We set the
internal state of the garbler to be:

• Keys k1, . . . , km−1, k̂1, . . . , k̂m−1;

• Encryption randomness rb1,b2
g,left, rb1,b2

g,right, for each gate g and each pair of bits b1, b2.

• Masks sb1,b2
g for every gate g and each pair of bits b1, b2.

• Random bits λw = Λw ⊕ bitw.

It follows directly from our construction that if the challenge ciphertexts were honestly generated
according to FEE.Gen and FEE.Enc, the resulting experiment would be Hw∗−1 and if they are simulated
the experiment would be Hw∗ . Therefore indistinguishability of Hw∗−1 and Hw∗ directly reduces to the
security game of the underlying FEE scheme.

Hybrid Hm. In this hybrid we change how masks are generated, without changing the distribution
of the hybrid m− 1. Since all keys k̂w are now simulated, each double encryption depends on only one
value s (S, respectively), but not on all three values S = s⊕M. Thus, each encryption can be generated
by the simulator who doesn’t know x (and therefore M), but first picks random s (S, respectively) and
later opens s = S⊕M. Therefore the generation of a garbled circuit is now independent of x (and only
depends on y = C(x), and therefore can be simulated before x is known.
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5 Application 1: Two-Message Adaptive 2PC

In this section, we provide our main result for adaptive honest-but-curious (semi-honest) corruptions
in the two-party setting. We show that the Yao two-message two-party protocol for static honest-but-
curious corruptions [Yao86] gives adaptively secure two party computation in the plain model, if we
replace the underlying primitives, i.e. garbling and oblivious transfer, with Equivocal Garbling and
adaptively secure honest-but-curious oblivious-transfer, and encrypt the communication under non-
committing encryption.

Assume one party (the garbler G) has input x and the other party (the evaluator E) has input y; both
inputs have length n. We describe the protocol which allows E to learn output z = f (x, y), where f is
a deterministic function. To allow G also learn the output, parties can run in parallel another instance
of the protocol with reversed roles.

Adaptively secure version of Yao’86 protocol. Let (GarbleProg,GarbleInp,Eval) be a bit-decomposable
equivocal garbling scheme, (R, S, E) be 2-message adaptively secure oblivious transfer, and (Gen,Enc,Dec)
be a non-committing encryption (NCE). The protocol proceeds as follows:

1. E sends G OT1,1 = R(y1; s1), . . . ,OT1,n = R(yn, sn) for random coins s1, . . . , sn, and public key pk
of NCE, sampled as (pk, sk)← Gen(rGen) for random rGen;

2. G chooses a random garbling key K and garbles the circuit f̃ ← GarbleProg(K, f ; r) using random
coins r. Next it garbles its input bit by bit by running x̃i ← GarbleInp(K, xi, i), i ∈ [n], and garbles
each possible bit of E’s input by running ỹ0

i ← GarbleInp(K, 0, n + i), ỹ1
i ← GarbleInp(K, 1, n + i). G

sets the plaintext M of NCE to be:

• the garbled circuit f̃ ;

• G’s garbled input x̃1, . . . , x̃n;

• OT2,1 = S(OT1,1, ỹ0
1, ỹ1

1; r1), . . . , OT2,n = S(OT1,n, ỹ0
n, ỹ1

n; rn) (generated using random coins
r1, . . . , rn).

G then encrypts M by setting c = NCE.Encpk(M; rEnc) and sends c to E;

Then E decrypts c using sk of NCE, recovers its garbled input by running ỹyi
i ← E(OT2,i, si), and

evaluates z = Eval(C̃, x̃1, . . . , x̃n, ỹy1
1 , . . . , ỹyn

n ).

Theorem 3. Assume that (GarbleProg,GarbleInp,Eval) is a bit-decomposable equivocal garbling scheme, (R, S, E)
is an adaptively secure semi-honest oblivious transfer, and (Gen,Enc,Dec) is a non-committing encryption; all
primitives are in the plain model. Then the protocol presented above is a two-party two-message protocol in the
plain model, adaptively secure against semi-honest adversaries.

Proof. Correctness of this protocol follows from correctness of the garbling scheme , oblivious transfer,
and NCE. To show security, we show that the simulator can simulate the execution for an arbitrary
order of corruptions of possibly both parties. We describe the simulator for each case separately,
keeping in mind that the simulator’s actions should be independent of the future corruptions.

We assume that the simulator knows the output z in the beginning of the protocol: this can be
achieved by instructing E to pick random mask, set it as part of E’s input, and run the protocol for
the function z = f ′(x, (y,mask)) = f (x, y) ⊕mask. This still allows E to recover f (x, y) as f (x, y) =
z⊕mask, but now the output z is uniformly distributed and can be chosen by the simulator in advance;
once E is corrupted, the simulator learns f (x, y) and can set the mask accordingly as mask = z⊕ f (x, y).

Without loss of generality, we can assume that both parties eventually become corrupted (if they
don’t, the adversary sees strictly less information than in case when they both become corrupted, and
therefore security also holds).
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• Case 1: E is corrupted before round 1, G is corrupted any time before round 2. In this case the
simulator learns both inputs x, y and can generate the execution honestly.

• Case 2: E is corrupted any time after round 1, G is corrupted any time before round 2. In
this case the simulator simulates the first message using OT simulator and NCE simulator, but
generates the second message honestly.

Upon corruption of E, the simulator uses OT simulator to show E’s internal state consistent with
its input y, and NCE simulator to show that simulated pk was generated honestly.

Security. We start from a real execution of the protocol.

In hybrid 1 we change NCE keys and generation randomness (pk, sk, rGen) from real to simulated
(the NCE ciphertext is still encrypted honestly, i.e. by executing NCE.Encpk(M; rEnc) with sim-
ulated pk); indistinguishability follows from indistinguishability of real and simulated keys of
NCE (which is implied by security of NCE).

In hybrid 2 we change first OT messages to from real to simulated, relying on adaptive security
of OT for the case when the receiver is corrupted after it sends the message and the sender is
corrupted before the sender sends the message.

• Case 3: E is corrupted before round 1, G is corrupted after round 2. In this case the simu-
lator generates the first message honestly, but simulates NCE plaintext M: for this, it runs the
simulator for the garbled circuit (where an output of the circuit is set to be an output of the com-
putation, which we assumed to be known to the simulator in advance) and gets simulated f̃ , x̃, ỹ;
it simulates second OT messages, setting them to contain a single value ỹi. It then encrypts this
M honestly under NCE.

Upon corruption of G, the simulator learns x and runs the simulator of garbled circuits to produce
a simulated key K and random coins r consistent with input x, y. It uses K to garbled all possible
bits ỹ0

i , ỹ1
i . It also runs the OT simulator to show randomness of G consistent with simulated

second OT messages and G’s input to the OT (ỹ0
i , ỹ1

i ).

Security. We start from a real execution of the protocol.

In hybrid 1 we change second OT messages OT2,i (and G’s randomness ri used to generate them)
from real to simulated, where each OT message contains a single value ỹyi

i , i.e. the garbled bit
of E’s input. Indistinguishability follows from security of OT for the case when the receiver is
corrupted before the receiver sends its message, and the sender is corrupted after the sender
sends its message.

In hybrid 2 we change how the garbled circuit is generated: we simulate the garbled circuit f̃
(setting it with the output of the computation, known to the simulator) and the garbled input x̃, ỹ.
We also set K, r to be simulated key and randomness for input (x, y). Indistinguishability follows
from security of equivocal garbled circuits. We note that it is enough to use security with respect
to selectively chosen inputs6, since by the moment the garbled circuit needs to be generated (i.e.
round 2), both inputs x, y of the computation are already determined by the environment.

• Case 4: E is corrupted any time after round 1, G is corrupted after round 2. In this case
the simulator generates both messages as simulated. That is, it generates the first message by
simulating first OT messages, and by setting pk to be simulated NCE key. It generates the second
message by simulating NCE ciphertext c.

6I.e. the adversary has to choose inputs x, y before it sees garbled f̃ .
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– Case 1: G is corrupted first. Upon corruption of G, the simulator picks the garbling key K at
random and garbles f̃ , x̃, and each ỹ0

i , ỹ1
i honestly. It generates second OT messages honestly

(i.e. containing ỹ0
i , ỹ1

i ). It sets M to be x̃, f̃ , and all second OT messages. It equivocates rEnc
such that simulated c looks like a real encryption of M.
Upon corruption of E, the simulator equivocates sk to M and uses OT simulator to present
E’s internal state consistent with simulated first OT messages and its input y.

Security. We start from a real execution of the protocol.
In hybrid 1 we change how the NCE values are generated: namely, pk, c become simulated,
and rGen, sk, rEnc are equivocated to honestly generated plaintext M. Indistinguishability
follows from adaptive security of NCE.
In hybrid 2 we change first OT messages OT1,i and E’s randomness si to simulated. Indistin-
guishability follows from adaptive security of OT for the case when the receiver is corrupted
after it sends its message and the sender is corrupted before the sender sends its message.

– Case 2: E is corrupted first. Upon corruption of E, the simulator first runs the simulator for
garbled circuits and gets simulated x̃, ỹ, f̃ . It simulates the second OT messages, such that
they contain a single value ỹi. It sets M = f̃ , x̃, and second OT messages, and equivocates sk
to M. It also uses the simulator for adaptive OT to generate E’s randomness consistent with
its input y and first OT messages.
Upon corruption of G, the simulator uses the simulator for garbled circuits to simulate the
garbling key K and randomness r, consistent with f̃ , x̃, ỹ, f , x, y. It uses K to compute G’s
input to adaptive OT, i.e. ỹ0

i , ỹ1
i , and uses OT simulator to produce random coins consistent

with this input and simulated second OT messages. Next it equivocates randomness rEnc to
M.

Security. We start from a real execution of the protocol.
In hybrid 1 we change how OT messages are generated: we simulate both first and second
OT messages, setting each OT output to ỹyi

i (i.e. garbled bit of E’s input). We use adaptive
simulator for OT to simulate both parties randomness of OT, such that this randomness is
consistent with simulated OT messages and each party’s input to OT: namely, with E’s input
y and G’s input (ỹ0

i , ỹ1
i ).

In hybrid 2 we change how garbled values are generated: we simulate the garbled circuit
f̃ (setting it with the output of the computation, known to the simulator) and the garbled
input x̃, ỹ. We also set K, r to be simulated key and randomness for input (x, y). Indistin-
guishability follows from security of equivocal garbled circuits. Again, we note that it is
enough to use security with respect to selectively chosen inputs, since by the moment the
garbled circuit needs to be generated (i.e. round 2), both inputs x, y of the computation are
already determined by the environment.
Finally, we change NCE values from real to simulated, using adaptive security of NCE.

A note on not requiring the Garbling scheme to be secure against adaptive choice of inputs. As
mentioned in the introduction, an adaptive garbling scheme [BHR12] is a garbling scheme that is secure
against an adversary that adaptively chooses its input after seeing the garbled circuit. This notion is
not directly related to our notion of equivocal garbling. However, it might seem that our construction
requires this stronger property. Consider the corruption scenario where E is corrupted at the end and
the G is corrupted before, say at the beginning. Here, the simulator first needs to construct a garbled
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circuit that is sent from G to E and then later after it receives E’s input need to generate keys according
to this input and here it might seem that we require our scheme to be secure against an adaptive choice
of inputs. This will not be an issue for our construction described above as we are proving security
of a two-party protocol for adaptive honest-but-curious corruptions and the inputs for the parties are
indeed chosen at the beginning of the computation.7 This means that when we argue the security via a
standard hybrid argument from the real experiment to the simulated experiment, we can assume that
in the intermediate hybrids, the simulator has access to the real inputs x, y and thus we will not require
the adaptive choice of inputs property to hold for our garbling scheme.

6 Application 2: Constant-round Adaptive Multiparty Computation

In this section, we describe how to adapt our garbling scheme to the multiparty setting.

Theorem 4. Let f be a deterministic function with n inputs. Assuming the existence of simulatable public-key
encryption, there exists a O(1)-round multiparty protocol to securely realize f against adaptive honest-but-
curious corruption of all parties.

Proof. On a high-level, our idea is to port the Equivocal Garbling to the multiparty setting in a way
similar that standard Garbling is adopted in the approach of Beaver, Micali and Rogaway [BMR90].

Protocol. Let f be a deterministic function that takes inputs x1, . . . , xn and outputs f (x1, . . . , xn). Let
C be the circuit that realizes the function f . Let s be the number of gates and W be the total number
of wires. As in our previous descriptions, the gates are numbered so that they are in topological order
and the wires are numbered so that the first |x1| + · · · + |xn| wires are assigned to their respective
inputs and the last wire, i.e. W is the wire for the output bit. Furthermore, we denote by the indexes
i1, . . . , im the wires that carry the input of party Pi. The protocol ΠBMR involves parties P1, . . . , Pn and
proceeds in two phases: the first phase is called preprocessing phase and can be executed independent
of the parties inputs; the second phase is called online phase.

Preprocessing Phase: The parties in this phase will execute an generic MPC protocol (say, the GMW
protocol) for an ideal multiparty functionality that will result in an equivocal garbling of the
function f distributed among the parties. As generating a garbled circuit does not involve the
inputs of the parties, this phase will be input independent. In fact, we will describe an ideal
functionality for every gate g in the circuit that parties will compute in parallel. We describe this
ideal functionality next.

Each party Pi (i ∈ [n]) samples random keys k0
w,i, k1

w,i and mask λw,i for every wire 1 ≤ i ≤ W
except for wires that carry inputs of party Pj for any j 6= i. Let g be a gate in the circuit with α, β
as input wires and γ as output wire. Then all parties will engage in a multiparty protocol for
gate g that will compute the following functionality:

Pi provides as input the masks λα,i, λβ,i, λγ,i, the keys chosen for the wire γ, i.e. k0
γ,i and k1

γ,i.
If either wire α or β carries the input of party Pj, then only Pj provides the mask bit for this
wire. For simplicity, we will describe the functionality as a randomized algorithm. The actual
functionality that the parties will compute is the deterministic variant of the functionality that
additionally takes as input from the parties auxiliary randomness raux,i which will be XORed and
used by functionality as its random tape.

1. The functionality receives the inputs from all parties and computes the hidden masks as
λα =

⊕n
i=1 λα,i λβ =

⊕n
i=1 λβ,i, and λγ =

⊕n
i=1 λγ,i.

7This can be formalized in the UC-framework where the environment selects the inputs of the parties. Here, necessarily
the inputs have to be determined before the environment gets to see any communication (via the adversary) in the protocol.
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2. The combined key for the wire γ is the concatenation of the keys contributed by all the
parties, computed as

K0
γ = (k0

γ,1, . . . , k0
γ,n)

K1
γ = (k1

γ,1, . . . , k1
γ,n)

Then it computes the key that needs to be encrypted in each row corresponding to the
garbling of gate g as follows: For b, b′ ∈ {0, 1} row (b, b′) contains Rbb′

g computed as:

Rbb′
g = (Kv⊕λγ

γ , v⊕ λγ) where v = g(b⊕ λα, b′ ⊕ λβ)

3. Then the functionality secret shares (using XOR) each of the four values (R00
g , R01

g , R10
g , R11

g )

as {R00
g,i}n

i=1, {R01
g,i}n

i=1, {R10
g,i}n

i=1 and {R11
g,i}n

i=1 and party Pi receives as output from the func-
tionality (R00

g,i, R01
g,i, R10

g,i, R11
g,i).

The functionality is formalized in Figure 3. All parties after receiving their share for each gate g,
they output it locally as their local state for the preprocessing phase.

Online Phase In this phase, each party first broadcasts the visible masks corresponding to its input
wires. Then the shares received in the preprocessing phase are encrypted with the keys it con-
tributed along with keys on all input wires corresponding to the visible masks revealed by the
respective party. This will allow all parties to recombine the shares and then evaluate the garbled
circuit and obtain the visible masks of the output wires. The parties then reveal their contribu-
tion to the hidden masks for the output wires which can be combined with visible masks to
obtain the actual output.

1. In Round 1, each party Pi with input xi = (xi1 · · · xim) computes the visible masks cor-
responding to the wires carrying their input, which are wires i1, . . . , im according to our
convention. It can compute this locally, as the hidden masks for these wires were deter-
mined only by Pi and the visible masks is the XOR of the actual value on the wire and the
hidden masks. More precisely,

Round 1: Pi broadcasts ( “Input Wire ij” , Λij) where Λij = λij ⊕ xij for j ∈ [m]

After all parties receive visible masks for every input wire, they broadcast encryptions of the
shares received in the preprocessing phase and their contributions to the keys corresponding
to the visible masks for every input wire, namely:

2. In Round 2, for every input wire w,

Round 2: Pi broadcasts ( “Pi’s key for Input wire w ” , kΛw
w,i ),

All parties receive the keys corresponding to input wires w and locally compute the com-
bined key Kw as follows

Kw = (kw,1, . . . , kw,n)

For every gate g with input wires α, β and output wire γ,

Round 2: Pi broadcasts :
(“Row (0, 0)′′, c00

g,i,left = FEE.Enck0
α,i
(params, s00

g,i,left), c00
g,i,right = FEE.Enck0

β,i
(params, s00

g,i,right))

(“Row (0, 1)′′, c01
g,i,left = FEE.Enck0

α,i
(params, s01

g,i,left), c01
g,i,right = FEE.Enck1

β,i
(params, s01

g,i,right))

(“Row (1, 0)′′, c10
g,i,left = FEE.Enck1

α,i
(params, s10

g,i,left), c10
g,i,right = FEE.Enck0

β,i
(params, s10

g,i,right))

(“Row (1, 1)′′, c11
g,i,left = FEE.Enck1

α,i
(params, s11

g,i,left), c11
g,i,right = FEE.Enck1

β,i
(params, s11

g,i,right))
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where sbb′
g,i,left, sbb′

g,i,right is a random XOR sharing of Rbb′
g,i .

Evaluation: After receiving the messages from all parties, Pi evaluates the Garbled Circuit.
Recall that for each input wire w of the circuit, the parties possess Λw provided by the party
whose input the wire is carrying. Define bw = Λw for every input wire.
Now they carry out the evaluation on the topological order of the gates g as follows: The

parties pick the ciphertexts for Row (bα, bβ), namely (c
bαbβ

g,i,left, c
bαbβ

g,i,right) for every i ∈ [n], and

decrypts them using kbα
α,i and k

bβ

β,i that can be obtained from Kbα
α and K

bβ

β . The decryption will

yield s
bαbβ

g,i,left and s
bαbβ

g,i,right. They XOR all the shares to obtain R
bαbβ
g which by our construction

is
R

bαbβ
g = (Kv⊕λγ

γ , v⊕ λγ)

where v = g(βα ⊕ λα, bβ ⊕ λβ) where λw =
⊕n

i=1 λw,i. Define bγ = v⊕ λγ and continue the
evaluation.

3. Finally, in Round 3, all parties obtain a key and mask for the output wire, namely, (KbW
W , bW).

Then,

Round 3: Pi broadcasts ( “Output Wire W” , λW,i)

The final output is then computed by all parties as (
⊕n

i=1 λW,i)⊕ bW .

Correctness: Let bitw is the actual value in the wire w when the circuit C is fed as input x1, . . . , xn We
will show inductively that for every wire w, the parties will obtain

Key KΛw
w and mask Λw

where Λw = λw ⊕ bitw. This will prove correctness because corresponding to the output wire W, the
parties obtain {λW,i}i∈[n] with which they compute

(
n⊕

i=1

λW,i)⊕ΛW = bitW .

Hence, it suffices to demonstrate our induction hypothesis to prove correctness.

Base case: Input wires of circuit. For gate g with input wires α, β that correspond to the input of the
circuit (i.e. carries the input of some party), by our construction the parties have K

Λβ
α and K

Λβ

β .
This follows from the fact that for an input wire w carrying an input bit of Pi, Pi broadcasts
λw ⊕ bitw in Round 1.

Induction step: Let g be an arbitrary gate such that the parties possess (KΛα
α , Λα) and (K

Λβ

β , Λβ). We

will show that it can obtain KΛγ
γ , Λγ where Λγ = λγ ⊕ bitγ. Recall that for this gate g, the

parties will use Row (Λα, Λβ) and decrypt (c
ΛαΛβ

g,i,left, c
ΛαΛβ

g,i,right) for every i ∈ [n] using kΛα
α,i and k

Λβ

β,i

respectively and these keys are contained in KΛα
α and K

Λβ

β . The decryption will yield s
ΛαΛβ

g,i,left and

s
ΛαΛβ

g,i,right. The parties add the shares computed for i ∈ [n] which according to our functionality

from the preprocessing phase is R
Λα,Λβ
g . By our construction

R
Λα,Λβ
g = (Kv⊕λγ

γ , v⊕ λγ) where v = g(Λα ⊕ λα, Λβ ⊕ λβ).

By our induction hypothesis, we have that Λα⊕ λα = bitα and Λβ⊕ λβ = bitβ. which implies that
v = g(bitα, bitβ) = bitγ and that the parties obtain

(Kbitγ⊕λγ
γ , bitγ ⊕ λγ) = (KΛγ , Λγ).

This concludes the induction step and the proof of correctness.

39



MPC Functionality F g
share

Let 1 ≤ α, β ≤ W be the identities of the input wires of gate g and 1 ≤ γ ≤ W be the identity of the
output wire of g.

• Party Pi provides as input to the functionality λα,i, λβ,i, λγ,i; k0
γ,i, k1

γ,i, and raux,i.

• Let λα =
⊕n

i=1 λα,i, λβ =
⊕n

i=1 λβ,i, and λγ = ⊕n
i=1λγ,i and

χ1 = λγ ⊕ g(λα, λβ) R00
g = K0

γ ⊕
(

χ1 ∧ (K1
γ ⊕ K0

γ)
)

χ2 = λγ ⊕ g(λα, 1⊕ λβ) R01
g = K0

γ ⊕
(

χ2 ∧ (K1
γ ⊕ K0

γ)
)

χ3 = λγ ⊕ g(1⊕ λα, λβ) R10
g = K0

γ ⊕
(

χ3 ∧ (K1
γ ⊕ K0

γ)
)

χ4 = λγ ⊕ g(1⊕ λα, 1⊕ λβ) R11
g = K0

γ ⊕
(

χ4 ∧ (K1
γ ⊕ K0

γ)
)

where K0
γ = (k0

γ,1, . . . , k0
γ,n) and K1

γ = (k1
γ,1, . . . , k1

γ,n). We use the

⊕ operator above to denote the XOR operation applied bitwise and χj ∧ (K1
γ ⊕ K0

γ) for j ∈
{1, 2, 3, 4} is interpreted as computing logical and operation of χj with every bit of (K1

c ⊕ K0
c ).

• The functionality computes random XOR shares for (R00
g , R01

g , R10
g , R11

g ) as
{R00

g,i}
n
i=1, {R01

g,i}
n
i=1, {R10

g,i}
n
i=1 and {R11

g,i}n
i=1 (secret shares are generated using randomness

raux =
⊕n

i=1 raux,i). It sends (R00
g,i, R01

g,i, R10
g,i, R11

g,i) to party Pi for every i ∈ [n].

Figure 3: The secret sharing functionality F g
share for gate g.

Simulation. Without loss of generality we can assume that the simulator learns the output of the com-
putation in the very beginning, even if nobody is corrupted. This can be achieved by the standard trans-
formation f ′((x1,mask1), . . . , (x2,mask2)) = ( f1(x1, . . . , xn)⊕mask1, . . . , fn(x1, . . . , xn)⊕maskn). That is,
we instruct parties to pick their random masks, run MPC protocol to compute the function f ′, xor i-th
chunk of output with maski and learn the output fi(x1, . . . , xn). The simulator can generate a random
output in the beginning and later, upon corruption of party i, open its mask appropriately.

The simulation on a high-level will generate the encryptions under active keys using FEE.Enc and
the rest of the rows using FEE.SimEnc. Just as in the two-party setting, we need to define the function
that will be used to equivocate the difference ciphertexts. On a high-level, our simulation will proceed
as follows: The function embedded in the ciphertexts will have two modes that can be activated by
one of its inputs. In one mode, say mode = 0, the function will be a constant function, outputting a
hardwired constant const. In the second mode, mode = 1, the function on input x will compute C(x),
figure the actual values bitα, bitβ and bitγ just as in the two-party setting and then output something so
that the the shares from all decryptions under keys from all parties will add up to reveal the correct
key. Upto n− 1 corruptions, the ciphertexts will be revealed under mode = 0, and when nth party is
corrupted and all inputs of parties become known, the ciphertext will be revealed under mode = 1.

We will now describe the simulation’s procedure in the Preprocessing Phase and Online Phase.

Preprocessing Phase: In this phase, the simulation will have to simulate the communication in the sub-
protocol used to compute the functionality F g

share and any adaptive corruptions that occur in the
middle of the execution of this sub-protocol. The simulation will rely on the standard adaptive
simulation of the underlying GMW protocol used to realize this functionality. In order to carry
out the simulation according the GMW protocol, when a party is corrupted, the simulation needs
to provide its input and output functionality F g

share. We describe next how to determine this.

40



• Upto n − 1 corruptions, the simulator generates randomly chosen keys k0
w,i and k1

w,i and
mask λw,i for every wire w and sets P1’s input as it would be in an honest execution and the
output received to be random. Namely, it sets (R00

g,i, R01
g,i, R10

g,i, R11
g,i) to be all random strings

of the appropriate length.

• If the nth party Pi is corrupted, before or at the end of the preprocessing phase, then the
simulator firsts generates random keys k0

w,i and k1
w,i and mask λw,i just as for the other

n − 1 corruptions. Then, to compute the outputs (R00
g,i, R01

g,i, R10
g,i, R11

g,i), it will first run an
honest computation of F g

share using the inputs of all parties and compute the actual rows
(R00

g , R01
g , R10

g , R11
g ) and then sets the share for Pi so that it adds up the actual row. Namely,

it sets Rbb′
g,i = (⊕i 6=jRbb′

g,j )⊕ Rbb′
g for every g and b, b′ ∈ {0, 1} which will be the output of Pi.

Online Phase: If all parties were corrupted in the Preprocessing Phase, the simulator learns all inputs
x1, . . . , xn and runs Online Phase honestly. From now on we assume that at least one party re-
mained uncorrupted, and therefore the simulation has to produce communication for the parties
and address adaptive corruptions in this Phase. Recall that the parties in this phase first broad-
cast visible masks corresponding to the input wires. This is followed by the parties broadcasting
encryptions and their contribution to the keys corresponding to the visible masks for the input
wires of the circuit. Then they evaluate the Garbled Circuit and then broadcast their contribution
to the hidden masks masks for the output wire.

More formally, for all parties that have already been corrupted, the Simulation simple carries out
the honest code with the inputs and outputs determined for these parties in the preprocessing
phase. For the remaining parties. For the remaining uncorrupted parties, the Simulation proceeds
as follows:

1. In Round 1, it samples a random key using the FEE.Gen function for every wire w and every
party Pi that has not yet been corrupted, denoted by kw,i. Next, it will determine an active
path by sampling random bits for Λw for each wire w. This it will sample only for all inter-
mediate wires and input wires of the circuit carrying inputs of uncorrupted parties. Then
the active row in each gate g with input wires α and β is given by (Λα, Λβ). Corresponding
to each input wire w of the circuit that carries an input bit from an uncorrupted Pi, the
simulator places in the transcript the following broadcast message from party Pi:

Round 1: Pi broadcasts ( “Input Wire ij” , Λij)

2. In Round 2, the parties broadcast their contribution to the keys for the input wires of the
circuit and the ciphertexts for each row of each gate.
For each input wire of the circuit, the simulator places on the transcript the following mes-
sage for uncorrupted Pi’s.

Round 2: Pi broadcasts ( “Pi’s key for Input wire w ” , kw,i),

For each gate g with input wires α, β and output wire γ, the simulator samples random
strings sbb′

g,i,left and sbb′
g,i,right for b, b′ ∈ {0, 1}. It also runs SimTrap to generate trapdoors

td
Λα(1⊕Λβ)

g,i,right , td
(1⊕Λα)Λβ

g,i,left , td
(1⊕Λα)(1⊕Λβ)

g,i,left and td
(1⊕Λα)(1⊕Λβ)

g,i,right . Next, it places on the transcript:

Round 2: Pi broadcasts :
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(Row(Λα, Λβ),

c
ΛαΛβ

g,i,left = FEE.Enckα,i(params, s
ΛαΛβ

g,i,left),

c
ΛαΛβ

g,i,right = FEE.Enckβ,i(params, s
ΛαΛβ

g,i,right))

(Row(Λα, 1⊕Λβ),

c
Λα(1⊕Λβ)

g,i,left = FEE.Enckα,i(params, s
Λα(1⊕Λβ)

g,i,left ),

c
Λα(1⊕Λβ)

g,i,right = FEE.SimEnc(F
Λα(1⊕Λβ)

g,i ))

(Row(1⊕Λα, Λβ),

c
(1⊕Λα)Λβ

g,i,left = FEE.SimEnc(F
(1⊕Λα)Λβ

g,i ),

c
(1⊕Λα)Λβ

g,i,right = FEE.Enckβ,i(params, s
(1⊕Λα)Λβ

g,i,right ))

(Row(1⊕Λα, 1⊕Λβ),

c
(1⊕Λα)(1⊕Λβ)

g,i,left = FEE.SimEnc(F
(1⊕Λα)(1⊕Λβ)

g,i,left ),

c
(1⊕Λα)(1⊕Λβ)

g,i,right = FEE.SimEnc(F
(1⊕Λα)(1⊕Λβ)

g,i,right ))

Now, we define the functions F
Λα(1⊕Λβ)

g,i , F
(1⊕Λα)Λβ

g,i , F
(1⊕Λα)(1⊕Λβ)

g,i,left , F
(1⊕Λα)(1⊕Λβ)

g,i,right .
In fact, all these functions for party Pi will have a similar program. On a high-level all
functions take as input (x1, . . . , xn,mode). If the mode = 0, these functions output a fixed
hardcoded string and if the mode = 1, it outputs the “correct small key” by first computing
the right bit assignment for the wire and then computing the other key Kγ for the output
wire as follows: recall that this key is concatenation of small keys for each party. The
program Fi will compute i-th chunk of this key by running Equiv on (x1, . . . , xn,mode = 1),
and all other chunks by running Equiv on (0n, . . . , 0n,mode = 0)8. Then in order to output
this key Kγ that is a concatenation of the small keys, the simulator will mask with shares
that will be the fixed value decrypted from the remaining ciphertexts when the mode = 0
(and the fixed values that were encrypted by the keys that were not equivocated).
The basic idea is that upto n − 1 corruptions, the keys are equivocated with input set as
(0n, . . . , 0n,mode = 0). If Pi is the last party to be corrupted, the simulator knows the input
of all parties and equivocates Pi’s keys using the input (x1, . . . , xn,mode = 1). We present
formal descriptions of our functions in Figures 4-6.

3. After broadcasting the encryptions, in Round 3, the simulator needs to reveal the λW,i cor-
responding to the output wire. If not all parties have been corrupted, then it simply reveals
λW,i at random so that (

⊕n
i=1 λW,i) ⊕ ΛW = C(x1, . . . , xn), which is the required answer.

Now we formally deal with corruptions in the online phase.

• Upto n − 1 corruptions: The simulator needs to produce the view of party Pi both in
the Preprocessing and Online Phase. The active keys have already been sampled. The
inactive keys k̂w,i are computed by equivocating them with input (0n, . . . , 0n,mode = 0)
with trapdoor tdw,i. Then, the view in the Preprocessing Phase is computed by setting
Pi’s input with the two keys (kw,i, k̂w,i) for every input wire w carrying an input bit of Pi
and output as random shares for each row of each gate.
The random coins of encryption is generated by running the FEE.Adapt algorithm.
• nth corruption. When the nth party is corrupted, the simulator again needs to generate

the view of Pi in the Preprocessing and Online Phase. First, it generates the inactive

8The choice of inputs 0n is arbitrary: recall that if mode = 0, the program ignores the other part of input.
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Program F
Λα(1⊕Λβ)

g,i (x1, . . . , xn,mode)

Constants: C, g, Kγ, {tdγ,j}n
j=1, {(sΛα(1⊕Λβ)

g,j,left , s
Λα(1⊕Λβ)

g,j,right )}n
j=1, Λγ.

if mode = 0 then output s
Λα(1⊕Λβ)

g,i,right .
else if mode = 1

1. Evaluate C(x1, . . . , xn) and learn bit assignments bitα, bitβ of input wires α, β of gate g.
2. For j 6= i, generate

k̂γ,j ← FEE.Equiv(tdγ,j, (0n, . . . , 0n,mode = 0)).

Generate
k̂γ,i ← FEE.Equiv(tdγ,i, (x1, . . . , xn,mode = 1)).

3. Compute mask = (
⊕n

j=1 s
Λα(1⊕Λβ)

g,j,left )⊕ (
⊕

j 6=i s
Λα(1⊕Λβ))

g,j,right ) and Key Kγ = (k̂γ,1, . . . , k̂γ,n).

4. if g(bitα, bitβ) = g(bitα, 1⊕ bitβ) then set M
Λα ,1⊕Λβ
g = Kγ||Λγ;

else set M
Λα ,1⊕Λβ
g = Kγ||(1⊕Λγ).

5. Output M
Λα ,1⊕Λβ
g ⊕mask.

end if

Figure 4: Program in Row (Λα, 1⊕Λβ) for SimEnc.

keys k̂w,i by equivocating on input (x1, . . . , xn,mode = 1) and trapdooor tdw,i. Then, to
compute the outputs (R00

g,i, R01
g,i, R10

g,i, R11
g,i), it will first run an honest computation using

the inputs of all parties and compute the actual rows (R00
g , R01

g , R10
g , R11

g ) and then sets
the share for Pi so that it adds up the actual row. Namely, it sets Rbb′

g,i = (⊕i 6=jRbb′
g,j )⊕ Rbb′

g

for every g and b, b′ ∈ {0, 1}.
The random coins of encryption are again computed by running the FEE.Adapt.

Proof of security: We provide a brief proof sketch showing that our simulation is correct. Upto n− 1
corruptions, it is easy to show that the joint view of all parties are indistinguishable. This follows
from the fact that the inputs and outputs that set in the Preprocessing phase are identically distributed
and indistinguishability of the view in this phase follows from the adaptive security of the underling
GMW protocol. For the the online phase, as long as at most n− 1 parties are corrupted, one share of
each inactive key (and therefore the whole inactive key) is unknown. For the active row, the messages
and randomness are identically distributed in the real and ideal world. To argue this formally, we
can consider a sequence of hybrids where all encryptions are changed from being generated according
to (FEE.SimTrap,FEE.SimEnc,FEE.Adapt) to (FEE.Gen,FEE.Enc). We can use the standard security as
we know the messages that are encrypted in each of these ciphertexts (they are simply random fixed
strings).

When the nth party is corrupted, we will consider a sequence of hybrids from the simulation to the
real world as follows: We will follow a topological order on the gates and replace the encryptions from
being encrypted using the FEE simulation to the honest encryption. Again, we crucially rely on the fact
that we know all the messages to be encrypted and the fact that in this hybrid the reduction knows the
inputs of all parties (x1, . . . , xn) even if all the parties are not corrupted (as we are proving security in
the semi-honest setting where the inputs are determined at the beginning of the computation (by the
environment) and independent of the views of the parties). Then we essentially follow the same set of
hybrids as in the proof of Equivocal Garbling (with the difference that we secret share each key among
2n values instead of just 2). We remark that in this sequence we will continue to simulate the views
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Program F
(1⊕Λα)Λβ

g,i (x1, . . . , xn,mode)

Constants: C, g, Kγ, {tdγ,j}n
j=1, {(s(1⊕Λα)Λβ

g,j,left , s
(1⊕Λα)Λβ

g,j,right )}n
j=1, Λγ.

if mode = 0 then output s
(1⊕Λα)Λβ

g,i,left .
else if mode = 1

1. Evaluate C(x1, . . . , xn) and learn bit assignments bitα, bitβ of input wires α, β of gate g.
2. For j 6= i, generate

k̂γ,j ← FEE.Equiv(tdγ,j, (0n, . . . , 0n,mode = 0)).

Generate
k̂γ,i ← FEE.Equiv(tdγ,i, (x1, . . . , xn,mode = 1)).

3. Compute mask = (
⊕

j 6=i s
(1⊕Λα)Λβ

g,j,left )⊕ (
⊕n

j=1 s
(1⊕Λα)Λβ

g,j,right ) and Key Kγ = (k̂γ,1, . . . , k̂γ,n).

4. if g(bitα, bitβ) = g(bitα, 1⊕ bitβ) then set M
1⊕Λα ,Λβ
g = Kγ||Λγ;

else set M
1⊕Λα ,Λβ
g = Kγ||(1⊕Λγ).

5. Output M
1⊕Λα ,Λβ
g ⊕mask.

end if

Figure 5: Program in Row (1⊕Λα, Λβ) for SimEnc.

Program F
(1⊕Λα)(1⊕Λβ)

g,i,left (x1, . . . , xn,mode)

Constants: C, g, Kγ, {tdγ,j}n
j=1, {(s(1⊕Λα)(1⊕Λβ)

g,j,left , s
(1⊕Λα)Λβ

g,j,right )}n
j=1, Λγ.

if mode = 0 then output s
(1⊕Λα)(1⊕Λβ)

g,i,left .
else if mode = 1

1. Evaluate C(x1, . . . , xn) and learn bit assignments bitα, bitβ of input wires α, β of gate g.
2. For j 6= i, generate

k̂γ,j ← FEE.Equiv(tdγ,j, (0n, . . . , 0n,mode = 0)).

Generate
k̂γ,i ← FEE.Equiv(tdγ,i, (x1, . . . , xn,mode = 1)).

3. Compute mask = (
⊕

j 6=i s
(1⊕Λα)(1⊕Λβ)

g,j,left )⊕ (
⊕n

j=1 s
(1⊕Λα)(1⊕Λβ)

g,j,right ) and Key Kγ = (k̂γ,1, . . . , k̂γ,n).

4. if g(bitα, bitβ) = g(bitα, 1⊕ bitβ) then set M
1⊕Λα ,1⊕Λβ
g = Kγ||Λγ;

else set M
1⊕Λα ,1⊕Λβ
g = Kγ||(1⊕Λγ).

5. Output M
1⊕Λα ,1⊕Λβ
g ⊕mask.

end if

Program F
(1⊕Λα)(1⊕Λβ)

g,i,right (x1, . . . , xn,mode)

Output s
(1⊕Λα)(1⊕Λβ)

g,i,right

Figure 6: Programs in Row (1⊕Λα, 1⊕Λβ) for SimEnc.

in the Preprocessing Phase and finally after all the encryptions have been changed, we will invoke the
simulation property of the underlying GMW protocol for the Preprocessing phase.
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Remark 1. We remark that this construction requires merely the existence of an adaptive honest-but-curious
Oblivious Transfer protocol . Such protocols can be constructed based on any simulatable public-key encryption
[DN00] (or even the weaker trapdoor simulatable public-key encryption [CDMW09]).

6.1 Corollaries

In this section, we describe our results for designing adaptively secure protocol against byzantine (i.e.
malicious) adversaries.

Corollary 5. Let f be a function with n inputs. Assuming the existence of collision resistant hash-functions
and dense cryptosystems, there exists a O(1)-round multiparty protocol to securely realize f against adaptive
malicious corruption of all parties.

Proof. We will obtain this corollary by applying two known results with Theorem 4. The first result
allows to compile honest-but-curious protocols to byzantine protocols in the Uniform Reference String
model, i.e. the model where all parties have access to a uniformly distributed random string sampled
by a trusted party:

Theorem 6 ([CLOS02b]). Suppose Π f is a r-round n-party protocol to securely realize a n-party function f
against adaptive honest-but-curious corruptions. Assuming the existence of simulatable public-key encryption
and dense cryptosystems, there exists an O(r)-round protocol that realizes f against adaptive byzantine (mali-
cious) corruptions in the Uniform Reference String model.

In essence, the idea behind this compilation is to perform a GMW-style compilation by adding a
coin-tossing protocol at the beginning of the protocol and following each message in the protocol with a
zero-knowledge proof. Coin-tossing protocol can in turn be realized in the ideal-commitment hybrid.
Canetti et al. [CLOS02b] show how to realize an ideal-commitment can be realized in the Uniform
Reference String model based on dense-cryptosystems [SP92] and simulatable public-key encryption
scheme and Canetti and Fischlin show to how to realize an adaptive zero-knowledge proof using the
same assumptions [CF01].

The second result by Garg and Sahai [GS12] shows how the Uniform Reference String in the plain
model (i.e. with non-concurrent security):

Theorem 7 (Theorem 2.[GS12]). Assuming collision-resistant hash functions and dense cryptosystems, there
exists a constant-round protocol that securely realizes the Uniform String Functionality against byzantine (ma-
licious) corruptions.

Combining Theorems 6 and 7 with Theorem 4, and noting that simulatable public-key encryptions
can be based on dense cryptosystems, we obtain this corollary.

For the stronger concurrent security, we show how to construct O(1)-round multiparty protocols
in the Common Reference String model (i.e. the model where the reference string is sampled from
an arbitrary but fixed distribution) and Uniform Reference String model (i.e. in the Universal Com-
posability framework [Can01]). Namely, we obtain the following Corollary using Theorem 4 from our
work and Theorem 9.8 from [CLOS02b].

Corollary 8. Let f be a deterministic function with n inputs. Assuming the existence of simulatable public-key
encryption schemes, there exists a O(1)-round multiparty protocol to realize f with UC-security against adaptive
byzantine (malicious) corruption of all parties in the Common Reference String model. Additionally assuming
the existence of dense cryptosystems, there exists a O(1)-round protocol achieving UC-security against adaptive
(malicious) byzantine corruptions in the Uniform Reference String model.
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Finally, we mention that we can combine our Theorem 4 with the result of Dachman-Soled et
al. [DMRV13] and Venkitasubramaniam [Ven14] to achieve the stronger UC-security in various setup
models such as common reference string, (stateful) tamper proof hardware model, timing model and
non-uniform simulation model and we leave it as future work to identify the precise constant in the
round complexity and minimal assumptions.

7 Leakage-Resilient Two-party and Multiparty Protocols

In this section we slightly modify our protocol from the previous section to obtain one that provides
some leakage resilience.

We will be working in the regime, where the parties participate in a leakage-free input-independent
preprocessing phase and then in an online phase, the parties engage in a protocol with their inputs
where the adversary can issue arbitrary leakage queries (with bounded leakage).

We will rely on the work of Bitansky, et al. [BCH12] that show that if a protocol admits oblivious
simulation then the protocol is leakage resilient. Oblivious simuation, roughly speaking, requires there
be n + 1 simulators Sim0, . . . ,Simn+1 that are initiated with some common randomness and then Simi
for 1 ≤ i ≤ n is tasked to simulate an adaptive corruption of party Pi only using Pi’s input and the
shared randomness while Sim0 is tasked with simulating the transcript of their interaction.

First, we briefly discuss the reason that our MPC protocol from the previous section will not admit
an oblivious simulation. Recall that, the high-level idea was that simulating upto n − 1 corruption,
simply required providing random shares for “inactive” rows and all keys in the “active” rows. When
the nth party is corrupted, the inputs of all parties is used to equivocate the view of this nth party. By
definition, this simulation is not oblivious as the simulation of a party is contingent on whether it is
the last party to be corrupted or not.

Now, we propose our modification that will allow for oblivious simulation after a leakage-free
input-independent preprocessing phase. We will provide a multiparty protocol for any number of par-
ties. To obtain a two party leakage-resilient secure computation we simply instantiate our multiparty
protocol for two parties.

We will first extend our definition of Functionally Equivocal Encryption to have a “group” property.
Namely, we will require that a group of parties jointly compute encryption and decryption and the
simulation provides individual trapdoors to the member of the group that can equivocate a partial key
locally.

First, we describe the syntax for Functionally Equivocal Group Encryption:

• Key generation. Gen(1λ, 1n; rGen) and outputs n keys, namely K = (k1, . . . , kn).

• Encryption. EncK(params, m; rEnc) interprets params as function description size | f |, input length
n and output length l. It outputs an encryption of m with respect to parameters params using
randomness rEnc and key k.

• Decryption. DecK(c) decrypts ciphertext c using key k and outputs plaintext m.

• Ciphertext simulation. Simulating a ciphertext comprises of two algorithms (SimTrap,SimEnc)
where SimTrap on input (1λ, 1n; rtd) outputs the trapdoors (td1, . . . , tdn) and SimEnc on input
( f , (td1, . . . , tdn); rSim) outputs a ciphertext c with respect to a function f .

• Equivocation. For each 1 ≤ i ≤ n,Equiv(xi, tdi) uses the equivocation trapdoor tdi to generate
a single fake key keq,i so that each simulated ciphertext ceq, which was generated with respect to
some function f will decrypt to f (x1, . . . , xn) under (keq,1, . . . , keq,n).

Definition 5. Functionally Equivocal Group Encryption) A tuple of algorithms (Gen,Enc,Dec, SimTrap, SimEnc,Equiv)
is a functionally equivocal group encryption, if the following properties hold:
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• Correctness. For any m ∈ M Pr[Deck(Enck( f , m; r)) = m : r ← {0, 1}|r| , k ← Gen(1λ, 1n)] >
1− negl(λ).

• t-functional security. For every PPT adversary A on input 1λ, there exists a negligible function ν(·)
such that the probability that it wins the following game with challenger C(1λ) is at most 1

2 + ν(λ).

1. The adversary A sends t functions f1, . . . , ft (where each fi maps n bits to li bits) and inputs
x1, . . . , xn ∈ {0, 1}n to C;

2. C computes the messages {mi ← fi(x1, . . . , xn)}i=1,...,t.

3. Next it generates keys and ciphertexts in two different ways:

– C samples random FEE key K = (k1, . . . , kn) using Gen(1λ, 1n). For 1 ≤ i ≤ t, it computes

ci ← EncK(paramsi, mi)

where paramsi ← (| fi|, n, li).
– C computes ciphertexts using SimEnc as follows:

td = (td1, . . . , tdn)← SimTrap(1λ, 1n),
ci ← SimEnc( fi, td) ∀ 1 ≤ i ≤ t

Next it computes keq,i ← Equiv(xi, tdi).

4. C tosses a coin b.

– If b = 0, C sends (K, c1, . . . , ct) to A.
– If b = 1, C sends ((keq,1, . . . , keq,n), ceq,1, . . . , ceq,t) to A.

5. A outputs a bit b′.

A wins if b = b′.

The main differences in the definition of FEGE from FEE is that:

1. There are n keys that are generated. Looking ahead, there is one key for each party.

2. The Simulation produces n different trapdoors that each can be equivocated to a partial key
“obliviously” (i.e. locally) just using the respective input xi. Decrypting the simulated ciphertext
under the key that is a concatenation of the partial keys results in the message f (x1, . . . , xn).

3. We no longer require the randomness to be equivocated. We deliberately removed this require-
ment because we need a scheme that admits “oblivious” simulation of the keys and it is unclear
how to achieve this that includes the randomness. Looking ahead, we will erase this randomness
at the time of encryption, i.e. a preprocessing phase and will therefore yield a leakage-resilient
online phase.

We will first describe how we can use an FEGE to design a leakage resilient MPC and then show
how to construct an FEGE from one-way functions.

7.1 Leakage-resilient MPC from FEGE

The leakage-resilent MPC will proceed in two phases: An input-independent and leak-free preprocess-
ing phase and an online phase where the adversary can issue leak queries. On a high-level, in the
preprocessing phase, the parties will jointly compute the Garbled Circuit using the group encryption.
Recall that in the two-party setting, the Garbler G alone created the circuit using the FEE. Here we will
essentially run the same procedure, with the exception that we will jointly compute all encryptions
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use group encryption. The parties then erase all the randomness used in this phase and only keep
the keys generated for the input wires of the Garbled Circuit. In the online phase, depending on their
input xi, they simply broadcast, for each input wire, their key corresponding to the particular bit in
xi. Simulation on the other hand would generate the Garbled Circuit following the simulation of the
equivocal garbling and then simply provide all the randomness used to build the simulated garbling
and the individual trapdoors to each of the simulators. Then to obliviously simulate the corruption of
a party, the simulator uses that party’s input xi and trapdoor tdi designated for that party and outputs
Equiv(xi, tdi). Such a simulation in the online phase is oblivious by definition.

Slightly more formally, the leakage-resilient MPC protocol proceeds as follows:

Preprocessing Phase: We will describe the preprocessing phase as an MPC functionality that will
provide the parties with outputs. This can easily be realized as an MPC protocol of a deterministic
functionality (say GMW) where all parties contribute randomness that will produce the required
output. The parties upon receiving the output will erase all randomness used in the computation.

The key generation function of the FEGE is run twice for each wire to generate Kb
w = (kb

w,1, . . . , kb
w,n)

for b ∈ {0, 1} and each wire w. Furthermore, a hidden mask λw is generated for each wire.
Then the garbling is done according to the equivocal garbling procedure described in Section 4.
More precisely, for gate g with α, β as input wires and γ as output wire, the following cipher-

texts are created: c
b⊕λα,b′⊕λβ

g,left = FEGE.EncKb
α
(sbb′

g,left) and c
b⊕λα,b′⊕λβ

g,right = FEGE.EncKb′
β
(sbb′

g,right) where

sbb′
g,right ⊕ sbb′

g,left = Kg(b,b′)
γ . Finally, one share of an XOR sharing of all the garbled rows is provided

to each party. Corresponding to an input wire w carrying an input of party Pi the functionality
will provide only Pi with the hidden mask λw. All parties will also be provided with an output
translation table that maps the keys for the final output wire to the actual value.

Online Phase: In the online phase, each party Pi on input xi will first broadcast Λw = λw ⊕ bitw for
every input wire that will carry the input xi where bitw is that bit from xi flowing in wire w.
Next, all parties upon receiving Λw for all input wires will broadcast kΛw

w,j and also broadcasts
their shares of the garbled rows. All parties reconstruct the entire garbled circuit by XORing the
shares of the garbled rows and then using the input keys obtained for every input wire, will
evaluate the circuit to obtain Λw for the final output key and using the output translational table
obtain the final answer.

The simulation proceeds as follows:

Preprocessing Phase: The simulation will generate all ciphertexts according to the simulation pre-
sented in Section 4. First it will generate one key for every wire (the dummy key) Kw =
(kw,1, . . . , kw,n) using the FEGE.Gen function. Then, for gate g, it will produce.

Row(Λα, Λβ), c
Λα ,Λβ

g,left = FEE.EncKα
(params, s

Λα ,Λβ

g,left ; r
Λα ,Λβ

g,left ),

c
Λα ,Λβ

g,right = FEGE.EncKβ
(params, s

Λα ,Λβ

g,right ; r
Λα ,Λβ

g,right)

Row(Λα, 1⊕Λβ), c
Λα ,1⊕Λβ

g,left = FEGE.EncKα
(params, s

Λα ,1⊕Λβ

g,left ; r
Λα ,1⊕Λβ

g,left ),

c
Λα ,1⊕Λβ

g,right = FEGE.SimEnc (F
Λα ,1⊕Λβ

g,right [s
Λα ,1⊕Λβ

g,left ] ; r
Λα ,1⊕Λβ

Sim,g,right)

Row(1⊕Λα, Λβ), c
1⊕Λα ,Λβ

g,left = FEGE.SimEnc (F
1⊕Λα ,Λβ
g [s

1⊕Λα ,Λβ

g,right ] ; r
1⊕Λα ,Λβ

Sim,g,left),

c
1⊕Λα ,Λβ

g,right = FEGE.EncKβ
(params, s

1⊕Λα ,Λβ

g,right ; r
1⊕Λα ,Λβ

g,right )

Row(1⊕Λα, 1⊕Λβ), c
1⊕Λα ,1⊕Λβ

g,left = FEGE.SimEnc (Constg[s
1⊕Λα ,1⊕Λβ

g,left ] ; r
1⊕Λα ,1⊕Λβ

Sim,g,left ),

c
1⊕Λα ,1⊕Λβ

g,right = FEGE.SimEnc (F
1⊕Λα ,1⊕Λβ
g [s

1⊕Λα ,1⊕Λβ

g,left ] ; r
1⊕Λα ,1⊕Λβ

Sim,g,right ).

where s
Λα,Λβ

g,left = (kγ||Λγ)⊕ s
Λα,Λβ

g,right.

The functions embedded in these programs F
Λα,1⊕Λβ

g,right , F
1⊕Λα,Λβ

g,left ,Constg, F
1⊕Λα,1⊕Λβ
g will be essen-

tially the same as the ones described in Figure 1 with the exception that it will receive as input
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x1, . . . , xn and will have constants tdγ,1, . . . , tdγ,n with which it will generate the other key k̂γ by
running Equiv(tdi, xi) for every i ∈ [n] and concatenating them.

Then the simulations for each party Pi will receive only trapdoors corresponding to their key for
all input wires. Namely, they will receive tdw,i for every input wire w. They will also have XOR
sharings of all the garbled rows constructed above.

Online Phase: In the online phase, the obliviously simulate a corruption party Pi, the simulator using
the parties input xi and trapdoor tdw,i for every input wire w simply outputs the one normal key
kw,i that it generated and the other key k̂w,i = Equiv(tdw,i, xi).

The proof of security will essentially follows from the security definition of the underlying FEGE
scheme. Since all the intermediate randomness has been removed corrupting upto n− 1 parties will
not reveal anything beyond the output and the active rows. Upon corrupting the nth party, the view
generated will essentially be the simulated view according to the equivocal garbling described in
Section 4 with the exception that no randomness is revealed.

7.2 Constructing FEGE

It only remains to construct the FEGE scheme that will allow for group encryption and decryption
and also simulating in a way that will allow to “obliviously” equivocate the individual keys. The
construction presented in Section 3 can be easily adapted to the group setting. An encryption in the
FEE scheme is simply a simulated (statically secure) garbling. In the FEGE, the encryption will continue
to be a simulated (statically secure) garbling with the exception that the keys corresponding to input
wires will be decomposed into n parts depending on which input wire belongs to which part according
to the function description. Namely, the keys corresponding to input wires w that carry input xi will
be part of key ki.

The simulation for the FEGE scheme on the other hand will be identical to the FEE scheme with
the exception that it will decompose the trapdoors (that are the two keys corresponding to the input
wires) again according to which input it will carry. tdi will contain all pairs of keys (k0

w, k1
w) that wire

w carries some bit of the input xi.
We point out here that it will be crucial that the randomness need not be equivocated (recall that

there is no Adapt function for FEGE) because obliviously equivocating this randomness is not possible
in our approach. In fact, this is the reason why we need an input-independent preprocessing phase in
our construction of the leakage-resilient MPC protocol.
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