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Abstract. GlobalPlatform (GP) card specifications are the de facto
standards for the industry of smart cards. Being highly sensitive, GP
specifications were defined regarding stringent security requirements. In
this paper, we analyze the cryptographic core of these requirements;
i.e. the family of Secure Channel Protocols (SCP). Our main results are
twofold. First, we demonstrate a theoretical attack against SCP02, which
is the most popular protocol in the SCP family. We discuss the scope of
our attack by presenting an actual scenario in which a malicious entity
can exploit it in order to recover encrypted messages. Second, we inves-
tigate the security of SCP03 that was introduced as an amendment in
2009. We find that it provably satisfies strong notions of security. Of par-
ticular interest, we prove that SCP03 withstands algorithm substitution
attacks (ASAs) defined by Bellare et al. that may lead to secret mass
surveillance. Our findings highlight the great value of the paradigm of
provable security for standards and certification, since unlike extensive
evaluation, it formally guarantees the absence of security flaws.

Keywords: GlobalPlatform, secure channel protocol, provable security,
plaintext recovery, stateful encryption

1 Introduction

Nowadays, smart cards are already playing an important role in the area of in-
formation technology. Considered to be tamper resistant, they are increasingly
used to provide security services [38]. Smart cards do not only owe their tamper
resistance for their success; programmability is a key issue for the wide adoption
of this technology. Indeed, programmability made it possible to load new ap-
plications or remotely personalize existing ones during the cards life cycle [33].
However, this dynamicity did not come without price, as it has brought up se-
curity concerns about the novel system of content management. The absence of
standards has motivated the creation of GlobalPlatform.

GlobalPlatform (GP) [21] is a cross-industry consortium that publishes spec-
ifications on how post-issuance management shall be carried out for smart cards.
This includes the functionality to remotely manage cards content in a secure way.
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The cryptographic heart of these mechanisms is the family of Secure Channel
Protocols (SCPs) which protect the exchanged messages. Optimized for cards,
the used encryption schemes in these protocols do not follow any standardized
or provably secure construction.

Since its first publication, the GP card specifications have been the subject of
diverse verifications. For instance, authors in [3] examine some aspects of these
specifications and prove their soundness via the B method. Nevertheless, to the
best of our knowledge, no rigorous analysis of the SCP encryption schemes has
been provided before. Our goal is thus to study them through provable security,
and hence to validate (or invalidate) the security guaranteed by GP.

1.1 Our Contribution

In this paper, we apply the methods of provable security on GP specifications.
We start by analyzing the most popular GP SCP (i.e. SCP02). Much to our
surprise, we find that SCP02 is vulnerable to a well-known security flaw caused
by encrypting data using CBC mode with no random initialization vector (IV).

We illustrate this theoretical flaw by presenting a plaintext recovery attack
where the adversary succeeds in getting some information about encrypted mes-
sages. To this end, we define an attack scenario in which several entities (e.g.
service providers) communicate with the smart card via a trusted third party.
Our attack allows a malicious entity to recover some encrypted messages belong-
ing to another entity. In particular, messages including data with limited values
and thus of low entropy, such as PINs, are the most exposed.

Then, we shift our analysis to the youngest member of the SCP family
(i.e. SCP03). SCP03 encrypts messages using the “Encrypt-then-MAC” (EtM)
method that is proved secure in [8]. In this paper, we provide a stronger re-
sult: SCP03 satisfies the security model defined by Bellare et al. in [6] which
better models the particularity of SCP03. Indeed, SCP03 maintains a counter
(i.e. state) for its decryption. One main advantage of this model is that, in ad-
dition to satisfying the existing notions of confidentiality [4] and integrity [7], it
protects against replay and out-of-delivery attacks. More importantly, we prove
that SCP03 defends against the recent threat of mass surveillance by algorithm-
substitution attacks (ASAs) [9]. Typically closed-source, the industry of smart
cards is concerned about ASAs, since no code scrutiny is possible to assert the
absence of backdoors in the implemented protocols. This could damage the con-
fidence in smart cards. Our proof guarantees that SCP03 cannot undetectably
contain hidden backdoors allowing mass surveillance as it is outlined in [9].

Our work brings to light an interesting fact: security in well-established stan-
dards still does not withstand a simple cryptanalysis. We show, once again, that
security by extensive verification or eminent authority is highly misleading. In-
deed, being involved in sensitive services (e.g. payment), GP specifications have
undergone rigorous verification and validation. This is why they are used in
several systems achieving high assurance level in common criteria (CC) [36]. We
emphasize that the presented vulnerability of SCP02 is well-known in the domain



Cryptanalysis of GP Secure Channel Protocols 3

of cryptography [30]. Thus, our result raises serious concerns about CC certi-
fication. We encourage therefore further integration of provable security inside
the enterprise of certification to improve the security of the certified protocols.

1.2 Related Work

Blockwise-Adaptive Attack. Formalized by Fouque et al. in [20], blockwise
security has been firstly introduced in [29]. Its idea is simple: messages are not
processed atomically in practice, so an adversary is able to get the ciphertext of a
part of the message. Authors motivate this notion by attacking three encryption
schemes proved to be secure against chosen plaintext attacks. We will focus solely
on the case of CBC mode. The security proof of CBC in [4] holds only if all the
calls to the underlying block cipher are independent from each other. This means
that the (i−1)th block of ciphertext must not be known before choosing the ith
block of plaintext, otherwise independence is lost and the proof fails. We note
that using a predictable IV could be seen as a special case, since the first block
of ciphertext, which is the IV, is known in advance before choosing the message.

Despite its popularity, Mitchell in [34] (and more recently Rogaway in [40])
concludes that the CBC mode involves so many security constraints that it would
be better to abandon it for future designs. Indeed, a great number research ef-
fort has been dedicated to extend the weakness of CBC beyond theory. Some
have adapted the vulnerability mentioned above in order to undermine the se-
curity of SSL3.0/TLS1.0 [2, 14]. Both attacks were motivated by the fact that
the SSL3.0/TLS1.0 standard mandates the use of CBC encryption with chained
(IVs); i.e. subsequent IVs are the last block of the previous ciphertexts. The
attack of [14], called BEAST, is so efficient that migration to TLS1.1 has been
recommended by IETF. Independently from blockwise security, authors in [6],
inspired from [12], outline a vulnerability in the secure shell protocol (SSH)
caused by the same reason: CBC encryption with chained IVs. It is worth not-
ing that all the attacks of [2, 6, 12, 14] follow the same principle: some kind of
plaintext recovery is possible when the attacker can both predict the next IV
and control the first block of the message.

The presented attack against SCP02 follows a similar principle because con-
stant IVs are always predictable. Despite similarity, we argue that the vulner-
ability presented in this paper is caused by the design of SCP02 that is quite
delicate to secure. Indeed, it instructs the use of CBC encryption together with
CBC-MAC for computing integrity tag. Such combination creates two contradic-
tory requirements for security. Indeed, it is proved that a random IV is necessary
for CBC encryption [4], while CBC-MAC must use constant IV [5].

Authenticated Encryption. Authenticated encryption (AE) is a symmetric
encryption scheme that protects both data confidentiality and integrity (au-
thenticity). The security notions of AE were formalized in the early 2000s in [7,
31]. Generic composition [8] is the most popular approach for numerous secu-
rity protocols, such as SSH, TLS and IPsec. This approach is about combin-
ing confidentiality-providing encryption together with a message authentication
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code (MAC). Generally, three composition methods are considered: Encrypt-
and-MAC, MAC-then-Encrypt and Encrypt-then-MAC.

The family of SCP protocols follows the paradigm of generic composition.
On the one hand, SCP02 relies on the “Encrypt-and-MAC” (EaM) method.
As pointed out in [8], this composition method is not generically secure, but
we do not consider this result in our analysis for two reasons. First, chosen
ciphertext attacks are not included in our threat model, since they are hardly
applicable. Indeed, the decryption operation in SCP02 is only performed by
smart cards that are unlikely to misbehave (due to their tamper-resistance and
their controlled content management). Smart cards keep the decrypted messages
and never output them outside, otherwise of course encryption would be of no
use. Thus, attackers cannot obtain the result of the decryption operation. Second,
the used cryptographic schemes for both encryption and authentication are not
secure, hence simpler attacks exist. We provide further details in Section 3.

On the other hand, SCP03 utilizes the “Encrypt-then-MAC” (EtM) method
which is proved to satisfy standard security notions: confidentiality (IND-CPA)
and integrity of messages. We note that EtM is ill-suited to formalize all the
power of SCP03. In this paper, we prove that SCP03 protects against a wider
range of attacks, thanks to its stateful decryption. Of particular value, we prove
that it withstands replay attacks and that any secret subversion of SCP03 for
malicious goals can be detected. The latter is an important feature, since the
absence of source code might cast doubts on the trustworthiness of smart cards.

1.3 Paper Outline

The rest of the paper is structured as follows: Section 2 gives background in-
formation on GlobalPlatform and reviews some classical definitions. In Section
3, we introduce the attack against SCP02 and demonstrate how it could be
exploited in practice. Section 4 and 5 present our provable security results of
SCP03. We end this paper by providing some discussion and specific recommen-
dations related to the identified vulnerability.

2 Preliminaries

2.1 GlobalPlatform

GP card specification [23] refers to a number of technical standards that aim
to develop flexible framework for smart cards. Within the GP architecture, the
security domain (SD) controls applications on smart cards by supporting vari-
ous cryptographic functions. For the purpose of this paper, we will be uniquely
interested in secure communication, and we will be using the notion of SD as the
component containing its private key that it uses to establish secure sessions.

Secure Channel Protocol. The GP card specification defines secure channel
protocols (SCPs) to provide secure communication. Mainly designed for content
management, they are also used by applications for their sensitive operations.
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Whenever a secure session is needed, the SCP executes three steps: (1) ini-
tialization that includes entities authentication and derivation of session keys;
(2) operation in which exchanged data are protected; and (3) termination ending
the session. Our target in this paper is the encryption schemes employed dur-
ing the second step. In follows, we provide more details about the operation of
SCP02 and SCP03. SCP01 is not discussed because of its deprecation. It is worth
mentioning that all given details on SCPs come from the GP card specification
version 2.3, which is the latest version at the time of writing this paper.

2.2 Definitions

Notation. A message is a string. A string is an element of {0, 1}∗. The con-
catenation of strings X and Y is denoted X||Y or simply XY . For a string X,
its length is represented by |X|. For an integer N ∈ N, N++ denotes the C-like
++ operator that returns the value N and then increases its value by 1. A block
cipher is a function E : Key×{0, 1}n −→ {0, 1}n, where Key is a finite nonempty
set and Ek(.) = E(k, .) is a permutation, hence invertible, on {0, 1}n. The num-
ber n is called the block length. A tweakable block cipher (TBC) [32] extends the

notion of block ciphers. A TBC Ẽ : Key×Tweak×{0, 1}n −→ {0, 1}n is a family
of permutations parameterized by a pair (K,T), where K is a secret key and T is
a public tweak. We define five finite nonempty sets of strings: Key, TWEAK, NONCE,
MSG and CTXT. Let K be a key, T be a tweak, N be a nonce, M be a message and
C be a ciphertext. Henceforth, unless stated otherwise, for all K, T , N , M and
C, we have K ∈ Key, T ∈ TWEAK, N ∈ NONCE, M ∈ MSG and C ∈ CTXT. We use
the notation AO to denote the fact that the algorithm A can make queries to
the function O. Hereafter, we say that the adversary A has access to the oracle

O. If f is a probabilistic (resp., deterministic) algorithm, then y
R← f(x) (resp.,

y ← f(x)) denotes the process of running f on input x and assigning the result
to y. The notation A⇒ x means that the adversary A outputs the value x.

Symmetric Encryption Schemes. A symmetric encryption scheme SE is
defined by three algorithms (K, E ,D), where (1) the key generation algorithm,

K, takes a security parameter k ∈ N and returns a key K. We write K
R←− K(k);

(2) the encryption algorithm, E , takes a key K and a plaintext M to produce a
ciphertext C. We write C ←− Ek(M); and (3) the decryption algorithm, D, takes
a key K and a ciphertext C to return either the corresponding plaintext M or
a special symbol ⊥ to indicate that the ciphertext is invalid. We require that
Dk(Ek(M)) = M for all M and K.

The Cipher Block Chaining (CBC) Mode. Both SCP02 and SCP03 use
symmetric encryption with the CBC mode. In CBC, each block of the plain-
text is XORed with the previous ciphertext block before being encrypted. The
first block of the plaintext is XORed with an initial value (IV). Here, we only
consider the variant where the IV is explicitly given as input. We write C ←−
Ek-CBC(iv,M) and M ←− Dk-CBC(iv, C).
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Nonce-based Symmetric Encryption. As defined by Rogaway in [39], a
nonce-based encryption nSE = (nK, nE , nD) is a symmetric scheme where both
the encryption and the decryption algorithms are deterministic and stateless.
They take an extra input called the nonce N , which is a variable that takes a new
value with every encryption. We write C ←− nEk(N,M) and M ←− nDk(N,C).

Message Authentication Schemes. Conventionally, a message authentica-
tion scheme (MAC) MA = (K, T ,V) consists of three algorithms. K is the
probabilistic algorithm for key generation. The tagging algorithm, Tk, takes a
key K and a message M to return a tag τ . The verification algorithm, Vk, takes
a key K, a message M and a candidate tag τ ′ to return a bit. We require that
Vk(M, Tk(M)) = 1 for all M and K.

Tweakable Functions. A tweakable function F̃ (., .) is a function where a

‘tweak’ is required for its computation. We write y ←− F̃ (T,M).

Standard Security Notions. We associate to any adversary a number called
its “advantage” that measures her success in breaking a given scheme. A scheme
is said secure with respect to a given security notion if all related polynomial-
time adversaries have a negligible advantage. We write AdvSNSC (A), where A is
an adversary attacking the scheme SC regarding the security notion SN .

Definition 1. (Indistinguishability of a Symmetric Encryption Scheme (IND)).
Given a symmetric encryption SE = (K, E ,D) and a ciphertext of one of two
plaintexts, no adversary can distinguish which one was encrypted. IND can
be expressed as an experiment [4]. Let Ek(LR(., ., b)) be a left-or-right oracle
where b ∈ {0, 1}: the oracle takes two messages as input, m0 and m1, where
|m0| = |m1|, and returns C ← Ek(mb). The adversary submits queries of the
form (m0,m1) to the oracle, and must guess the bit b, i.e. which message was
encrypted. This security notion is often called IND-CPA, where CPA repre-
sents chosen-plaintext attacks. For an adversary AE , the advantage is defined as
Advind-cpa

SE (A) =
∣∣Pr[AE ⇒ 1 | b = 1]− Pr[AE ⇒ 1 | b = 0]

∣∣. There is a stronger
security notion associated to IND that is called IND-CCA (CCA stands for
chosen-ciphertext attacks). In the IND-CCA experiment, besides the encryption
oracle, the adversary has access to a decryption oracle Dk(.), so that she can
choose any ciphertext and obtain its plaintext. There is one restriction for us-
ing Dk(.): the adversary cannot ask to decrypt ciphertexts that were previously
generated by the encryption oracle, otherwise a trivial attack is possible.

Definition 2. (Strong Unforgeability (SUF-CMA)). This notion was adapted
by Bellare et al. [5] from the definition of security of digital signatures. Given a
message authentication scheme MA = (K, T ,V), we consider a game in which
the adversary makes arbitrary queries to a tagging oracle Tk as well as a veri-
fication oracle Vk. The adversary AT ,V wins (outputs 1) if she can find a pair
(M, τ) such that Vk(M, τ) = 1, but τ was never returned by Tk as tag of M . The

advantage of A is defined as Advsuf-cma
MA (A) = Pr[AT ,V ⇒ 1].
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Definition 3. (Integrity of Ciphertext (INT-CTXT)). Defined in [8], this no-
tion requires that no adversary be able to produce a valid ciphertext which
the encryption oracle had never produced before. Given an encryption scheme
SE = (K, E ,D), we consider a game in which the adversary has access to an
encryption oracle Ek(.) and to a decryption one Dk(.). The adversary AE,D wins
(outputs 1) if she can find a ciphertext C, such that (1) it was not produced
by Ek(.) and (2) it does not decrypt to ⊥. The advantage of A is defined as
Advint-ctxt

SE (A) = Pr[AE,D ⇒ 1].

Definition 4. (Stateful Pseudorandom Function (sPRF)). Let F = {Fk : K ∈
K(k)} where Fk is a deterministic stateful function mapping l-bit strings to l′-bit
strings for each K ∈ K(k). Let RS be a stateful random-bit oracle. This means
that the output of RS depends on its state. Indeed, given a message M ∈ {0, 1}l,
RS(M) returns two different l′-bit random strings for two subsequent calls. The
goal is that no adversary A can distinguish whether she is interacting with a
random instance of F or with its oracle RS . A’s advantage is Advsprf

F (A) =∣∣Pr[AF ⇒ 1]− Pr[ARS ⇒ 1]
∣∣.

Definition 5. (Indistinguishability from Tweakable Random Bits under CPA

(ĨND-CPA)). Here, we present a variant of the distinguishing concept defined

for tweakable functions and presented in [10]. We define ĨND-CPA as follows. Let

F̃ be a tweakable function mapping pairs of (t, l)-bit strings for each K ∈ K(k).

Let R̃ be a tweakable random-bit oracle from {0, 1}t × {0, 1}l to {0, 1}l′ . The
goal is that no adversary A can distinguish whether she is interacting with a
random instance of F̃ or with its oracle R̃. The advantage of A is defined as

Advĩnd-cpa

F̃
(A) =

∣∣∣Pr[AF̃ ⇒ 1]− Pr[AR̃ ⇒ 1]
∣∣∣.

3 Secure Channel Protocol ’2’

3.1 Description

SCP02 is the recommended protocol in the GP specifications. It is built upon
symmetric encryption based on block ciphers, hence the need of secret keys and
padding data. Informally, it uses “Encrypt-and-MAC” construction, wherein the
message is both encrypted and integrity protected (by using a MAC algorithm).
The MAC value is appended to the encrypted message to produce the ciphertext.

In more detail, padding is first added to the message and a MAC tag is
computed over the resulted data. Then, the payload is encrypted after stripping
off the MAC padding to replace it by a payload one. Padding is done with binary
zeroes started by 0x80. Figure 1 schematically shows the ciphertext format.

Concerning the schemes in use, SCP02 mandates to encrypt data using triple
DES in CBC mode [26] with no IV, namely IV of binary zeroes (refer to Section
E.4.6 in [23]). As for MAC computing, it uses a chained version of ISO9797-1
MAC algorithm 3, which includes a CBC-MAC processing with a simple DES
and a Triple DES computation for the last block of the message. As a security
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Fig. 1. Ciphertext Generation by SCP02. Grey boxes, i.e. ‘MAC padding’, are not
included in the ‘encrypt’ operation.

enhancement, the last valid MAC tag is DES-encrypted before being applied to
the calculation of the next MAC.

We note that both schemes are vulnerable. Indeed, authors in [19] perform
a side-channel attack to defeat the ISO9797-1 MAC algorithm 3. Their attack
allows one to recover the secret key used for the MAC computation. The con-
sequences of such attack are limited for the reason that SCP02, like any SCP,
generates the MAC tag using a temporary session key. Therefore, we do not
consider this attack in the rest of the paper. In the sequel, we describe how an
attacker might exploit the absence of random IVs to recover encrypted messages.

3.2 Try-and-Guess Attack

It is easy to see that for a fixed iv the CBC encryption Ek-CBC(iv, .) is a stateless
deterministic function of the key K. Indeed, it always yields the same ciphertext
when encrypting the same message multiple times (using the same key). This
has both theoretical and practical consequences.

Theoretically, it violates the security goal IND-CPA. An adversary can tell
which message was encrypted after only two queries: the first query contains the
same plaintext M twice, while the second one includes M together with another
plaintext. The adversary succeeds with a probability 1, since if M was encrypted,
the encryption oracle would output the same result as for the first query. We
note that the adversary succeeds due to the fact that the IND-CPA experiment
does not constrain the adversary from submitting queries of the form (M,M) to
the encryption oracle Ek(LR(., ., b)).

In practice, an eavesdropper observing the stream of ciphertexts is able to
determine whether two ciphertexts come from the same message. Better yet,
the eavesdropper can detect whether two messages share the same prefix. This
could be useful to study the structure of the encrypted stream by recognizing
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the presence of the same data multiple times. Now, we turn the above scenario
into a more serious attack.

Consider an adversary A who can mount a chosen-plaintext attack. A starts
by observing a ciphertext C (= Ek-SCP02(M)). Recall that the goal of A is to
find M . A achieves her goal by repeatedly trying all possible values for M until
the correct one is identified. For instance, if the adversary knows that M is one
of N possible values, then she can determine the actual value of M after N/2
(on average) guesses. We describe the algorithm of A as follows.

Algorithm AEk-SCP02(.)

1: Get C from eavesdropping
2: found←− false

3: repeat
4: M ′ ←− guess(C)
5: C′ ←− Ek-SCP02(M ′)
6: if C = C’ then
7: found←− true

8: end if
9: until found = true

10: return M ′

where guess is a function that takes a ciphertext C as input and returns
one possible decryption of C for each call. We notice that the adversary keeps
on making guesses until finding the message that encrypts to the eavesdropped
ciphertext. Therefore, this theoretical attack is efficient against data with limited
values and thus of low entropy, but it is worthless in case the exchanged data
takes random values or their format is not known in advance.

We acknowledge that Try-and-Guess attack (TaGa) as outlined above has
been previously suggested in other contexts (see [2, 12, 14]). Nevertheless, we be-
lieve that there is value in reiterating the discussion about this security flaw. The
fact that the de facto standard of the sensitive industry of smart cards is still
vulnerable to such attacks is of great interest. It indicates how the security com-
munity is divided between those designing theoretical cryptosystems and those
implementing them in the real-world. We hope that our work would constitute
a step towards bridging this gap.

In view of the ongoing popularity of SCP02, we believe that this vulnerability
has not been identified yet. To the best of our knowledge, our work is the first
one to apply TaGa in the context of GP specification for smart cards.

3.3 Plaintext Recovery Against Smart Cards

Here, we illustrate the fallout of TaGa by a theoretical, yet real-world, attack
scenario. Our attack applies to smart cards following the GP model for content
management.
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Actors. We define four actors to describe the plot of the attack: (1) a trusted
service manager (TSM) who owns a security domain on a smart card; (2) a
victim who uses the said smart card to execute some critical services; (3) an
honest service provider offering a sensitive service to the victim (e.g. payment);
and (4) a malicious service provider that offers some service to the victim, but
mainly aims to compromise the other services.

Threat Model. The intent of the attacker is to recover some sensitive data
related to applications installed on smart cards.

For this purpose, we assume that the adversary is capable of installing an
application on the targeted smart card. Any service provider does have this abil-
ity via a TSM. In addition, the application which the adversary is supposed to
install includes no harmful behaviors. In particular, it does not attempt to attack
the card system. Moreover, we assume that the adversary partially controls all
communications with the card: she can drop and eavesdrop any exchanged mes-
sage. Finally, we suppose that the adversary is targeting a well-protected card,
and thus no direct attack is possible. This implies several assumptions. First,
the card system shall contain no logical security flaw. Second, the card shall im-
plement the appropriate countermeasures to withstand hardware attacks. Third,
its security domains shall have been created and personalized with random keys.
We emphasize that these assumptions are highly plausible for the smart card
industry where products undergo extensive verification tests [36].

To sum up, in order to succeed her attack, the adversary should succeed in
recovering the data while being transferred between the card and the TSM. This
implies to break the encryption scheme implemented by the security domain.
Being remote and software-only, our model represents a new kind of threat,
since most related work involve some sophisticated hardware attacks [1, 25]. Our
model provides several advantages over those defined in the literature, since it
concerns a large number of smart cards regardless of their manufacturers. Indeed,
our attack solely involves details defined in the GP card specifications which are
common to all GP compliant cards.

Attack Workflow. We suppose that the attacker has already convinced the
TSM to install her application. The attack is structured into two phases.

During the first phase, the honest service provider needs to personalize her
application with some secret data. She sends her query to the TSM that is
responsible to carry out the secure communication to the smart card. The mali-
cious provider detects this event and reacts accordingly. She starts by asking the
TSM to send some dummy query to the smart card. Thus, the TSM shares the
established secure session with the two service providers. Afterward, the attacker
intercepts the encrypted messages, grabs that of the honest service provider, and
drops hers (easily recognizable by, for instance, its header).

As for the second phase, the attacker makes some guess, asks the TSM to
encrypt it, and then intercepts the produced ciphertext which she discards when-
ever the guess was wrong. The attacker repeats this until she succeeds.
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One technical issue might rise by this scenario: SCP02 instructs to double-
encrypt sensitive data by the TSM. Data are firstly encrypted by ECB (Elec-
tronic Code Book) mode before applying the encryption of the secure channel.
We argue that this has no impact on our attack, since the overall encryption
remains stateless and deterministic. Indeed, ECB is deterministic, and the com-
position of two deterministic functions is clearly deterministic.

3.4 Discussion about Theoretical Feasibility

Several conditions must be met before the attacker can successfully recover some
sensitive data. Below, we present these conditions and discuss their relevance.

Using One Common Session. First and foremost, the attacker must encrypt
her test cases with the same key that encrypts the data to be recovered. This sup-
poses that the TSM shares a secure session between different service providers.
Some might argue that this is not a trivial requirement, and therefore our attack
scenario cannot be mounted in practice. However, we argue that session sharing
is not uncommon for three reasons. First, there is no mention in the specifica-
tions that could be understood as it is bad practice to share sessions or even SD.
Second, SCP02 generates its session keys by encrypting some constants concate-
nating to a 2-byte counter. Thus, the TSM must change its master key after only
216 sessions, which makes the TSM very eager to optimize the opening of secure
sessions. Third, being expensive, the TSM is also eager to reduce the number of
its leased SDs. Thus, it might install several applications into the same SD for
the service providers that are not willing to pay the cost of having their own SD.

Synchronization. The TSM accepts to continue sending the attacker queries
without receiving any acknowledgment. As a matter of fact, this mode of asyn-
chronous communication is often employed for optimization. Indeed, the trans-
mission rate of smart cards is slow [38]. Therefore, the TSM usually pushes all
the commands to the terminal. The terminal forwards them to the associated
card, and then collects all the returned values to send them back to the TSM.
Such method of communication helps improve not only the communication time,
bu also the undetectability of the attack, since the attacker application needs
not to secretly include a special mode to manage all the sent commands during
a session of TaGa. The attacker just intercepts and drops them.

Low-Entropy Data. This requirement is essential to succeed the Try-and-
Guess attack. Low-entropy data are not rare in the context of smart cards.
First, applications on smart cards often process enumerated variables with lim-
ited choices. This includes variables representing numerical values (e.g. amount
of money), since integers are generally coded by two bytes in smart cards (JavaC-
ard v2 [11] only supports signed short as numerical type). In practice, 4-byte
PIN codes (≤ 10, 000 choices) are also considered as low-entropy data. Second,
despite the length of plaintext, the format used for numerous card applications
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is quite predictable. Data, like those of GP commands [23] and the EMV stan-
dard [17], are often structured with ASN.1 BER-TLV [27]. Such a format contains
at least two public bytes: the tag value and the data length which the adversary
already knows. In addition, the padding in SCP02 is constant and public. We
illustrate by an example. The attacker wants to know how much money the user
has provisioned her payment application. If the payment application is GP com-
pliant, the provisioning command will be the GP command Store Data. Thus,
the plaintext to be recovered is of the form:

Tag(1 byte) || Length(1 byte) || Value(2 bytes) || Padding(4 bytes)

Within these eight bytes, the only bytes to be guessed are those of the Value.
Therefore, there are no more than 215 = 32, 768 choices, due to the fact that
money should always remain positive. In practice, much fewer queries are re-
quired, since specific amounts of money are often suggested for account recharge.

4 Secure Channel Protocol ’3’

4.1 Description

SCP03, published as an amendment to card specification 2.2 [22], defines a new
set of cryptographic methods based on AES. Similar to SCP02, it requires secret
keys and padding, since it relies on block ciphers. SCP03 uses the “Encrypt-
then-MAC” (EtM) method in which the ciphertext is produced by encrypting
the message and then appending the result of applying the MAC scheme to the
encrypted message. Refer to Construction 1 for more details about SCP03.

Construction 1 (SCP03 Algorithms for Encryption and Decryption)
Let Ek be an l-block-cipher and let CBC[Ek] = (K-CBC, E-CBC,D-CBC) be
a CBC encryption scheme that explicitly takes the iv vector as input. Let
MA = (K′, T ,V) be a message authentication scheme. Let padding be a state-
less deterministic encoding scheme and let Len be a function returning the length
of its input. For the sake of clarity, we do not include padding in the described
algorithms. For M ∈ {0, 1}ln with the variables counter and chained properly
initialized, the scheme SCP03-EtM = (K, E ,D) is defined as follows:

Encryption Ek(M)

1: iv ←− Ek1(counter++)

2: C ←− Ek1-CBC(iv,M)

3: C ′ ←− Len(C) ||C
4: τ1||τ2 ←− Tk2(chained ||C ′)
5: chained←− τ1||τ2
6: return C ′ || τ1

Decryption Dk(C)

1: Parse C as Len(C ′) ||C ′ || τ
2: if cannot parse then return ⊥
3: C ′′ ←− chained || Len(C ′) ||C ′
4: τ1||τ2 ←− Tk2(C ′′)
5: if τ1 6= τ then
6: return ⊥ and halt
7: end if
8: chained←− τ1||τ2
9: iv ←− Ek1(counter++)

10: return Dk1-CBC(iv, C ′)
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We highlight four points in the construction above. First, SCP03 ensures that all
the message inputs to Tk and Vk are encoded. The encoding consists of appending
the length of the input (i.e. C). Such encoding makes the set of inputs ‘prefix-
free’, which means that no input can be the prefix of another one. This is an
important requirement, since many MAC schemes, like CBC-MAC [5], are secure
only for prefix-free set of inputs. Second, we notice that SCP03 ends the opened
secure session when a decryption fails. This approach of “halting state” makes
SCP03 vulnerable to denial-of-service attacks. However, it is effective against
chosen-ciphertext attacks, since all the ensuing ciphertexts will not be decrypted,
and therefore a new session with new keys has to be re-negotiated. This makes
such attacks more detectable and less likely to succeed. Third, we do not include
the padding method of SCP03 (recommended in ISO/IEC 10116:2006 [26]), since
Paterson et al. prove that padding has no negative impact on security when it
is used in encryption schemes following the EtM construction (like SCP03) [37].
Fourth, the MAC construction is quite peculiar: only half of the MAC (i.e.
8 bytes) is included with the ciphertext, and the remainder is reconstructed
during MAC verification. The other half is somehow used as a ‘state’ between
the sender and the receiver. To the best of our knowledge, GlobalPlatform has
never provided the rationale behind this unusual construction that complicates
the analysis of SCP03. However, we can plausibly assume that this choice was
made to reduce the communication overhead incurred by SCP03. Indeed, the
transmission rate with the card is low and it greatly increases with respect to
the number of the communicated packets (as a matter of fact, the packet length
is limited to 255 bytes) [38]. Therefore, despite being so small in other contexts,
the overhead of transferring some extra 8 bytes might not be negligible in the
case of smart cards.

4.2 Security Models

At first glance, SCP03 seems to fall into the EtM paradigm. Naturally, this raises
no question regarding its security, since its generic security is proved in [8]. Here,
we prove that SCP03 offers more than the standard security notions.

The construction of SCP03 described in 4.1 brings out three points that
should be underlined. First, both the encryption and decryption algorithms in-
volve the use of two variables that maintain their values and get updated after
each call. These two variables must be ‘in-sync’ between the sender and the
receiver, otherwise Dk(.) returns ⊥. Second, the encryption of messages could
be seen as a stateful nonce-based CBC encryption scheme. Third, the chained

variable serves much the same purpose that a tweak does. Taking into considera-
tion these three notes, we can turn the EtM construction of SCP03 into another
composite. We start by introducing the two underlying blocks that will compose
our new equivalent construction of SCP03.

Analyzing SCP03 via a New Construction.
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Definition 6. (Stateful Nonce-based Symmetric Scheme (Sf-nSE)). Let nSE =
(nK, nE , nD) be a nonce-based encryption scheme. Let counter be a static vari-
able initialized by 0 and which maintains its value between calls. For a message
M , we define the associated stateful scheme Sf-nSE = (nK-Sf, nE-Sf, nD-Sf) as
follows: nEk-Sf(M) = nEk(counter++,M) and nDk-Sf(C) = nDk(counter++, C).

Definition 7. (Tweak Chaining MAC (T C-M̃A)). Let F̃k : TWEAK × MSG −→
TWEAK be a tweakable MAC function for all key K ∈ Key. Then, we define the

associated chaining scheme T C-M̃A = (K̃, T̃ , Ṽ):

Tagging T̃k(M)

1: τ1||τ2 ←− F̃k(chained,M)

2: chained←− τ1||τ2
3: return τ1

Verification Ṽk(M, τ)

1: τ1||τ2 ←− F̃k(chained,M)

2: b←− [τ1 = τ ]

3: chained←− τ1 || τ2
4: return b

Construction 2 (Stateful Nonce-based Encrypt-then-Tweak (Sf-nEtTw))
Let Sf-nSE = (nK-Sf, nE-Sf, nD-Sf) be a stateful nonce-based symmetric scheme.

Let (Enc,Dec) be a prefix-free encoding scheme. Let T C-M̃A = (K̃, T̃ , Ṽ) be a
tweak chaining MAC. Given a message M , we define the composite stateful
nonce-based Encrypt-then-Tweak scheme Sf-nEtTw = (K̃-Sf, Ẽ-Sf, D̃-Sf):

Encryption Ẽk-Sf(M)

1: C ←− nEk1-Sf(M)

2: C ′ ←− Enc(C)

3: τ ←− T̃k2(C ′)
4: return C ′ || τ

Decryption D̃k-Sf(C)

1: Parse C as C ′ || τ
2: C ′′ ←− Dec(C ′) or return ⊥
3: if Ṽk2(C ′, τ) 6= 1 then
4: return ⊥ and halt
5: end if
6: return nDk1-Sf(C ′′)

Now, let’s see if the Construction 1 actually implies the definition of Construc-
tion 2. We start by examining whether the SCP03 operation Tk(chained ||C) is
indeed a secure tweakable MAC function. We notice that the MAC computation
in SCP03 is based on CMAC as specified in [16]. As mentioned by the author,
CMAC is equivalent to OMAC that is defined in [28]. We rely on the result

of [10] in which authors prove that OMAC(T ||M) is an ĨND-CPA tweakable

extension of OMAC. Hence, Tk(chained ||C) = F̃k(chained, C), where F̃k is a
tweakable function. Then, we investigate the security of the SCP03 encryption
scheme that could be seen as a stateful variant of CBC1 recommended by the
NIST in [15] and broken in [39]. CBC1 is a nonce-based scheme that encrypts the
nonce to use it as IV. Unlike the insecure CBC1, the stateful CBC1 is IND-CPA
secure. The intuition behind this is that attacks against CBC1 generally involve
a craftily chosen nonce, and therefore they are not applicable against the stateful
CBC1 where nonces are taken as a counter. A full proof is given in Theorem 17
in [4].
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Security Notions. A new concrete security treatment is required in order to
capture the power of Sf-nEtTw. Here, we outline the security concepts that we
will use to study SCP03 and that are formalized by Bellare et al. in [6] and [9].

Definition 8. (Indistinguishability under stateful CCA (IND-SFCCA)). Con-
ventionally, we consider an experiment in which the adversary A has access to
a left-or-right encryption oracle Ek(LR(., ., b)) and a decryption oracle Dk(.). Dk

returns the result of the decryption when A makes an out-of-sync query. A query
is out-of-sync if it satisfies one of these conditions: (1) there are more queries to
the decryption oracle than to the encryption one; (2) the ciphertext inside the
decryption query is different from the last one computed by Ek(LR(., ., b)). As
long as A does not make out-of-sync queries, Dk updates its internal state, but
returns nothing.

Definition 9. (Integrity of stateful ciphertext (INT-SFCTXT)). Here, we con-
sider an experiment in which the adversary A has access to an encryption oracle
Ek(.) as well as a decryption oracle Dk(.). The scheme is INT-SFCTXT secure
if for all polynomial-time adversaries, it is hard to find an out-of-sync C, such
that Dk(C) 6= ⊥ and C was not produced by Ek. Similarly to IND-SFCCA, Dk

updates its internal state and returns nothing if no out-of-sync query is sent.

Definition 10. (Algorithm-Substitution Attacks (ASA)). Motivated by the po-
tential threat of subverting implementations of cryptographic algorithms, Bel-
lare, Paterson and Rogaway in [9] have recently defined ASA security by iden-
tifying two adversarial goals – conducting surveillance and avoid detection. In
the ASA experiment, given user’s key K and a subversion key K̃, the adversary
B (also called big brother) wants to subvert the encryption algorithm Ek by an-

other one Ẽk̃. B requires that the subversion be both successful and undetectable.
Here, we focus solely on the surveillance goal (SURV). SURV means that from
observing ciphertexts, B can compromise confidentiality. Stated formally, SURV
is defined as a classical distinguishing experiment when given oracle access to
one of these two algorithms (i.e. Ek and Ẽk̃). Indeed, B, who has access to K but

not to K̃, is required to distinguish Ek from Ẽk̃. We say that an encryption scheme
is ASA secure if no adversary B can succeed the SURV distinguishing game.

Definition 11. (Unique Ciphertexts (UQ-CTXT)). Following their work to de-
feat ASA, Bellare et al. define the notion of ‘Unique Ciphertexts’ as follows.
Let SE = (K, E ,D) be a symmetric encryption scheme. Given a secret key K, a
message M , and a state τ , let CSE(K,M, τ) be the set of all ciphertexts such that
Dτk (C) (also denoted Dk(Cτ )) returns M . We say that SE has unique ciphertexts
(i.e. UQ-CTXT secure) if the set CSE(K,M, τ) has size at most one for all K, M ,
τ . Stated differently, for any given key, message and state, there exists at most
one ciphertext that decrypts to the message in question.

Result 4.1 [ Unique Ciphertexts =⇒ ASA resilience ] [9]
In other words, let SE = (K, E ,D) be a unique ciphertext symmetric encryption
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scheme, and let B be a SURV adversary. Then, B cannot succeed the SURV
experiment; which means that SE is resilient to ASA.

5 SCP03 Security Results

We now state our security results regarding SCP03. We provably show that
SCP03 protects the integrity and the confidentiality of messages against chosen-
plaintext and chosen-ciphertext attacks. In addition, it resists replay, out-of-
delivery and algorithm-substitution attacks (ASAs). Indeed, authors of [6, 9]
prove that cryptographic schemes satisfying IND-SFCCA, INT-SFCTXT and
Unique Ciphertexts meet all the security notions mentioned above.

5.1 Sf-nEtTw Security Analysis

In order to prove that SCP03 is IND-SFCCA and INT-SFCTXT secure, we
start by analyzing the composite encryption scheme Sf-nEtTw. The following
proposition concerns the security properties of T C-M̃A.

Proposition 1. (Upper Bound of Advsuf-cma

T C-M̃A
(A)). Let F̃k : {0, 1}n × MSG −→

{0, 1}n be a tweakable function and let T C-M̃A be its associated chaining

scheme. Let A be an SUF-CMA adversary against T C-M̃A who queries q mes-
sages. Then, we can construct a distinguisher D against F̃ such that

Advsuf-cma

T C-M̃A
(A) ≤ Advĩnd-cpa

F̃
(D) +

q2

2n
+

1

2n/2
+ Pr[Colq]

Proof. The proof is given in Appendix A.

We now show how schemes following the construction of Sf-nEtTw protect
their stateful integrity of ciphertext (i.e. INT-SFCTXT).

Theorem 1. (Upper Bound of Advint-sfctxt
Sf-nEtTw(A)). Let Sf-nEtTw be a scheme of

stateful nonce-based encryption Sf-nSE = (K-Sf, nE-Sf, nD-Sf) associated to a

tweak chaining MAC T C-M̃A = (K̃, T̃ , Ṽ) and a prefix-free encoding scheme

(Enc,Dec) as described in Construction 2. Let F̃k : {0, 1}n × MSG −→ {0, 1}n be

the tweakable MAC function related to T C-M̃A. Consider any INT-SFCTXT
adversary A against Sf-nEtTw who asks to encrypt q messages, we can construct
an SUF-CMA adversary B against T C-M̃A such that:

Advint-sfctxt
Sf-nEtTw(A) ≤ Advsuf-cma

T C-M̃A
(B) + Pr[q-Col]

where, given a message M and a list S containing q outputs of F̃k, Pr[q-Col] is

the probability that F̃k(M) ∈ S.

Proof. The proof is given in Appendix B.
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5.2 SCP03 Security Analysis

Now, we give our concrete security results for the particular case of SCP03. This

requires to compute the different collision probabilities when ÕMACk(T,M) =

OMACk(T ||M) is used as the tweakable function F̃k(., .) for all tweak T and
message M . Two results about OMAC collisions are stated in Appendix C.1.

SCP03 is both INT-SFCTXT and IND-SFCCA
We show here that SCP03 protects its stateful confidentiality and integrity

against powerful adversaries who can perform chosen-ciphertext attacks (CCA).

Theorem 2. (SCP03 is INT-SFCTXT Secure). Let Ek be a block cipher of size

n and let OMAC[Ek](.) be its associated OMAC scheme. Let ÕMACk(., .) be a

tweakable function defined as ÕMACk(T,M) = OMAC[Ek](T ||M) for all tweak
T and message M . Given a prefix-free encoding scheme (Enc,Dec), a stateful
nonce-based encryption Sf-nSE = (K-Sf, nE-Sf, nD-Sf) and a tweak chaining

MAC T C-M̃A = (K̃, T̃ , Ṽ) whose tweakable MAC function is ÕMACk, we define
SCP03 to be the composite scheme formed by following the Construction 2.
Consider any INT-SFCTXT adversary A attacking SCP03 and asking to encrypt

q messages, we can construct a distinguisher D against ÕMAC and a negligible
function negl such that:

Advint-sfctxt
scp03 (A) ≤ Advĩnd-cpa

ÕMAC
(D) + negl

Proof. Since SCP03 is a composite scheme formed by following the Sf-nEtTw
construction, it satisfies the relations given in Section 5.1. By using Proposition 1
and Theorem 1, we can obtain that

Advint-sfctxt
scp03 (A) ≤ Advĩnd-cpa

ÕMAC
(D) +

q2

2n
+

1

2n/2
+ Pr[Colq] + Pr[q-Col]

where Pr[Colq] is the collision probability of the tweakable function ÕMACk after
q messages and Pr[q-Col], given a message M and a list S containing q outputs

of ÕMACk, is the probability that ÕMACk(M) ∈ S.

Now, we use the following lemma to conclude our proof.

Lemma 5.1. Given n ∈ N, there is a negligible function negl such that:

q2

2n
+

1

2n/2
+ Pr[Colq] + Pr[q-Col] ≤ negl

where Pr[Colq] and Pr[q-Col] are as defined above.

Proof. The proof is given in Appendix C.2.
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Theorem 3. (SCP03 is IND-SFCCA Secure). Let Ek be a block cipher of size

n and let OMAC[Ek](.) be its associated OMAC scheme. Let ÕMACk(., .) be a

tweakable function defined as ÕMACk(T,M) = OMAC[Ek](T ||M) for all tweak
T and message M . Given a prefix-free encoding scheme (Enc,Dec), a stateful
nonce-based encryption Sf-nSE = (K-Sf, nE-Sf, nD-Sf) and a tweak chaining

MAC T C-M̃A = (K̃, T̃ , Ṽ) whose tweakable MAC function is ÕMACk, we define
SCP03 to be the composite scheme formed by following the Construction 2.
Consider any IND-SFCCA adversary A against SCP03, we can construct an
IND-CPA adversary B against Sf-nSE and an INT-SFCTXT adversary F against
T C-M̃A such that:

Advind-sfcca
scp03 (A) ≤ Advind-cpa

Sf-nSE (B) + Advint-sfctxt

T C-M̃A
(F )

Proof. This theorem follows directly from the implication proved by Bellare et
al. [6]: IND-CPA ∧ INT-SFCTXT =⇒ IND-SFCCA. This means that if an
encryption scheme is both IND-CPA and INT-SFCTXT secure, then it is also
IND-SFCCA secure. Regarding the INT-SFCTXT security of SCP03, we have
just proved it in Theorem 2. Now, let us consider the IND-CPA security property
of SCP03. Notice that SCP03 is a variant of Encrypt-then-MAC. Therefore, it
inherits the IND-CPA property of its encryption scheme [8]. Stated otherwise,
if the underlying encryption scheme Sf-nSE is IND-CPA secure, then SCP03 is
also IND-CPA secure, which concludes our proof.

SCP03 is ASA Resilient
Finally, we prove that SCP03 defends against ASA, hence also against mass

surveillance.

Theorem 4. (SCP03 has Unique Ciphertexts). Let ÕMACk be a tweakable
function as defined previously. Given a stateful nonce-based encryption Sf-nSE =
(K-Sf, nE-Sf, nD-Sf) and a tweak chaining MAC T C-M̃A = (K̃, T̃ , Ṽ) whose

tweakable MAC function is ÕMACk, we define SCP03 to be the scheme formed
by following the Construction 2. Then, SCP03 is UQ-CTXT secure.

Proof. Let Ci denote the ciphertext produced by encrypting the message M on
the state i. Considering the SCP03 design (see Construction 2), we have

Ci = σi || τi = nEk1-Sf(M) || T̃k2(σi)

where K1 and K2 are two independent keys. Now, we study the probability of
finding a triplet (K = K1||K2,M, i) so that |Cscp03(K,M, i)| > 1. By definition,
this is equal to the probability of finding a ciphertext C ′i such that: (1)C ′i 6= Ci
and (2)Dk-SCP03(C ′i) = M ′, where M ′ = M . We distinguish two cases.

Case 1 (σ′
i 6= σi). Here, we prove that this case and the event of finding C ′ are

contradictory, thereby proving that Pr[case 1] = 0. Indeed, recall that nSE =
(K, nE , nD) encrypts messages using a deterministic algorithm. Therefore, as a
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matter of fact, for a fixed nonce N , nEk1(N,M1) 6= nEk1(N,M2) implies that
M1 6= M2. Also, we notice that the definition of the set Cscp03 involves that the
associated encryption scheme Sf-nSE = (nK-Sf, nE-Sf, nD-Sf) has called nSE
algorithms with the same nonce for each state i. Then, the event σ′i 6= σi entails
σ′i = nEk1-Sf(M ′) 6= nEk1-Sf(M) = σi, which implies M ′ 6= M . This concludes
our proof, since the definition of Cscp03 includes that M ′ = M .

Case 2 (σ′
i = σi). Since C ′i 6= Ci, this case implies that τ ′i 6= τi. Following the

same argument of case 1, we prove that this case and the event of finding C ′

are contradictory, thereby proving that Pr[case 2] = 0. Indeed, recall that the

tweakable MAC function ÕMACk2 generates its tag using a deterministic algo-

rithm. Therefore, as a matter of fact, for a fixed tweak T , ÕMACk2(T, σ1) 6=
ÕMACk2(T, σ2) implies that σ1 6= σ2. Similarly, the definition of Cscp03 in-

volves that the associated chaining MAC scheme T C-M̃A = (K̃, T̃ , Ṽ) has called

ÕMACk2 with same tweak for each state i. Then, the event τ ′i 6= τi entails

τ ′i = T̃k2(σ′i) 6= T̃k2(σi) = τi, which implies σ′i 6= σi. This concludes our proof,
since the definition of case 2 includes that σ′i = σi.

6 Discussion

An important aspect of any cryptanalysis is what it implies in practice. Our study
reveals interesting facts about the family of SCP. In particular, two protocols
are concerned: SCP02 and SCP03. Here, we discuss our findings.

While discussing our results, we are aware that provable security is not a silver
bullet for security, as authors of [13] notice that several cryptographic schemes
have been proved secure and then broken some years later. We argue that this
fact does not nullify the interest of such a powerful security tool. Indeed, despite
being imperfect, provable security has greatly helped ruling out a large class of
attacks in security protocols. In addition, although its findings should not be
taken as absolute, they constitute a general direction that aims at designing
better cryptographic schemes.

The vulnerable, yet popular, SCP02. In Section 3, we see that, unlike
extensive evaluation, provable security for certified products provides a strong
guarantee of security without promoting complexity. Indeed, we demonstrated a
theoretical attack against the protocol SCP02. In addition, we showed how some
technical details about SCP02 make the attacker likely to succeed in the context
of smart cards. Surprisingly, the presented attack arises from a fundamental
design flaw in SCP02, which is the use of CBC mode with no IV.

It is not clear that why the SCP02 designers made such a choice. However,
we might suspect that the reasons behind this are twofold. First, when the first
variant of SCP02 was published in 2000, cryptographic results about using CBC
mode with stateful nonce-based IVs were not well-established yet. Second, de-
signers chose not to use random IVs in order to reduce the overhead of SCP02.
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Indeed, a random IV must be appended to the sent ciphertext, thereby increasing
the communication overhead with the smart card. In addition, the implemen-
tations of CBC mode in smart cards have been optimized to pre-generate some
objects during the initialization of the cipher object. The problem is that choos-
ing the IV is uniquely done together with the choice of the encryption key during
the initialization phase. Therefore, constantly modifying the IV implies constant
initialization of the cipher object that can no longer performs its optimization in
advance. Thus, we argue that the real challenge of SCP02 was to achieve good
performance in a limited environment, like a smart card, and still ensuring se-
curity. In the complex GP card specifications, the tiny detail of ‘just keep using
the same IV’ might have passed unnoticed, especially that to the best of our
knowledge, no formal analysis of SCP02 has been performed before.

Furthermore, identifying such a well-known vulnerability tells us something:
smart cards industry has difficulty in catching up with the advances on cryp-
tography. Finalized in 2003, SCP02 keeps existing, while other protocols have
continuously been updated. Ironically, the stringent requirements of smart cards
about security are both its strongest and weakest point: they do not make this
technology only secure and trustworthy, but also so slow to improve. We illustrate
by three examples. First, EMV [17], which is the actual standard of payment, still
mandates the use of Triple DES with two independent keys instead of using AES
(see Section 5.7 in the EMV Card Personalization Specification [18]). Second,
numerous card manufacturers continue relying on SCP02, although SCP03 was
published in 2009. For instance, NXP instructs the support of SCP02 and makes
it optional for SCP03 for all its JCOP products that are certified EAL5+ [35].
Third, the SCP family (i.e. SCP02 and SCP03) still requires encrypting data
using the CBC mode. As a matter of fact, Mitchell in [34] (and more recently
Rogaway in [40]) promotes abandoning CBC for future designs.

The powerful SCP03. Introduced as an amendment in 2009, we have ana-
lyzed SCP03 in Sections 4 and 5 and have found that it provably satisfies strong
security notions. Of a particular interest, we proved that SCP03 resists against
the algorithm substitution attacks (ASAs) that could lead to secret mass surveil-
lance [9]. This result is significant, as it increases the trust in the closed industry
of smart cards. The advantages offered by SCP03 are clear: it is provably secure
and it is being gradually implemented by card manufacturers. It is true that
the added security comes with additional cost: maintaining a 2-byte counter (i.e
state) per session as well as one more block cipher invocation per message (recall
that the counter is encrypted in order to be used as an IV). However, modern
smart cards include a dedicated cryptographic co-processor, hence the incurred
overhead is very small.

Standards are particularly susceptible to significant modification. Therefore,
we feel that the recently created GP ‘Crypto Sub-Task Force’ [24] may have a
hard time justifying to wholly reconsider the design of the SCP family. Therefore,
we advocate the deprecation of SCP02 as soon as possible and the switch over
to SCP03 that should be included in the main specification instead of being an
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amendment. Our goal is to provide enough information to the GP community
so that the Crypto Sub-Task Force can take an informed decision when deciding
how to fix the current problems with SCP02. At this point, a quote from [6]
seems appropriate: “in the modern era of strong cryptography, it would seem
counterintuitive to voluntarily use a protocol with low security when it is possible
to fix the security (...) at low cost”.
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A Proof of Proposition 1

We start by providing three definitions that we will use throughout our proof.

MAC Function. Here, we just recall how a MAC scheme is related to its MAC
function. LetMA[F ] = (K, T ,V) be a MAC scheme based on the MAC function
F . F takes as input a key K and a message M to output a tag τ . The tagging
algorithm Tk and the verification algorithm Vk are defined as follows:

Tagging Tk(M)

1: τ ←− Fk(M)

2: return τ

Verification Vk(M, τ)

1: if Fk(M) = τ then
2: return 1
3: else
4: return 0
5: end if

Truncated MAC. Let T : {0, 1}n −→ {0, 1}nT be a transformation function.
Let MA[F ] = (K, T ,V) be a MAC scheme based on the MAC function F . We
define the transformed MAC scheme ToMA = (K, T oT , T oV) that uses ToF as
its MAC function, where o denotes the composition operator. A truncated MAC
is a transformed MAC in which T (.) is the MSBl(.) function that takes a message
as input and returns the l most significant (i.e. left-most) bits.

Tweak Chaining MAC2 (T C-M̃A2). Let F̃k : {0, 1}n × MSG −→ {0, 1}n be a

tweakable function and let T C-M̃A be its associated chaining scheme. We define
T C-M̃A2 as T C-M̃A except that T C-M̃A2 operates on the entire tag returned
by F̃ (., .) and not only on its half as in T C-M̃A. Stated differently, T C-M̃A2 is
a MAC scheme in which the MAC function F2 is defined as follows:

MAC Function F2k(M)

τ ←− F̃k(chained,M)

chained←− τ
return τ

where chained is a static variable (i.e. maintains its value between calls) that
was initialized with 0n.

Having thus presented the above definitions, we are now on a position to make
our proof. Let F̃k : {0, 1}n × MSG −→ {0, 1}n be a tweakable function and let

T C-M̃A2[F2] be its associated tweak chaining MAC2 scheme. We notice that

the T C-M̃A = (K̃, T̃ , Ṽ) scheme presented in Definition 7 can be seen as the

truncated MAC of T C-M̃A2[F2], where T (.) = MSBn/2(.). Thus, we denote the

MAC function of T C-M̃A as ToF2.
Consider any polynomial-time SUF-CMA adversary A against T C-M̃A. Re-

call that A can make two types of queries: tagging queries and verification
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queries. We suppose that A makes q tagging queries. We associate two adver-
saries to A: an sPRF adversary B against the MAC function F2 (or equivalently

against T C-M̃A2[F2]), and an ĨND-CPA distinguisher D against the tweakable

function F̃k. Now, we state the following lemmas in which we define how the
adversaries A, B and D interact between each other and from which the propo-
sition 1 follows directly.

Lemma A.1. Advsuf-cma

T C-M̃A
(A) = Advsprf

F2 (B) + 1/2n/2

Lemma A.2. Advsprf
F2 (B) ≤ Advĩnd-cpa

F̃
(D) + Pr[Col] + Pr[Colq]

Lemma A.3. Pr[Col] ≤ q2/2n

Proof of Lemma A.1: Recall that B has access to the oracle O and her goal is
to distinguish whether O is the MAC function F2 or the stateful random oracle
RS . Recall also that the MAC function of T C-M̃A is ToF2. The algorithm B
is described below:

Algorithm BO

1: repeat
2: if A queries (M) then
3: τ ←− ToO(M)
4: output τ to A
5: end if
6: if A queries (M, τ) then
7: b←− [τ = ToO(M)]
8: output b to A
9: end if

10: until A ends
11: if A forges then
12: return 1
13: else
14: return 0
15: end if

We can see that B perfectly simulates the answers to A. In addition, B returns
1 (i.e. guesses that the oracle O is the MAC function F2) when A succeeds in
forging a tag. Therefore, the following relation holds:

Pr[AToO forges] = Pr[BO ⇒ 1] (1)

where we use the equivalent notation in which we note that the adversary A has
access to the MAC function as oracle instead of the tagging/verification oracles.
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By definition of strong unforgeability of the MAC scheme T C-M̃A (see Defini-
tion 2), the advantage of A is defined by the probability of her success when she
has access to the oracle ToF2. Therefore, we have:

Advsuf-cma

T C-M̃A
(A) = Pr[AToF2 forges]

= Pr[AToF2 forges] +
(
Pr[AToRS forges]− Pr[AToRS forges]

)
=
(
Pr[AToF2 forges]− Pr[AToRS forges]

)
+ Pr[AToRS forges]

=
(
Pr[BF2 ⇒ 1]− Pr[BRS ⇒ 1]

)
+ Pr[AToRS forges] (from 1)

= Advsprf
F2 (B) + Pr[AToRS forges]

Now, we examine Pr[AToRS forges], which is equal to the probability that
A forges against a MAC scheme that has ToRS as its MAC function. Recall
that RS is a random oracle. Let us suppose that (M, τ) is the forging query
that A uses to break the scheme. Therefore, the following relations holds: τ =
T (RS(M)). Thus, we conclude our proof by showing that we have:

Pr[AToRS forges] = Pr[x
R←− {0, 1}n, T (x) = τ ]

=
1

2n/2
(
since T (.) = MSBn/2(.)

)
Proof of Lemma A.2: Here, we consider any sPRF adversary B against
F2 and we associate it to a particular ĨND-CPA distinguisher D against the
tweakable function F̃k : {0, 1}n × MSG −→ {0, 1}n. Recall that D has access to

the oracle O(., .) and her goal is to distinguish whether O is F̃k(., .) or R̃(., .),

where R̃(., .) is a function that, on input (T,M), returns n-bit random strings.
Recall also that D is a tweak-respecting adversary (i.e. does not repeat tweak).
We define the algorithm of D as follows:

Algorithm DO

1: t←− 0n

2: S←− {t}
3: repeat
4: if B queries (M) then
5: t←− O(t,M)
6: S←− S ∪ {t}
7: output t to B
8: if S contains duplicate values then
9: return 1

10: end if
11: end if
12: until B outputs b′

13: return b′
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where S is a multiset in which values can repeat. We argue that when S
does not contain the same value twice, D is perfectly simulating B’s execu-
tion environment. This is true because F̃ (., .) is no distinguishable from the

random oracle R̃(., .) only against tweak-respecting adversaries. We illustrate
the importance of such a condition by an example. In our example, we take

ÕMAC(T,M) (= OMAC(T ||M)) as the tweakable function F̃ (., .). Now, we
show that B can easily see under the simulation environment that she is not
interacting with a random oracle. B knows that the initial tweak (i.e. state) is
0n and queries M1 = 0n to receive τ1 from her oracle. Then, let T be a tweak
that repeats twice. For the first occurrence of T , B queries M2 = 0n to receive
τ2 and for its second occurrence she queries M2 = 0n || τ2 ||0n to receive τ3. It

is easy to see that τ1 = τ3 when O = F̃k(., .) ( 6= R̃(., .)). Indeed, we have

τ1 = Ek (Ek(0
n))

τ2 = Ek (Ek(T ))

τ3 = Ek

(
Ek

(
�����
Ek (Ek(T )) ⊕��τ2

)
⊕ 0n

)
Thus, from D’s algorithm, we can see that

Pr[DF̃ ⇒ 1] = Pr[BF2 ⇒ 1] + Pr[S|F̃ ]

Pr[DR̃ ⇒ 1] = Pr[BRS ⇒ 1] + Pr[S|R̃]

where Pr[S] is the probability that the multiset S contains duplicate values.

By using the two above relations, we get

Advsprf
F2 (B) = Advĩnd-cpa

F̃
(D) +

Pr[Col]︷ ︸︸ ︷
Pr[S|R]−

Pr[Colq]︷ ︸︸ ︷
Pr[S|F̃ ]

≤ Advĩnd-cpa

F̃
(D) + Pr[Col] + Pr[Colq]

where Pr[Colq] is the collision probability of the tweakable function F̃ after q
messages. Thus, our proof ends.

Proof of Lemma A.3: Informally speaking, the lemma means that the set
{x : x0 = 0n, xi = R(x0, .)} has asymptotically negligible probability to include
duplicate values. Recall that q is the number of B’s queries. We start our proof
by making induction on q. For all q ≥ 1, we prove that

Pr[Col] =
q(q + 1)

2n+1
(2)

Then, we conclude our proof by noticing that q(q + 1)/2n+1 ≤ q2/2n.
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Base case. When q = 1, the right side of (2) is 1/2n. Now, let’s look at the
left side. After only one call, there are two elements in S: {0n, y}, where y ←−
R(0n, .). Thus, Pr[Col] = Pr[x

R← {0, 1}n, x = 0n], which is equal to 1/2n.

Induction step. Suppose that the equation 2 is true for q = m − 1. Here, xi
denotes the ith element of the multiset S. After q = m calls, we have

Pr[Col] =

induction hypothesis︷ ︸︸ ︷
Pr[Col after m− 1 calls] +Pr[xm ∈ S]

=
m(m− 1)

2n+1
+
m

2n

=
m(m+ 1)

2n+1

Hence, the equation 2 holds for q = m, and the induction step is complete.

B Proof of Theorem 1

Recall that A can make two types of queries: encryption queries and decryption
queries. We denote A’s i-th encryption query as Mi and the returned ciphertext
as Ci = σi||τi. We denote A’s i-th decryption query as C ′i = σ′i||τ ′i and the
returned message as mi. We associate to A an SUF-CMA forger F against T C-
M̃A. This association is similar to the one given in the Case 1 of Theorem 4: F
generates a key K1 ∈ Key that she uses for the encryption/decryption algorithms
of Sf-nSE . We recall that the forger F has access to two oracles: a tagging oracle
T̃k2 and a verification oracle Ṽk2, where the key K2 is independent from K1.
Below, we describe our trivial association.

1. When A makes an encryption query M , F outputs σ ←− Enc (nEk1-Sf(M)).

Then, she queries σ to her tagging oracle T̃k2 and receives τ in response.
Finally, she outputs C = σ || τ to A.

2. When A makes a decryption query C = σ || τ , the forger F queries τ to her

verification oracle Ṽk2 and receives a binary value b. If b is false, then F halts
after outputting ⊥. Otherwise, F computes nDk1-Sf (Dec(σ)) and outputs
the result to A.

3. When A wins in her INT-SFCTXT experiment, namely providing a new
valid out-of-sync decryption query C = σ || τ , then F stops and attempts to
evaluate the pair (σ, τ) in order to see whether she succeeds in her forgery.
The different cases are presented below in the proof of Lemma B.1.

Now, suppose A has made q encryption queries and d decryption ones. Let
j be the index of A’s first out-of-sync decryption query. We only consider the
first out-of-sync query because if it fails, the decryption algorithm will return ⊥
and halt for all ensuing queries (see our discussion about the approach of halting
state in Section 4.1). We define two events in case the A’s j-th decryption query
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succeeds: (1) Col: ∃i ≤ q such that τ ′j = τi and i 6= j; (2) Bad: q ≥ j, τ ′j = τj and
mj = Mj . We state the following lemmas from which Theorem 1 follows directly
(using Proposition 1).

Lemma B.1. Advint-sfctxt
Sf-nEtTw(A) ≤ Advsuf-cma

T C-M̃A
(F ) + Pr[q-Col] + Pr[Bad]

Lemma B.2. Pr[Bad] = 0

Proof of Lemma B.1: As said previously, A made q encryption queries before
her first out-of-sync query (Q) which is the j-th decryption query (C ′j = σ′j || τ ′j).
We define the following events.

E : Q correctly verifies
E1 : E occurs and τ ′j /∈ {τ1, ..., τq}
E2 : E occurs and τ ′j ∈ {τ1, ..., τq}
E2,1 : E2 occurs and either q < j or τ ′j 6= τj
E2,2 : E2 occurs and q ≥ j and τ ′j = τj
E2,2,1: E2,2 occurs and mj = Mj

E2,2,2: E2,2 occurs and mj 6= Mj

IfQ fails, then A cannot win any more, since the decryption algorithm will return
⊥ for any subsequent query. Therefore, Advint-sfctxt

Sf-nEtTw(A) = Pr[E]. Considering
the different events, we have Pr[E] = Pr[E1 ∨ E2,2,2] + Pr[E2,1] + Pr[E2,2,1].

Now, we study the probabilities of these events. We can see that E2,1 cor-
responds to the event Col, since it implies that τ ′j has already been produced
before and that was not during the j-th encryption query (this includes the fact
that A might not have made j encryption queries yet). Concerning E2,2,1, it is
easy to see that it satisfies the definition of the Bad event. Consequently, we have

Advint-sfctxt
Sf-nEtTw(A) = Pr[E1 ∨ E2,2,2] + Pr[Col] + Pr[Bad]

We conclude the proof by examining Pr[E1 ∨ E2,2,2] and Pr[Col].

Pr[E1 ∨ E2,2,2]Pr[E1 ∨ E2,2,2]Pr[E1 ∨ E2,2,2]. We notice that when the event E1 ∨ E2,2,2 occurs, (i.e. the j-th
decryption oracle C ′j = σ′j || τ ′j does not return ⊥), then the forger F succeeds in

finding an SUF-CMA forgery against T C-M̃A, since the two events ensure that
the pair (mj , τ

′
j) was never produced before by the oracle T̃k2.

Indeed, the event E1 implies that τ ′j has never been queried to T̃k2, while
the event E2,2,2 implies that the tag τ ′j has never been obtained from querying

the oracle T̃k2 with σ′j as input. This is because for any state i, the following
implication is asymptotically true (i.e. nEk-Sf(.) is injective):

Mi 6= M ′i =⇒ nEk1-Sf(Mi) 6= nEk1-Sf(M ′i)

Therefore, τ ′j (= τj) was computed for σj = nEk1-Sf(Mj) which is different from
σ′j (i.e. σj 6= σ′j), since σ′j = nEk1-Sf(mj) and Mj 6= mj .
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Thus, we have

Pr[E1 ∨ E2,2,2] = Pr[Fforges] = Advsuf-cma

T C-M̃A
(F )

Pr[Col]Pr[Col]Pr[Col]. As previously pointed out, Pr[Col] = Pr[∃i 6= j such that τ ′j = τi]. This
means that for two different states the following equality holds:

T̃k2(Enc(nEk1-Sf(mj))) = T̃k2(Enc(nEk1-Sf(Mi)))

The above relation supposes that the adversary should find a collision against
T C-M̃A after q invocations to the T̃k2(.) oracle, which corresponds to find a
state i(6= j) such that the related MAC tag is equal to the one computed for

the state j. By looking at the construction of T C-M̃A in Definition 7, we find
that Pr[Col] is equivalent to the probability of encountering a collision against

the underlying tweakable function F̃k2(., .). Stated differently, we have

Pr[Col] = Pr[q-Col]

where, we recall that, given a message M and a list S containing q outputs of
F̃k2, Pr[q-Col] is the probability that F̃k2(M) ∈ S.

Proof of Lemma B.2: The event E2,2,1 includes all the following events: (1)
q ≥ j; (2) the decryption query C ′j = σ′j ||τ ′j is out-of-sync, hence Cj 6= C ′j ; (3)
σ′j 6= σj , since τ ′j = τj ; and (4) mj = Mj . We notice that the events 3 and 4 are
contradictory, and therefore Pr[Bad] = 0. Indeed, recall that nSE = (K, nE , nD)
encrypts messages using a deterministic algorithm. Therefore, for a fixed nonce
N , nEk1(N,M1) 6= nEk1(N,M2) implies that M1 6= M2. Also, we notice that the
encryption and the decryption states were in-sync prior to the j-th decryption
query. This means that the associated Sf-nSE = (K-Sf, nE-Sf, nD-Sf) has called
nSE algorithms with the same nonce for each state. Thus, the event 3 entails
σ′j = nEk1-Sf(mj) 6= nEk1-Sf(Mj) = σj , which implies mj 6= Mj . This concludes
our proof, since the event 4 is mj = Mj .

C Collision Probabilities

C.1 OMAC Collision Probabilities

Here, we state two Results proved in [28] about collisions in OMAC.

Result C.1 [Pr[Col]2 ]
Let Ek be a block cipher of size l and let OMAC[Ek] be its associated OMAC

scheme. For the sake of simplicity, we only consider messages M whose length
is a multiple of l (i.e. |M |/l is an integer). Given a message M , we denote by µ
the number of its blocks, namely µ = |M |/l. Consider two messages M and M ′,
then the following relation characterizes the probability of the OMAC collision:

Pr[Col2] = Pr[Col(M,M ′)] ≤ (µ+ µ′)2

2l
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Result C.2 [Pr[Col]q ]
Let Ek be a block cipher of size l and let OMAC[Ek] be its associated OMAC

scheme. For the sake of simplicity, we only consider messages M whose length
is a multiple of l (i.e. |M |/l is an integer). Given a message M , we denote by µ
the number of its blocks, namely µ = |M |/l. Given a list Q of q messages, the
following relation characterizes the probability of the OMAC collision on Q:

Pr[Colq] = Pr[Col(Q)] ≤
(
∑q
i=1 µi)

2

2l

C.2 Proof of Lemma 5.1

We need to compute both Pr[Colq] and Pr[q-Col]. The case of Pr[Colq] is easy and
it can be immediately obtained from Result C.2. Concerning the case Pr[q-Col],
it can be calculated from Result C.1. Indeed, given a message M and a list
S, Pr[Colq] can be expressed as the sum of the collision probabilities Pr[Coli2]
between M and a message Mi for all Mi ∈ S. Here, Mmax denotes any message
of maximum length and µmax denotes its number of blocks. Therefore, we have

Pr[q-Col] ≤
q∑
i=1

Pr[Col(mmax,mi)] ≤
q∑
i=1

(µmax + µi)
2

2n

From all the relations above, we have

ε =
q2

2n
+

1

2n/2
+ Pr[Colq] + Pr[q-Col]

≤ 1

2n/2
+
q2

2n
+

(
∑q
i=1 µi)

2

2n
+

∑q
i=1(µmax + µi)

2

2n

≤ 1

2n/2
+
q2

2n
+

(
∑q
i=1 µi)

2

2n
+

3qµ2
max +

∑q
i=1 µ

2
i

2n

≤ 1

2n/2
+
q
(
q + (2µmax)2

)
+ (
∑q
i=1 µi)

2
+
∑q
i=1 µ

2
i

2n

which is asymptotically negligible.


