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Abstract

In this paper, we construct subring homomorphic encryption scheme that is a homomor-
phic encryption scheme built on the decomposition ring, which is a subring of cyclotomic
ring. In the scheme, each plaintext slot contains an integer in Zpl , rather than an element of
GF(pd) as in conventional homomorphic encryption schemes on cyclotomic rings. Our bench-
mark results indicate that the subring homomorphic encryption scheme is several times faster
than HElib for mod-pl integer plaintexts, due to its high parallelism of mod-pl integer slot
structure. We believe in that such plaintext structure composed of mod-pl integer slots will
be more natural, easy to handle, and significantly more efficient for many applications such
as outsourced data mining, than conventional GF(pd) slots.
Keywords: Fully homomorphic encryption, Ring-LWE, Cyclotomic ring, Decomposition
ring, Plaintext slots.
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1 Introduction

Background. Homomorphic encryption (HE) scheme enables us computation on encrypted
data. One can add or multiply (or more generally “evaluate”) given ciphertexts and generate
a new ciphertext that encrypts the sum or product (or “evaluation”) of underlying data of
the input ciphertexts. Such computation (called homomorphic addition or multiplication or
evaluation) can be done without using the secret key and one will never know anything about
the processed or generated data.

Since the breakthrough construction given by Gentry [5], many efforts are dedicated to make
such homomorphic encryption scheme more secure and more efficient. Especially, HE schemes
based on the Ring-LWE problem [12, 2, 4, 13] have obtained theoretically-sound proof of security
and well-established implementations such as HElib by Halevi and Shoup [8]. Nowadays many
researchers apply HE schemes to privacy-preserving tasks for mining of outsourced data such as
genomic data, medical data, financial data and so on [7, 10, 3, 9, 11].

Our perspective: GF(pd) versus Zpl slots. The HE schemes based on the Ring-LWE prob-
lem (Ring-HE schemes in short), depend on arithmetic of cyclotomic integers [12]. Cyclotomic
integers a are algebraic integers generated by some root of unity ζ and have the form like
a = a0 + a1ζ + · · ·+ an−1ζ

n−1 where ai are ordinary integers in Z.
Generally, plaintexts in the Ring-HE schemes are encoded by cyclotomic integers modulo

some small prime p. (Here, taking modulo p of cyclotomic integers a means taking modulo
p of each coefficient ai.) Then, what type of algebraic structure will a cyclotomic integer a
mod p have? Its structure is known to be a tuple of elements of Galois field GF(pd) of some
degree d. For small primes p, this degree d will be large. Thus, in the Ring-HE schemes, a
plaintext is a tuple of plaintext slots and each plaintext slot represents an element of Galois field
GF(pd) of large degree d [14]. Addition or multiplication of plaintexts actually means addition
or multiplication of each plaintext slots as elements of Galois field GF(pd).

Such plaintext structure is good for applications that use data represented by elements of
Galois field GF(pd), such as error correcting codes or AES ciphers. However, many applications
will use integers modulo pl (i.e., elements in Zpl) for some positive integer l (and especially

for p = 2), rather than elements of Galois field GF(pd). By using the Hensel lifting technique,
Ring-HE schemes can have plaintext slots of integers modulo pl (as some applications do in
fact) but with expense of efficiency. If we want to encrypt mod-pl integer plaintexts on slots
using Ring-HE schemes, actually we can use only 1-dimensional constant polynomials in each
d-dimensional slots for homomorphic evaluation. As stated earlier, the dimension d would not
be small 1.

In this paper, we propose a novel HE scheme in which plaintext structure is inherently a
tuple of integers modulo pl (for some positive integer l), that is, each plaintext slot contains an
integer in Zpl , rather than an element of GF(pd). We believe in that our plaintext structure
will be more natural, easy to handle, and significantly efficient for many applications such as
outsourced data mining.

1For instance, Lu, Kawasaki and Sakuma [11] uses the HElib with parameters n = m− 1 = 27892 and p ≈ 236

to perform homomorphic computation needed for their statistical analysis on encrypted data in 110-bit security,
that results in the plaintext space composed of l ≈ 70 tuples of the Galois field GF(pd) of the degree d = n/l ≈ 398.
They are enforced to use only constant polynomials in those Galois fields.
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Method. To realize the plaintext structure composed of slots of integers modulo pl, we use
decomposition ring RZ with respect to the prime p, instead of cyclotomic ring R.

Let ζ be a primitive m-th root of unity. The m-th cyclotomic ring R = {a0 + a1ζ + · · · +
an−1ζ

n−1 | ai ∈ Z} is a ring of all cyclotomic integers generated by ζ, where n = ϕ(m) is the
value of Euler function at m. Plaintext space of Ring-HE schemes will be the space of mod-p
cyclotomic integers, i.e., Rp = R/pR for some small prime p. It is known that in the cyclotomic
ring R, the prime number p is not prime any more (in general) and it factors into a product of
g prime ideals Pi (with some divisor g of n):

pR = P0P1 · · ·Pg−1.

The residual fields R/Pi of each factor Pi are nothing but the space of plaintext slots of Ring-HE
schemes, which are isomorphic to GF(pd) with d = n/g. Thus, the plaintext space is

Rp ≃ R/P0 ⊕ · · · ⊕R/Pg−1 ≃ GF(pd)⊕ · · · ⊕GF(pd).

As stated before, we can use only 1-dimensional subspace GF(p) = Zp in each d-dimensional
slot GF(pd) for homomorphic evaluation as mod-p integers.

The decomposition ring RZ with respect to prime p is the minimum subring of R in which
the prime p has the same form of prime ideal factorization as in R , that is,

pRZ = p0p1 · · · pg−1 (1)

with the same number of g. By the minimality of RZ , the residual fields RZ/pi of each factor
pi must be one-dimensional, that is, isomorphic to Zp. So the plaintext space on RZ will be

(RZ)p ≃ RZ/p0 ⊕ · · · ⊕RZ/pg−1 ≃ Zp ⊕ · · · ⊕ Zp.

Applying the Hensel lifting l times, we arrive at

(RZ)q ≃ Zq ⊕ · · · ⊕ Zq

for q = pl. Thus, the decomposition ring RZ realizes plaintext slots of integers modulo q = pl, as
desired. Note that now we can use all of the dimensions of RZ as its plaintext slots for mod-pl

integer plaintexts. This high parallelism of slot structure will bring us significantly more efficient
SIMD operations for mod-pl integer plaintexts.

Two bases. The cyclotomic ring R has attractive features that enable efficient implementation
of addition/multiplication of and noise handling on their elements. Can we do the similar thing
even if we use the decomposition ring RZ instead of cyclotomic ring R?

The cyclotomic ring R’s nice properties are consolidated to the existence of two types of its
bases [13]:

• The power(ful) basis: Composed of short and nearly orthogonal vectors to each other.
Used when rounding rational cyclotomic numbers to their nearest cyclotomic integers.

• The CRT basis: Related to the FFT transformation and multiplication. Vectors of coeffi-
cients of given two cyclotomic integers w.r.t. the CRT basis can be multiplied component-
wise, resulting a new vector corresponding to the multiplied cyclotomic integer.
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We investigate structure of the decomposition ring RZ , following the way in cyclotomic cases
given by Lyubashevsky, Peikert, and Regev [13]. Then, we will give two types of bases of RZ ,
called η-basis and ξ-basis in this paper, which correspond to the power(ful) and CRT bases in
cyclotomic cases, respectively. The trace map from R to RZ enables us to observe the structure
of RZ as images of the cyclotomic ring R, along with some particular phenomenon emerging
from the flatness of the decomposition ring (the degree d = 1). We also study noise growth
occurred by algebraic manipulations (especially, by multiplication) of elements in RZ , following
[13].

Construction. Based on the above investigation, we construct our subring homomorphic en-
cryption scheme that is an HE scheme over the decomposition ring RZ , or a realization of the
FV scheme [4] over RZ . The construction is described concretely using the η-basis and ξ-basis
above. We show several bounds on the noise growth occurred among homomorphic computa-
tions on its ciphertexts and prove that our HE scheme is fully homomorphic using ciphertext
modulus of the magnitude q = O(λlog λ) with security parameter λ, as the FV scheme is so.

For security we will need hardness of a variant of the decisional Ring-LWE problem over the
decomposition ring. Recall the search version of Ring-LWE problem is already proved to have
a quantum polynomial time reduction from the approximate shortest vector problem of ideal
lattices in any number field by Lyubashevsky, Peikert, and Regev [12]. They proved equivalence
between the search and decisional versions of the Ring-LWE problems only for cyclotomic rings.
However, it is not difficult to see that the equivalence holds also over the decomposition rings,
since they are subrings of cyclotomic rings and inherit good properties from them.

Implementation and benchmark. We implemented our subring homomorphic encryption
scheme using the C++ language and performed several experiments with different parameters.
Our benchmark results show that the η-basis and ξ-basis can substitute well for the power(ful)
and CRT bases of cyclotomic rings, and indicate that our subring homomorphic encryption
scheme is several times faster than HElib for mod-pl integer plaintexts, due to its high parallelism
of mod-pl slot structure.

Organization. In Section 2 we prepare notions and tools needed for our work, especially about
cyclotomic rings. Section 3 investigates structure and properties of the decomposition ring, and
gives its η-basis and ξ-basis as well as quasi-linear time conversion between them. In Section
4 we state a variant of the Ring-LWE problem over the decomposition ring and construct our
subring homomorphic encryption scheme over the decomposition ring. Finally, Section 5 shows
our benchmark results, comparing efficiency of our implementation of subring homomorphic
encryption scheme and HElib.

2 Preliminaries

Notation. Z denotes the ring of integers and Q denotes the field of rational numbers. R and C
denotes the field of real and complex numbers, respectively. For a positive integer m, Zm denotes
the ring of congruent integers modm, and Z∗

m denotes its multiplicative subgroup. For an integer
a (that is prime to m), ord×m(a) denotes the order of a ∈ Z∗

m. For a complex number α ∈ C,
α denotes its complex conjugate. Basically vectors are supposed to represent column vectors.
The symbol 1⃗ denotes a column vector with all entries equal to 1. In denotes the n× n identity
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matrix. The symbol Diag(α1, · · · , αn) means a diagonal matrix with diagonals α1, . . . , αn. For
vectors x⃗, y⃗ ∈ Rn (or ∈ Cn),

⟨
x⃗, y⃗

⟩
=

∑n
i=1 xiyi (or =

∑n
i=1 xiyi) denotes the inner product of x⃗

and y⃗.
∥∥x⃗∥∥

2
=

√⟨
x⃗, x⃗

⟩
denotes the l2-norm of vector x⃗ and

∥∥x⃗∥∥∞ = maxni=1{
∣∣xi∣∣} denotes the

infinity norm of x⃗. For vectors a⃗ and b⃗, a⃗⊙ b⃗ = (aibi)i denotes the component-wise product of
a⃗ and b⃗.

For a square matrix M over R, s1(M) denotes the largest singular value of M . For a matrix

A over C, A∗ = A
T
denotes the transpose of complex conjugate of A.

2.1 Homomorphic encryption scheme

A homomorphic encryption scheme is a quadruple HE=(Gen, Encrypt, Decrypt, Evaluate) of
probabilistic polynomial time algorithms. Gen generates a public key pk, a secret key sk and an
evaluation key evk: (pk, sk, evk) ← Gen(1λ). Encrypt encrypts a plaintext x ∈ X to a ciphertext
c under a public key pk: c ← Encrypt(pk, x). Decrypt decrypts a ciphertext c to a plaintext x
using the secret key sk: x← Decrypt(sk, c). Evaluate applies a function f : Xl → X (given as an
arithmetic circuit) to ciphertexts c1, . . . , cl and outputs a new ciphertext cf using the evaluation
key evk : cf ← Evaluate(evk, f, c1, . . . , cl).

A homomorphic encryption scheme HE is L-homomorphic for L = L(λ) if for any function
f : Xl → X given as an arithmetic circuit of depth L and for any l plaintext x1, . . . , xl ∈ X, it
holds that

Decryptsk(Evaluateevk(f, c1, . . . , cl)) = f(x1, . . . , xl)

for ci ← Encryptpk(xi) (i = 1, . . . , l) except with a negligible probability (i.e., Decryptsk is
ring homomorphic). A homomorphic encryption scheme is called fully homomorphic if it is
L-homomorphic for any polynomial function L = poly(λ).

2.2 Gaussian distributions and subgaussian random variables

For a positive real s > 0, the n-dimensional (spherical) Gaussian function ρs : Rn → (0, 1] is
defined as

ρs(x) = exp(−π
∥∥x∥∥

2
/s2).

It defines the continuous Gaussian distribution Ds with density s−nρs(x).
A random variable X over R is called subgaussian with parameter s (> 0) if

E[exp(2πtX)] ≤ exp(πs2t2) (∀t ∈ R).

A random variable X over Rn is called subgaussian with parameter s if
⟨
X,u

⟩
is subgaussian

with parameter s for any unit vector u ∈ Rn. A random variable X according to Gaussian
distribution Ds is subgaussian with parameter s. A bounded random variable X (as |X| ≤ B)
with E[X] = 0 is subgaussian with parameter B

√
2π.

A subgaussian random variable with parameter s satisfies the tail inequality:

Pr[|X| ≥ t] ≤ 2 exp
(
−π t2

s2

)
(∀t ≥ 0). (2)
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2.3 Lattices

For n linearly independent vectors B = {bj}nj=1 ⊂ Rn, Λ = L(B) =
{∑n

j=1 zjbj | zj ∈ Z (∀j)
}

is called an n-dimensional lattice.
For a lattice Λ ⊂ Rn, its dual lattice is defined by

Λ∨ =
{
y ∈ Rn |

⟨
x, y

⟩
∈ Z (∀x ∈ Λ)

}
.

The dual lattice is itself a lattice. The dual of dual lattice is the same as the original lattice:
(Λ∨)∨ = Λ.

For a countable subset A ⊂ Rn, the sum Ds(A)
def
=

∑
x∈ADs(x) is well-defined. The discrete

Gaussian distribution DΛ+c,s on a (coset of) lattice Λ is defined by restricting the continuous
Gaussian distribution Ds on the (coset of) lattice Λ:

DΛ+c,s(x)
def
=

Ds(x)

Ds(Λ + c)
(x ∈ Λ + c).

2.4 Number Fields

A complex number α ∈ C is called an algebraic number if it satisfies f(α) = 0 for some nonzero
polynomial f(X) ∈ Q[X] over Q. For an algebraic number α, the monic and irreducible poly-
nomial f(X) satisfying f(α) = 0 is uniquely determined and called the minimum polynomial of
α. An algebraic number α generates a number field K = Q(α) over Q, which is isomorphic to
Q[X]/(f(X)), via g(α) 7→ g(X). The dimension of K as a Q-vector space is called the degree of
K and denoted as [K : Q]. By the isomorphism, [K : Q] = deg f .

An algebraic number α is called an algebraic integer if its minimum polynomial belongs to
Z[X]. All algebraic integers belonging to a number field K = Q(α) constitutes a ring R, called
an integer ring of K.

A number field K = Q(α) has n (= [K : Q]) isomorphisms ρi (i = 1, . . . , n) into the complex
number field C. The trace map TrK|Q : K → Q is defined by TrK|Q(a) =

∑n
i=1 ρi(a) (∈ Q). If

all of the isomorphisms ρi induce automorphisms of K (i.e., ρi(K) = K for any i), the field K is

called a Galois extension of Q and the set of isomorphisms Gal(K|Q)
def
= {ρ1, . . . , ρn} constitutes

a group, called the Galois group of K over Q. By the Galois theory, all subfields L of K and all
subgroups H of G = Gal(K|Q) corresponds to each other one-to-one:

L 7→ H = GL = {ρ ∈ G | ρ(a) = a for any a ∈ L}
: the stabilizer group of L

H 7→ L = KH = {a ∈ K | ρ(a) = a for any ρ ∈ H}
: the fixed field by H.

Here, K is also a Galois extension of L with Galois group Gal(K|L) = H (since any isomorphism
(of K into C) that fixes L sends K to K). Especially, [K : L] = |H|. The trace map of K over
L is defined by TrK|L(a) =

∑
ρ∈H ρ(a) (∈ L) for a ∈ K.

2.5 Cyclotomic Fields and Rings

Letm be a positive integer. A primitivem-th root of unity ζ = exp(2π
√
−1/m) has the minimum

polynomial Φm(X) ∈ Z[X] of degree n = ϕ(m) that belongs to Z[X], called the cyclotomic
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polynomial. Especially, ζ is an algebraic integer. A number field K = Q(ζ) generated by ζ is
called the m-th cyclotomic field and its elements are called cyclotomic numbers. The integer ring
R of the cyclotomic field K = Q(ζ) is known to be R = Z[ζ] = Z[X]/Φm(X). In particular, as a
Z-module, R has a basis (called power basis) {1, ζ, . . . , ζn−1}, i.e., R = Z ·1+Z ·ζ+ · · ·+Z ·ζn−1.
The integer ring R is called the m-th cyclotomic ring and its elements are called cyclotomic
integers. For a positive integer q, Rq = R/qR = Zq[X]/Φm(X) is a ring of cyclotomic integers
mod q.

The cyclotomic field K = Q(ζ) is a Galois extension over Q since it has n = [K : Q]
automorphisms ρi defined by ρi(ζ) = ζi for i ∈ Z∗

m. Its Galois groupG = Gal(K|Q) is isomorphic
to Z∗

m by corresponding ρi to i. Note that ρi(b) = ρi(b), since a = ρ−1(a).
The trace of ζ for the prime index m is simple:

Lemma 1 If the index m is prime, we have

TrK|Q(ζ
i) =

{
m− 1 (i ≡ 0 (mod m))
−1 (i ̸≡ 0 (mod m)).

2.5.1 Structure of Rp

Let p be a prime that does not divide m. Although the cyclotomic polynomial Φm(X) is
irreducible over Z, by taking mod p, it will be factored into a product of several polynomials
Fi(X)’s:

Φm(X) ≡ F0(X) · · ·Fg−1(X) (mod p), (3)

where all of Fi(X) are irreducible mod p, and have the same degree d = ord×m(p) which is a
divisor of n. The number of factors is equal to g = n/d.

It is known that there are g prime ideals P0, . . . ,Pg−1 of R lying over p :

Pi ∩ Z = pZ (i = 0, . . . , g − 1)

and p will decompose into a product of those prime ideals in R:

pR = P0 · · ·Pg−1. (4)

This decomposition of the prime p reflects the factorization of Φm(X) mod p (Eq (3)). In fact,
each prime factorPi is generated by p and Fi(ζ) as ideals of R, Pi = (p, Fi(ζ)) for i = 0, . . . , g−1.
The corresponding residual fields are given by

R/Pi ≃ Zp[X]/Fi(X) ≃ GF(pd)

for i = 0, . . . , g − 1. Thus, we have

Rp ≃ R/P0 ⊕ · · · ⊕R/Pg−1 ≃ GF(pd)⊕ · · · ⊕GF(pd).

In the Ring-HE schemes such as [1, 2, 4], plaintexts are encoded by cyclotomic integers
x ∈ Rp modulo some small prime p (∤ m). By the factorization of Rp above, g plaintexts
x0, . . . , xg−1 belonging to GF(pd) are encoded into a single cyclotomic integer x ∈ Rp. The place
of each plaintext xi ∈ GF(pd) is called a plaintext slot. Thus, in the Ring-HE schemes, one can
encrypt g plaintexts into a single ciphertext by setting them on corresponding plaintext slots
and can evaluate or decrypt the g encrypted plaintexts at the same time using arithmetic of
cyclotomic integers [14]. Gentry, Halevi, and Smart [6] homomorphically evaluates AES circuit
on HE-encrypted AES-ciphertexts in the SIMD manner, using such plaintext slot structure for
p = 2, which fits to the underlying GF(2d)-arithmetic of the AES cipher.
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2.5.2 Geometry of numbers

Using the n automorphisms ρi (i ∈ Z∗
m), the cyclotomic fieldK is embedded into an n-dimensional

complex vector space CZ∗
m , called the canonical embedding σ : K → H (⊂ CZ∗

m):

σ(a) = (ρi(a))i∈Z∗
m
.

Its image σ(K) is contained in the space H defined as

H
def
= {x ∈ CZ∗

m : xi = xm−i (∀i ∈ Z∗
m)}.

Since H = BRn with the unitary matrix B = 1√
2

(
I
√
−1J

J −
√
−1I

)
, the space H is isomorphic to

Rn as an inner product R-space (where J is the reversal matrix of the identity matrix I).
By the canonical embedding σ, we can regard R (or (fractional) ideals of R) as lattices in

the n-dimensional real vector space H, called ideal lattices. Inner products or norms of elements
a ∈ K are defined through the embedding σ:⟨

a, b
⟩ def
=

⟨
σ(a), σ(b)

⟩
= TrK|Q(ab)∥∥a∥∥

2

def
=

∥∥σ(a)∥∥
2
,
∥∥a∥∥∞ def

=
∥∥σ(a)∥∥∞.

3 Decomposition Rings and Their Properties

To realize plaintext structure composed of slots of mod-pl integers for some small prime p, we
use decomposition rings RZ w.r.t. p instead of cyclotomic rings R.

3.1 Decomposition Field

Let G = Gal(K|Q) be the Galois group of the m-th cyclotomic field K = Q(ζ) over Q. Let p
be a prime that does not divide m. Recall such p has the prime ideal decomposition of Eq (4).
The decomposition group GZ of K w.r.t. p is the subgroup of G defined as

GZ
def
= {ρ ∈ G | Pρ

i = Pi (i = 0, . . . , g − 1)}.

That is, GZ is the subgroup of automorphisms ρ ofK that stabilize each prime idealPi lying over
p. Recall the Galois group G = Gal(K|Q) is isomorphic to Z∗

m via ρ−1. Since p does not divide
m, p ∈ Z∗

m. It is known that the decomposition group GZ is generated by the automorphism ρp
corresponding to the prime p, called the Frobenius map w.r.t. p:

GZ = ⟨ρp⟩ ≃ ⟨p⟩ ⊆ Z∗
m.

The order of GZ is equal to d = ord×m(p). The fixed field Z = KGZ by GZ is called the
decomposition field of K (w.r.t. p). The decomposition field Z can be characterized as the
smallest subfield Z of K such that Pi ∩ Z does not split in K, so that the prime p factorizes
into prime ideals in Z in much the same way as in K. By the Galois theory, GZ = Gal(K|Z).
For degrees, we have

[K : Z] = |GZ | = d, [Z : Q] = n/d = g.

The decomposition field Z is itself the Galois extension of Q and its Galois group Gal(Z|Q) =
G/GZ is given by

Gal(Z|Q) ≃ Z∗
m/⟨p⟩. (5)
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3.2 Decomposition Ring

The integer ring RZ = R ∩ Z of the decomposition field Z is called the decomposition ring.
Primes ideals over p in the decomposition ring RZ are given by pi = Pi ∩Z for i = 0, . . . , g− 1,
and the prime p factors into the product of those prime ideals in much the same way as in K:

pRZ = p0 · · · pg−1. (6)

This leads to the decomposition of (RZ)p:

(RZ)p ≃ RZ/p0 ⊕ · · · ⊕RZ/pg−1. (7)

For each prime ideal Pi (of R) lying over pi, the Frobenius map ρp acts as the p-th power
automorphism powp(x) = xp on R/Pi:

R −−−−→ R/Pi

ρp

y powp

y
R −−−−→ R/Pi

Then, by definition of RZ = R⟨ρp⟩, any element in RZ/pi must be fixed by powp, which means:

RZ/pi = (R/Pi)
⟨powp⟩ = Zp.

Thus, we see that all slots of (RZ)p must be one-dimensional:

(RZ)p ≃ Zp ⊕ · · · ⊕ Zp.

By applying the Hensel lifting (w.r.t. p) l times to the situation, we get

qRZ = q0 · · · qg−1 (8)

(RZ)q ≃ Zq ⊕ · · · ⊕ Zq (9)

for q = pl with any positive integer l. This structure of the decomposition ring (RZ)q brings
us the plaintext structure of our subring homomorphic encryption scheme, being composed of g
mod-q integer slots.

3.3 Bases of the decomposition ring RZ

To construct homomorphic encryption schemes using some ring R, we will need two types of
bases of the ring R over Z, one for decoding elements in R ⊗ R into its nearest element in R,
and another one that enables FFT-like fast computations among elements in R. In addition, we
also need some quasi-linear time transformations among vector representations with respect to
the two types of bases. Here, assuming the index m of cyclotomic ring R is prime, we construct
such two types of bases for the decomposition ring RZ , following the cyclotomic ring case given
by Lyubashevsky, Peikert and Regev [13].
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3.3.1 The η-basis

Let m be a prime and K = Q(ζ) be the m-th cyclotomic field. For a prime p ( ̸= m), let Z be
the decomposition field of K with respect to p.

Fix any set of representatives {t0, . . . , tg−1} of Z∗
m/⟨p⟩ ≃ Gal(Z|Q). For i = 0, . . . , g − 1,

define
ηi

def
= TrK|Z(ζ

ti) =
∑
a∈⟨p⟩

ζtia (∈ RZ).

Lemma 2 For i = 0, . . . , g − 1, we have

TrZ|Q(ηi) =

g−1∑
i=0

ηi = −1, TrZ|Q(ηi) =

g−1∑
i=0

ηi = −1.

Proof TrZ|Q(ηi) = TrZ|Q(TrK|Z(ζ
ti)) = TrK|Q(ζ

ti). So, by Lemma 1, TrZ|Q(ηi) = −1 for any
i. Similarly, TrZ|Q(ηi) = TrZ|Q(TrK|Z(ζ

−ti)) = TrK|Q(ζ
−ti) = −1. 2

Lemma 3 For the prime index m, the set {η0, . . . , ηg−1} is a basis of the decomposition ring
RZ (w.r.t. p (̸= m)) over Z, i.e., RZ = Zη0 + · · ·+ Zηg−1.

Proof Since the index m is prime, the cyclotomic ring R has a basis B = {1, ζ, . . . , ζm−2} over
Z. Since ζ is a unit of R, B′ := ζB = {ζ, ζ2, . . . , ζm−1} is also a basis of R over Z. The fixing

group GZ = ⟨ρp⟩ of Z acts on B′ and decomposes it into g orbits ζti⟨p⟩ = {ζti , ζtip, . . . , ζtipd−1}
(i = 0, . . . , g − 1). An element z =

∑m−1
i=1 ziζ

i ∈ RZ that is stable under the action of GZ must
have constant integer coefficients over the each orbits ζti⟨p⟩. Hence, z is a Z-linear combination
of {η1, . . . , ηg} 2

Definition 1 We call the basis η⃗ := (η0, . . . , ηg−1) η-basis of RZ . For any a ∈ RZ , there exists
unique a⃗ ∈ Zg satisfying a = η⃗T a⃗. We call such a⃗ ∈ Zg η-vector of a ∈ RZ .

3.3.2 The ξ-basis

By the choice of ti’s, the Galois group Gal(Z|Q) of Z is given by

Gal(Z|Q) = {ρt0 , . . . , ρtg−1}.

Elements a ∈ Z in the decomposition field are regarded as g-dimensional R-vectors through the
canonical embedding σZ :

σZ : Z → HZ (⊂ CZ∗
m/⟨p⟩)

σZ(a) = (ρi(a))i∈Z∗
m/⟨p⟩

Here, the image σZ(Z) is contained in the g-dimensional R-subspace HZ defined by

HZ
def
= {x ∈ CZ∗

m/⟨p⟩ : xi = xm−i (∀i ∈ Z∗
m/⟨p⟩)}.

Define a g × g matrix ΩZ over RZ as

ΩZ =
(
ρti(ηj)

)
0≤i,j<g

(∈ Rg×g
Z ).

11



Note that each column of ΩZ is the canonical embedding σZ(ηj) of ηj . Since the index m is
prime, the Galois group Gal(Z|Q) is cyclic and we can take the representatives {t0, . . . , tg−1} so
that tj ≡ tj (mod ⟨p⟩) for j = 0, . . . , g − 1. Setting η = TrK|Z(ζ), for any i and j,

ρti(ηj) = ρti(ρtj (η)) = ρti·tj (η) = ρti+j (η) = ηi+j .

In particular, ΩZ is symmetric.

Lemma 4 The matrix ΩZ satisfies that

Ω∗
ZΩZ = (TrZ|Q(ηiηj))0≤i,j<g = mIg − d1⃗ · 1⃗T (∈ Zg×g).

Proof For 0 ≤ i, j < g,

ηiηj =
(∑
a∈⟨p⟩

ζ−ati
)(∑

b∈⟨p⟩

ζbtj
)
=

∑
a,b∈⟨p⟩

ζ−ati+btj =
∑
a∈⟨p⟩

∑
b∈⟨p⟩

ρa(ζ
−ti+ba−1tj )

=
∑
a∈⟨p⟩

∑
b∈⟨p⟩

ρa(ζ
−ti+btj ) =

∑
b∈⟨p⟩

TrK|Z(ζ
−ti+btj ).

Here, Suppose i ̸= j. Then, −ti + btj ̸≡ 0 (mod m) for any b ∈ ⟨p⟩. Hence, by Lemma 1,

TrZ|Q(ηiηj) =
∑
b∈⟨p⟩

TrK|Q(ζ
−ti+btj ) = |⟨p⟩| · (−1) = −d.

If i = j, since TrK|Q(ζ
−ti+bti) = m− 1 only if b = 1 and -1 otherwise by Lemma 1,

TrZ|Q(ηiηi) =
∑
b∈⟨p⟩

TrK|Q(ζ
−ti+bti) = m− 1 + (d− 1) · (−1) = m− d 2

Corollary 1 The set
{
m−1(η0 − d), · · · ,m−1(ηg−1 − d)

}
is the dual basis of conjugate η-basis

{η0, · · · , ηg−1}, i.e. for any 0 ≤ i, j < g,

TrZ|Q

(ηi − d

m
· ηj

)
= δij .

In particular, R∨
Z = Zη0−d

m + · · ·+ Zηg−1−d
m .

Proof For any i, by Lemma 2 and 4 we have

TrZ|Q

(ηi − d

m
· ηi

)
=

1

m
(m− d)− d

m
· (−1) = 1.

Similarly, for any i ̸= j we have

TrZ|Q

(ηi − d

m
· ηj

)
=
−d
m
− d

m
· (−1) = 0 2

Define a g × g matrix ΓZ over Z as

ΓZ =
(
ρti

(ηj − d

m

))
0≤i,j<g

(∈ Zg×g).

Corollary 1 means that Γ
T
ZΩZ = I. Since ΩZ is symmetric,

ΓZΩZ = ΩZΓZ = I. (10)
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Lemma 5 For any b⃗ = ΩZ a⃗, we have

a⃗ = ΓZ b⃗ =
1

m

(
ΩZ b⃗− d

(∑
j

bj
)
· 1⃗
)
.

Proof

a⃗ = ΓZ b⃗ =
(
ρti(

ηj − d

m
)
)
ij
b⃗ =

( 1

m

∑
j

ρti(ηj − d)bj

)
i

=
1

m

(∑
j

ρti(ηj)bj − d
∑
j

bj

)
i
=

1

m

(
ΩZ b⃗− d

(∑
j

bj
)
· 1⃗
)

2

Let r be a positive integer and q = pr. Let q = q0 be the first ideal that appears in the
factorization of qRZ (Eq (8)). Recall that RZ/q ≃ Zq.

Let

Ω
(q)
Z

def
= ΩZ mod q (∈ (RZ)

g×g
q ≃ Zg×g

q )

Since p ∤ m, ΓZ mod q is well-defined and by Eq (10), Ω
(q)
Z is invertible mod q.

Definition 2 Define ξ⃗ = (ξ0, . . . , ξg−1) ∈ (RZ)
g
q by

η⃗T ≡ ξ⃗TΩ
(q)
Z (mod q).

We call the basis ξ⃗ of (RZ)q over Zq ξ-basis of RZ (with respect to q). For any a ∈ (RZ)q, there

exists unique b⃗ ∈ Zg
q satisfying that a = ξ⃗T b⃗. We call such b⃗ ∈ Zg

q as ξ-vector of a ∈ (RZ)q.

Lemma 6 For any element a ∈ RZ it holds that

a ≡ η⃗T · a⃗ ⇔ a ≡ ξ⃗T · (Ω(q)
Z · a⃗) (mod q)

a = η⃗T · a⃗ ⇔ σZ(a) = ΩZ a⃗

a ≡ ξ⃗T · b⃗ (mod q) ⇔ σZ(a) ≡ b⃗ (mod q)

Proof The first claim is the definition of ξ⃗.

Since ΩZ =
(
σZ(ηj)

)
0≤j<g

, a = η⃗T · a⃗ if and only if σZ(a) = ΩZ a⃗.

Next,

a = ξ⃗T · b⃗ ⇔ a ≡ η⃗T (Ω
(q)
Z )−1 · b⃗ (mod q)

⇔ σZ(a) ≡ ΩZ(Ω
(q)
Z )−1 · b⃗ ≡ b⃗ (mod q) 2

The ξ-vector is convenient for multiplication.

Lemma 7 If a1 = ξ⃗T · b⃗1 and a2 = ξ⃗T · b⃗2, then a1a2 = ξ⃗T · (⃗b1 ⊙ b⃗2).

Proof σZ(a1a2) = σZ(a1)⊙ σZ(a2) = b⃗1 ⊙ b⃗2 2
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3.4 Conversion between η- and ξ-vectors

3.4.1 Resolution of unity in RZ mod q

By Hensel-lifting the factorization of Φm(X) mod p (Eq (3)) to modulus q = pr, we get factor-
ization of Φm(X) mod q:

Φm(X) ≡ F 0(X) · · ·F g−1(X) (mod q). (11)

Here, note that the number g of irreducible factors and the degree d of each factors remain
unchanged in the lifting. According to this factorization, the ideal qR of R is factored as

qR = Q0 · · ·Qg−1 (12)

with ideals Qi = (q, F i(ζ)) of R.
For each i = 0, . . . , g − 1, let

Gi(X) =
∏
j ̸=i

F j(X) (mod q)

Pi(X) = (Gi(X)−1 mod (q, F i(X))) ·Gi(X) (mod q).

It is verified that the set {τi = Pi(ζ)}g−1
i=0 constitutes a resolution of unity in R mod q, i.e.

τi ≡
{

1 (mod Qi) (i = 0, . . . , g − 1)
0 (mod Qj) (j ̸= i)

and it satisfies that ∑g−1
i=0 τi ≡ 1 (mod q)

τ2i ≡ τi (mod q) (i = 0, . . . , g − 1)
τiτj ≡ 0 (mod q) (j ̸= i).

By the Chinese remainder theorem, the resolution of unity {τi}g−1
i=0 is uniquely determined

mod qR. In the following we take coefficients of each τi from [−q/2, q/2) over the basis
B′ = {ζ, ζ2, . . . , ζm−1} of R.

Lemma 8 Take {τi}g−1
i=0 as above. Then τi ∈ RZ for any i, and {τi}g−1

i=0 is also a resolution of
unity in RZ mod q.

Proof The ideal qRZ factors in RZ as

qRZ = q0q1 · · · qg−1

where qi = Qi ∩RZ for any i.
Let {τ ′i}

g−1
i=0 be a resolution of unity in RZ mod q. Here, we take the coefficients of each τ ′i

from [−q/2, q/2) over the η-basis {η0, . . . , ηg−1} of RZ .
Then,

τ ′i ≡
{

1 (mod qi) (i = 0, . . . , g − 1)
0 (mod qj) (j ̸= i).

Since qi ⊂ Qi for any i, {τ ′i}
g−1
i=0 is also a resolution of unity in R mod q. Since the coefficients

of each τ ′i over the η-basis are in [−q/2, q/2), by definition of ηi =
∑

a∈⟨p⟩ ζ
tia, their coefficients

over the basis B′ are trivially also in [−q/2, q/2). Hence, by the uniqueness of resolution, it
must be that τ ′i = τi for all i 2
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Using the resolution of unity {τi}g−1
i=0 in RZ , we can compute ai ∈ Zq satisfying a ≡ ai

(mod qi) given a ∈ RZ , as follows:

a mod qi = aτi mod q = aiτi mod q

dividing by τi7→ ai.

An alternative method. Computation of mod-q factorization of Φm(X) (Eq (11)) is resource
consuming. Here is an alternative method. We start from the mod-p factorization of Φm(X)

(Eq (3)) also in this case. This gives us the resolution of unity {τ (1)i }
g−1
i=0 mod p. Then, we

lift up the mod-p resolution {τ (1)i }
g−1
i=0 to mod-q resolution {τ (r)i }

g−1
i=0 by repeating the following

procedure.
Suppose an element xl satisfies

xl ≡
{
−1 (mod pli)
0 (mod plj) (j ̸= i)

Then, as directly verified, xl+1 := (xl + 1)p − 1 satisfies that

xl+1 ≡

{
−1 (mod pl+1

i )

0 (mod pl+1
j ) (j ̸= i)

Starting from x1 = −τ (1)i , by repeating (r− 1) times the procedure xl+1 := (xl +1)p− 1, we

get the mod-q resolution of unity τ
(r)
i = −xr.

3.4.2 Computation of Ω
(q)
Z

Now we can compute the matrix

Ω
(q)
Z =

(
ηi+j mod q

)
0≤i,j<g

(∈ Zg×g
q )

by computing the entities ηi+j in ΩZ as cyclotomic integers and reducing them modulo q (= q0)

using the resolution of unity {τi}g−1
i=0 . Since the matrix Ω

(q)
Z has cyclic structure (the (i+ 1)-th

row is a left shift of the i-th row), it is sufficient to compute its first row. Here, we remark that

once we have computed the matrix Ω
(q)
Z , we can forget the original structure of cyclotomic ring

R, and all we need is doing various computations among η- and ξ-vectors (of elements in RZ)

with necessary conversion between them using the matrix Ω
(q)
Z .

3.4.3 Computation of b⃗ = Ω
(q)
Z · a⃗

To convert η-vector a⃗ of an element a = η⃗T · a⃗ ∈ RZ to its corresponding ξ-vector b⃗ (satisfying

a = ξ⃗T · b⃗), by Lemma 6, we need to compute a matrix-vector product b⃗ = Ω
(q)
Z · a⃗. By Lemma

5, the inverse conversion from ξ-vector b⃗ to its corresponding η-vector a⃗ = ΓZ · b⃗ also can be

computed using a similar matrix-vector product Ω
(q)
Z · b⃗. Here, Ω

(q)
Z

def
= ΩZ mod q.

By definition of Ω
(q)
Z , the j-th component bj of the product b⃗ = Ω

(q)
Z · a⃗ is bj =

∑g−1
i=0 aiηi+j

(where indexes are mod g and we omit modq). This means that b⃗ is the convolution product of
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vector η⃗ and the reversal vector (a0, ag−1, ag−2, · · · , a1) of a⃗, where η⃗ = (ηi)
g−1
i=0 is the first row

of Ω
(q)
Z .
Define two polynomials over Zq:

f(X) = η0 + η1X + · · ·+ ηg−1X
g−1

g(X) = a0 + ag−1X + · · ·+ a1X
g−1.

Since b⃗ is the convolution product of η⃗ and the reversal vector of a⃗, we have

f(X)g(X) = b0 + b1X + · · ·+ bg−1X
g−1 (mod Xg − 1).

The polynomial product f(X)g(X) (mod Xg − 1) can be computed in quasi-linear time Õ(g)
using the FFT multiplication.

Thus, we know that conversions between η-vectors a⃗ and ξ-vectors b⃗ can be done in quasi-
linear time Õ(g).

3.5 Norms on the decomposition ring

Norms of a ∈ Z are defined by∥∥a∥∥
2

def
=

∥∥σZ(a)∥∥2, ∥∥a∥∥∞ def
=

∥∥σZ(a)∥∥∞.

Lemma 9 For any a, b ∈ Z, we have∥∥ab∥∥∞ ≤ ∥∥a∥∥∞ · ∥∥b∥∥∞.

Proof
∥∥ab∥∥∞ =

∥∥σZ(ab)∥∥∞ =
∥∥σZ(a)⊙ σZ(b)

∥∥
∞ ≤

∥∥σZ(a)∥∥∞ · ∥∥σZ(b)∥∥∞ =
∥∥a∥∥∞ · ∥∥b∥∥∞. 2

In the following, a⃗ means the η-vector of given a = η⃗T · a⃗ ∈ RZ .

Lemma 10 (1) For any a ∈ Z,
∥∥a∥∥

2
≤
√
m
∥∥a⃗∥∥

2
.

(2) For any a⃗ ∈ Rg,
∥∥a⃗∥∥

2
≤

∥∥a∥∥
2
.

(3) If a⃗ ∈ Rg is far from being proportional to vector 1⃗ (far from constants in short), we have∥∥a⃗∥∥
2
≈ 1√

m

∥∥a∥∥
2
.

Proof (1) By Lemma 6, σZ(a) = ΩZ a⃗ and by Lemma 4

Ω∗
ZΩZ = mIg − d1⃗ · 1⃗T .

The right-hand side matrix has eigenvalues g−1 times ofm and 1 with corresponding eigenvectors
(1,−1, 0, · · · , 0), (1, 0,−1, 0, · · · , 0), . . ., (1, 0, · · · , 0,−1), (1, 1, · · · , 1). So, the symmetric matrix
Ω∗
ZΩZ can be diagonalized to Diag(m, · · · ,m, 1) by an orthogonal transformation, and we have

s1(ΩZ) =
√
m. This means

∥∥a∥∥
2
≤
√
m
∥∥a⃗∥∥

2
.

(2), (3) Conversely, a⃗ = (ΩZ)
−1σZ(a) = ΓZσZ(a). Similarly as above, the matrix Γ∗

ZΓZ can be
diagonalized to Diag(1/m, · · · , 1/m, 1) by the orthogonal transformation. Hence, s1(ΓZ) = 1
and

∥∥a⃗∥∥
2
≤

∥∥a∥∥
2
. Since almost all of the eigenvalues of Γ∗

ZΓZ are 1/m, except 1 for eigenvector

(1, 1, · · · , 1), if a⃗ is far from being proportional to the eigenvector (1, 1, · · · , 1),
∥∥a⃗∥∥

2
≈ 1√

m

∥∥a∥∥
2

2
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Lemma 11 (1) For any a ∈ Z,
∥∥a∥∥∞ ≤ √mg

∥∥a⃗∥∥∞.

(2) For any a⃗ ∈ Rg,
∥∥a⃗∥∥∞ ≤ √g

∥∥a∥∥∞.

(3) If a is far from constants, we have
∥∥a⃗∥∥∞ ⪅

√
g/m

∥∥a∥∥∞.

Proof (1) By Lemma 10-(1),
∥∥a∥∥∞ ≤ ∥∥a∥∥

2
≤
√
m
∥∥a⃗∥∥

2
≤ √mg

∥∥a⃗∥∥∞.

(2) By Lemma 10-(2),
∥∥a⃗∥∥∞ ≤ ∥∥a⃗∥∥

2
≤

∥∥a∥∥
2
≤ √g

∥∥a∥∥∞.

(3) By Lemma 10-(3),
∥∥a⃗∥∥∞ ≤ ∥∥a⃗∥∥

2
≈ 1√

m

∥∥a∥∥
2
≤

√
g/m

∥∥a∥∥∞. 2

Subgaussian elements We call a random variable a ∈ Z subgaussian with parameter s if
corresponding random variable σZ(a) on HZ is subgaussian with parameter s.

Lemma 12 (Claim 2.1, Claim 2.4 [13]) Let ai be independent subgaussian random variables
over Z with parameter si (i = 1, 2). Then,

1. The sum a1 + a2 is subgaussian with parameter
√
s21 + s22.

2. For any a2 fixed, the product a1 · a2 is subgaussian with parameter
∥∥a2∥∥∞s1.

Lemma 13 Let a⃗ be a subgaussian random variable over Rg of parameter s. Then, a = η⃗T · a⃗
is subgaussian over Z of parameter

√
ms.

Proof By Lemma 6 σZ(a) = ΩZ a⃗. As seen in the proof of Lemma 10, s1(ΩZ) =
√
m. Hence,

σZ(a) is subgaussian of parameter
√
ms 2

4 Subring Homomorphic Encryption

In this section, we construct subring homomorphic encryption scheme that is an HE scheme
built over the decomposition ring RZ .

4.1 The Ring-LWE Problem on the decomposition ring

For security of our subring homomorphic encryption scheme, we will need hardness of a variant
of the decisional Ring-LWE problem over the decomposition ring.

Let m be a prime. Let RZ be the decomposition ring of the m-th cyclotomic ring R with
respect to some prime p (̸= m). Let q be a positive integer. For an element s ∈ RZ and a
distribution χ over RZ , define a distribution As,χ on (RZ)q × (RZ)q as follows: First choose an
element a uniformly from (RZ)q and sample an element e according to the distribution χ. Then
return the pair (a, b = as+ e mod q).

Definition 3 (The decisional Ring-LWE problem on the decomposition ring) Let q, χ
be as above. The R-DLWEq,χ problem on the decomposition ring RZ asks to distinguish samples

from As,χ with s
u← Zq and (the same number of) samples uniformly chosen from (RZ)q×(RZ)q.
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Recall the search version of Ring-LWE problem is already proved to have a quantum poly-
nomial time reduction from the approximate shortest vector problem of ideal lattices in any
number field by Lyubashevsky, Peikert, and Regev [12]. They proved equivalence between the
search and the decisional versions of the Ring-LWE problems only for cyclotomic rings. The
key of their proof of equivalence is the existence of prime modulus q for Ring-LWE problem
which totally decomposes into n prime ideal factors: qR = Q0 · · ·Qn−1. (Their residual fields
R/Qi have polynomial order q and we can guess the solution of the Ring-LWE problem modulo
ideal Qi, and then we can verify validity of the guess using the assumed oracle for the decisional
Ring-LWE problem.) Since the decomposition ring RZ is a subring of the cyclotomic ring R, the
modulus q totally decomposes into g prime ideal factors also in RZ : qRZ = q0 · · · qg−1. Using
this decomposition, the proof of equivalence by [12] holds also over the decomposition rings RZ ,
essentially as it is.

4.2 Parameters

Let m be a prime index of cyclotomic ring R. Choose a (small) prime p, distinct from m. Let
d = ord×m(p) be the multiplicative order of p mod m, and g = (m − 1)/d be the degree of the
decomposition ring RZ of R with respect to p. Take two powers of p, q = pr and t = pl (r > l)
as ciphertext and plaintext modulus, respectively. Set the quotient as ∆ = q/t = pr−l. Choose
two distributions χ⃗key and χ⃗err over Zg.

4.3 Encoding methods and basic operations of elements in RZ

Basically, we use η-vectors a⃗ ∈ Zg to encode elements a = η⃗T · a⃗ in RZ . To multiply two elements
encoded by η-vectors a⃗ and b⃗ modulo q = pr, first we convert those η-vectors to corresponding
ξ-vectors modulo q. We can multiply resulting ξ-vectors component-wise, and then re-convert
the result into its corresponding η-vector modulo q. More precisely,

mult eta (⃗a, b⃗, q) :

α⃗ = eta to xi(⃗a, q), β⃗ = eta to xi(⃗b, q)

For i = 0, . . . , g − 1, γi = αiβi mod q

return c⃗ = xi to eta(γ⃗, q)

The functions eta to xi and xi to eta use the matrix Ω
(q)
Z that we have computed in advance

(Section 3.4.3 and Lemma 5).

eta to xi (⃗a, q) :

a(X) = a0 + ag−1X + · · ·+ a1X
g−1

c(X) = η0 + η1X + · · ·+ ηg−1X
g−1 where (ηi)

g−1
i=0 is the first row of Ω

(q)
Z

b(X) = a(X)c(X) mod (q,Xg − 1)

return b⃗ = (b0, . . . , bg−1)

xi to eta (⃗b, q) :

b(X) = b0 + bg−1X + · · ·+ b1X
g−1

c(X) = η0 + η1X + · · ·+ ηg−1X
g−1 where (ηi)

g−1
i=0 is the first row of Ω

(q)
Z
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a(X) = b(X)c(X) mod (q,Xg − 1)

t = b0 + · · ·+ bg−1 mod q

return a⃗ = (m−1(ai − dt) mod q)g−1
i=0 .

Using the matrix Ω
(q)
Z that is defined mod q, the outputs will have precision q, that is, b⃗ ≡ ΩZ a⃗

(mod q). For correctness of xi to eta procedure, see Lemma 5.
We regard plaintext vectors m⃗ ∈ Zg

t as ξ-vectors of corresponding elements mξ = ξ⃗T m⃗ ∈
(RZ)t. By Lemma 7 their products mξm

′
ξ ∈ (RZ)t encodes the plaintext vector m⃗⊙ m⃗′ ∈ Zg

t .

Helper functions. Fix an integer base w and let lw =
⌊
logw(q)

⌋
+ 1. Any vector a⃗ ∈ Zg

q can

be written as a⃗ =
∑lw−1

k=0 wka⃗k with vectors a⃗k ∈ Zg
w of small entries. Let

WD(⃗a)
def
=

(
a⃗k
)lw−1

k=0

(
∈ (Zg

w)
lw
)
.

4.4 Scheme Description

Our subring homomorphic encryption scheme is a realization of the FV scheme by Fan and
Vercauteren [4], using the decomposition ring RZ . Here we describe its symmetric key version.
The public key version is easily derived like in the FV and other HE schemes.

SecretKeyGen () :

s⃗← χkey, return sk = s⃗ ∈ Zg

Encrypt (sk = s⃗ ∈ Zg, m⃗ ∈ Zg
t ) :

a⃗
u← Zg

q , e⃗← χerr, n⃗ = xi to eta(m⃗, t)

b⃗ = mult eta(⃗a, s⃗, q) + ∆n⃗+ e⃗ mod q

return ct = (⃗a, b⃗)

Decrypt (sk = s⃗ ∈ Zg, ct = (⃗a, b⃗)):

n⃗ =
⌊

1
∆ (⃗b−mult eta(⃗a, s⃗, q) mod q)

⌉
m⃗ = eta to xi(n⃗, t)

return m⃗

Add (ct1 = (⃗a1, b⃗1), ct2 = (⃗a2, b⃗2)):

a⃗ = a⃗1 + a⃗2 mod q, b⃗ = b⃗1 + b⃗2 mod q

return ct = (⃗a, b⃗).

EvaluateKeyGen (s⃗) :

γ⃗ = mult eta(s⃗, s⃗, q)

For k = 0 to lw − 1:

α⃗k
u← Zg

q , x⃗k ← χerr
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β⃗k = mult eta(α⃗k, s⃗, q) + wkγ⃗ + x⃗k mod q

return ev =
(
(α⃗k, β⃗k)

)lw−1

k=0

Mult (ct1 = (⃗a1, b⃗1), ct2 = (⃗a2, b⃗2), ev =
(
(α⃗k, β⃗k)

)
k
) :

e⃗ =
⌊

1
∆ ·mult eta(⃗b1, b⃗2, q

2/t)
⌉

c⃗ =
⌊

1
∆ ·

(
mult eta(⃗a1, b⃗2, q

2/t) +mult eta(⃗a2, b⃗1, q
2/t)

)⌉
d⃗ =

⌊
1
∆ ·mult eta(⃗a1, a⃗2, q

2/t)
⌉

(d⃗0, · · · , d⃗lw−1) = WD(d⃗)

a⃗ = c⃗+
∑lw−1

k=0 mult eta(d⃗k, α⃗k, q) mod q

b⃗ = e⃗+
∑lw−1

k=0 mult eta(d⃗k, β⃗k, q) mod q

return ct = (⃗a, b⃗)

It is straightforward to see:

Theorem 1 The subring homomorphic encryption scheme is indistinguishably secure under the
chosen plaintext attack if the R-DLWEq,χkey ,χerr problem on the decomposition ring RZ is hard.

4.5 Correctness

Let χ⃗key and χ⃗err be discrete Gaussian distributions over Zg of parameters skey and serr, respec-

tively. In the following, vectors a⃗, b⃗, · · · mean corresponding η-vectors of elements a = η⃗T · a⃗,
b = η⃗T · b⃗, · · · in the decomposition ring RZ , respectively.

Definition 4 The inherent noise term e of ciphertext ct = (⃗a, b⃗) designed for m⃗ ∈ Zg
t is an

element e ∈ RZ with the smallest norm
∥∥e∥∥∞ satisfying that

b− as = ∆mξ + e+ qα

for some α ∈ RZ , secret key sk = s⃗, and mξ = ξ⃗T · m⃗ ∈ RZ .

By definition, a ciphertext ct = (⃗a, b⃗) ← Encrypt(s⃗, m⃗) has e = η⃗T · e⃗ as an inherent noise
term designed for m⃗ with e⃗ ← χ⃗err. By Lemma 13, e is subgaussian of parameter

√
mserr and

by the tail inequality (Eq. 2),
∥∥e∥∥∞ ≤ ω(

√
log λ)

√
mserr with an overwhelming probability.

Define Bcorrect
def
=

√
m

2
√
g∆.

Lemma 14 (Noise bound for correctness) Let e be the inherent noise term of ciphertext

ct = (⃗a, b⃗) designed for m⃗ ∈ Zg
t . If

∥∥e∥∥∞ < Bcorrect (i.e. if
√
g√
m

∥∥e∥∥∞ < 1
2∆), then decryption

works correctly, i.e. Decrypt(s⃗, ct) = m⃗.

Proof By definition of the inherent noise term, a⃗ and b⃗ satisfy that

1

∆
(b− as− αq) = mξ +

e

∆
. (13)
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By Lemma 11-(3), ∥∥ e⃗

∆

∥∥
∞ <

√
g/m ·

∥∥ e

∆

∥∥
∞ ≤

√
g/m ·

√
m

2
√
g
=

1

2
.

Hence, the η-vector of the left-hand side of Eq.(13) rounds to n⃗ satisfying that η⃗T ·n⃗ = mξ = ξ⃗T ·m⃗
2

Lemma 15 (Noise bound for Add) Let e1 and e2 be inherent noise terms of ciphertexts ct1 =
(⃗a1, b⃗1) and ct2 = (⃗a2, b⃗2) designed for m⃗1 and m⃗2 ∈ Zg

t , respectively. Let e be the inherent noise
term of ct = Add(ct1, ct2) designed for m⃗1 + m⃗2 ∈ Zg

t . Then,∥∥e∥∥∞ ≤ ∥∥e1∥∥∞ +
∥∥e2∥∥∞.

Lemma 16 (Noise bound for linearization) Let ev =
(
(α⃗k, β⃗k)

)lw−1

k=0
← EvaluateKeyGen(s⃗)

be an evaluation key for a secret key sk = s⃗. Suppose that a triple of elements e, c, d in RZ

satisfies
e− cs+ ds2 ≡ ∆mξ + x (mod q)

with mξ = ξ⃗T ·m⃗ and some x ∈ RZ bounded as
∥∥x∥∥∞ ≤ B. Let (d⃗0, · · · , d⃗lw−1) = WD(d⃗). Then,

for a = c+
∑lw−1

k=0 dkαk and b = e+
∑lw−1

k=0 dkβk, the pair ct = (⃗a, b⃗) constitutes a ciphertext that
has an inherent noise term y designed for m⃗ bounded as∥∥y∥∥∞ ≤ B + ω(

√
log λ)

√
lwmgwserr.

Proof By definition of EvaluateKeyGen, the k-th pair (α⃗k, β⃗k) of ev has an inherent noise term
xk designed for wks2, which is subgaussian of parameter

√
mserr. Then,

b− as ≡
(
e+

lw−1∑
k=0

dkβk

)
−

(
c+

lw−1∑
k=0

dkαk

)
s ≡ e− cs+

lw−1∑
k=0

dk(βk − αks)

≡ e− cs+

lw−1∑
k=0

dk(w
ks2 + xk) ≡ e− cs+ ds2 +

lw−1∑
k=0

dkxk

≡ ∆mξ + x+

lw−1∑
k=0

dkxk (mod q).

We estimate
∥∥y∥∥∞ for y := x +

∑lw−1
k=0 dkxk. First by Lemma 11 (1),

∥∥dk∥∥∞ ≤ √mg
∥∥d⃗k∥∥∞ ≤√

mgw. Then, by Lemma 12, dkxk are independently subgaussian of parameter
∥∥dk∥∥∞serr ≤√

mgwserr, and
∑lw−1

k=0 dkxk is subgaussian of parameter
√
lw
√
mgwserr. Hence,

∥∥y∥∥∞ ≤ ∥∥x∥∥∞ +
∥∥lw−1∑

k=0

dkxk
∥∥ ≤ B + ω(

√
log λ)

√
lw
√
mgwserr. 2

Lemma 17 (Noise bound for Mult) Let e1 and e2 be inherent noise terms of ciphertexts
ct1 = (⃗a1, b⃗1) and ct2 = (⃗a2, b⃗2) designed for m⃗1 and m⃗2 ∈ Zg

t , respectively. Suppose
∥∥ei∥∥∞ ≤

B (< Bcorrect) for i = 1, 2. Let f be the inherent noise term of ct = Mult(ct1, ct2) designed for
m⃗1 ⊙ m⃗2 ∈ Zg

t . Then,∥∥f∥∥∞ ≤ tω(
√
log λ)

√
mgskey ·B + ω(

√
log λ)

√
lwmgwserr.
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Proof We prepare two claims.

Claim 1 Let e0 =
1
∆b1b2, c0 =

1
∆(a1b2 + a2b1), d0 =

1
∆a1a2. Then,

e0 − c0s+ d0s
2 ≡ ∆mξ + x (mod q)

with mξ = (m1)ξ(m2)ξ and some x ∈ RZ bounded as∥∥x∥∥∞ ≤ tω(
√

log λ)
√
mgskey ·B.

Proof By assumption,

bi − ais = ∆(mi)ξ + xi + αiq (i = 1, 2) (14)

with
∥∥xi∥∥∞ < B. By Lemma 12 the product ais is subgaussian of parameter

∥∥ai∥∥∞skey ≤√
mg

∥∥a⃗i∥∥∞skey ≤
√
mgqskey. So, αi =

⌊
(bi − ais)/q

⌋
is bounded as∥∥αi

∥∥
∞ ≤ ω(

√
log λ)

√
mgskey.

By taking product of the two equations (14), we get

e0 − c0s+ d0s
2 =

1

∆

(
b1b2 − (a1b2 + a2b1)s+ a1a2s

2
)

= ∆(m1)ξ(m2)ξ + x+ qv

with some v ∈ RZ , where

x = (m1)ξx2 + (m2)ξx1 +
1

∆
x1x2 + t(x1α2 + x2α1).

By Lemma 9, 11,∥∥(mi)ξxj
∥∥
∞ ≤

∥∥(mi)ξ
∥∥
∞
∥∥xj∥∥∞ =

√
mg

∥∥n⃗i

∥∥
∞
∥∥xj∥∥∞ ≤ √mgtB∥∥ 1

∆
x1x2

∥∥
∞ ≤

1

∆

∥∥x1∥∥∞∥∥x2∥∥∞ ≤ 1

∆
Bcorrect ·

∥∥x2∥∥∞ ≤ √m2
√
g
·B∥∥txiαj

∥∥
∞ ≤ t

∥∥xi∥∥∞∥∥αj

∥∥
∞ ≤ tBω(

√
log λ)

√
mgskey.

Hence, x is bounded as∥∥x∥∥∞ ≤ 2
√
mgtB +

√
m

2
√
g
·B + 2

√
mgtBω(

√
log λ)

√
mgskey

= (2
√
mgt+

√
m

2
√
g
+ 2tω(

√
log λ)

√
mgskey)B

= tω(
√

log λ)
√
mgskey ·B 2

Claim 2 Let e⃗ =
⌊
e⃗0

⌉
, c⃗ =

⌊
c⃗0

⌉
, d⃗ =

⌊
d⃗0

⌉
. Then,

e− cs+ ds2 ≡ e0 − c0s+ d0s
2 + y (mod q)

with some y ∈ RZ bounded as ∥∥y∥∥∞ ≤ ω(log λ)
√
mgs2key.

22



Proof Let y = (e− e0)− (c− c0)s+ (d− d0)s
2 (mod q).

Using Lemma 11 (1),
∥∥e− e0

∥∥
∞ ≤

√
mg

∥∥e⃗− e⃗0
∥∥
∞ ≤

√
mg/2.

Similarly,
∥∥c− c0

∥∥
∞ ≤

√
mg/2 and by Lemma 9,

∥∥(c− c0)s
∥∥
∞ ≤

∥∥c− c0
∥∥
∞
∥∥s∥∥∞ ≤ √mg/2 ·

ω(
√
log λ)skey = ω(

√
log λ)

√
mgskey. Similarly,

∥∥(d− d0)s
2
∥∥
∞ ≤ ω(log λ)

√
mgs2key.

Thus, ∥∥y∥∥∞ ≤ ∥∥e− e0
∥∥
∞ +

∥∥(c− c0)s
∥∥
∞ +

∥∥(d− d0)s
2
∥∥
∞

≤ √mg/2 + ω(
√
log λ)

√
mgskey + ω(log λ)

√
mgs2key

≤ ω(log λ)
√
mgs2key 2

By the two claims we know that

e− cs+ ds2 ≡ ∆mξ + z (mod q)

with z = x+ y bounded as∥∥z∥∥∞ ≤ ∥∥x∥∥∞ +
∥∥y∥∥∞ ≤ tω(

√
log λ)

√
mgskey ·B + ω(log λ)

√
mgs2key

≤ tω(
√
log λ)

√
mgskey ·B.

Finally, applying Lemma 16 to our situation, we know that Mult will output a ciphertext
ct = (⃗a, b⃗) that has an inherent noise term f designed for mξ = (m1)ξ(m2)ξ, satisfying that∥∥f∥∥∞ ≤ ∥∥z∥∥∞ + ω(

√
log λ)

√
lwmgwserr

≤ tω(
√

log λ)
√
mgskey ·B + ω(

√
log λ)

√
lwmgwserr 2

Theorem 2 The subring homomorphic encryption scheme will be fully homomorphic under
circular security assumption (i.e., an encryption of secret key s⃗ does not leak any information
about s⃗) by taking ciphertext modulus q = O(λlog λ).

Proof By Lemma 14, a ciphertext ct that encrypts plaintext m⃗ can be correctly decrypted if
its inherent noise term e designed for m⃗ satisfies that

√
g

√
m

∥∥e∥∥∞ <
1

2
∆ =

q

2t
.

By Lemma 17, by one multiplication,
√
g√
m

times of infinity norm of noises under input ciphertexts

increases log2(tω(
√
log λ)gskey) = O(log λ) bits. Hence, to correctly evaluate an arithmetic

circuit over Zg
t with L levels of multiplications, it suffices that

log q > L log λ.

By Lemma 4 of [1], we can implement Decrypt algorithm by some circuit of level Ldec = O(log λ).
Hence by taking q = O(λlog λ), the subring homomorphic encryption scheme can homomorphi-
cally evaluate its own Decrypt circuit and will be fully homomorphic under circular security
assumption 2
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5 Benchmark Results

We implemented our subring homomorphic encryption scheme (SR-HE in short) using the C++
language and performed several experiments using different parameters, comparing efficiency of
our implementation of SR-HE and homomorphic encryption library HElib by Halevi and Shoup
[8], which is based on the BGV scheme [2]. For notation of parameters, see Section 4.2.

As common parameters, we chosen four values of prime m so that the m-th cyclotomic ring
R will have as many number of plaintext slots (i.e., large g and small d values) as possible.
The plaintext modulus t = 2l is fixed as l = 8. The noise parameter serr =

√
2πσerr is

fixed as σerr = 3.2. The ciphertext modulus q = 2r is chosen as small as possible so that it
enables homomorphic evaluation of exponentiation by 28 (i.e., Enc(s⃗, m⃗)2

8
) with respect to each

implementation. Table 1 summarizes the chosen parameters.

Table 1: Chosen parameters.

m g d l r (SR-HE) r (HElib)

par-127 127 18 7 8 162 135

par-8191 8191 630 13 8 210 250

par-43691 43691 1285 34 8 234 256

par-131071 131071 7710 17 8 242 -

Assuming that there is no special attack utilizing the particular algebraic structure of involv-
ing rings, corresponding security parameters λ are estimated using the formula given by Gentry,
Halevi and Smart [6]:

λ =
7.2 ·N
log(q/σ)

− 110,

where N is the parameter of involving LWE-lattices: N = m−1 for HElib and N = g for SR-HE.

Table 2: Timing results of HElib on mod-2l integer plaintexts.

m g d l r λ Enc Dec Add Mult Exp-by-28

par-127 127 18 7 8 135 0 0.23 0.18 0.00 0.66 4.78

par-8191 8191 630 13 8 250 127 30.45 210.77 0.84 107.53 512.64

par-43691 43691 1285 34 8 256 1127 268.00 5158.44 4.74 634.69 4187.81

par-131071 131071 7710 17 8 - - - - - - -

Table 2 shows timing results for HElib in milliseconds on Intel Celeron(R) CPU G1840 @
2.80GHz × 2. (We could not perform the test for par-131071 due to shortage of memory.) The
secret key is chosen uniformly random among binary vectors of Hamming weight 64 over the
power basis (default of HElib) and we encrypt g number of mod-2l integer plaintexts into a single
HElib ciphertext using plaintext slots. As seen in Section 2.5, HElib (based on the BGV scheme)
basically realizes GF (2d) arithmetic in each of g slots. If we want to encrypt mod-2l integer
plaintexts on slots and to homomorphically evaluate on them, we can use only 1-dimensional
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constant polynomials in each d(= m/g)-dimensional slots. This should cause certain waste in
time and space. In fact, for example, timings for par-43691 (g = 1285) is much larger than
two times of those for par-8191 (g = 630). This indicates that the HElib scheme cannot handle
many mod-2l integer slots with high parallelism. So, to encrypt large number of mod-2l integer
plaintexts using HElib, we have no choice but to prepare many ciphertexts, each of which encrypts
a divided set of small number of plaintexts on their slots.

Table 3: Timing results of SR-HE on mod-2l integer plaintexts.

m g d l r λ Enc Dec Add Mult Exp-by-28

par-127 127 18 7 8 162 0 0.14 0.12 0.00 0.57 4.47

par-8191 8191 630 13 8 210 0 7.39 7.37 0.03 39.43 318.65

par-43691 43691 1285 34 8 234 0 17.38 17.19 0.11 92.14 741.42

par-131071 131071 7710 17 8 242 121 104.33 103.93 0.97 574.44 4620.22

On the other hand, Table 3 shows timing results (also in milliseconds on Intel Celeron(R)
CPU G1840 @ 2.80GHz × 2) for our SR-HE scheme. The secret key is chosen uniformly
random among binary vectors of Hamming weight 64 over η-basis and we encrypt g number of
mod-2l integer plaintexts into a single SR-HE ciphertext. As seen, timings are approximately
linear with respect to the numbers of slots g. This shows that our SR-HE scheme can handle
many mod-2l slots with high parallelism, as expected. We can encrypt large number of mod-2l

integer plaintexts into a single SR-HE ciphertext using mod-2l slots without waste, and can
homomorphically compute on them with high parallelism.

Then, which is faster to encrypt many number of mod-2l integer plaintexts between the
following two cases?

(1) A single SR-HE ciphertext with many plaintext slots.

(2) Many HElib ciphertexts with small number of plaintext slots.

The result for par-131071 of Table 3 shows we can encrypt 7710 mod-2l integer slots in a single
SR-HE ciphertext with security parameter λ = 121 with timing:

(104.33, 103.93, 0.97, 574.44, 4620.22)

On a while, the result for par-8191 of Table 2 shows we can encrypt the same number of 7710
mod-2l integer slots using

⌈
7710/630

⌉
= 13 ciphertexts with security parameter λ = 127. The

13 times of the line par-8191 of Table 2 is

(395.85, 2740.01, 10.92, 1397.89, 6664.32).

Thus, our benchmark results indicate that Case (1) (a single SR-HE ciphertext with many slots)
is significantly faster than Case (2) (many HElib ciphertexts with small number of plaintext
slots) under comparable security parameters.
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