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Abstract. Privacy for arbitrary encrypted remote computation in the
cloud depends on the running code on the server being obfuscated from
the standpoint of the operator in the computer room. This paper shows
that that may be arranged on a platform with the appropriate machine
code architecture, given the obfuscating compiler described.

1 Introduction

Afamous result of van Dijk et al. in the security arena reduces security for
arbitrary computations in the cloud to obfuscation of the machine code

on the server [9]. ‘Obfuscation’ means that access to the code running on the
server gives no advantage, logical or statistical, to the hypothetical spy in the
computer room [11]. The computation must take encrypted inputs and produce
encrypted outputs or the I/O could be read directly, but that can be arranged
with the appropriate processor hardware. The argument of van Dijk et al. is
that the remote user’s program and the input for it could together be supplied
as (encrypted) input to a virtual machine running on the server. Running the
program securely in that environment means that the (encrypted) output must
be returned as though from an impenetrable black box, and that is exactly what
the – perfectly accessible – code of the virtual machine being ‘obfuscated’ means.

There are processor contexts that effectively produce this kind of obfusca-
tion. An example is the Ascend co-processor [10], which executes code in ‘Fort
Knox’-style physical isolation, with no operator access to it while it is running.
The external observables, such as power consumption, timing of I/O (including
memory accesses), cache hit/miss ratio, etc., that might leak information via
side-channels [18, 19], obey statistics that are configured beforehand and have
no correlation with the running program, apart from the run time. The machine
code executable is also input in encrypted form. Since the operator’s access to
the running program is physically restricted to no more than would be the case
for a black box implementation, the program is obfuscated by definition.

However, a classic result of Barak et al. affirms that obfuscation of programs
is generally impossible [2]. Reconciling that with Ascend’s evident physically-
based obfuscation implies that assumptions about what the operator can see of
the code while running, or what form the code may take, may not have universal
relevance. It turns out that one has to go only a little way along the path of
Ascend in securing the processor from the operator, yet obfuscation of the code
on the server is technically and practically achievable while still allowing that:



The operator has the conventional full access to running code.

That means access (via a debug exception) to registers and memory, while the
user’s code may be single stepped, repeated, retried, altered, etc. The ‘magic’ is
in an appropriate machine code instruction architecture, as set out in Section 2.

However, software toolchain support is needed, otherwise the code itself might
obviate all protections. For example, it might include a trojan library function
that takes one hour to complete if the answer is (encrypted) ‘1’, and two hours if
the answer is (encrypted) ‘2’, which slowly generates a codebook that translates
the encryption for the interested observer1. Moreover, a human author will write
code incorporating small numbers that can be guessed in a dictionary attack. A
kind of obfuscating compiler is still required, and this paper provides it.

This compiler at each recompilation of the same program produces an exe-
cutable that in the code and at any point in the runtime trace has arbitrarily and
uniformly distributed differences in the data values (underneath the encryption)
with respect to any other compilation. Otherwise, the code and trace looks the
same, in particular the control flow visible in the trace.

The idea is that a spy does not know which compilation is being run. Suppose
hypothetically that the malfeasant operator has a method of determining what
the encrypted output or trace data is under the encryption at any point. Then,
since that in fact is something different under the encryption for every possible
compiled executable, and the operator’s method must see no difference between
the different compilations or traces because the differences that do exist are all
in the (encrypted) constants and data that cannot be read by the operator, so
the putative method cannot work (Theorem 1, Section 2).

For the argument to go through, there are two hardware requirements:

(1) Individual machine code instructions must be obfuscated.

That means that individual instructions are treated as Ascend treats an entire
program, so they are individually as secure as an entire program is in Ascend.
But, as in Ascend, the ‘I/O’ from the instruction must also be in encrypted form
or it would be readable by the operator:

(2) Each machine code instruction must read and write data in encrypted form.

otherwise the operator, able to single-step the machine and with access to reg-
isters, can read every action. However, (1) and (2) are not necessarily without
overlap, as obfuscation and encryption are equivalent in some contexts [1].

There are platforms that satisfy those requirements. HEROIC [17, 16] is a
prototype 16-bit machine running with a Paillier (2048 bit) encryption [14]. Its
core performs a single machine code addition instruction in 4000 cycles and

1 A side-channel consisting of signalling via repeat accesses to the same memory lo-
cation is also closed in Ascend by the use of oblivious RAM [13], which remaps the
logical to physical address relation dynamically, maintaining aliases, so access pat-
terns are statistically impossible to spot. It also masks programmed accesses in a
sea of independently generated extra random accesses.



20us on its 200MHz (programmable) hardware, roughly equal to the speed of
a 25KHz Pentium. The addition instruction does addition on encrypted data,
producing encrypted data, satisfying requirement (2). The ‘OI’ in HEROIC really
stands for ‘one instruction’, meaning that the machine code architecture has only
one kind of instruction, a combined ‘add, compare, branch’ that is known to
be computationally complete together with recursion and at least one nonzero
constant (the instruction by itself makes up Conway’s Fractran programming
language [7], often used in the mathematics of computability and complexity).
Requirement (1) is satisfied because one instruction looks like another but for
the (encrypted) constants embedded in it, which cannot be read.

The KPU design [6] generalises HEROIC’s approach, achieving encrypted
running by modifying the arithmetic logic unit (ALU) in a conventional processor
design, which is enough in itself to cause data to be processed in encrypted
form [3]. It does not require an encryption with special properties – the Paillier
encryption in HEROIC has ‘homomorphic’ properties, in that addition under
the encryption can be effected via multiplication of the encrypted values. The
KPU runs in simulation using the US Advanced Encryption Standard (AES) 128
bit encryption [8] at about the speed of a 300-500MHz Pentium using a 1GHz
clock [5], which is broadly comparable with contemporary PC processors.

The significant difference with respect to HEROIC, aside from speed, is that
the machine code architecture is conventional, containing many instructions that
are distinguishable to an observer who can read only the unencrypted parts.
Nevertheless, it satisfies (2) as well as (1), as HEROIC does. The reason is that
what certain instructions do to data is not knowable. Each of those instructions
contains an encrypted parameter that is set by the compiler. It would be known
to an observer what the intended result 0 of a ‘traditional’ machine instruction to
calculate x−x is (zero) even without being able to read the encrypted x, but it is
not known of the KPU instruction that calculates x−x+k, because the parameter
k is encrypted. It can be proved that all outcomes are equally probable in these
instructions when the parameter is uniformly distributed across recompilations.

Given (1) and (2) it will be shown here (Theorem 2, Section 4) that machine
code is formally obfuscated by the simple ‘obfuscating compiler’ introduced in
Section 3 and defined in Section 4 for platforms satisfying those requirements
(Theorem 3), thus ensuring privacy for cloud computations for the compiled
executables, via the argument of van Dijk in [9]. Section 5 gives an example of
obfuscating compilation (and running the obfuscated code).

The compiler constructs machine code programs which cannot be distin-
guished one from the other, neither by look nor behaviour, by dissection nor
experiment, by a spy ignorant of the encryption used for the constants in the
code and the circulating data in the machine. Not all constructed programs look
alike, but enough do to permit any interpretation of the inputs and outputs.



2 Encrypted FxA instruction architecture

The situation is clarified by a particular machine code instruction set. Instruction
sets are conventionally made up of instructions that (a) perform a relatively
simple binary arithmetic operation, such as ‘addition’ on data in registers or in
memory and return a result to registers or memory, instructions that (b) perform
a binary comparison operation such as ‘less than’ between two values in registers
or memory, setting or clearing a flag, plus (c) control instructions that alter
which program instruction is executed next. By default that is the one with the
next higher address in memory, but a jump instruction unconditionally alters
the sequence. A branch instruction alters the sequence conditionally on the value
of the flag set by a previous comparison.

However, AMD and Intel in 2011-2013 introduced instruction sets that con-
tain instructions (aa) that carry out a combination of two arithmetic operations
at once, in a so-called fused instruction. They were introduced in the context of
the newer processors such as Intel’s ‘Knights Landing’ Xeon Phi that contain
many (72) cores on the one chip, each running with very wide integers (512 bits).

While addition takes one cycle to complete on such processors, multiplica-
tion takes much longer (about ten cycles). Moreover, the repeating subunit that
forms the multiplication logic multiplies two short integers and adds in two short
incoming ‘carry’ integers from subunits ‘right’ and ‘below’ in a 2-dimensional ar-
ray. The column and row of subunits at extreme ‘right’ and ‘bottom’ respectively
may be used to feed two full integer addends into the calculation at no extra cost.
Thus a ‘fused multiply and add’ (FMA) instruction was introduced in AMD and
Intel’s FMA3 and FMA4 instruction sets for reasons of efficiency. Compilers emit
FMA instructions instead of single multiplications followed by add, particularly
in connection with parallel matrix- and tensor-oriented computation.

Denote by a fused anything and add (FxA) instruction architecture one in
which the arithmetic instructions subtract constants k1, k2 from the operands
x1, x2 and add a constant k3 into the result. So FxA multiplication does:

(x1 − k1) ∗ (x2 − k2) + k3

A concrete example of an FxA instruction set dealing with encrypted data is
illustrated in Table 1. Some instructions, such as the addition instruction, for
example, need only admit one constant addend, as

(x1 − k1) + (x2 − k2) + k3 = x1 + x2 + k where k = k3 − k1 − k2

The constants (the k in the above) appear in encrypted form in the instruction,
so cannot be read by the operator, who does not have the encryption key. The
instructions manipulate encrypted data, either, as in Ascend, by decrypting in-
put and encrypting output, or, as in HEROIC, by making use of an encryption
E with homomorphic properties such that the arithmetic may be carried out on
the encrypted data as is. It only matters that the instructions are atomic.

For FxA instructions to work securely, the hardware should also ensure:



Table 1. An FxA machine code instruction set for working with encrypted data

fields kind semantics

add r0 r1 r2 [k]E (aa) add r0 ← [[r1]D + [r2]D + k]E
sub r0 r1 r2 [k]E (aa) subtract r0 ← [[r1]D − [r2]D + k]E
mul r0 r1 r2 [k0]E [k1]E [k2]E (aa) multiply r0 ← [([r1]D−k1)∗([r2]D−k2)+k0]E
div r0 r1 r2 [k0]E [k1]E [k2]E (aa) divide r0 ← [([r1]D−k1)/([r2]D−k2)+k0]E
cmov r0 r1 r2 (a) conditional move r0 ← flag ? r2 : r3
sfeq r1 r2 [k]E (b) set flag if [r1]D = [r2]D + k else clear it
sfne r1 r2 [k]E (b) set flag if [r1]D 6= [r2]D + k ”
sflt r1 r2 [k]E (b) set flag if [r1]D < [r2]D + k ”
sfgt r1 r2 [k]E (b) set flag if [r1]D > [r2]D + k ”
sfle r1 r2 [k]E (b) set flag if [r1]D ≤ [r2]D + k ”
sfge r1 r2 [k]E (b) set flag if [r1]D ≥ [r2]D + k ”
bf j (c) skip j instructions if flag set else continue
bnf j (c) skip j instructions if flag not set else continue
b j (c) unconditional skip j instructions
. . .

Legend: the r are register indexes or memory locations, the k are 32-bit integers, the
j are instruction address increments, ‘←’ is assignment. The function [ · ]E represents
encryption, [ · ]D represents decryption of a value or register/memory content. Kind (a)
are arithmetic, (aa) fused arithmetic, (b) comparators, (c) control.

(3) There are no collisions between (i) encrypted constants [k]E that appear in
instructions and (ii) runtime encrypted data values in registers or memory.

In practice that is done by introducing different padding or blinding factors into
the encryptions for the two, and checking that in the processor pipeline.

The idea is that the hardware should not allow constants that appear in
instructions to work correctly when used as data inputs for arithmetic, and data
generated at runtime should not work correctly as constants in instructions.
That makes it impossible for a ‘spy in the computer room’ to pass the encrypted
constants seen in other programs through the processor arithmetic, patching the
results back into code snippets by way of experiment or tampering.

Theorem 1. There is no method by which the privileged operator can read a
program C constructed using FxA instructions, nor deliberately alter it using
those instructions to give an intended encrypted output.

Proof. Suppose for contradiction that the operator has a method f(T,C) = y
of knowing that the output [y]E of C encrypts y, having observed the trace
T . Now imagine that every number has 7 added to it under the encryption.
Replace every FxA instruction of the form r0 ← (r1 − k1)Θ(r2 − k2) + k0 with
r0 ← (r1−k′1)Θ(r2−k′2) +k′0 where k′i = ki + 7, i = 0, 1, 2. Then the operations
still make sense, operating on numbers that are 7 more than they used to be to
produce a number that is 7 more than it used to be. The comparisons r1Rr2 +k
in C still make sense, because they compare numbers that are 7 more than they



used to be on both sides of the relation R, obtaining the same result, so they do
not need to be changed. To the operator, the new program code C ′ ‘looks the
same’, C ′ ∼ C, because one encrypted number [k]E or [k′]E is as meaningful as
another without the key and the new program trace T ′ looks the same too up
to the encrypted numbers in it, because the branches after comparisons go the
same way since the comparisons still set the flag the same way. That is, T ′ ∼ T .
The method f carried out by the operator must therefore declare the output
of C to be f(T ′, C ′)=f(T,C)=y. But the output is not [y]E but [y+7]E , so the
method does not work. It does not exist.

Now suppose for contradiction that the operator deliberately builds a new
program C ′=f(T,C) that returns outputs [y]E where y is known to and decided
by the operator. Then the constants [k]E of C ′ are found in C because the oper-
ator’s technique f has no way of arithmetically combining them (the condition
(3) means they cannot be combined arithmetically in the processor nor taken
from the trace, and the operator does not have the encryption key). But the
argument just given above says the operator cannot read the outputs [y]E of C ′,
and that is a contradiction.

It turns out that knowing the code and/or trace does not enable a single
bit of the runtime data under the encryption to be guessed with any degree of
statistical accuracy. The intuition that explains that is that the number ’7’ that
the proof shows the data might logically differ from the ‘nominal’ by at any point
is arbitrarily chosen. Any possible offset, like ‘7’, at any point in the program,
for any particular register or memory location, is as probable as another.

But that does not take into account that human beings only write certain
programs, so one can bet, for example, on finding an encrypted 1 as a constant
in nearly any program. Practical obfuscation requires a compiler strategy that
makes use of the possibilities to really spread the differences from nominal around
randomly and uniformly, else all is bluff.

3 Obfuscating compilation to FxA

To make compilation to FxA really use the possibilities for obfuscation, not just
set the instruction constants to (encrypted) zero every time, the compiler may
set a different offset ∆xl

for the value [xl]E in each register and memory location
l, at different points in the program. The offset represents by how much the
decrypted data value in the location is to differ from the nominal value (without
obfuscation) at runtime. Each instruction that writes at location l offers an
opportunity for the compiler to reset the offset ∆xl

used.
For example, to compile a boolean-valued computational conjunction expres-

sion A&&B in the program source code, the possible additive offset is 0 or 1
mod 2. An offset of 0 means the result is returned as is, ‘telling the truth’. An
offset of 1 means the result is inverted: ‘lying’. The compiler chooses between:

(a) whether A is compiled telling the truth or lying
(b) whether B is compiled telling the truth or lying



(c) whether it will lie or tell the truth for C = A&&B.

The (a) corresponds to whether ∆A=0 (truth) or ∆A=1 (liar) is added mod 2 to
the result for A. Similarly (b) corresponds to whether ∆B=0 (truth) or ∆B=1
(liar) is added in to the result for B. Let a be true when (a) is set to tell truth
(∆A=0), and false when (a) is set to lie (∆A=1). Similarly for b with respect to
(b), and c with respect to (c). Then what should be computed at runtime is:

c↔ ((a↔ A)&&(b↔ B))

where the two-sided arrow stands for the boolean biconditional operator, the
complement of exclusive or. That is

if a b c then A&&B

if a b c then A&&B

if a b c then A&&B

if a b c then A&&B

if a b c then A&&B

if a b c then A&&B

if a b c then A&&B

if a b c then A&&B

where the overline means boolean negation. The compiler knows a and b and
chooses c with 50/50 probability, deciding which of A&&B, A&&B, etc., it will
generate machine code for. All the generated codes look the same, modulo the
encrypted constants, unreadable by the operator. If [A] is the compiled code for
A and [B] is the compiled code for B, then the compiler produces in every case
a machine code sequence [C]:

[A]; ia; bnf l; [B]; ib; l : ic

where if a is true (‘truth teller’) then for ia a machine code sequence is generated
by the compiler that maintains the flag set by A that the bnf instruction tests.
It would suffice to emit nothing, but it is required that the sequence look the
same for all possible cases, and ‘nothing’ would be a give-away that that portion
of the compilation has been carried out honestly. If a is false (‘liar’) then ia is
a machine code sequence of the same length that flips the flag set by A, the
compilation of A having been such that it deliberately gives the ‘wrong’ result.
Whatever the details of the truth/liar compilation decisions in the internals of A
and B, the code produced has the same length, so the length of the jump in the
branch instruction (here represented via the assembler label l, not the numerical
value later inserted) is always the same.

Apart from the possibly flag-flipping inclusions ia, ib, ic, the sequence has the
classical form that a compiler should emit for A&&B. In particular, the branch
takes the ‘short circuit’ route to an early out if A (possibly flipped by ia) fails.

The machine code for the ia, ib, ic is in each case one of the two possibilities:

bf l1; snf; b l2; l1 : sf; l2 : # keep flag

bf l1; sf; b l2; l1 : snf; l2 : # flip flag



where sf and snf are equal-length codes that look alike apart from encrypted
constants. They respectively set and clear the flag that is tested by conditional
branch instructions. They are:

sflt r0 r0 [1]E # sf (set flag)

sflt r0 r0 [0]E # snf (clear flag)

where r0 can be any register. The ‘1’ in sf can be any positive value, and the 0
in snf may be any non-positive value. Encryption in any case produces different
values for [0]E and [1]E at every invocation, because of random padding/blinding.

The way to compile the computational disjunction A ||B is similarly

[A]; ia; bf l; [B]; ib; l : ic

replacing the bnf from the conjunction compilation with a bf instruction. To
compile source code constant expressions ‘true’ and ‘false’ the compiler arbitrar-
ily emits the sf or the snf code, remembering its truth-teller/liar choice for the
compilation of the expression of which those form a part.

This compiler emits code that generates runtime values that are arbitrarily
different in each register and memory location for each unique compilation, yet
the compiled codes (and the traces) look exactly the same, up to the encrypted
constants (and runtime data), between one compilation and the next.

4 Compilation in general

The compiler works with a database D : DB = Loc→ Int containing (32-bit)
integer offsets indexed per register or memory location. As the compiler works
through the source code, the offset represents by how much the data underneath
the encryption is to vary from nominal at runtime at that point in the program.

The compiler also maintains a database L : Var→Loc of the locations (reg-
isters, memory) for the source variable placements:

CL[ : ] : DB× source code→ DB×machine code

To simplify the presentation here, details of the management of database L
are omitted. It is used to look up the location to which a source code variable
corresponds. A pair in the cross product is written D : s here.

Sequence: The compiler works left-to-right through a source code sequence:

CL[D0 : s1; s2] = D2 : m1;m2

where D1 : m1 = CL[D0 : s1]

D2 : m2 = CL[D1 : s2]

The database D1 that results from compiling the left sequent s1 in the source
code, emitting machine code m1, is passed in to the subsequent compilation of
the right sequent s2, emitting machine code m2 that follows on directly from m1

in the object code file and its memory image when loaded.



Assignment: An opportunity for new obfuscation arises at an assignment to a
source code variable x. An offset ∆x = D1Lx for the data in the target register
or memory location Lx is generated randomly, replacing the old offset D0Lx
that previously held for the data at that location. The compiler emits code m1

for the expression e which puts the result in a designated temporary location
t0 with offset ∆e = D1t0. It is transferred from there to the location Lx by a
following add instruction (the zer location dummy in the add instruction means
that field does not contribute):

CL[D0 : x=e] = D1 : m1; add Lx t0 zer [i]E

where i = ∆x −∆e

D1 : m1 = CL
t0[D0 : e]

The t0 subscript for the expression compiler tells it to aim at location t0 for the
result of expression e. That is one of the registers reserved for temporary values.

Return: The compiler at a ‘return e’ from function f selects a final offset ∆fret

(functions f are subtyped by offsets∆fpar0 ,∆fpar1 , etc. in their formal parameters
and ∆fret in their return value) and emits an add instruction with target the
standard function return value register v0 prior to the conventional function
trailer (ending with a jump back to the address in the return address register
ra). The add instruction adjusts to the offset ∆fret from the offset ∆e = D1t0
with which the result from e in t0 is computed by the code m1 compiled for e:

CL[D0 : return e] = D1 : m1; add v0 t0 zer [i]E
. . . # restore stack
jr ra # jump return

where i = ∆fret −∆e

D1 : m1 = CL
t0[D0 : e]

The offset accounted for v0 is updated in D1 to D1v0=∆fret .
The remaining source code control constructs are treated like return in the

way they adjust the final offset to meet constraints. For an if statement, for
example, final offsets in each branch are adjusted to match at the join.

Theorem 2. The probability across different compilations that any particular
runtime 32-bit value x for [x]E is in location l at any given point in the program
is uniformly 1/232.

Proof. Suppose that just before the FxA instruction I in the program, for all
locations l the value x+∆x with [x+∆x]E in l varies randomly across recompila-
tions with respect to a ‘standard’ value x with probability p(x+∆x=X)=1/232,
and I writes value [y]E in one particular location l. That y has an additive
component k that is generated by the compilation so as to offset y from the
nominal functionality f(x+∆x) by an amount ∆y that is uniformly distributed
across the possible range. Then p(y=Y )=p(f(x+∆x)+∆y=Y ) and the latter



probability is p(y=Y )=
∑
Y ′
p(f(x+∆x)=Y ′ ∧∆y=Y−Y ′). The probabilities are

independent (because I is only generated once by the compiler and ∆y is newly
introduced for it), so that sum is p(y=Y )=

∑
Y ′
p(f(x+∆x)=Y ′)p(∆y=Y−Y ′).

That is p(y=Y )= 1
232

∑
Y ′
p(f(x+dx)=Y ′). Since the sum is over all possible Y ′,

the total of the summed probabilities is 1, and p(y=Y )=1/232. The distribution
of x+∆x in other locations is unchanged.

Another intuition is that ∆y has maximal entropy, so adding it in in an instruc-
tion swamps any other information the instruction might expose.

The theorem states that code is obfuscated. Having the machine code in
hand does not tell the operator which of the many compilations of the program
it might be, and the data under the encryption at runtime can vary arbitrarily
and uniformly across recompilations without changing the trace or the code, as
far as a malfeasant who does not have the encryption key is concerned.

Could FxA fused arithmetic machine code instructions, which may be costly
at runtime, be done without? No, a single classical arithmetic machine code
instruction without the addend would introduce a weakness: the operator has
access – via a debugger, for example – to running code, so every machine in-
struction can be observed and experimented with. The action may be repeatedly
observed to build up an encrypted arithmetic table. Then the operator might
come across, for example, two encrypted additions ‘a+b=c’ and ‘c+b=a’, from
which it may be deduced that 2b=0 (mod 232), so b=0 or b=231. Observing in-
stead an FxA addition instruction only permits 2(b+k)=0 to be deduced, where
k is an unknown extra addend, which says nothing about b.

The argument of Theorem 2 works in a more general context:

Theorem 3. A correctly compiled program in an instruction set managing en-
crypted data and satisfying requirement (1) ‘obfuscated instructions’ in context
in the program, is such that the probability across different compilations that any
particular runtime 32-bit value x for [x]E is in location l at any given point in
the program is uniformly 1/232.

Proof. The argument of Theorem 2 may be repeated. Obfuscation ‘in context
in the program’ means that an instruction I that nominally writes a value y to
location l can by that hypothesis be varied by the compiler to write a value y+
∆y instead that is uniformly distributed across recompilations (while retaining
correctness of the compilation).

Resuming the argument, the compiler is required to collaborate in producing
the obfuscation by the hypothesis that each instruction in the program is ob-
fuscated in context in the program. That means the output of each instruction
cannot be predicted or guessed with any statistical accuracy, so it must vary
uniformly across recompilations. Since processors are deterministic, that means
the instruction must vary comprehensively but invisibly to the observer, by dint
of some encrypted hence effectively hidden parameters that control its behaviour



and which the compiler varies. The compiler defined in this section does that by
controlling the offset ∆y in the result y of the instruction. By the well-known
‘Shannon’s inequality’ of information theory for the case when ∆y has maximal
entropy, that implies y+∆y has maximal entropy too, which is the desired result,
as maximal entropy means uniformly probable distribution across the range.

5 Example

The Ackermann function [15] written in C is as follows:

int A(int m, int n) {

if (m == 0) return n+1;

if (n == 0) return A(m-1, 1);

return A(m-1, A(m, n-1));

};

It is a classic function for studying computationally complex behaviour. Every
increment in its first argument produces an exponential increase in complexity
with respect to the second argument, A(m,n) = 2...2

n+3 − 3 where the ellipsis
covers m− 2 exponentiations. The first exponential case is A(3, n) = 2n+3 − 3.

Compilation2 produces the machine code in Table 2. Places where a 0 con-
stant is nominal (instructions 5, 8, 14, 26, 29, 35) do not all contain a 0 (the
literal 0s and 1s in the keep and flip flag macros are for recognisability in testing).
Similarly for places where a 1 constant is nominal.

At instruction 38, for example, the offset from the nominal value 1 in register
t1 is −587705998−1 = −587705999, −587705998 being written, but two instruc-
tions later at instruction 40, when 1 is written into the same register again, the
offset from nominal is 1111468055− 1 = 1111468054, 1111468055 being written.

For testing, the offset of the return value from functions and the offsets for
function parameters have been set at 0, but they may be arbitrary random values
known only to the compiler. The entry and exit offsets for a complete executable
program, on the other hand, must be known to the remote user who compiled
the code and commissioned its execution. The trace of a run for A(2, 1) = 5 is
shown in Table 3, with the result in register v0 after 1104 steps. The A(3, 1)
computation reaches result 13 in 8288 steps.

Although both stack pointer (register sp) and the base addresses held in
registers for load memory and store memory instructions (not shown in Table 2)
are also obfuscated, so might possibly access invalid RAM addresses, that is
not a problem in practice because processors that work with encrypted data are
engineered to cope with exactly that. Data addresses are data too, and, being
encrypted on those platforms, are distributed over the whole of the possible
range, which might be only partially backed by physical RAM. RAM, on the
other hand, like any other external local hardware device, must remain ignorant

2 Haskell source code for the compiler and a virtual machine, including this example,
may be downloaded from http://nbd.it.uc3m.es/˜ptb/obfusc comp-0 7.hs.



Table 2. Compiled FxA encrypted machine code for the Ackermann function.

A: . . . # create frame
# if (m == 0)

4 add t0 a0 zer [-1704185953]E # m
5 add t1 zer zer [2104023132]E # 0
6 sfeq t0 t1 [486758211]E # ==
7 bf 2 # keep flag
8 sflt zer zer [0]E # keep flag
9 b 1 # keep flag
10 sflt zer zer [1]E # keep flag
11 bf 2 # flip flag
12 sflt zer zer [1]E # flip flag
13 b 1 # flip flag
14 sflt zer zer [0]E # flip flag
15 bnf 9 # then

# return n + 1
16 add t0 a1 zer [1526256091]E # n
17 add t1 zer zer [1280102991]E # 1
18 add t0 t0 t1 [-620124265]E # +
19 add v0 t0 zer [2108732479]E
. . . # frame destroy
. . . # return sequence

24 b 0 # else skip
# if (n == 0)

25 add t0 a1 zer [-989123886]E # n
26 add t1 zer zer [-580299623]E # 0
27 sfeq t0 t1 [-408824263]E # ==
28 bf 2 # keep flag
29 sflt zer zer [0]E # keep flag
30 b 1 # keep flag
31 sflt zer zer [1]E # keep flag
32 bf 2 # flip flag
33 sflt zer zer [1]E # flip flag
34 b 1 # flip flag
35 sflt zer zer [0]E # flip flag
36 bnf 26 # then

# return A(m-1,1)
37 add t0 a0 zer [-457757118]E # m
38 add t1 zer zer [-587705998]E # 1
39 sub t0 t0 t1 [-2141902894]E # -
40 add t1 zer zer [1111468055]E # 1
. . . # save regs
. . . # fill args

50 jal 0 # call A(m-1,1)
51 add t0 v0 zer [-1607308215]E
. . . # restore regs

57 add v0 t0 zer [1607308215]E
. . . # destroy frame
. . . # return sequence

62 b 0 # else skip
# return A(m-1,A(m,n-1))

63 add t0 a0 zer [1195221673]E # m
64 add t1 zer zer [-868884270]E # 1
65 sub t0 t0 t1 [-1733760489]E # -
66 add t1 a0 zer [-1996082249]E # m
67 add t2 a1 zer [-1268351424]E # n
68 add t3 zer zer [1148618604]E # 1
69 sub t2 t2 t3 [752318999]E # -
. . . # save regs
. . . # fill args

79 jal 0 # call A(m,n-1)
80 add t1 v0 zer [-191727838]E
. . . # restore regs
. . . # save regs
. . . # fill args

95 jal 0 # call A(m-1,..)
96 add t0 v0 zer [1566613208]E
. . . # restore regs

102 add v0 t0 zer [-1566613208]E
. . . # destroy frame
. . . # return sequence

of the encryption in use because it might be subverted [12]. In consequence, some
circulating addresses might not be backed by RAM.

But, on those platforms, data addresses are linearly remapped to backed
regions on a first-come, first-served basis within the processor. The encrypted
addresses serve only as labels. The physical RAM location to which they corre-
spond is defined internally by the ‘translation lookaside buffer’ (TLB) hardware
in the processor, itself backed in RAM, and cached. The effect is to keep memory
references pointing, via the TLB mapping, into physically backed space.

Nevertheless, the nondeterministic nature of good encryption means that
repeating the same address under the encryption does not necessarily invoke the
same encrypted address. Correction is best made at software level, compiling so
encrypted addresses are saved and copied, not recalculated, when reused [4].

It might be thought that the A(2, 1) result, say, could be recognized from the
form of the code and the control flow in the trace, but there is nothing there to
distinguish from the Ackermann function plus 7, for example (Theorem 1).



Table 3. Runtime trace (abridged) for the Ackermann function on (2,1), result 5.

PC instruction update flag
...
4 add t0 a0 zer [-1704185953]E t0 = [-1704185951]E 0
5 add t1 zer zer [2104023132]E t1 = [2104023132]E 0
6 sfeq t0 t1 [486758211]E 0
7 bf 2 0
8 sflt zer zer [0]E 0
9 b 1 0
11 bf 2 0
12 sflt zer zer [0]E 0
13 b 1 0
15 bnf 9 0
25 add t0 a1 zer [-989123886]E t0 = [-989123885]E 0
26 add t1 zer zer [-580299623]E t1 = [-580299623]E 0
27 sfeq t0 t1 [-408824263]E 0
28 bf 2 0
...
102 add v0 t0 zer [-1566613208]E v0 = [5]E 1
...
106 jr ra 1
STOP

Conclusion

This paper has considered the privacy of remote encrypted computation with
respect to the operator/administrator of the cloud-based server as adversary.
A minimally encrypted machine code instruction set for computation on the
server has been defined that fuses arithmetic operations with the addition of
one or more constants. It has been shown that the instruction set architecture
allows code and program traces and (encrypted) data circulating in the processor
to be accessible to the operator in the conventional way, while being formally
private for the remote user. An ‘obfuscating compiler’ has been defined that
provides uniformly distributed runtime variations across different recompilations
at every point in the program trace. It supports the formal assurances of privacy
by eliminating the possibility of attacks based on the likely use by a human
author of small numbers in program or data. It does not contradict Barak et
al.’s famous result that program obfuscation is impossible, rather constructs it
among a reduced class of machine code programs: those that can be compiled for
the special target architecture from the same high-level source by this compiler.
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