
From Minicrypt to Obfustopia

via Private-Key Functional Encryption

Ilan Komargodski∗ Gil Segev†

Abstract

Private-key functional encryption enables fine-grained access to symmetrically-encrypted data.
Although private-key functional encryption (supporting an unbounded number of keys and ci-
phertexts) seems significantly weaker than its public-key variant, its known realizations all rely on
public-key functional encryption. At the same time, however, up until recently it was not known
to imply any public-key primitive, demonstrating our poor understanding of this extremely-useful
primitive.

Recently, Bitansky et al. [TCC ’16B] showed that sub-exponentially-secure private-key func-
tion encryption bridges from nearly-exponential security in Minicrypt to slightly super-polynomial
security in Cryptomania, and from sub-exponential security in Cryptomania to Obfustopia.
Specifically, given any sub-exponentially-secure private-key functional encryption scheme and
a nearly-exponentially-secure one-way function, they constructed a public-key encryption scheme
with slightly super-polynomial security. Assuming, in addition, a sub-exponentially-secure public-
key encryption scheme, they then constructed an indistinguishability obfuscator.

We settle the problem of positioning private-key functional encryption within the hierarchy
of cryptographic primitives by placing it in Obfustopia. First, given any quasi-polynomially-
secure private-key functional encryption scheme, we construct an indistinguishability obfuscator
for circuits with inputs of poly-logarithmic length. Then, we observe that such an obfuscator can
be used to instantiate many natural applications of indistinguishability obfuscation. Specifically,
relying on sub-exponentially-secure one-way functions, we show that quasi-polynomially-secure
private-key functional encryption implies not just public-key encryption but leads all the way to
public-key functional encryption for circuits with inputs of poly-logarithmic length. Moreover,
relying on sub-exponentially-secure injective one-way functions, we show that quasi-polynomially-
secure private-key functional encryption implies a hard-on-average distribution over instances of
a PPAD-complete problem.

Underlying our constructions is a new transformation from single-input functional encryption
to multi-input functional encryption in the private-key setting. The previously known such
transformation [Brakerski et al., EUROCRYPT ’16] required a sub-exponentially-secure single-
input scheme, and obtained a scheme supporting only a slightly super-constant number of inputs.
Our transformation both relaxes the underlying assumption and supports more inputs: Given any
quasi-polynomially-secure single-input scheme, we obtain a scheme supporting a poly-logarithmic
number of inputs.

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science Israel, Rehovot 76100,
Israel. Email: ilan.komargodski@weizmann.ac.il. Supported in part by a Levzion fellowship and by a grant from
the Israel Science Foundation.
†School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email:

segev@cs.huji.ac.il. Supported by the European Union’s 7th Framework Program (FP7) via a Marie Curie Career
Integration Grant, by the European Union’s Horizon 2020 Framework Program (H2020) via an ERC Grant (Grant No.
714253), by the Israel Science Foundation (Grant No. 483/13), by the Israeli Centers of Research Excellence (I-CORE)
Program (Center No. 4/11), by the US-Israel Binational Science Foundation (Grant No. 2014632), and by a Google
Faculty Research Award.

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Overview of Our Constructions . 2
1.3 Additional Related Work . 6
1.4 Paper Organization . 7

2 Preliminaries 8
2.1 One-Way Functions and Pseudorandom Generators 8
2.2 Pseudorandom Functions . 8
2.3 Private-Key Multi-Input Functional Encryption . 9
2.4 Public-key Functional Encryption . 11
2.5 Indistinguishability Obfuscation . 13

3 Private-Key MIFE for a Poly-Logarithmic Number of Inputs 13
3.1 From t Inputs to 2t Inputs . 13
3.2 Efficiency Analysis . 22
3.3 Iteratively Applying Our Transformation . 24

4 Applications of Our Construction 26
4.1 Obfuscation for Circuits with Poly-logarithmic Input Length 26
4.2 Public-Key Functional Encryption . 27

4.2.1 Puncturable Deterministic Encryption . 27
4.2.2 The Construction . 29
4.2.3 Proof of Theorem 4.4 . 30

4.3 Average-Case PPAD Hardness . 31

References 32

A Deferred Proofs 36
A.1 Proof of Claims 3.2–3.5 . 36
A.2 Proof of Lemma 4.8 . 39

1 Introduction

Functional encryption [SW08, BSW11, O’N10] allows tremendous flexibility when accessing en-
crypted data: Such encryption schemes support restricted decryption keys that allow users to learn
specific functions of the encrypted data without leaking any additional information. We focus on the
most general setting where the functional encryption schemes support an unbounded number of func-
tional keys in the public-key setting, and an unbounded number of functional keys and ciphertexts
in the private-key setting. In the public-key setting, it has been shown that functional encryption
is essentially equivalent to indistinguishability obfuscation [GGH+13, AJ15, AJS15, BV15, Wat15],
and thus it currently seems somewhat challenging to base its security on standard cryptographic as-
sumptions (especially given the various attacks on obfuscation schemes and their underlying building
blocks [BGH+15, CGH+15, CHL+15, CLR15, HJ15, MF15, CFL+16, CJL16, MSZ16] – see [AJN+16,
Appendix A] for a summary of these attacks).

Luckily, when examining the various applications of functional encryption (see, for example, the
survey by Boneh et al. [BSW12]), it turns out that private-key functional encryption suffices in many
interesting scenarios.1 However, although private-key functional encryption may seem significantly
weaker than its public-key variant, constructions of private-key functional encryption schemes are
currently known based only on public-key functional encryption.2

Minicrypt, Cryptomania, or Obfustopia? For obtaining a better understanding of private-key
functional encryption, we must be able to position it correctly within the hierarchy of crypto-
graphic primitives. Up until recently, private-key functional encryption was not known to imply
any cryptographic primitives other than those that are essentially equivalent to one-way functions
(i.e., Minicrypt primitives [Imp95]). Moreover, Asharov and Segev [AS15] proved that as long as a
private-key functional encryption scheme is invoked in a black-box manner, it cannot be used as a
building block to construct any public-key primitive (i.e., Cryptomania primitives [Imp95]).3 This
initial evidence hinted that private-key functional encryption may belong to Minicrypt, and thus
may be constructed based on extremely well-studied cryptographic assumptions.

Recently, Bitansky et al. [BNP+16] showed that private-key functional encryption is more pow-
erful than suggested by the above initial evidence. They proved that any sub-exponentially-secure
private-key functional encryption scheme and any (nearly) exponentially-secure one-way function
can be used to construct a public-key encryption scheme.4 Although their underlying building
blocks are at least sub-exponentially secure, the resulting public-key scheme is only slightly super-
polynomially secure. In addition, Bitansky et al. proved that any sub-exponentially-secure private-
key functional encryption scheme and any sub-exponentially-secure public-key encryption scheme
can be used to construct a full-fledged indistinguishability obfuscator. Overall, their work shows
that sub-exponentially-secure private-key functional encryption bridges from nearly-exponential se-
curity in Minicrypt to slightly super-polynomial security in Cryptomania, and from sub-exponential
security in Cryptomania to Obfustopia (see Figure 1).

1As a concrete (yet quite general) example, consider a user who stores her data on a remote server: The user uses
the master secret key both for encrypting her data, and for generating functional keys that will enable the server to
offer her various useful services.

2This is not true in various restricted cases, for example, when the functional encryption scheme has to support
an a-priori bounded number of functional keys or ciphertexts [GVW12]. However, as mentioned, we focus on schemes
that support an unbounded number of functional keys and ciphertexts.

3This holds even if the construction is allowed to generate functional keys (in a non-black-box manner) for any
circuit that invokes one-way functions in a black-box manner.

4Bitansky et al. overcome the black-box barrier introduced by Asharov and Segev [AS15] by relying on the non-
black-box construction of a private-key multi-input functional encryption scheme of Brakerski et al. [BKS16].

1

1.1 Our Contributions

We settle the problem of positioning private-key functional encryption within the hierarchy of cryp-
tographic primitives by placing it in Obfustopia. First, given any quasi-polynomially-secure private-
key functional encryption scheme, we construct a (quasi-polynomially-secure) indistinguishability
obfuscator for circuits with inputs of poly-logarithmic length and sub-polynomial size. We prove
the following theorem:

Theorem 1.1 (Informal). Assuming a quasi-polynomially-secure private-key functional encryption
scheme for polynomial-size circuits, there exists an indistinguishability obfuscator for the class of
circuits of size 2(log λ)ε with inputs of length (log λ)1+δ bits, for some positive constants ε and δ.

Underlying our obfuscator is a new transformation from single-input functional encryption to
multi-input functional encryption in the private-key setting. The previously known such trans-
formation of Brakerski et al. [BKS16] required a sub-exponentially-secure single-input scheme,
and obtained a multi-input scheme supporting only a slightly super-constant number of inputs.
Our transformation both relaxes the underlying assumption and supports more inputs: Given any
quasi-polynomially-secure single-input scheme, we obtain a multi-input scheme supporting a poly-
logarithmic number of inputs.

We demonstrate the wide applicability of our obfuscator by observing that it can be used to in-
stantiate many natural applications of (full-fledged) indistinguishability obfuscation for polynomial-
size circuits. We exemplify this observation by constructing a public-key functional encryption
scheme (based on [Wat15]), and a hard-on-average distribution of instances of a PPAD-complete
problem (based on [BPR15]).

Theorem 1.2 (Informal). Assuming a quasi-polynomially-secure private-key functional encryption
scheme for polynomial-size circuits, and a sub-exponentially-secure one-way function, there exists a
public-key functional encryption scheme for the class of circuits of size 2(log λ)ε with inputs of length
(log λ)1+δ bits, for some positive constants ε and δ.

Theorem 1.3 (Informal). Assuming a quasi-polynomially-secure private-key functional encryption
scheme for polynomial-size circuits, and a sub-exponentially-secure injective one-way function, there
exists a hard-on-average distribution over instances of a PPAD-complete problem.

Compared to the work of Bitansky at el. [BNP+16], Theorem 1.2 shows that private-key func-
tional encryption implies not just public-key encryption but leads all the way to public-key functional
encryption. Furthermore, in terms of underlying assumptions, whereas Bitansky et al. assume a sub-
exponentially-secure private-key functional encryption scheme and a (nearly) exponentially-secure
one-way function, we only assume a quasi-polynomially-secure private-key functional encryption
scheme and a sub-exponentially-secure one-way function.

In addition, recall that average-case PPAD hardness was previously shown based on compact
public-key functional encryption (or indistinguishability obfuscation) for polynomial-size circuits and
one-way permutations [GPS16]. We show average-case PPAD hardness based on quasi-polynomially-
secure private-key functional encryption and sub-exponentially-secure injective one-way function.
In fact, as shown by Hubáček and Yogev [HY16], our result (as well as [BPR15, GPS16]) implies
average-case hardness for CLS, a proper subclass of PPAD and PLS [DP11]. See Figure 1 for an
illustration of our results.

1.2 Overview of Our Constructions

In this section we provide a high-level overview of our constructions. First, we recall the functionality
and security requirements of multi-input functional encryption (MIFE) in the private-key setting,

2

Minicrypt
with nearly-

exponential security

Cryptomania
with slightly

super-polynomial
security

Cryptomania
with sub-

exponential
security

Obfustopia
with sub-

exponential
security

Minicrypt
with sub-

exponential security

Obfustopia
with quasi-
polynomial

security

Our work (assuming quasi-polynomially-secure private-key FE)

[BNPW16] (assuming sub-exponentially-secure private-key FE)

𝟐𝟐−𝝀𝝀𝝐𝝐-Secure
Private-Key FE

+
𝟐𝟐 ⁄−𝝀𝝀 𝐥𝐥𝐥𝐥𝐥𝐥 𝐥𝐥𝐥𝐥𝐥𝐥 𝝀𝝀-Secure OWF

Public-Key
Encryption

𝟐𝟐− 𝐥𝐥𝐥𝐥𝐥𝐥 𝝀𝝀 𝑶𝑶 𝟏𝟏 -Secure
Private-Key FE

Indistinguishability Obfuscation
For circuits of size 2(log 𝜆𝜆)𝜖𝜖

with inputs of length log 𝜆𝜆 1+𝛿𝛿 bits

Public-Key FE
For circuits of size 2(log 𝜆𝜆)𝜖𝜖

with inputs of length log 𝜆𝜆 1+𝛿𝛿 bits

[BNPW16]

Thm. 1.1

Average-Case
PPAD

Hardness

Thm. 1.3

𝟐𝟐−𝝀𝝀𝝐𝝐-Secure
OWF

Thm. 1.2

Figure 1: An illustration of our results (dashed arrows correspond to trivial implications).

and explain the main ideas underlying our new construction of a multi-input scheme. Then, we
describe the obfuscator we obtain from our multi-input scheme, and briefly discuss its applications
to public-key functional encryption and to average-case PPAD hardness.

Multi-input functional encryption. In a private-key t-input functional encryption scheme
[GGG+14], the master secret key msk of the scheme is used for encrypting any message xi to the
ith coordinate, and for generating functional keys for t-input functions. A functional key skf corre-
sponding to a function f enables to compute f(x1, . . . , xt) given Enc(x1, 1), . . . ,Enc(xt, t). Building
upon the previous notions of security for private-key multi-input functional encryption schemes
[GGG+14, BLR+15], we consider a strengthened notion of security that combines both message pri-
vacy and function privacy (as in [AAB+13, BS15] for single-input schemes and as in [AJ15, BKS16]
for multi-input schemes), to which we refer as full security. Specifically, we consider adversaries that
are given access to “left-or-right” key-generation and encryption oracles.5 These oracles operate in
one out of two modes corresponding to a randomly-chosen bit b. The key-generation oracle receives
as input pairs of the form (f0, f1) and outputs a functional key for the function fb. The encryption
oracle receives as input triples of the form (x0, x1, i), and outputs an encryption of the message xb

with respect to coordinate i. We require that no efficient adversary can guess the bit b with proba-

5In this work we focus on selectively-secure schemes, where an adversary first submits all of its encryption queries,
and can then adaptively interact with the key-generation oracle (see Definition 2.7). This notion of security suffices
for the applications we consider in this paper.

3

bility noticeably higher than 1/2, as long as for each such t+ 1 queries (f0, f1), (x0
1, x

1
1), . . . , (x0

t , x
1
t)

it holds that f0(x0
1, . . . , x

0
t) = f1(x1

1, . . . , x
1
t).

The BKS approach. Given any private-key single-input functional encryption scheme for all
polynomial-size circuits, Brakerski et al. [BKS16] constructed a t(λ)-input scheme for all circuits of
size s(λ) = 2(log λ)ε , where t(λ) = δ · log log λ for some fixed positive constants ε and δ, and λ ∈ N is
the security parameter.

Their transformation is based on extending the number of inputs the scheme supports one by
one. That is, for any t ≥ 1, given a t-input scheme they construct a (t+ 1)-input scheme. Relying
on the function privacy of the underlying scheme, Brakerski et al. observed that ciphertexts for
one of the coordinates can be treated as a functional key for a function that has the value of the
input hardwired. In terms of functionality, this idea enabled them to support t + 1 inputs using
a scheme that supports t inputs. The transformation is implemented such that every step of it
incurs a polynomial blowup in the size of the ciphertexts and functional keys.6 Thus, applying this
transformation t times, the size of a functional key for a function of size s is roughly (s · λ)O(1)t .
Therefore, Brakerski et al. could only apply their transformation t(λ) = δ · log log λ times, and this
required assuming that their underlying single-input scheme is sub-exponentially secure, and that
s(λ) = 2(log λ)ε .

Our construction. We present a new transformation that constructs a 2t-inputs scheme directly
from any t-input scheme. Our transformation shares the same polynomial efficiency loss as in
[BKS16], so applying the transformation t times makes a functional key be of size (s · λ)O(1)t . But
now, since each transformation doubles the number of inputs, applying the transformation t times
gets us all the way to a scheme that supports 2t = (log λ)δ inputs, as required. We further observe,
by a careful security analysis, that for the resulting scheme to be secure it suffices that the initial
scheme is only quasi-polynomially secure (and the resulting scheme can be made quasi-polynomially
secure as well).

Doubling the number of inputs via dynamic key encapsulation. As opposed to the approach
of [BKS16] (and the similar idea of [AJ15]), it is much less clear how to combine the ciphertexts and
functional keys of a t-input scheme to satisfy the required functionality (and security) of a 2t-input
scheme.

Our high-level idea is as follows. Given a 2t-input function f , we will generate a functional key for
a function f∗ that gets t inputs each of which is composed of two inputs: f∗(x1 ‖x1+t, . . . , xt ‖x2t) =
f(x1, . . . , x2t). We will encrypt each input such that it is possible to compute an encryption of
each pair (x`, x`+t), and evaluate the function in two steps. First, we concatenate each such pair to
get an encryption of x` ‖ x`+t. Then, given such t ciphertexts, we will apply a functional key that
corresponds to f∗. By the correctness of the underlying primitives, the output must be correct.
There are three main issues that we have to overcome: (1) We need to be able to generate the
encryption of x` ‖ x`+t, (2) we need to make sure all of these ciphertexts are with respect to the
same master secret key and that the functional key for f∗ is also generated with respect to the same
key, and (3) we need to prove the security of the resulting scheme. We now describe our solution.

The master secret key for our scheme is a master secret key for a t-input scheme msk and a PRF
key K. We split the 2t input coordinates into two parts: (1) the first t coordinates 1, . . . , t which
we call the “master coordinates” and (2) the last t coordinates 1 + t, . . . , 2t which we call the “slave

6A similar strategy was also employed by Ananth and Jain [AJ15], that showed how to use any t-input private-
key scheme to get a private-key (t + 1)-input scheme under the additional assumption that a public-key functional
encryption scheme exists. Their construction, however, did not incur the polynomial blowup and could be applied all
the way to get a scheme that supports a polynomial number of inputs.

4

coordinates”. Our main idea is to let each combination of the master coordinates implicitly define
a master secret “encapsulation” key mskx1...,xt for a t-input scheme. Details follow.

To encrypt a message x` with respect to a master coordinate 1 ≤ ` ≤ t, we encrypt x` with
respect to coordinate ` under the key msk. To encrypt a message x`+t with respect to a slave
coordinate 1 ≤ ` ≤ t, we generate a functional key for a t-input function AGGx`+t,K under the
key msk. To generate a functional key for a 2t-input function f , we generate a functional key for
a t-input function Genf,K under msk. Both AGGx`+t,K and Genf,K first compute a pseudorandom
master secret key mskx1...xt using randomness generated via the PRF key K on input x1 . . . xt.
Then, AGGx`+t,K computes an encryption of (x` ‖x`+t) to coordinate ` under this master secret key,
and Genf,K computes a functional key for f∗ (described above) under this master secret key (see
Figure 2).

Genf,K(x1, x2, . . . , xt) :

1. mskx1...xt = Setup(PRF(K,x1 . . . xt)).

2. Output KG(mskx1...xt , f
∗).

AGGx`+t,K(x1, x2, . . . , xt) :

1. mskx1...xt = Setup(PRF(K,x1 . . . xt)).

2. Output Enc(mskx1...xt , (x` ‖ x`+t), `).

Figure 2: The t-input functions Genf,K and AGGx`+t,K .

It is straightforward to verify that the above scheme indeed provides the required functionality of
a 2t-input scheme. Indeed, given t ciphertexts corresponding to the master coordinates ctx1 , . . . , ctxt ,
t ciphertexts corresponding to the slave coordinates ctx1+t , . . . , ctx2t , and a functional key skf for
a 2t-input function f , we first combine ctx1 , . . . , ctxt with each ctx`+t to get ctx`‖x`+t , which is an
encryption of x` ‖x`+t under mskx1...xt . Then, we combine ctx1 , . . . , ctxt with skf to get a functional
key skf∗ for f∗ under the same mskx1...xt . Finally, we combine ctx1‖x1+t , . . . , ctxt‖x2t with skf∗ to get
f∗(x1 ‖ x1+t, . . . , xt ‖ x2t) = f(x1, . . . , x2t), as required.

The security proof is done by a sequence of hybrid experiments, where we “attack” each possible
sequence of master coordinates separately, namely, we handle each mskx1...xt separately so that it
will not be explicitly needed. A typical approach for such a security proof is to embed all possible
encryptions and key-generation queries under mskx1...xt in the ciphertexts that are generated under
msk. Handling the key-generation queries using mskx1...xt is rather standard: whenever a key-
generation query is requested we compute the corresponding functional key under mskx1...xt and
embed it into the functional key. Handling encryption queries under mskx1...xt is significantly more
challenging since for every x1 . . . xt sequence, there are many possible ciphertexts x`+t of slave
coordinates that will be paired with it to get the encryption of x` ‖x`+t. It might seem as if there is
not enough space to embed all these possible ciphertexts, but we observe that we can embed each
ciphertext ctx`‖x`+t in the ciphertext corresponding to x`+t (for each such x`+t). This way, mskx1...xt
is not explicitly needed in the scheme and we can use the security of the underlying t-input scheme.
In total, the number of hybrids is roughly T t, where T is an upper bound on the running time of
the adversary. Thus, since t is roughly logarithmic in the security parameter, we have to start with
a quasi-polynomially-secure scheme.

From MIFE to obfuscation. Goldwasser et al. [GGG+14] observed that multi-input functional
encryption is tightly related to indistinguishability obfuscation [BGI+12, GGH+13]. Specifically,
a multi-input scheme that supports a polynomial number of inputs (i.e., t(λ) = poly(λ)) readily
implies an indistinguishability obfuscator (and vice-versa). We use a more fine-grained relationship
(as observed by [BNP+16]) that is useful when t(λ) is small compared to λ: A multi-input scheme
that supports all circuits of size s(λ) and t(λ) inputs implies an indistinguishability obfuscator for
all circuits of size s(λ) that have at most t(λ) · log λ input bits.

5

This transformation works as follows. An obfuscation of a function f of circuit-size at most s(λ)
that has at most t(λ) · log λ bits as input, is composed of t(λ) · λ ciphertexts and one functional
key. We think of f as a function f∗ that gets t(λ) inputs each of which is of length log λ bits.
The obfuscation now consists of a functional key for the circuit f∗, denoted by skf = KG(f∗), and
a ciphertext ctx,i = Enc(x, i) for every (x, i) ∈ {0, 1}log λ × [t(λ)]. To evaluate C at a point x =
(x1 . . . xt(λ)) ∈ ({0, 1}log λ)t(λ) one has to compute and output Dec(skf , ctx1,1, . . . , ctxt(λ),t(λ)) = f(x).
Correctness and security of the obfuscator follow directly from the correctness and security of the
multi-input scheme.

Given the relationship described above and given our multi-input scheme that supports circuits
of size at most s(λ) = 2(log λ)ε that have t(λ) = (log λ)δ inputs for some fixed positive constants ε
and δ, we obtain Theorem 1.1.

Applications of our obfuscator. One of the main conceptual contributions of this work is
the observation that an indistinguishability obfuscator as described above (that supports circuits
with a poly-logarithmic number of input bits) is in fact sufficient for many of the applications
of indistinguishability obfuscation for all polynomial-size circuits. We exemplify this observation
by showing how to adapt the construction of Waters [Wat15] of a public-key functional encryption
scheme and the construction of Bitansky et al. [BPR15] of a hard-on-average distribution for PPAD,
to our obfuscator. Such an adaptation is quite delicate and involves a careful choice of the additional
primitives that are involved in the construction. In a very high level, since the obfuscator supports
only a poly-logarithmic number of inputs, a primitive that has to be secure when applied on (part
of) the input (say a one-way function), must be sub-exponentially secure. We believe that this
observation may find additional applications beyond the scope of our work.

Using the multi-input scheme of [BKS16]. Using the multi-input scheme of [BKS16], one
can get that sub-exponentially-secure private-key functional encryption implies indistinguishability
obfuscation for inputs of length slightly super-logarithmic. However, using such an obfuscator
as a building block seems to inherently require to additionally assume nearly-exponentially-secure
primitives and the resulting primitives are (at most) slightly super-polynomially-secure.

Our approach, on the other hand, requires quasi-polynomially-secure private-key functional en-
cryption. In addition, our additional primitives are only sub-exponentially-secure and the resulting
primitives are quasi-polynomially secure.

1.3 Additional Related Work

Constructions of FE schemes. Private-key single-input functional encryption schemes that
are sufficient for our applications are known to exist based on a variety of assumptions, including
indistinguishability obfuscation [GGH+13, Wat15], differing-input obfuscation [BCP14, ABG+13],
and multilinear maps [GGH+16]. Restricted functional encryption schemes that support either
a bounded number of functional keys or a bounded number of ciphertexts can be based on the
Learning with Errors (LWE) assumption (where the length of ciphertexts grows with the number
of functional-key queries and with a bound on the depth of allowed functions) [GKP+13], and
even based on pseudorandom generators computable by small-depth circuits (where the length of
ciphertexts grows with the number of functional-key queries and with an upper bound on the circuit
size of the functions) [GVW12].

In the work of Bitansky et al. [BNP+16, Proposition 1.2 & Footnote 1] it has been shown that,
assuming weak PRFs in NC1, any public-key encryption scheme can be used to transform a private-
key functional encryption scheme into a public-key functional encryption scheme (which can be used

6

to get PPAD-hardness [GPS16]). This gives a better reduction than ours in terms of security loss,
but requires a public-key primitive to begin with.

Constructions of MIFE schemes. There are several constructions of private-key multi-input
functional encryption schemes. Mostly related to our work is the construction of Brakerski et al.
[BKS16] which we significantly improve (see Section 1.2 for more details). Other constructions
[GGG+14, AJ15, BLR+15] are incomparable as they either rely on stronger assumptions or could
be proven secure only in an idealized generic model. Goldwasser et al. [GGG+14] constructed
a multi-input scheme that supports a polynomial number of inputs assuming indistinguishability
obfuscation for all polynomial-size circuits. Ananth and Jain [AJ15] constructed a multi-input
functional encryption scheme that supports a polynomial number of inputs assuming any sub-
exponentially-secure (single-input) public-key functional encryption scheme. Boneh et al. [BLR+15]
constructed a multi-input scheme that supports a polynomial number of inputs based on multilinear
maps, and was proven secure in the idealized generic multilinear map model.

Proof techniques. Parts of our proof rely on two useful techniques from the functional encryption
literature: key encapsulation (also known as “hybrid encryption”) and function privacy.

Key encapsulation is an extremely useful approach in the design of encryption schemes, both for
improved efficiency and for improved security. Specifically, key encapsulation typically means that
instead of encrypting a message m under a fixed key sk, one can instead sample a random key k,
encrypt m under k and then encrypt k under sk. The usefulness of this technique in the context
of functional encryption was demonstrated by [ABS+15, BKS16]. Our constructions incorporate
key encapsulation techniques, and exhibit additional strengths of this technique in the context of
functional encryption schemes. Specifically, as discussed in Section 1.2, we use key encapsulation
techniques for our dynamic key-generation technique, a crucial ingredient in our constructions and
proofs of security.

The security guarantees of functional encryption typically focus on message privacy that ensures
that a ciphertext does not reveal any unnecessary information on the plaintext. In various cases,
however, it is also useful to consider function privacy [SSW09, BRS13a, BRS13b, AAB+13, BS15],
asking that a functional key skf does not reveal any unnecessary information on the function f .
Brakerski and Segev [BS15] (and the follow-up of Ananth and Jain [AJ15]) showed that any private-
key (multi-input) functional encryption scheme can be generically transformed into one that satisfies
both message privacy and function privacy. Function privacy was found useful as a building block in
the construction of several functional encryption schemes [ABS+15, KSY15, BKS16]. In particular,
functional encryption allows to successfully apply proof techniques “borrowed” from the indistin-
guishability obfuscation literature (including, for example, a variant of the punctured programming
approach of Sahai and Waters [SW14]).

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we provide an overview of the
notation, definitions, and tools underlying our constructions. In Section 3 we present our construc-
tion of a private-key multi-input functional encryption scheme based on any single-input scheme. In
Section 4 we present our construction of an indistinguishability obfuscator for circuits with inputs
of poly-logarithmic length, and its applications to public-key functional encryption and average-case
PPAD hardness. In Appendix A we provide the formal proofs of our claims from Sections 3 and 4.

7

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For a randomized function f and an input x ∈ X , we denote by y ← f(x) the
process of sampling a value y from the distribution f(x). For an integer n ∈ N we denote by [n] the
set {1, . . . , n}.

Throughout the paper, we denote by λ the security parameter. A function neg : N → R+ is
negligible if for every constant c > 0 there exists an integer Nc such that neg(λ) < λ−c for all
λ > Nc. Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computation-
ally indistinguishable if for any probabilistic polynomial-time algorithm A there exists a negligible
function neg(·) such that

∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]
∣∣ ≤ neg(λ) for all sufficiently large

λ ∈ N.

2.1 One-Way Functions and Pseudorandom Generators

We rely on the standard (parameterized) notions of one-way functions and pseudorandom generators.

Definition 2.1 (One-way function). An efficiently computable function f : {0, 1}∗ → {0, 1}∗ is
(t, µ)-one-way if for every probabilistic algorithm A that runs in time t = t(λ) it holds that

AdvOWF
f,A (λ)

def
= Pr

x←{0,1}λ
[A(1λ, f(x)) ∈ f−1(f(x))] ≤ µ(λ),

for all sufficiently large λ ∈ N, where the probability is taken over the choice of x ∈ {0, 1}λ and over
the internal randomness of A.

Whenever t = t(λ) is a super-polynomial function and µ = µ(λ) is a negligible function, we will
often omit t and µ and simply call the function one-way. In case t(λ) = 1/µ(λ) = 2λ

ε
, for some

constant 0 < ε < 1, we will say that f is sub-exponentially one-way.

Definition 2.2 (Pseudorandom generator). Let `(·) be a function. An efficiently computable func-
tion PRG : {0, 1}`(λ) → {0, 1}2`(λ) is a (t, µ)-secure pseudorandom generator if for every probabilistic
algorithm A that runs in time t = t(λ) it holds that

AdvPRGf,A =

∣∣∣∣ Pr
x←{0,1}`(λ)

[A(1λ,PRG(x)) = 1]− Pr
r←{0,1}2`(λ)

[A(1λ, r) = 1]

∣∣∣∣ ≤ µ(λ)

for all sufficiently large λ ∈ N.

Whenever t = t(λ) is a super-polynomial function and µ = µ(λ) is a negligible function, we will
often omit t and µ and simply call the function a pseudorandom generator. In case t(λ) = 1/µ(λ) =
2λ

ε
, for some constant 0 < ε < 1, we will say that PRG is sub-exponentially secure.

2.2 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval) be a function family
with the following syntax:

• PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the unary represen-
tation of the security parameter λ, and outputs a key K ∈ Kλ.

8

• PRF.Eval is a deterministic polynomial-time algorithm that takes as input a key K ∈ Kλ and
a value x ∈ Xλ, and outputs a value y ∈ Yλ.

The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range of the function
family, respectively. For easy of notation we may denote by PRF.EvalK(·) or PRFK(·) the function
PRF.Eval(K, ·) for K ∈ Kλ. The following is the standard definition of a pseudorandom function
family.

Definition 2.3 (Pseudorandomness). A function family PRF = (PRF.Gen,PRF.Eval) is (t, µ)-secure
pseudorandom if for every probabilistic algorithm A that runs in time t(λ), it holds that

AdvPRF,A(λ)
def
=

∣∣∣∣ Pr
K←PRF.Gen(1λ)

[
APRF.EvalK(·)(1λ) = 1

]
− Pr
f←Fλ

[
Af(·)(1λ) = 1

]∣∣∣∣ ≤ µ(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of all functions that map Xλ into Yλ.

In addition to the standard notion of a pseudorandom function family, we rely on the seem-
ingly stronger (yet existentially equivalent) notion of a puncturable pseudorandom function family
[KPT+13, BW13, SW14, BGI14]. In terms of syntax, this notion asks for an additional probabilistic
polynomial-time algorithm, PRF.Punc, that takes as input a key K ∈ Kλ and a set S ⊆ Xλ and out-
puts a “punctured” key KS . The properties required by such a puncturing algorithm are captured
by the following definition.

Definition 2.4 (Puncturable PRF). A (t, µ)-secure pseudorandom function family PRF = (PRF.Gen,
PRF.Eval) is puncturable if there exists a probabilistic polynomial-time algorithm PRF.Punc such that
the following properties are satisfied:

1. Functionality: For all sufficiently large λ ∈ N, for every set S ⊆ Xλ, and for every x ∈ Xλ \S
it holds that

Pr
K←PRF.Gen(1λ);

KS←PRF.Punc(K,S)

[PRF.EvalK(x) = PRF.EvalKS (x)] = 1.

2. Pseudorandomness at punctured points: Let A = (A1,A2) be any probabilistic algo-
rithm that runs in time at most t(λ) such that A1(1λ) outputs a set S ⊆ Xλ, a value x ∈ S,
and state information state. Then, for any such A it holds that

AdvPRF,A(λ)
def
= |Pr [A2(KS ,PRF.EvalK(x), state) = 1]− Pr [A2(KS , y, state) = 1]| ≤ µ(λ)

for all sufficiently large λ ∈ N, where (S, x, state) ← A1(1λ), K ← PRF.Gen(1λ), KS =
PRF.Punc(K,S), and y ← Yλ.

For our constructions we rely on pseudorandom functions that need to be punctured only at one
point (i.e., in both parts of Definition 2.4 it holds that S = {x} for some x ∈ Xλ). As observed
by [KPT+13, BW13, SW14, BGI14] the GGM construction [GGM86] of PRFs from any one-way
function can be easily altered to yield such a puncturable pseudorandom function family.

2.3 Private-Key Multi-Input Functional Encryption

In this section we define the functionality and security of private-key t-input functional encryption.
For i ∈ [t] let Xi = {(Xi)λ}λ∈N be an ensemble of finite sets, and let F = {Fλ}λ∈N be an ensemble

9

of finite t-ary function families. For each λ ∈ N, each function f ∈ Fλ takes as input t strings,
x1 ∈ (X1)λ, . . . , xt ∈ (Xt)λ, and outputs a value f(x1, . . . , xt) ∈ Zλ.

A private-key t-input functional encryption scheme Π for F consists of four probabilistic poly-
nomial time algorithm Setup, Enc, KG and Dec, described as follows. The setup algorithm Setup(1λ)
takes as input the security parameter λ, and outputs a master secret key msk. The encryption
algorithm Enc(msk,m, `) takes as input a master secret key msk, a message m, and an index ` ∈ [t],
where m ∈ (X`)λ, and outputs a ciphertext ct`. The key-generation algorithm KG(msk, f) takes as
input a master secret key msk and a function f ∈ Fλ, and outputs a functional key skf . The (deter-
ministic) decryption algorithm Dec takes as input a functional key skf and t ciphertexts, ct1, . . . , ctt,
and outputs a string z ∈ Zλ ∪ {⊥}.

Definition 2.5 (Correctness). A private-key t-input functional encryption scheme Π = (Setup,Enc,
KG,Dec) for F is correct if there exists a negligible function neg(·) such that for every λ ∈ N, for
every f ∈ Fλ, and for every (x1, . . . , xt) ∈ (X1)λ × · · · × (Xt)λ, it holds that

Pr
[
Dec(skf ,Enc(msk, x1, 1), . . . ,Enc(msk, xt, t)) = f(x1, . . . , xt)

]
≥ 1− neg(λ),

where msk ← Setup(1λ), skf ← KG(msk, f), and the probability is taken over the internal random-
ness of Setup,Enc and KG.

In terms of security, we rely on the private-key variant of the standard indistinguishability-based
notion that considers both message privacy and function privacy [AAB+13, BS15, BKS16]. Intu-
itively, we say that a t-input scheme is secure if for any two t-tuples of messages (x0

1, . . . , x
0
t) and

(x1
1, . . . , x

1
t) that are encrypted with respect to indices ` = 1 through ` = t, and for every pair of func-

tions (f0, f1), the triplets (skf0 ,Enc(msk, x0
1, 1), . . . ,Enc(msk, x0

t , t)) and (skf1 ,Enc(msk, x1
1, 1), . . . ,

Enc(msk, x1
t , t)) are computationally indistinguishable as long as f0(x0

1, . . . , x
0
t) = f1(x1

1, . . . , x
1
t)

(note that this captures both message privacy and function privacy). The formal notions of se-
curity build upon this intuition and capture the fact that an adversary may in fact hold many
functional keys and ciphertexts, and may combine them in an arbitrary manner. We formalize
our notions of security using left-or-right key-generation and encryption oracles. Specifically, for
each b ∈ {0, 1} and ` ∈ {1, . . . , t} we let the left-or-right key-generation and encryption oracles be

KGb(msk, f0, f1)
def
= KG(msk, fb) and Encb(msk, (m0,m1), `)

def
= Enc(msk,mb, `). Before formalizing

our notions of security we define the notion of a valid t-input adversary. Then, we define selective
security.

Definition 2.6 (Valid adversary). A probabilistic polynomial-time algorithm A is called valid if
for all private-key t-input functional encryption schemes Π = (Setup,KG,Enc,Dec) over a message
space X1 × · · · × Xt = {(X1)λ}λ∈N × · · · × {(Xt)λ}λ∈N and a function space F = {Fλ}λ∈N, for all
λ ∈ N and b ∈ {0, 1}, and for all (f0, f1) ∈ Fλ and ((x0

i , x
1
i), i) ∈ Xi ×Xi × [t] with which A queries

the left-or-right key-generation and encryption oracles, respectively, it holds that f0(x0
1, . . . , x

0
t) =

f1(x1
1, . . . , x

1
t).

Definition 2.7 (Selective security). Let t = t(λ), T = T (λ), Qkey = Qkey(λ), Qenc = Qenc(λ) and
µ = µ(λ) be functions of the security parameter λ ∈ N. A private-key t-input functional encryption
scheme Π = (Setup,KG,Enc,Dec) over a message space X1×· · ·×Xt = {(X1)λ}λ∈N×· · ·×{(Xt)λ}λ∈N
and a function space F = {Fλ}λ∈N is (T,Qkey, Qenc, µ)-selectively-secure if for any valid adversary
A that on input 1λ runs in time T (λ) and issues at most Qkey(λ) key-generation queries and at most
Qenc(λ) encryption queries for each index i ∈ [t], it holds that

AdvselFEt
Π,F ,A

def
=

∣∣∣∣Pr
[
ExpselFEt

Π,F ,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ µ(λ),

10

for all sufficiently large λ ∈ N, where the random variable ExpselFEt
Π,F ,A(λ) is defined via the following

experiment:

1. (~x1, . . . , ~xt, state)← A1

(
1λ
)
, where ~xi = ((x0

i,1, x
1
i,1), . . . , (x0

i,T , x
1
i,T)) for i ∈ [t].

2. msk← Setup(1λ), b← {0, 1}.
3. cti,j ← Enc(msk, xbi,j , 1) for i ∈ [t] and j ∈ [T].

4. b′ ← AKGb(msk,·,·)
2

(
1λ, {cti,j}i∈[t],j∈[T], state

)
.

5. If b′ = b then output 1, and otherwise output 0.

Known constructions for t = 1. Private-key single-input functional encryption schemes that
satisfy the above notion of full security and support circuits of any a-priori bounded polynomial size
are known to exist based on a variety of assumptions.

Ananth et al. [ABS+15] gave a generic transformation from selective security to full security.
Moreover, Brakerski and Segev [BS15] showed how to transform any message-private functional
encryption scheme into a functional encryption scheme which is fully secure, and the resulting scheme
inherits the security guarantees of the original one. Therefore, based on [ABS+15, BS15], given any
selectively-secure message-private functional encryption scheme we can generically obtain a fully
secure scheme. This implies that schemes that are fully secure for any number of encryption and
key-generation queries can be based on indistinguishability obfuscation [GGH+13, Wat15], differing-
input obfuscation [BCP14, ABG+13], and multilinear maps [GGH+16]. In addition, schemes that
are fully secure for a bounded number of key-generation queries Qkey can be based on the Learning
with Errors (LWE) assumption (where the length of ciphertexts grows with Qkey and with a bound on
the depth of allowed functions) [GKP+13], and even based on pseudorandom generators computable
by small-depth circuits (where the length of ciphertexts grows with Qkey and with an upper bound
on the circuit size of the functions) [GVW12].

Known constructions for t > 1. Private-key multi-input functional encryption schemes are much
less understood than single-input ones. Goldwasser et al. [GGG+14] gave the first construction of
a selectively-secure multi-input functional encryption scheme for a polynomial number of inputs
relying on indistinguishability obfuscation and one-way functions [BGI+12, GGH+13, KMN+14].
Following the work of Goldwasser et al., a fully-secure private-key multi-input functional encryp-
tion scheme for a polynomial number of inputs based was constructed based on multilinear maps
[BLR+15]. Later, Ananth, Jain, and Sahai, and Bitasnky and Vaikuntanathan [AJ15, AJS15, BV15]
showed a selectively-secure multi-input functional encryption scheme for a polynomial number of
inputs based on any sub-exponentially secure single-input public-key functional encryption scheme.
Brakerski et al. [BKS16] showed that a fully-secure single-input private-key scheme implies a fully-
secure multi-input scheme for any constant number of inputs. Furthermore, Brakerski et al. observed
that their construction can be used to get a fully-secure t-input scheme for t = O(log log λ) inputs,
where λ is the security parameter, if the underlying single-input scheme is sub-exponentially secure.

2.4 Public-key Functional Encryption

In this section we define the functionality and security of public-key (single-input) functional en-
cryption. Let X = {Xλ}λ∈N be an ensemble of finite sets, and let F = {Fλ}λ∈N be an ensemble of
finite function families. For each λ ∈ N, each function f ∈ Fλ takes as input a string, x ∈ Xλ, and
outputs a value f(x) ∈ Zλ.

A public-key functional encryption scheme Π for F consists of four probabilistic polynomial
time algorithm Setup, Enc, KG and Dec, described as follows. The setup algorithm Setup(1λ) takes

11

as input the security parameter λ, and outputs a master secret key msk and a master public key
mpk. The encryption algorithm Enc(mpk,m) takes as input a master public key mpk and a message
m ∈ Xλ, and outputs a ciphertext ct. The key-generation algorithm KG(msk, f) takes as input a
master secret key msk and a function f ∈ Fλ, and outputs a functional key skf . The (deterministic)
decryption algorithm Dec takes as input a functional key skf and t ciphertexts, ct1, . . . , ctt, and
outputs a string z ∈ Zλ ∪ {⊥}.

Definition 2.8 (Correctness). A public-key functional encryption scheme Π = (Setup,Enc,KG,Dec)
for F is correct if there exists a negligible function neg(·) such that for every λ ∈ N, for every f ∈ Fλ,
and for every x ∈ Xλ, it holds that

Pr
[
Dec(skf ,Enc(mpk, x)) = f(x)

]
≥ 1− neg(λ),

where (msk,mpk) ← Setup(1λ), skf ← KG(msk, f), and the probability is taken over the internal
randomness of Setup,Enc and KG.

In terms of security, we rely on the public-key variant of the existing indistinguishability-based
notions for message privacy.7 Intuitively, we say that a scheme is secure if the encryption of any pair
of messages Enc(mpk,m0) and Enc(mpk,m1) cannot be distinguished as long as for any function f
for which a functional key is queries, it holds that f(m0) = f(m1). The formal notions of security
build upon this intuition and capture the fact that an adversary may in fact hold many functional
keys and ciphertexts, and may combine them in an arbitrary manner. We formalize our notions
of security using left-or-right key-generation (similarly to the private-key setting). Specifically, for

each b ∈ {0, 1} we let the left-or-right key-generation and encryption oracles be KGb(msk, f0, f1)
def
=

KG(msk, fb) and Encb(msk, (m0,m1))
def
= Enc(msk,mb), respectively. Before formalizing our notions

of security we define the notion of a valid adversary. Then, we define selective security. 8.

Definition 2.9 (Valid adversary). A probabilistic polynomial-time algorithm A is called valid if
for all public-key functional encryption schemes Π = (Setup,KG,Enc,Dec) over a message space
X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N, for all λ ∈ N and b ∈ {0, 1}, and for all
f ∈ Fλ and ((x0, x1) ∈ (X)2 with which A queries the left-or-right encryption oracle, it holds that
f(x0) = f(x1).

Definition 2.10 (Selective security). Let t = t(λ), T = T (λ), Qkey = Qkey(λ) and µ = µ(λ) be
functions of the security parameter λ ∈ N. A public-key functional encryption scheme Π = (Setup,
KG,Enc,Dec) over a message space X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is (T,Qkey, µ)-
selectively secure if for any valid adversary A that on input 1λ runs in time T (λ) and issues at most
Qkey(λ) key-generation queries, it holds that

Advsel-pkFEΠ,F ,A
def
=

∣∣∣∣Pr
[
Expsel-pkFEΠ,F ,A (λ) = 1

]
− 1

2

∣∣∣∣ ≤ µ(λ),

for all sufficiently large λ ∈ N, where the random variable Expsel-pkFEΠ,F ,A (λ) is defined via the following
experiment:

1.
(
x0, x1, state

)
← A1

(
1λ
)
.

2. (msk,mpk)← Setup(1λ), b← {0, 1}.
3. b′ ← AKGb(msk,·,·)

2

(
1λ,Enc(mpk, xb), state

)
.

4. If b′ = b then output 1, and otherwise output 0.

7We note that the notion of function privacy is very different from the one in the private-key setting, and in
particular, natural definitions already imply obfuscation.

8We focus on selective securiy and do not define full security since there is a generic transfomation [ABS+15]

12

2.5 Indistinguishability Obfuscation

We consider the standard notion of indistinguishability obfuscation [BGI+12, GGH+13]. We say
that two circuits, C0 and C1 are functionally equivalent, and denote it by C0 ≡ C1, if for every x it
holds that C0(x) = C1(x).

Definition 2.11 (Indistinguishability obfuscation). Let C = {Cn}n∈N be a class of polynomial-size
circuits operating on inputs of length n. An efficient algorithm iO is called a (t, µ)-indistinguishability
obfuscator for the class C if it takes as input a security parameter λ and a circuit in C and outputs
a new circuit so that following properties are satisfied:

1. Functionality: For any input length n ∈ N, any λ ∈ N, and any C ∈ Cn it holds that

Pr
[
C ≡ iO(1λ, C)

]
= 1,

where the probability is taken over the internal randomness of iO.

2. Indistinguishability: For any probabilistic adversary A = (A1,A2) that runs in time t =
t(λ), it holds that

AdviOiO,C,A
def
=

∣∣∣∣Pr
[
ExpiOiO,C,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ µ(λ),

for all sufficiently large λ ∈ N, where the random variable ExpiOiO,C,A(λ) is defined via the
following experiment:

(a) (C0, C1, state)← A1(1λ) such that C0, C1 ∈ C and C0 ≡ C1.

(b) Ĉ ← iO(Cb), b← {0, 1}.
(c) b′ ← A2

(
1λ, Ĉ, state

)
.

(d) If b′ = b then output 1, and otherwise output 0.

3 Private-Key MIFE for a Poly-Logarithmic Number of Inputs

In this section we present our construction of a private-key multi-input functional encryption scheme.
The main technical tool underlying our approach is a transformation from a t-input scheme to a
2t-input scheme which is described in Section 3.1. Then, in Sections 3.2 and 3.3 we show that by
iteratively applying our transformation O(log log λ) times, and by carefully controlling the security
loss and the efficiency loss by adjusting the security parameter appropriately, we obtain a t-input
scheme, where t = (log λ)δ for some constant 0 < δ < 1 (recall that λ ∈ N denotes the security
parameter).

3.1 From t Inputs to 2t Inputs

Let F = {Fλ}λ∈N be a family of 2t-input functionalities, where for every λ ∈ N the set Fλ consists
of functions of the form f : (X1)λ × · · · × (X2t)λ → Zλ. Our construction relies on the following
building blocks:

1. A private-key t-input functional encryption scheme FEt = (FEt.S,FEt.KG,FEt.E,FEt.D).

2. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval).

Our scheme FE2t = (FE2t.S,FE2t.KG,FE2t.E,FE2t.D) is defined as follows.

13

• The setup algorithm. On input the security parameter 1λ the setup algorithm FE2t.S
samples a master secret key for a t-input scheme mskin ← FEt.S(1λ), and a PRF key Kmsk ←
PRF.Gen(1λ), and outputs msk = (mskin,K

msk).

• The key-generation algorithm. On input the master secret key msk and a function f ∈ Fλ,
the key-generation algorithm FE2t.KG samples a PRF key Kkey ← PRF.Gen(1λ) and outputs
skf ← FEt.KG(mskin,Genf,⊥,Kmsk,Kkey,⊥), where Genf,⊥,Kmsk,Kkey,⊥ is the t-input function that is
defined in Figure 3.

Genf0,f1,Kmsk,Kkey,w

((x0
1, x

1
1, τ1, c1, thr1, . . . , thrt), (x

0
2, x

1
2, τ2, c2), . . . , (x0

t , x
1
t , τt, ct)) :

1. For i = 1, . . . , t do:
(a) If ci < thri, then set f = f1 and exit loop.

(b) If ci > thri, then set f = f0 and exit loop.

(c) If ci = thri and i < t, continue to next iteration (with i = i+ 1).

(d) If ci = thri and i = t, then output w and HALT.

2. Compute r1 = PRF.Eval(Kmsk, τ1 . . . τt).

3. Compute r2 = PRF.Eval(Kkey, τ1 . . . τt).

4. Compute mskτ1,...,τt = FEt.S(1λ, r1).

5. Output FEt.KG(mskτ1,...,τt , Cf ; r2).

Cf((x1, xt+1), . . . , (xt, x2t)) :

1. Output f(x1, . . . , x2t).

Figure 3: The t-input functions Genf0,f1,Kmsk,Kkey,w and Cf .

• The encryption algorithm. On input the master secret key msk, a message x and an index
` ∈ [2t], the encryption algorithm FE2t.E distinguished between the following three cases:

– If ` = 1, it samples a random string τ ∈ {0, 1}λ, and then outputs ct` defined as follows:

ct` ← FEt.E(mskin, (x,⊥, τ, 1, 1, . . . , 1, 0︸ ︷︷ ︸
t slots

), `).

– If 1 < ` ≤ t, it samples a random string τ ∈ {0, 1}λ, and then outputs ct` defined as
follows:

ct` ← FEt.E(mskin, (x,⊥, τ, 1), `).

– If t < ` ≤ 2t, it samples a PRF key Kenc ← PRF.Gen(1λ) and outputs sk` defined as
follows:

sk` ← FEt.KG(mskin,AGGx,⊥,`,Kmsk,Kenc,⊥),

where AGGx,⊥,`,Kmsk,Kenc,⊥ is the t-input function that is defined in Figure 4.

• The decryption algorithm. On input a functional key skf and ciphertexts ct1, . . . , ctt,
skt+1, . . . , sk2t, the decryption algorithm FEt.D computes

∀i ∈ {t+ 1, . . . , 2t} : ct′i = FEt.D(ski, ct1, . . . , ctt)

sk′ = FEt.D(skf , ct1, . . . , ctt),

14

AGGx0
`+t,x

1
`+t,`+t,Kmsk,Kenc,v

((x0
1, x

1
1, τ1, c1, thr1, . . . , thrt), (x

0
2, x

1
2, τ2, c2), . . . , (x0

t , x
1
t , τt, ct)) :

1. For i = 1, . . . , t do:
(a) If ci < thri, then set xi = x1

i for all i ∈ [t] and exit loop.

(b) If ci > thri, then set xi = x0
i for all i ∈ [t] and exit loop.

(c) If ci = thri and i < t, continue to next iteration (with i = i+ 1).

(d) If ci = thri and i = t, output v and HALT.

2. Compute r1 = PRF.Eval(Kmsk, τ1 . . . τt).

3. Compute r2 = PRF.Eval(Kenc, τ1 . . . τt).

4. Compute mskτ1,...,τt = FEt.S(1λ, r1)

5. Output FEt.E(mskτ1,...,τt , (x`, x`+t), `; r2).

Figure 4: The t-input function AGGx0
`+t,x

1
`+t,`+t,Kmsk,Kenc,v.

and outputs FEt.D(sk′, ct′t+1, . . . , ct
′
2t).

Correctness. For any λ ∈ N, f ∈ Fλ and (x1, . . . , x2t) ∈ (X1)λ × · · · × (X2t)λ, let skf denote a
functional key for f and let ct1, . . . , ctt, skt+1, . . . , sk2t denote encryptions of x1, . . . , x2t. Then, for
every i ∈ {1, . . . , t}, it holds that

ct′i+t = FEt.D(ski+t, ct1, . . . , ctt)

= AGGxi+t,⊥,i+t,Kmsk,Kenc
i+t,⊥((x1,⊥, τ1, 1, 1, . . . , 1, 0), (x2,⊥, τ2, 1), . . . , (xt,⊥, τt, 1))

= FEt.E(mskτ1,...,τt , (xi, xi+t), i;PRF.Eval(K
enc
i+t, τ1 . . . τt))

and

sk′ = FEt.D(skf , ct1, . . . , ctt)

= Gen
f,⊥,Kmsk,Kkey

f ,⊥((x1,⊥, τ1, 1, 1, . . . , 1, 0), (x2,⊥, τ2, 1), . . . , (xt,⊥, τt, 1))

= FEt.KG(mskτ1,...,τt , Cf ;PRF.Eval(Kkey
f , τ1 . . . τt))

where mskτ1,...,τt = FEt.S(1λ,PRF.Eval(Kmsk, τ1 . . . τt)). Therefore,

FEt.D(sk′, ct′t+1, . . . , ct
′
2t) = Cf ((x1, xt+1), . . . , (xt, x2t)) = f(x1, . . . , x2t).

Security. The following theorem captures the security our transformation.

Theorem 3.1. Let t = t(λ), T = T (λ), Qkey = Qkey(λ), Qenc = Qenc(λ) and µ = µ(λ) be functions
of the security parameter λ ∈ N, and assume that FEt is a (T,Qkey, Qenc, µ)-selectively-secure t-input
functional encryption scheme and that PRF is a (T, µ)-secure puncturable pseudorandom function
family. Then, FE2t is (T ′, Q′key, Q

′
enc, µ

′)-selectively-secure, where

• T ′(λ) = T (λ)−Qkey(λ) · poly(λ), for some fixed polynomial poly(·).
• Q′key(λ) = Qkey(λ)− t(λ) ·Qenc(λ).

• Q′enc(λ) = Qenc(λ).

• µ′(λ) = 8t(λ) · (Qenc(λ))t(λ)+1 ·Qkey(λ) · µ(λ).

15

Proof of Theorem 3.1. Let t = t(λ) and let A be a valid 2t-input adversary that runs in time
T ′ = T ′(λ), and issues at most Q′enc = Q′enc(λ) encryption queries with respect to each index i ∈ [2t],
and at most Q′key = Q′key(λ) key-generation queries. We present a sequence of experiments and upper
bound A’s advantage in distinguishing each two consecutive experiments. The first experiment is the
experiment ExpselFE2t

FE2t,F ,A(λ) (see Definition 2.7), and the last experiment is completely independent
of the bit b. This enables us to prove that

AdvselFE2t
FE2t,F ,A(λ)

def
=

∣∣∣∣Pr
[
ExpselFE2t

FE2t,F ,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ 8t(λ) · (Q′enc(λ))t(λ)+1 ·Q′key(λ) · µ(λ)

for all sufficiently large λ ∈ N. In what follows we first describe the notation used throughout the
proof, and then describe the experiments.

Notation. We denote the ith ciphertext with respect to each index 1 ≤ ` ≤ t by ct`,i and the
ith ciphertext with respect to each index t < ` ≤ 2t by sk`,i. We denote the ith encryption query
corresponding to each index ` ∈ [2t] by (x0

`,i, x
1
`,i). For the ith ciphertext with respect to each index

1 ≤ ` ≤ t, we denote it associtaed random string by τ`,i. For the ith ciphertext with respect to each
index t+ 1 ≤ ` ≤ 2t, we denote its associated PRF key by Kenc

`,i . Finally, we denote by (f0
i , f

1
i) the

ith the pair of functions with which the adversary queries the key-generation oracle and by Kkey
i its

associated PRF key.

Experiment H(0)(λ). This is the original experiment corresponding to b ← {0, 1} chosen uni-
formly at random, namely, ExpselFE2t

FE2t,F ,A(λ). Recall that in this experiment the ciphertexts and the
functional keys are generated as follows.

• Ciphertexts (i = 1, . . . , Q′enc, 2 ≤ ` ≤ t):

ct1,i ← FEt.E(mskin, (x
b
`,i,⊥, τ`,i, 1, 1, . . . , 1, 0︸ ︷︷ ︸

t slots

), 1)

ct`,i ← FEt.E(mskin, (x
b
`,i,⊥, τ`,i, 1), `)

sk`+t,i ← FEt.KG(mskin,AGGxb`+t,i,⊥,`+t,Kmsk,Kenc
`+t,i,⊥

)

• Functional keys (i = 1, . . . , Q′key):

skfi ← FEt.KG(mskin, Dfbi ,⊥,Kmsk,Kkey
i ,⊥)

Experiment H(1)(λ). This experiment is obtained from the experiment H(0)(λ) by modifying the
ciphertexts as follows. Given inputs (x0

`,i, x
1
`,i), instead of setting the field x1 to be ⊥ we set it to be

x1
`,i. In addition, we add a counter in every ciphertext. The scheme has the following form:

• Ciphertexts (i = 1, . . . , Q′enc, 2 ≤ ` ≤ t):

ct1,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i , τ`,i, i , 1, . . . , 1, 0︸ ︷︷ ︸

t slots

), 1)

ct`,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i , τ`,i, i), `)

sk`+t,i ← FEt.KG(mskin,AGG
xb`+t,i, x

1
`+t,i ,`+t,K

msk,Kenc
`+t,i,⊥

)

16

• Functional keys (i = 1, . . . , Q′key):

skfi ← FEt.KG(mskin, D
fbi , f

1
i ,Kmsk,Kkey

i ,⊥
)

Note that all ciphertexts are generated so that thr1, . . . , thrt−1 = 1 and thrt = 0, while c1, . . . , ct ≥
1 (after we added the counter). Thus, the circuit AGGxb`+t,x

1
`+t,`+t,K

msk,Kenc
`+t,⊥

always sets xi = xbi

and ignores the second input x1
i (see Figure 4). Similarly, the circuit Genf0,f1,Kmsk,Kkey,w always sets

fi = f bi and ignores the second input f1
i (see Figure 3). Thus, the security of the underlying scheme

FEt guarantees that the adversary A has only a negligible advantage in distinguishing experiments
H(0) and H(1). Specifically, let F ′ denote the family of functions AGGx0`+t,x

1
`+t,`+t,K

msk,Kenc,v (as

defined in Figure 4) and Genf0,f1,Kmsk,Kkey,w (as defined in Figure 3). In Appendix A we prove the
following claim:

Claim 3.2. There exists a valid t-input adversary B(0)→(1) that runs in time T ′(λ)+(t(λ) ·Q′enc(λ)+
Q′key(λ)) · poly(λ) and issues at most Q′enc(λ) encryption queries with respect to each index i ∈ [t]
and at most t(λ) ·Q′enc(λ) +Q′key(λ) key-generation queries, such that∣∣∣Pr

[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣ ≤ AdvselFEt

FEt,F ′,B′(0)→(1)(λ).

Experiment H(2,k1,...,kt)(λ). This experiment is obtained from the experiment H(1)(λ) by mod-
ifying the ciphertexts as follows. In each ciphertext corresponding to index ` = 1 we embed the
tuple (k1, . . . , kt) instead of the tuple (1, . . . , 1, 0).

• Ciphertexts (i = 1, . . . , Q′enc, 2 ≤ ` ≤ t):

ct1,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i, τ`,i, i, k1, . . . , kt), 1)

ct`,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i, τ`,i, i), `)

sk`+t,i ← FEt.KG(mskin,AGGxb`+t,i,x
1
`+t,i,`+t,K

msk,Kenc
`+t,i,⊥

)

• Functional keys (i = 1, . . . , Q′key):

skfi ← FEt.KG(mskin, Dfbi ,f
1
i ,K

msk,Kkey
i ,⊥)

Notice that H(2,1,...,1,0) = H(1).

Experiment H(3,k1,k2,...,kt)(λ). This experiment is obtained from the experiment H(2,k1,...,kt)(λ)
by modifying the ciphertexts and the functional keys as follows. First, we compute mskτ1,k1 ,...,τt,kt
as

mskτ1,k1 ,...,τt,kt = FEt.S(1λ;PRF.Eval(Kmsk, τ1,k1 . . . τt,kt)).

Then, for every ` ∈ [t] and i ∈ [T], we compute

γ`+t,i = FEt.E(mskτ1,k1 ,...,τt,kt , (x
b
`,k`

, xb`+t,i), `;PRF.Eval(K
enc
`+t,i, τ1,k1 . . . τt,kt))

δi = FEt.KG(mskτ1,k1 ,...,τt,kt , Cfbi
;PRF.Eval(Kkey

i , τ1,k1 . . . τt,kt)),

Each γ`+t,i is embedded into sk`+t,i, and each δi is embedded into skfi . Moreover, instead of using

Kmsk, Kkey
i and Kenc

`+t,i, we use Kmsk|{τ1,k1 ...τt,kt}, K
key
i |{τ1,k1 ...τt,kt}, and Kenc

`+t,i|{τ1,k1 ...τt,kt}, which are

the keys Kmsk, Kkey and Kenc
i all punctured at the same point {τ1,k1 . . . τt,kt}. The scheme has the

following form:

17

• Ciphertexts (i = 1, . . . , Q′enc, 2 ≤ ` ≤ t):

ct1,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i, τ`,i, i, k1, . . . , kt), 1)

ct`,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i, τ`,i, i), `)

sk`+t,i ← FEt.KG(mskin,AGG
xb`+t,i,x

1
`+t,i,`+t, K

msk|{τ1,k1 ...τt,kt} , K
enc
`+t,i|{τ1,k1 ...τt,kt} , γ`+t,i

)

mskτ1,k1 ,...,τt,kt = FEt.S(1λ;PRF.Eval(Kmsk, τ1,k1 . . . τt,kt))

γ`+t,i = FEt.E(mskτ1,k1 ,...,τt,kt , (x
b
`,k`

, xb`+t,i), `;PRF.Eval(K
enc
`+t,i, τ1,k1 . . . τt,kt))

• Functional keys (i = 1, . . . , Q′key):

skfi ← FEt.KG(mskin, D
fbi ,f

1
i , K

msk|{τ1,k1 ...τt,kt} , K
key
i |{τ1,k1 ...τt,kt} , δi

)

δi = FEt.KG(mskτ1,k1 ,...,τt,kt , Cfbi
;PRF.Eval(Kkey

i , τ1,k1 . . . τt,kt))

Let i∗1, i
∗
2 . . . , i

∗
2t be a combination of index of inputs and let i∗ be an index of a function key.

If (τ1,i∗1
, . . . , τt,i∗t) 6= (τ1,k1 , . . . , τt,kt), then by the definition of the circuits Genf0,f1,Kmsk,Kkey,w and

AGGx0`+t,x
1
`+t,`+t,K

msk,Kenc,v, the functionalities do not change. Thus, let us assume that (τ1,i∗1
, . . . , τt,i∗t)

= (τ1,k1 , . . . , τt,kt). In this case, by the definition of the experiment, the outputs of Genf0,f1,Kmsk,Kkey,w

and each AGGx0`+t,x
1
`+t,`+t,K

msk,Kenc,v are just δi∗ and γ`+t,i∗`+t , respectively, which are defined ex-

actly as the original outputs. So, in any case functionality is preserved. Thus, the security of
the scheme FEt guarantees that the adversary A has only a negligible advantage in distinguish-
ing experiments H(2,k1,...,kt) and H(3,k1,...,kt). Specifically, let F ′ denote the family of functions
AGGx0`+t,x

1
`+t,`+t,K

msk,Kenc,v (as defined in Figure 4) and Genf0,f1,Kmsk,Kkey,w (as defined in Figure 3).

In Appendix A we prove the following claim:

Claim 3.3. There exists a valid t-input adversary B(2,k1,...,kt)→(3,k1,...,kt) that runs in time T ′(λ) +
(t(λ) ·Q′enc(λ)+Q′key(λ)) ·poly(λ) and issues at most Q′enc(λ) encryption queries with respect to each
index i ∈ [t] and at most t(λ) ·Q′enc(λ) +Q′key(λ) key-generation queries, such that∣∣∣Pr

[
H(2,k1,...,kt)(λ) = 1

]
− Pr

[
H(3,k1,...,kt)(λ) = 1

]∣∣∣ ≤ AdvselFEt

FEt,F ′,B′(2,k1,...,kt)→(3,k1,...,kt)
(λ).

Experiment H(4,k1,...,kt)(λ). This experiment is obtained from the experiment H(3,k1,...,kt)(λ) by
modifying the ciphertexts and functional keys as follows. Instead of sampling the randomness for
mskτ1,k1 ,...,τt,kt , γ`+t,i, and δi using a PRF, we sample them uniformly at random.

• Ciphertexts (i = 1, . . . , Q′enc, 2 ≤ ` ≤ t):

ct1,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i, τ`,i, i, k1, . . . , kt), 1)

ct`,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i, τ`,i, i), `)

sk`+t,i ← FEt.KG(mskin,AGGxb`+t,i,x
1
`+t,i,`+t,K

msk|{τ1,k1 ...τt,kt}
,Kenc
`+t,i|{τ1,k1 ...τt,kt}

,γ`+t,i
)

mskτ1,k1 ,...,τt,kt ← FEt.S(1λ)

γ`+t,i ← FEt.E(mskτ1,k1 ,...,τt,kt , (x
b
`,k`

, xb`+t,i), `)

18

• Functional keys (i = 1, . . . , Q′key):

skfi ← FEt.KG(mskin, Dfbi ,f
1
i ,K

msk|{τ1,k1 ...τt,kt}
,Kkey
i |{τ1,k1 ...τt,kt}

,δi
)

δi ← FEt.KG(mskτ1,k1 ,...,τt,kt , Cfbi
)

The pseudorandomness of the PRF keys Kmsk, Kkey
i and Kenc

`+t,i at their respective punctured

points enables us to bound A’s advantage in distinguishing experiments H(3,k1,...,kt) and H(4,k1,...,kt).
In total, there are 1 + t(λ) ·Q′enc(λ) +Q′key(λ) PRF keys, and in Appendix A we prove the following
claim:

Claim 3.4. There exists an algorithm B(3,k1,...,kt)→(4,k1,...,kt) that runs in time T ′(λ)+(t(λ)·Q′enc(λ)+
Q′key(λ)) · poly(λ) and issues t(λ) ·Q′enc(λ) +Q′key(λ) queries such that∣∣∣Pr

[
H(3,k1,...,kt)(λ) = 1

]
− Pr

[
H(4,k1,...,kt)(λ) = 1

]∣∣∣
≤ (1 + t(λ) ·Q′enc(λ) +Q′key(λ)) · AdvPRF,B(3,k1,...,kt)→(4,k1,...,kt)(λ).

Experiment H(5,k1,...,kt)(λ). This experiment is obtained from the experiment H(4,k1,...,kt)(λ)
by modifying the ciphertexts and functional keys as follows. Instead of having (xb`,k` , . . . , x

b
`+t,i)

encrypted in γ`+t,i, we encrypt the value (x1
`,k`

, . . . , x1
`+t,i). Similarly, instead of generating a key for

Cfbi
in δi, we generate a key for Cf1i

.

• Ciphertexts (i = 1, . . . , Q′enc, 2 ≤ ` ≤ t):

ct1,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i, τ`,i, i, k1, . . . , kt), 1)

ct`,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i, τ`,i, i), `)

sk`+t,i ← FEt.KG(mskin,AGGxb`+t,i,x
1
`+t,i,`+t,K

msk|{τ1,k1 ...τt,kt}
,Kenc
`+t,i|{τ1,k1 ...τt,kt}

,γ`+t,i
)

mskτ1,k1 ,...,τt,kt ← FEt.S(1λ)

γ`+t,i ← FEt.E(mskτ1,k1 ,...,τt,kt , (x1
`,k`

, x1
`+t,i) , `)

• Functional keys (i = 1, . . . , Q′key):

skfi ← FEt.KG(mskin, Dfbi ,f
1
i ,K

msk|{τ1,k1 ...τt,kt}
,Kkey
i |{τ1,k1 ...τt,kt}

,δi
)

δi ← FEt.KG(mskτ1,k1 ,...,τt,kt , Cf1i)

We observe that this change only affects combinations of ciphertexts which contain ct1,k1 , . . . ,
ctt,kt . Every such combination with every γt+1,it+1 , . . . , γ2t,i2t and every δj results with f1

j (x1
1,k1

, . . . ,

x1
t,kt
, x1

t+1,it+1
, . . . , x1

2t,k2t
) which must be equal to f bj (xb1,k1 , . . . , x

b
t,kt
, xbt+1,it+1

, . . . , xb2t,k2t) since the
adversary is valid (see Definition 2.6). Thus, the security of the underlying FEt scheme guarantees
that the adversary A has only a negligible advantage in distinguishing experiments H(4,k1,...,kt)

and H(5,k1,...,kt). Specifically, let F ′ denote the family of functions Cf as defined in Figure 3. In
Appendix A we prove the following claim:

Claim 3.5. There exists a valid t-input adversary B(4,k1,...,kt)→(5,k1,...,kt) that runs in time T ′(λ) +
(t(λ) · Q′enc(λ) + Q′key(λ)) · poly(λ) and issues at most Q′enc(λ) and Q′key(λ) encryption and key-
generation queries, respectively, such that∣∣∣Pr

[
H(4,k1,...,kt)(λ) = 1

]
− Pr

[
H(5,k1,...,kt)(λ) = 1

]∣∣∣ ≤ AdvselFEt

FEt,F ′,B′(4,k1,...,kt)→(5,k1,...,kt)
(λ).

19

Experiment H(6,k1,...,kt)(λ). This experiment is obtained from the experiment H(5,k1,...,kt)(λ)
by modifying the ciphertexts and functional keys as follows. Instead of sampling the randomness
for mskτ1,k1 ,...,τt,kt , γ`+t,i, and δi uniformly at random, we sample them using PRFs (as in hybrid

H(3,k1,...,kt)(λ)).

• Ciphertexts (i = 1, . . . , Q′enc, 2 ≤ ` ≤ t):

ct1,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i, τ`,i, i, k1, . . . , kt), 1)

ct`,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i, τ`,i, i), `)

sk`+t,i ← FEt.KG(mskin,AGGxb`+t,i,x
1
`+t,i,`+t,K

msk|{τ1,k1 ...τt,kt}
,Kenc
`+t,i|{τ1,k1 ...τt,kt}

,γ`+t,i
)

mskτ1,k1 ,...,τt,kt = FEt.S(1λ;PRF.Eval(Kmsk, τ1,k1 . . . τt,kt))

γ`+t,i = FEt.E(mskτ1,k1 ,...,τt,kt , (x
1
`,k`

, x1
`+t,i), `;PRF.Eval(K

enc
`+t,i, τ1,k1 . . . τt,kt))

• Functional keys (i = 1, . . . , Q′key):

skfi ← FEt.KG(mskin, Dfbi ,f
1
i ,K

msk|{τ1,k1 ...τt,kt}
,Kkey
i |{τ1,k1 ...τt,kt}

,δi
)

δi = FEt.KG(mskτ1,k1 ,...,τt,kt , Cf1i ;PRF.Eval(Kkey
i , τ1,k1 . . . τt,kt))

The pseudorandomness of the PRF keys Kmsk, Kkey
i and Kenc

`+t,i at their respective punctured

points enables us to bound A’s advantage in distinguishing experiments H(5,k1,...,kt) and H(6,k1,...,kt).
In total, there are 1 + t(λ) · Q′enc(λ) + Q′key(λ) PRF keys, and the proof of the following claim is
analogous to the proof of Claim 3.4.

Claim 3.6. There exists an algorithm B(5,k1,...,kt)→(6,k1,...,kt) that runs in time T ′(λ)+(t(λ)·Q′enc(λ)+
Q′key(λ)) · poly(λ) and issues t(λ) ·Q′enc(λ) +Q′key(λ) queries such that∣∣∣Pr

[
H(5,k1,...,kt)(λ) = 1

]
− Pr

[
H(6,k1,...,kt)(λ) = 1

]∣∣∣
≤ (1 + t(λ) ·Q′enc(λ) +Q′key(λ)) · AdvPRF,B(5,k1,...,kt)→(6,k1,...,kt)(λ).

Experiment H(7,k1,...,kt)(λ). This experiment is obtained from the experiment H(6,k1,...,kt)(λ)
by modifying the ciphertexts and functional keys as follows. The PRF keys Kmsk|{τ1,k1 ...τt,kt},
Kkey
i |{τ1,k1 ...τt,kt}, and Kenc

`+t,i|{τ1,k1 ...τt,kt} are “unpunctured” (namely, we use the original keys rather

than the punctured ones) and we replace each γ`+t,i and δi with ⊥. Finally, we replace kt in ct1,i
with kt + 1.

• Ciphertexts (i = 1, . . . , Q′enc, 2 ≤ ` ≤ t):

ct1,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i, τ`,i, i, k1, . . . , kt), 1)

ct`,i ← FEt.E(mskin, (x
b
`,i, x

1
`,i, τ`,i, i), `)

sk`+t,i ← FEt.KG(mskin,AGG
xb`+t,i,x

1
`+t,i,`+t, K

msk
, Kenc

`+t,i , ⊥
)

• Functional keys (i = 1, . . . , Q′key):

skfi ← FEt.KG(mskin, D
fbi ,f

1
i , K

msk
, Kkey

i , ⊥
)

20

Observe that since thrt in ct1,i is now kt+1, then for computing on the challenge (f0
j , f

1
j) on inputs

(x0
1,k1

, x1
1,k1

), . . . , (x0
t,kt
, x1

t,kt
), (x0

t+1,i1
, x1

t+1,i1
), . . . , (x0

2t,it
, x1

2t,it
), when combining the cipertexts and

key, we get a key for f1
j which is combined with the output of AGG. The latter is triggering

the output f1
j (x1

1,k1
, . . . , x1

t,kt
, x1

t+1,i1
, . . . , x1

2t,it
), as required. Thus, the security of the scheme FEt

guarantees that the adversary A has only a negligible advantage in distinguishing experiments
H(6,k1,...,kt) and H(7,k1,...,kt). Specifically, let F ′ denote the family of functions AGGx0,x1,τ,Kmsk,Kenc,v

and Genf0,f1,,Kmsk,Kkey,w as defined in Figures 4 and 3, respectively. The proof of the following claim
is analogous to the proof of Claim 3.3.

Claim 3.7. There exists a valid t-input adversary B(6,k1,...,kt)→(7,k1,...,kt) that runs in time T ′(λ) +
(t(λ) ·Q′enc(λ)+Q′key(λ)) ·poly(λ) and issues at most Q′enc(λ) encryption queries with respect to each
index i ∈ [t] and at most t(λ) ·Q′enc(λ) +Q′key(λ) key-generation queries, such that∣∣∣Pr

[
H(6,k1,...,kt)(λ) = 1

]
− Pr

[
H(7,k1,...,kt)(λ) = 1

]∣∣∣ ≤ AdvselFEt

FEt,F ′,B(6,k1,...,kt)→(7,k1,...,kt)
(λ).

Next, we observe that H(7,k1,...,kt)(λ) = H(2,k1...,kt−1,kt+1)(λ) and that H(2,k1,...,kt−1,Q′enc)(λ) =
H(2,k1,...,kt−1+1,0)(λ). More generally, it holds that H(2,k1...,ki,Q

′
enc,0,...,0)(λ) = H(2,k1...,ki+1,0,...,0)(λ).

Experiment H(8)(λ). This experiment is obtained from the experiment H(2,Q′enc+1,0,...,0)(λ) by
modifying the ciphertexts and functional keys as follows. In skfi we replace f bi with ⊥. Moreover,
in sk`+t,i and all ct`,i we replace xbi with ⊥. Notice that this experiment is completely independent
of the bit b, and therefore Pr[H(8)(λ) = 1] = 1/2.

• Ciphertexts (i = 1, . . . , Q′enc, 2 ≤ ` ≤ t):

ct1,i ← FEt.E(mskin, (⊥ , x1
`,i, τ`,i, i, T + 1, 0, . . . , 0), 1)

ct`,i ← FEt.E(mskin, (⊥ , x1
`,i, τ`,i, i), `)

sk`+t,i ← FEt.KG(mskin,AGG ⊥ ,x1`+t,i,`+t,K
msk,Kenc

`+t,i,⊥
)

• Functional keys (i = 1, . . . , Q′key):

skfi ← FEt.KG(mskin, D ⊥ ,f1i ,K
msk,Kkey

i ,⊥
)

We observe that since thr1 = Q′enc+1, it is always the case that the functions AGGx0,x1,τ,Kmsk,Kenc,v

and Genf0,f1,,Kmsk,Kkey,w use x1 and f1 as their inputs and ignore their first input. Thus, the
security of the underlying schemes FEt enables us to bound A’s advantage in distinguishing be-
tween the experiments H(2,Q′enc+1,0,...,0) and H(8). Specifically, let F ′ denote the family of functions
AGGx0`+t,x

1
`+t,`+t,K

msk,Kenc,v (as defined in Figure 4) and Genf0,f1,Kmsk,Kkey,w (as defined in Figure 3).

The proof of the following claim is similar to the proof of Claim 3.2.

Claim 3.8. There exists a valid t-input adversary B(2,Q′enc+1,0,...,0)→(8) that runs in time T ′(λ) +
(t(λ) ·Q′enc(λ)+Q′key(λ)) ·poly(λ) and issues at most Q′enc(λ) encryption queries with respect to each
index i ∈ [t] and at most t(λ) ·Q′enc(λ) +Q′key(λ) key-generation queries, such that∣∣∣Pr

[
H(2,Q′enc+1,0,...,0)(λ) = 1

]
− Pr

[
H(8)(λ) = 1

]∣∣∣ ≤ AdvselFEt

FEt,F ′,B(2,Q
′
enc+1,0,...,0)→(8)

(λ).

21

Putting together Claims 3.2–3.8 with the assumptions that FEt is a (T,Q′key, Q
′
enc, µ)-selectively-

secure t-input functional encryption scheme and that PRF is a (T, µ)-secure puncturable pseudo-
random function family, and with the facts that H(0)(λ) = ExpselFEt

FEt,F ,A(λ), H(1)(λ) = H(2,1,...,1,0)(λ),

and Pr
[
H(8)(λ) = 1

]
= 1/2, we observe that

AdvselFE2t
FE2t,F ,A

def
=

∣∣∣∣Pr
[
ExpselFE2t

FE2t,F ,A(λ) = 1
]
− 1

2

∣∣∣∣
=
∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(8)(λ) = 1

]∣∣∣
≤
∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣
+

Q′enc∑
k1=1

Q′enc∑
k2=0

· · ·
Q′enc∑
kt=0

6∑
i=2

∣∣∣Pr
[
H(i,k1,...,kt)(λ) = 1

]
− Pr

[
H(i+1,k1,...,kt)(λ) = 1

]∣∣∣
+
∣∣∣Pr
[
H(2,Q′enc+1,0,...,0)(λ) = 1

]
− Pr

[
H(8)(λ) = 1

]∣∣∣
≤ (2 + (4 + t ·Q′enc +Q′key) · (Q′enc)t) · µ
≤ 8t · (Q′enc)t+1 ·Q′key · µ. (3.1)

3.2 Efficiency Analysis

In this section we analyze the overhead incurred by our transformation. Specifically, for a message
space X1 × · · · × X2t and a function space F that consists of 2t-input functions, we instantiate our
scheme (by applying our transformation log t times) and analyze the size of a master secret key, the
size of a functional-key, the size of a ciphertext and the time it takes to evaluate a functional-key
with 2t ciphertexts.

Let λ ∈ N be a security parameter with which we instantiate the 2t-input scheme, let us assume
that F consists of functions of size at most s = s(λ) and that each Xi consists of messages of size
at most m = m(λ). Assuming that log t ≤ poly(λ) (to simplify notation), we show that there exists
a fixed constant c ∈ N such that:

• the setup procedure takes time λc ,

• the key-generation procedure takes time (s · λ)t
log c

,

• the encryption procedure takes time (m · λ)t
log c

, and

• the decryption procedure takes time tlog t · λc.

In Section 3.3 we will choose s,m, t and λ to satisfy Lemma 3.9.
For a circuit A that receives inputs of lengths x1 . . . , xm, we denote by Time(A, x1, . . . , xm) the

size of the circuit when applied to inputs of length
∑m

i=1 xi. For a function family F , we denote by
Size(F) the maximal size of the circuit that implements a function from F .

We analyze the overhead incurred by our transformation

The setup procedure. The setup procedure of FE2t is composed of sampling a key for a scheme FEt
and generating a PRF key. Iterating this, we see that a master secret key in our final scheme consists
of a single master secret key for a single-input scheme and log t additional PRF keys. Namely,

Time(FE2t.S, 1
λ) = Time(FEt.S, 1

λ) + p1(λ),

22

where p1 is a fixed polynomial that depends on the key-generation time of the PRF, and thus

Time(FE2t.S, λ) = Time(FE1.S, λ) + log t · p1(λ).

The key-generation procedure. The key-generation procedure of FE2t depends on the complexity
of the key-generation procedure of the FEt scheme. Let F2t be the function family that is supported
by the scheme FE2t.

Time(FE2t.KG, λ,Size(FE2t.S, λ), Size(F2t)) =

Time(FEt.KG, λ, 2Size(F2t),Time(FEt.S, λ),Time(FEt.KG,Size(F2t)), p2(λ))) + p3(λ),

where p2 subsumes the size of the embedded PRF keys and the complexity of the simple operations
that are done in Gen, and p3 subsumes the running time of the generation of the PRF key Kkey.

The dominant part in the above equation is that the time it takes to generate a key with respect
to FE2t for a function whose size is Size(F2t) depends on the circuit size of key-generation in the
scheme FEt for a function whose size is Time(FEt.KG,Size(F2t)) (namely, it is a function that outputs
a functional key for a function whose size is Size(F2t)). Thus, applying this equation recursively, we
get that for large enough c ∈ N (that depends on the exponents of p2 and p3), it holds that

Time(FE2t.KG, λ,Time(FE2t.S, λ), Size(F2t)) ≤ (Size(F2t) · λ)c
log t

= (Size(F2t) · λ)t
log c

.

The encryption procedure. The encryption procedure of FE2t depends on the complexity of
encryption and key-generation of the FEt scheme. Let m be the length of a message to encrypt. For
` ≤ t, the complexity is at most

Time(FE2t.E, λ,Size(FE2t.S, λ),m) ≤ Time(FEt.E, λ, 2m, (t+ 2)λ).

For t+ 1 ≤ ` ≤ 2t, the complexity of encryption is

Time(FE2t.E, λ,Size(FE2t.S, λ),m) ≤
Time(FEt.KG, λ,Time(FEt.S, λ),Time(FEt.E, 2m), p4(λ)),

where p4 subsumes the running time of the key-generation procedure of the PRF and the various
other simple operations made by AGG.

The dominant part is that an encryption of a message with respect to the scheme FE2t requires
generating a key with respect to the scheme FEt for a function whose size is Time(FEt.E, 2m). Thus,
similarly to the analysis of the key-generation procedure, we get that for some fixed c ∈ N (that
depends on the exponents of p4 and the time it takes to encrypt a message with respect to FE1), we
get that

Time(FE2t.E, λ,Size(FE2t.S, λ),m) ≤ (m · λ)t
log c

.

The decryption procedure. Decryption in the scheme FE2t requires t+ 2 decryption operations
with respect to the scheme FEt. Let ct(t) and sk(t) be the length of a ciphertext and a key in the
scheme FEt, respectively. We get that

Time(FE2t.D, sk(t), 2t · ct(t)) = (t+ 2) · Time(FEt.D, sk(t), t · ct(t)) ≤ (t+ 2)log t · p5(λ),

where p5 is a polynomial that subsumes the complexity of decryption in FE1.

23

3.3 Iteratively Applying Our Transformation

In this section we show that by iteratively applying our transformation O(log log λ) times we obtain
a t-input scheme, where t = (log λ)δ for some constant 0 < δ < 1. We prove the following two
theorems:

Lemma 3.9. Let T = T (λ), Qkey = Qkey(λ), Qenc = Qenc(λ) and µ = µ(λ) be functions of the
security parameter λ ∈ N and let ε ∈ (0, 1). Assume any (T,Qkey, Qenc, µ)-selectively-secure single-
input private-key functional encryption scheme with the following properties:

1. it supports circuits and messages of size poly(2(log λ)2ε) and

2. the size of a ciphertext and a functional key is bounded by poly(2(log λ)2ε),

then for some constant δ ∈ (0, 1), there exists a
(
T ′, Q′key, Q

′
enc, µ

′
)

-selectively-secure (log λ)δ-input

private-key functional encryption scheme with the following properties:

1. it supports circuits and messages of size poly(2(log λ)ε),

2. T ′(λ) ≥ T (λ)− (log log λ) · p(λ),

3. Q′key(λ) ≥ Qkey(λ)− (2 log λ) ·Qenc(λ),

4. Q′enc(λ) = Qenc(λ), and

5. µ′(λ) ≤ 2(3 log log λ)2 · (Qenc(λ))2(log λ)δ+2 · (Qkey(λ))log log λ · µ(λ).

Proof. Let FE1 be a (T,Qkey, Qenc, µ)-selectively-secure single-input scheme with the properties
from the statement.

Let us analyze the complexity of the t-input scheme where t(λ) = (log λ)δ, where δ > 0 is
some fixed constant that we fix later. In terms of complexity, using the properties of the single-
input scheme and our efficiency analysis from Section 3.2, we have that setup takes a polynomial

time in λ, key-generation for a function of size s takes time at most (s · λ)t
log c

and encryption

of a message of length m takes time (m · λ)t
log c

for some large enough constant c > 1 (recall
that c is an upper bound on the exponents of the running time of key generation and encryption
procedures of the underlying single-input scheme). Plugging in δ = 2ε/(3 log c), t = (log λ)δ and
s,m ≤ 2c

′·(log λ)ε for any c′ ∈ N, we get that key-generation and encryption take time at most
2c
′·(log λ)2ε/3·(log λ)ε = 2c

′·(log λ)5ε/3 . Notice that for large enough λ, decryption of such a key-message
pair takes time at most poly(2(log λ)5ε/3) · (t+ 2)log t ≤ 2(log λ)2ε .

In terms of security, by Theorem 3.1, we have that if FEt is (T (t), Q
(t)
key, Q

(t)
enc, µ

(t))-selectively-

secure and PRF is a (T (t), µ(t))-secure puncturable pseudorandom function family, then FE2t is

(T (2t), Q
(2t)
key , Q

(2t)
enc , µ

(2t))-selectively-secure, where

1. T (2t)(λ) = T (t)(λ)− p(λ),

2. Q
(2t)
key (λ) = Q

(t)
key(λ)− t ·Q(t)

enc,

3. Q
(2t)
enc (λ) = Q

(t)
enc(λ), and

4. µ(2t)(λ) = 2(3 log log λ)2 · (Qenc(λ))2(log λ)δ+2 · (Qkey(λ))log log λ · µ(λ).

24

Iterating these recursive equations, using the fact that Q
(2t)
key ≤ Q

(t)
key, and plugging in our initial

scheme parameters, we get that

Q′enc(λ) = Q
(1)
enc(λ) = Qenc(λ)

Q′key(λ) = Q
(t)
key(λ)− t(λ) ·Qenc(λ)

≥ Qkey(λ)− 2t(λ) ·Qenc(λ)

≥ Qkey(λ)− (2 log(λ)) ·Qenc(λ)

T ′(λ) ≥ T (λ)− log t(λ) · p(λ)

≥ T (λ)− (log log λ) · p(λ)

µ′(λ) ≤ (8t(λ))log t(λ) · (Qenc(λ))2t(λ)+2 · (Qkey(λ))log t(λ) · µ(λ)

≤ 2(3 log t(λ))2 · (Qenc(λ))2t(λ)+2 · (Qkey(λ))log t(λ) · µ(λ)

≤ 2(3 log log λ)2 · (Qenc(λ))2(log λ)δ+2 · (Qkey(λ))log log λ · µ(λ)

Claim 3.10. Let λ ∈ N be a security parameter and fix any constant ε ∈ (0, 1). Assuming any

(22·(log λ)1/ε , 22·(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively-secure single-input private-key functional en-
cryption scheme supporting polynomial-size circuits, there exists a (22·(log λ)2 , 22·(log λ)2 , 2(log λ)2 ,
2−(log λ)3)-selectively-secure single-input private-key functional encryption scheme with the following
properties

1. it supports circuits and messages of size poly(2(log λ)2ε) and

2. the size of a ciphertext and a functional key is bounded by poly(2(log λ)2ε).

Proof. We instantiate the given scheme with security parameter λ̃ = 2(log λ)2ε . The resulting scheme

is
(

22·(log λ)2 , 22·(log λ)2 , 2(log λ)2 , 2−(log λ)3
)

-selectively-secure and for a circuit (resp., message) of size

λ̃, the size of a functional key (resp., ciphertext) is bounded by poly(λ̃).

Combining Claim 3.10 and Lemma 3.9 we get the following theorem.

Theorem 3.11. Let λ ∈ N be a security parameter and fix any constant ε ∈ (0, 1). Assuming any

(22·(log λ)1/ε , 21·(log λ)2/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively-secure single-input private-key functional en-
cryption scheme supporting polynomial-size circuits, then for some δ ∈ (0, 1), there exists a (2(log λ)2 ,
2(log λ)2 , 2(log λ)2 , 2−(log λ)2)-selectively-secure (log λ)δ-input private-key functional encryption scheme
supporting circuits of size 2(log λ)ε.

Proof. Assuming any
(

22·(log λ)1/ε , 22·(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε
)

-selectively-secure single-input

private-key functional encryption scheme supporting polynomial-size circuits. By Claim 3.10, it im-

plies a
(

22·(log λ)2 , 22·(log λ)2 , 2(log λ)2 , 2−(log λ)3
)

-selectively-secure single-input private-key functional

encryption scheme with the following properties:

25

1. it supports circuits and messages of size poly(2(log λ)2ε) and

2. the size of a ciphertext and a functional key is bounded by poly(2(log λ)2ε).

Using Lemma 3.9, we get that for some constant δ ∈ (0, 1), there exists a
(
T ′, Q′key, Q

′
enc, µ

′
)

-

selectively-secure (log λ)δ-input private-key functional encryption scheme with the following prop-
erties:

1. it supports circuits and messages of size at most poly(2(log λ)ε/2),

2. T ′(λ) ≥ 22·(log λ)2 − (log log λ) · p(λ) ≥ 2(log λ)2 ,

3. Q′key(λ) ≥ 22·(log λ)2 − (2 log λ) · 2(log λ)2 ≥ 2(log λ)2 ,

4. Q′enc(λ) = 2(log λ)2 , and

5. µ′(λ) ≤ 2(3 log log λ)2 · (2(log λ)2)2(log λ)δ+2 · (2(log λ)2)log log λ · 2−(log λ)3 ≤ 2−(log λ)2 .

4 Applications of Our Construction

In this section we present our construction of an indistinguishability obfuscator for circuits with in-
puts of poly-logarithmic length, and its applications to public-key functional encryption and average-
case PPAD hardness.

4.1 Obfuscation for Circuits with Poly-logarithmic Input Length

We show that any selectively-secure t-input private-key functional encryption scheme that supports
circuits of size s can be used to construct an indistinguishability obfuscator that supports circuits
of size s that have at most t · log λ inputs, where λ ∈ N is the security parameter. This is similar
to the proof of Goldwasser et al. [GGG+14] that showed that private-key multi-input functional
encryption for a polynomial number of inputs implies indistinguishability obfuscation (and a follow-
up refinement of Bitansky et al. [BNP+16]).

We consider the following restricted class of circuits:

Definition 4.1. Let λ ∈ N and let s(·) and t′(·) be functions. Let Cs,t
′

λ denoet the class of all circuits
of size at most s(λ) that get as input t′(λ) bits.

Lemma 4.2. Let t = t(λ), s = s(λ), T = T (λ), Qkey = Qkey(λ), Qenc = Qenc(λ) and µ = µ(λ) be
functions of the security parameter λ ∈ N, and assume a (T,Qkey, Qenc, µ)-selectively-secure t-input
private-key functional encryption scheme for functions of size at most s, where Qkey(λ) ≥ 1 and
Qenc(λ) ≥ λ. Then, there exists a (T (λ)− λ · t(λ) · p(λ), µ(λ))-secure indistinguishability obfuscator

for the circuit class Cs,t
′

λ , where p(·) is some fixed polynomial and t′(λ) = t(λ) · log λ.

Proof. Let FEt be a t-input scheme as in the statement of the lemma. We construct an obfuscator

for circuits of size at most s(λ) that receive t(λ) · log λ bits as input. On input a circuit C ∈ Cs,t
′

λ ,
the obfuscator works as follows:

1. Sample a master secret key msk← FEt.S(1λ).

2. Compute cti,j = FEt.E(msk, i, j) for every i ∈ {0, 1}log λ and j ∈ [t(λ)].

26

3. Compute skC = FEt.KG(msk, C)

4. Output Ĉ = {skC} ∪ {cti,j}i∈{0,1}log λ,j∈[t(λ)].

Evaluation of an obfuscated circuit Ĉ on an input x ∈ ({0, 1}log λ)t, where we view x as x =
x1 . . . xt and xi ∈ {0, 1}log λ, is done by outputting the result of a single execution of the decryption
procedure of the t-input scheme FEt.D(skC , ctx1,1, . . . , ctxt,t). Notice that the description size of the
obfuscated circuit is upper bounded by some fixed polynomial in λ.

For security, notice that a single functional key is generated and it is for a circuit of size at
most s(λ). Moreover, the number of ciphertexts is bounded by λ ciphertexts per coordinate. Thus,
following [GGG+14], one can show that an adversary that can break the security of the above
obfuscator can be used to break the security of the FEt scheme with the same success probability
(it can even break FEt that satisfies a weaker security notion in which the functional keys are also
fixed ahead of time, before seeing any ciphertext).

Applying Lemma 4.2 with the t-input scheme from Theorem 3.11 we obtain the following corol-
lary.

Corollary 4.3. Let λ ∈ N be a security parameter and fix any constant ε ∈ (0, 1). Assume a

(22(log λ)1/ε , 22(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively-secure single-input private-key functional en-
cryption scheme for all functions of polynomial size. Then, for some constant δ ∈ (0, 1), there exists

a (2(log λ)2 , 2−(log λ)2)-secure indistinguishability obfuscator for the circuit class C2O((log λ)ε),(log λ)1+δ

λ .

4.2 Public-Key Functional Encryption

In this section we present a construction of a public-key functional encryption scheme based on our
multi-input private-key scheme.

Theorem 4.4. Let λ ∈ N be a security parameter and fix any ε ∈ (0, 1). There exists a constant δ >

0 for which the following holds. Assume a (22(log λ)1/ε , 22(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively-
secure single-input private-key functional encryption scheme for all functions of polynomial size,

and that (22λε
′
, 2−2λε

′
)-secure one-way functions exist for ε′ > 1/(1 + δ). Then, for some constant

ζ > 1, there exists a (2(log λ)ζ , 2(log λ)ζ , 2−(log λ)ζ)-selectively-secure public-key encryption scheme for

the circuit class C2O((log λ)ε),(log λ)1+δ

λ .

Our construction is essentially the construction of Waters [Wat15], who showed how to construct
a public-key functional encryption scheme for the set of all polynomial-size circuits assuming indis-
tinguishability obfuscation for all polynomial-size circuits. Here, we make a more careful analysis
of his scheme and show that for a specific range of parameters, it suffices to use the obfuscator we
have obtained in Corollary 4.3.

Waters’ construction builds upon his notion of puncturable deterministic encryption which we
review in Section 4.2.1. In Section 4.2.2 we present the construction and analyze its security. In
Section 4.2.3 we prove Theorem 4.4.

4.2.1 Puncturable Deterministic Encryption

Here we review the functionality and security of puncturable deterministic encryption (PDE) as put
forward by Waters [Wat15]. Let M = {Mλ}λ∈N be a message space and K = {Kλ}λ∈N be a key
space. A PDE scheme consists of four probabilistic polynomial time algorithms PDE = (PDE.S,

27

PDE.E,PDE.D,PDE.P). The setup procedure PDE.S gets as input a security parameter (in unary
representation) and generates a key K ∈ Kλ. The encryption procedure PDE.E is a deterministic
procedure that takes as input a key K ∈ Kλ and a message m ∈ Mλ, and output a ciphertext ct.
The decryption procedure PDE.D takes as input a key K ∈ Kλ and a ciphertext ct and outputs
either a message m ∈ Mλ or ⊥. The puncturing procedure PDE.P takes as input a key K ∈ Kλ as
well as a pair of messages x0, x1 ∈Mλ, and output a “punctured” key K|{x0,x1}.

Definition 4.5 (Correctness). A PDE scheme PDE = (PDE.S,PDE.E,PDE.D,PDE.P) is ρ-correct
if for all λ ∈ N, all x0, x1 ∈Mλ, all m ∈Mλ, it holds that

Pr
[
PDE.D(K,PDE.E(K,m)) 6= m

]
≤ ρ(λ),

and for all m ∈Mλ \ {x0, x1}

Pr
[
PDE.D(K|{x0,x1},PDE.E(K,m)) 6= m

]
≤ ρ(λ),

where K ← PDE.S(1λ), K|{x0,x1} ← PDE.P(K,x0, x1), and the probabilities are taken over the
internal randomness of PDE.S and of PDE.P.

Definition 4.6 (PDE security). A PDE scheme PDE = (PDE.S,PDE.E,PDE.D,PDE.P) over a
message space M = {Mλ}λ∈N is (t, µ)-secure if for any adversary A = (A1,A2) that runs in time
t = t(λ) it holds that

AdvPDE
PDE,A(λ)

def
=

∣∣∣∣Pr
[
ExpPDE

PDE,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ µ(λ),

for all sufficiently large λ ∈ N, where the random variable ExpPDE
PDE,A(λ) is defined via the following

experiment:

1. x0, x1 ← A1(1λ).

2. K ← PDE.S(1λ), K|{x0,x1} ← PDE.P(K,x0, x1).

3. ct0 = PDE.E(K,x0), ct1 = PDE.E(K,x1), b← {0, 1}.
4. b′ ← A2(K|{x0,x1}, ctb, ct1−b)).
5. If b′ = b then output 1, and otherwise output 0.

We say that PDE is secure if it is (t, µ)-secure for some t = t(λ) that is super-polynomial and
µ = µ(λ) that is negligible. We say that PDE is sub-exponentially secure if t(λ) = 1/µ(λ) = 2λ

ε
for

some constant 0 < ε < 1.

Waters [Wat15] presented an elegant construction of a PDE scheme assuming any puncturable
PRF family (which, in turn, is known to exist based on any one-way function [KPT+13, BW13,
SW14, BGI14]). Here, we state a parameterized version of his result.

Lemma 4.7. Assume the existence of a a (TOWF, µOWF)-secure one-way function f : {0, 1}λ →
{0, 1}λ. Then, there exists a 2−λ-correct (TOWF − p1(λ), µOWF − p2(λ))-secure PDE scheme, where
p1(·) and p2(·) are two fixed polynomials, with the following properties:

1. Mλ = {0, 1}λ and Kλ = {0, 1}2λ.

2. For every m ∈ {0, 1}λ and K ∈ {0, 1}2λ it holds that PDE.E(K,m) ∈ {0, 1}3λ+λ = {0, 1}4λ.

3. PDE.D gets as input elements in {0, 1}2λ × {0, 1}4λ and runs in fixed polynomial time in λ.

4. PDE.P gets as input elements in {0, 1}2λ × {0, 1}λ × {0, 1}λ and outputs an element which is
of fixed polynomial size in λ.

28

4.2.2 The Construction

In this section we present our construction of a public-key functional encryption scheme for the class
Cs,tλ of circuits, where s(λ) = 2O((log λ)ε) and t(λ) = (log λ)1+δ for some fixed constants ε, δ > 0. Our
construction relies on the following building blocks:

1. An indistinguishability obfuscator iO for the class of circuits Cs,tλ .

2. A puncturable deterministic encryption PDE = (PDE.S,PDE.E,PDE.D,PDE.P) for the mes-
sage space Mλ = {0, 1}t(λ)/6.

3. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval,PRF.Punc) with key
space {0, 1}t(λ), domain {0, 1}t(λ)/3 and range {0, 1}t(λ)/3.

4. A length-doubling pseudorandom generation PRG : {0, 1}t(λ)/6 → {0, 1}t(λ)/3.

Our scheme pkFE = (pkFE.S, pkFE.KG, pkFE.E, pkFE.D) is defined as follows.

• The setup algorithm. On input the security parameter 1λ the setup algorithm pkFE.S
samples a PRF key K ← PRF.Gen(1λ) and computes ĈK = iO(CK), where the circuit CK
that is defined in Figure 5. The output of the procedure is msk = K and mpk = ĈK .

• The key-generation algorithm. On input the master secret key msk and a function f ∈ Fλ,
the key-generation algorithm pkFE.KG outputs skf = iO(Pf,K,⊥,⊥,⊥,⊥,⊥), where the circuit
Pf,K,z∗,c0,c1,y,k′ is defined in Figure 5.

CK(r) :

1. Compute z = PRG(r).

2. Compute k = PRF.Eval(K, z).

3. Output (z, k).

Pf,K,z∗,c0,c1,y,k′(z, c) :

1. If z∗ 6= ⊥ and z = z∗ then
(a) If c /∈ {c0, c1} output f(PDE.D(k′, c)).

(b) If c ∈ {c0, c1} output y.

2. Else, compute k = PRF.Eval(K, z).

3. Output f(PDE.D(k, c)).

Figure 5: The functions CK and Pf,K,z∗,c0,c1,y,k′ .

• The encryption algorithm. On input the master public key mpk = ĈK and a message x,
the encryption algorithm pkFE.E chooses a random r ∈ {0, 1}t(λ)/6 and runs the obfuscated

program ĈK on r to get (z, k). It then computes c = PDE.E(k, x) and outputs ct = (z, c).

• The decryption algorithm. On input a functional key skf = P̂f,K and a ciphertext ct =

(t, c) the decryption procedure pkFE.D runs the obfuscated program P̂f,K on input (z, c) and
outputs the response.

Correctness and security. We argue that the assumed indistinguishability obfuscator can be
used in the scheme above. The input size of CK is t(λ)/6 < t(λ) and its size is bounded by
poly(t(λ)) < s(λ). To analyze the size of Pf,K,z∗,c0,c1,y,k′ we have to analyze the parameters of the
underlying PDE scheme. By Lemma 4.7, its key space is {0, 1}t(λ)/3 and its ciphertext space is
{0, 1}2t(λ)/3. Thus, the input size of Pf,K,z∗,c0,c1,y,k′ is t(λ)/3 + 2t(λ)/3 = t(λ) and for a function

f ∈ Cs,tλ of size 2c·(log λ)ε its size is bounded by poly(s(λ), t(λ)) = poly(2c·(log λ)ε , (log λ)1+δ) ≤ s(λ).
Thus, the obfuscator can be used. Now, the fact that the scheme is correct follows directly from
the correctness of the underlying indistinguishability obfuscator and the puncturable deterministic
scheme (see [Wat15] for more details). The following theorem, which is proved in Appendix A.2,

29

captures the security of the scheme (note that given the generic transformation of Ananth et al.
[ABS+15] it suffices to prove selective security, as any such scheme can be transformed into an
adaptively-secure one).

Lemma 4.8. Let TiO = TiO(λ), µiO = µiO(λ), TPDE = TPDE(λ), µPDE = µPDE(λ), TPRF = TPRF(λ),
µPRF = µPRF(λ), TPRG = TPRG(λ), and µPRG = µPRG(λ) be functions of the security parameter λ ∈ N.
If iO is a (TiO, µiO)-secure indistinguishability obfuscator, PDE is a ηPDE-correct (TPDE, µPDE)-
deterministic encryption scheme, PRF is a (TPRF, µPRF)-secure puncturable pseudorandom function,
and PRG is a (TPRG, µPRG)-secure pseudorandom generator, then pkFE is a (TpkFE, Qkey, µpkFE)-
selectively-secure public-key functional encryption scheme, where:

1. TpkFE(λ) = min{TiO(λ), TPDE(t(λ)/6), TPRF(t(λ)), TPRG(t(λ)/6)} − p(λ) for some fixed polyno-
mial p(λ).

2. Qkey(λ) = TpkFE(λ).

3. µpkFE(λ) = µPRG(t(λ)/6)+µiO(λ)+1/2t(λ)/6 +Qkey(λ) ·(µiO(λ)+ηPDE(t(λ)/6))+µPRF(t(λ))+
µPDE(t(λ)/6).

4.2.3 Proof of Theorem 4.4

Assume a (22(log λ)1/ε , 22(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively-secure single-input private-key func-
tional encryption scheme for all functions of polynomial size. By Corollary 4.3, for every ε > 0, there
exists a δ > 0 such that there exists a (2(log λ)2 , 2−(log λ)2)-secure indistinguishability obfuscator for

the circuit class C2O((log λ)ε),(log λ)1+δ

λ .

Assume a (22λε
′
, 2−2λε

′
)-secure one-way function for some constant 1/(1 + δ) < ε′ < 1. Thus, the

following primitives exist:

1. a (2λ
ε′
, 2−λ

ε′
)-secure PDE scheme (by Lemma 4.7),

2. a (2λ
ε′
, 2−λ

ε′
)-secure puncturable pseudorandom function family, and

3. a (2λ
ε′
, 2−λ

ε′
)-secure pseudorandom generator.

Recall that t(λ) = (log λ)1+δ and let ε′′ = (1 + δ) · ε′. Notice that ε′′ > 1 by the choice of ε′.
Plugging these primitives in Lemma 4.8 we get that there exist constants 1 < ζ ′, ζ ′′ < ε′′ for which
the public-key functional encryption scheme is (TpkFE, Qkey, µpkFE)-secure where

1. TpkFE(λ) ≥ min{22(log λ)2 , 2((log λ)(1+δ)/6)ε
′
} − p(λ) = 2((log λ)ε

′′
/6ε
′
− p(λ) ≥ 2(log λ)ζ

′
.

2. Qkey(λ) = TpkFE(λ).

3. µpkFE(λ) ≤ 2((log λ)ε
′′
/6ε
′
+2−(log λ)2+2−(log λ)1+δ/6+Qkey(λ)(2−(log λ)2+2((log λ)ε

′′
/6ε
′
)+2((log λ)ε

′′
/6ε
′
+

2((log λ)ε
′′
/6ε
′
≤ 2−(log λ)ζ

′′
.

Finally, we set ζ = min{ζ ′, ζ ′′} and obtain the result.

30

4.3 Average-Case PPAD Hardness

We present a construction of a hard-on-average distribution of Sink-of-Verifiable-Line (SVL) in-
stances assuming any quasi-polynomially-secure private-key (single-input) functional encryption
scheme and sub-exponentially-secure one-way function. Following the work of Abbot et al. [AKV04]
and Bitansky et al. [BPR15], this shows that the complexity class PPAD [Pap94, DGP09a, DGP09b,
CDT09] contains complete problems that are hard on average (we refer the reader to [BPR15] for
more details). In what follows we first recall the SVL problem, and then state and prove our hardness
result.

Definition 4.9 (Sink-of-Verifiable-Line). An SVL instance (S,V, xs, T) consists of a source xs ∈
{0, 1}λ, a target index T ∈ [2λ], and a pair of circuits S : {0, 1}λ → {0, 1}λ and V : {0, 1}λ × [T] →
{0, 1}, such that for (x, i) ∈ {0, 1}λ × [T], it holds that V(x, i) = 1 if and only if x = xi = Si−1(xs),
where x1 = xs. A string w ∈ {0, 1}λ is a valid witness if and only if V(w, T) = 1.

Theorem 4.10. Let λ ∈ N be a security parameter and fix any constant ε ∈ (0, 1). Assume

a (22(log λ)1/ε , 22(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively-secure single-input private-key functional

encryption scheme for all functions of polynomial size, and that (2λ
2ε′
, 2−λ

2ε′
)-secure injective one-

way functions exist for some large enough constant ε′ ∈ (0, 1). Then, there exists a distribution with
an associated efficient sampling procedure that generates instances of sink-of-verifiable-line which
are hard to solve for any polynomial-time algorithm.

We present the construction of a hard-on-average SVL distribution. This distribution is efficiently
samplable and we later show that, under appropriate cryptographic assumptions, it is hard to solve
it in polynomial time. The construction relies on the following building blocks:

1. A indistinguishability obfuscator iO for the class of circuits Cs,tλ , where s(λ) = 2O(log λ)ε and
t(λ) = (log λ)1+δ for some fixed constants ε, δ > 0.

2. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval) with key space

{0, 1}t(λ), domain [T (λ)] and range {0, 1}t(λ)/2, where T (λ) = 2(log λ)1+δ/3 .

3. An injective one-way function OWF : {0, 1}t(λ)/2 → {0, 1}`(t(λ)), where `(λ) is any fixed poly-
nomial.9

The construction consists of an obfuscation of a (padded) circuit VS that given a valid signature
on an index i produces a signature on the next index i + 1, where signatures will be implemented
by the puncturable PRF. The circuit is formally described in Figure 6.

Hardwired: K ∈ {0, 1}t(λ)

Input: i ∈ [T (λ)], σ ∈ {0, 1}t(λ)/2

VSK(i, σ) :

1. If σ 6= PRF.Eval(K, i), return ⊥ and HALT.

2. If i = T , return SOLVED and HALT.

3. Return (i+ 1,PRF.Eval(K, i+ 1)).

Padding: The circuit is padded to size s(λ), where s is some fixed polynomial.

Figure 6: The functions VSK .

9The injective one-way function can be relaxed to be a family of one-way functions such that a random element
is an injective function with high probability. Furthermore, this primitive will not be used in the construction, but
rather only in the proof of security.

31

More precisely, an instance in the distribution is composed of V̂SK ← iO(VSK), an obfuscation
of the circuit VSK , where K ← PRF.Gen(1t(λ)) and a signature σ1 = PRFK(1). This induces an SVL

instance (S,V, xs, T) where the successor circuit S computes V̂SK , the verification circuit V uses

V̂SK to test inputs along the chain from the source input xs = (1, σ1) to the target input (T, σT).
We observe that the circuit VSK has input of length t(λ)/2 + t(λ)/2 = t(λ) and the size of VSK

is bounded by some fixed polynomial in t(λ) which is smaller than s(λ).
For security, we rely on sub-exponentially secure injective one-way functions and the iO we

obtained in Corollary 4.3. We use a parameterized version of the main result of [BPR15].

Theorem 4.11 ([BPR15]). Let TiO = TiO(λ), µiO = µiO(λ), TPRF = TPRF(λ), µPRF = µPRF(λ),
and µOWF = µOWF(λ) be functions of the security parameter λ ∈ N Assume that iO is a (TiO, µiO)-
secure indistinguishability obfuscator for the class Cs,tλ , PRF be a (TPRF, µPRF)-secure puncturable
pseudorandom function, OWF be a (TOWF, µOWF)-secure family of injective one-way functions, then
for any distinguisher D that runs in time at most min{TiO(λ) + TPRF(t(λ)) + TOWF(t(λ)/2)}, the
probability of solving the SVL problem is at most

µOWF(log T (λ)) + T (λ) · (µiO(λ) + µPRF(t(λ)) + µOWF(t(λ)/2)).

We are now ready to prove Theorem 4.10.

Proof of Theorem 4.10. Assume a (22(log λ)1/ε , 22(log λ)1/ε , 2(log λ)1/ε , 2−(log λ)1.5/ε)-selectively-secure
single-input private-key functional encryption scheme for all functions of polynomial size. By Corol-
lary 4.3, for every ε > 0, there exists a δ > 0 such that there exists a (2(log λ)2 , 2−(log λ)2)-secure

indistinguishability obfuscator for the circuit class C2O((log λ)ε),(log λ)1+δ

λ .

Assume a (22λε
′
, 2−2λε

′
)-secure (injective) one-way function for some large enough constant ε′ such

that (1 + δ/2)/(1 + δ) ≤ ε′ < 1. Thus, there exists a (2λ
ε′
, 2−λ

ε′
)-secure puncturable pseudorandom

function family.
Recall that T (λ) = 2(log λ)1+δ/3 and t(λ) = (log λ)1+δ. Plugging these primitives in Lemma 4.8

we get that for some (small enough) constants ζ ′, ζ ′′ ∈ (0, 1), every adversary that runs in time

min{TiO(λ) + TPRF(t(λ)) + TOWF(t(λ)/2)} ≥ 2(log λ)1+ζ
′
,

its probability of solving the SVL problem is at most

µOWF(log T (λ)) + T (λ) · (µiO(λ) + µPRF(t(λ)) + µOWF(t(λ)/2))

= µOWF((log λ)1+δ/3) + 2(log λ)1+δ/3 · (2−(log λ)2 + µPRF((log λ)1+δ) + µOWF((log λ)1+δ/2))

≤ 2−(log λ)(1+δ/3)·ε
′

+ 2(log λ)1+δ/3 · (2−(log λ)2 + 2−(log λ)(1+δ)·ε
′

+ 2−(log λ)(1+δ)·ε
′
/2ε
′
)

≤ 2−(log λ)1+ζ
′′
.

Acknowledgments

We thank Zvika Brakerski and the anonymous referees for many valuable comments. The first
author thanks his advisor Moni Naor for his support and guidance.

32

References

[AAB+13] S. Agrawal, S. Agrawal, S. Badrinarayanan, A. Kumarasubramanian, M. Prabhakaran,
and A. Sahai. Function private functional encryption and property preserving encryp-
tion: New definitions and positive results. Cryptology ePrint Archive, Report 2013/744,
2013.

[ABG+13] P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfuscation
and applications. Cryptology ePrint Archive, Report 2013/689, 2013.

[ABS+15] P. Ananth, Z. Brakerski, G. Segev, and V. Vaikuntanathan. From selective to adaptive
security in functional encryption. In Advances in Cryptology – CRYPTO ’15, pages
657–677, 2015.

[AJ15] P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional en-
cryption. In Advances in Cryptology – CRYPTO ’15, pages 308–326, 2015.

[AJN+16] P. Ananth, A. Jain, M. Naor, A. Sahai, and E. Yogev. Universal obfuscation and witness
encryption: Boosting correctness and combining security. Cryptology ePrint Archive,
Report 2016/281, 2016.

[AJS15] P. Ananth, A. Jain, and A. Sahai. Achieving compactness generically: Indistinguisha-
bility obfuscation from non-compact functional encryption. Cryptology ePrint Archive,
Report 2015/730, 2015.

[AKV04] T. Abbot, D. Kane, and P. Valiant. On algorithms for Nash equilibria, 2004.

[AS15] G. Asharov and G. Segev. Limits on the power of indistinguishability obfuscation and
functional encryption. In Proceedings of the 56th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 191–209, 2015.

[BCP14] E. Boyle, K. Chung, and R. Pass. On extractability obfuscation. In Proceedings of the
11th Theory of Cryptography Conference, pages 52–73, 2014.

[BGH+15] Z. Brakerski, C. Gentry, S. Halevi, T. Lepoint, A. Sahai, and M. Tibouchi. Cryptanalysis
of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report 2015/845,
2015.

[BGI+12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. Journal of the ACM, 59(2):6, 2012.

[BGI14] E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions.
In Proceedings of the 17th International Conference on Practice and Theory in Public-
Key Cryptography, pages 501–519, 2014.

[BKS16] Z. Brakerski, I. Komargodski, and G. Segev. Multi-input functional encryption in the
private-key setting: Stronger security from weaker assumptions. In Advances in Cryp-
tology – EUROCRYPT ’16, pages 852–880, 2016.

[BLR+15] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zimmerman. Semantically
secure order-revealing encryption: Multi-input functional encryption without obfusca-
tion. In Advances in Cryptology – EUROCRYPT ’15, pages 563–594, 2015.

33

[BNP+16] N. Bitansky, R. Nishimaki, A. Passelègue, and D. Wichs. From Cryptomania to Ob-
fustopia through secret-key functional encryption. Cryptology ePrint Archive, Report
2016/558, 2016.

[BPR15] N. Bitansky, O. Paneth, and A. Rosen. On the cryptographic hardness of finding a Nash
equilibrium. In Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science, pages 1480–1498, 2015.

[BRS13a] D. Boneh, A. Raghunathan, and G. Segev. Function-private identity-based encryption:
Hiding the function in functional encryption. In Advances in Cryptology – CRYPTO
’13, pages 461–478, 2013.

[BRS13b] D. Boneh, A. Raghunathan, and G. Segev. Function-private subspace-membership en-
cryption and its applications. In Advances in Cryptology – ASIACRYPT ’13, pages
255–275, 2013.

[BS15] Z. Brakerski and G. Segev. Function-private functional encryption in the private-key
setting. In Proceedings of the 12th Theory of Cryptography Conference, pages 306–324,
2015.

[BSW11] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges.
In Proceedings of the 8th Theory of Cryptography Conference, pages 253–273, 2011.

[BSW12] D. Boneh, A. Sahai, and B. Waters. Functional encryption: A new vision for public-key
cryptography. Communiations of the ACM, 55(11):56–64, 2012.

[BV15] N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. In Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science, pages 171–190, 2015.

[BW13] D. Boneh and B. Waters. Constrained pseudorandom functions and their applications.
In Advances in Cryptology - ASIACRYPT ’13, pages 280–300, 2013.

[CDT09] X. Chen, X. Deng, and S. Teng. Settling the complexity of computing two-player Nash
equilibria. J. ACM, 56(3), 2009.

[CFL+16] J. H. Cheon, P.-A. Fouque, C. Lee, B. Minaud, and H. Ryu. Cryptanalysis of the new
CLT multilinear map over the integers. Cryptology ePrint Archive, Report 2016/135,
2016.

[CGH+15] J. Coron, C. Gentry, S. Halevi, T. Lepoint, H. K. Maji, E. Miles, M. Raykova, A. Sahai,
and M. Tibouchi. Zeroizing without low-level zeroes: New MMAP attacks and their
limitations. In Advances in Cryptology – CRYPTO ’15, pages 247–266, 2015.

[CHL+15] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear
map over the integers. In Advances in Cryptology – EUROCRYPT ’15, pages 3–12,
2015.

[CJL16] J. H. Cheon, J. Jeong, and C. Lee. An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without an encoding of zero. Cryptology ePrint Archive,
Report 2016/139, 2016.

34

[CLR15] J. H. Cheon, C. Lee, and H. Ryu. Cryptanalysis of the new CLT multilinear maps.
Cryptology ePrint Archive, Report 2015/934, 2015.

[DGP09a] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing
a Nash equilibrium. Communications of the ACM, 52(2):89–97, 2009.

[DGP09b] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing
a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

[DP11] C. Daskalakis and C. H. Papadimitriou. Continuous local search. In Proceedings of the
22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 790–804, 2011.

[GGG+14] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi,
and H.-S. Zhou. Multi-input functional encryption. In Advances in Cryptology – EU-
ROCRYPT ’14, pages 578–602, 2014.

[GGH+13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indis-
tinguishability obfuscation and functional encryption for all circuits. In Proceedings of
the 54th Annual IEEE Symposium on Foundations of Computer Science, pages 40–49,
2013.

[GGH+16] S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Functional encryption without obfus-
cation. In Proceedings of the 13th Theory of Cryptography Conference, pages 480–511,
2016.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal
of the ACM, 33(4):792–807, 1986.

[GKP+13] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable
garbled circuits and succinct functional encryption. In Proceedings of the 45th Annual
ACM Symposium on Theory of Computing, pages 555–564, 2013.

[GPS16] S. Garg, O. Pandey, and A. Srinivasan. Revisiting the cryptographic hardness of finding
a Nash equilibrium. In Advances in Cryptology – CRYPTO ’16, pages 579–604, 2016.

[GVW12] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with bounded
collusions via multi-party computation. In Advances in Cryptology – CRYPTO ’12,
pages 162–179, 2012.

[HJ15] Y. Hu and H. Jia. Cryptanalysis of GGH map. Cryptology ePrint Archive, Report
2015/301, 2015.

[HY16] P. Hubáček and E. Yogev. Hardness of continuous local search: Query complexity
and cryptographic lower bounds. Electronic Colloquium on Computational Complexity,
23:63, 2016.

[Imp95] R. Impagliazzo. A personal view of average-case complexity. In Proceedings of the 10th
Annual Structure in Complexity Theory Conference, pages 134–147, 1995.

[KMN+14] I. Komargodski, T. Moran, M. Naor, R. Pass, A. Rosen, and E. Yogev. One-way func-
tions and (im)perfect obfuscation. In Proceedings of the 55th Annual IEEE Symposium
on Foundations of Computer Science, pages 374–383, 2014.

35

[KPT+13] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable pseudo-
random functions and applications. In Proceedings of the 20th Annual ACM Conference
on Computer and Communications Security, pages 669–684, 2013.

[KSY15] I. Komargodski, G. Segev, and E. Yogev. Functional encryption for randomized func-
tionalities in the private-key setting from minimal assumptions. In Proceedings of the
12th Theory of Cryptography Conference, pages 352–377, 2015.

[MF15] B. Minaud and P.-A. Fouque. Cryptanalysis of the new multilinear map over the integers.
Cryptology ePrint Archive, Report 2015/941, 2015.

[MSZ16] E. Miles, A. Sahai, and M. Zhandry. Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over GGH13. Cryptology ePrint Archive,
Report 2016/147, 2016.

[O’N10] A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010.

[Pap94] C. H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

[SSW09] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems. In Proceedings
of the 6th Theory of Cryptography Conference, pages 457–473, 2009.

[SW08] A. Sahai and B. Waters. Slides on functional encryption. Available at http://www.cs.
utexas.edu/~bwaters/presentations/files/functional.ppt, 2008.

[SW14] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable en-
cryption, and more. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, pages 475–484, 2014.

[Wat15] B. Waters. A punctured programming approach to adaptively secure functional encryp-
tion. In Advances in Cryptology – CRYPTO ’15, pages 678–697, 2015.

A Deferred Proofs

A.1 Proof of Claims 3.2–3.5

Proof of Claim 3.2. The adversary B(0)→(1) = B given input 1λ is defined as follows. First,
B samples Kmsk ← PRF.Gen(1λ), b ← {0, 1} and emulates the execution of A1 on input 1λ by
simulating the encryptions as follows: When A1 requests the ith encryption of the pair (x0, x1) ∈ Xλ
with respect to index ` = 1, B samples τ ∈ {0, 1}λ, queries the encryption oracle FEt.Eσ(mskin, ·, ·, ·)
with the triple ((xb,⊥, τ, 1, 1, . . . , 1, 0), (xb, x1, τ, i, 1, . . . , 1, 0), 1) and returns the output toA1. When
A1 requests the ith encryption of the pair (x0, x1) ∈ Xλ with respect to index 1 < ` ≤ t, B samples τ ∈
{0, 1}λ, queries the encryption oracle FEt.Eσ(mskin, ·, ·, ·) with the triple ((xb,⊥, τ, 1), (xb, x1, τ, i), `)
and returns the output to A1 When A1 requests the ith encryption of the pair (x0, x1) ∈ Xλ
with respect to index t < ` ≤ 2t, B samples Kenc ← PRF.Gen(1λ), queries the key-generation oracle
FEt.KGσ(mskin, ·, ·) with the pair (AGGxb,⊥,`,Kmsk,Kenc,⊥,AGGxb,x1,`,Kmsk,Kenc,⊥) and returns the output
to A1. We do the above with all input triples until A1 outputs state and halts.

Then, we emulate the execution of A2 on input 1λ, state and all the ciphertexts that were already
generated by simulating the key-generation oracle as follows: When A2 requests a functional key

36

http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

for (f0, f1) ∈ F × F , B samples a random Kkey ← PRF.Gen(1λ), queries the key-generation oracle
FEt.KGσ(mskin, ·, ·) with the pair of circuits (Genfb,⊥,Kmsk,Kkey,⊥,Genfb,f1,Kmsk,Kkey,⊥) and returns the
output to A2. We do the above until A2 outputs b′ and halts. Finally, B outputs 1 if b′ = b and
otherwise it outputs 0.

Note that when σ = 0 then A’s view is identical to its view in the experiment H(0), and when
σ = 1 then A’s view is identical to its view in the modified experiment H(1) described above.
Therefore, ∣∣∣Pr

[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣ ≤ AdvselFEt

FEt,F ′,B′(0)→(1)(λ).

Proof of Claim 3.3. The adversary B(2,k1,...,kt)→(3,k1,...,kt) = B given input 1λ is defined as fol-
lows. First, B samples Kmsk ← PRF.Gen(1λ), τ1,k1 , . . . , τt,kt ← {0, 1}λ, b ← {0, 1}, computed the
punctured PRF key Kmsk|τ1,k1 ,...,τt,kt = PRF.Punc(Kmsk, τ1,k1 , . . . , τt,kt), and emulates the execution

of A1 on input 1λ by simulating the encryptions as follows: When A1 requests the ith encryption
of the pair (x0, x1) ∈ Xλ with respect to index ` = 1, B samples τ ∈ {0, 1}λ (if i = k1, we use
τ1,k1 that was sampled in the beginning), queries the encryption oracle FEt.Eσ(mskin, ·, ·, ·) with
the triple ((xb, x1, τ, i, k1, . . . , xt), (x

b, x1, τ, i, k1, . . . , xt), 1) and returns the output to A1. When
A1 requests the ith encryption of the pair (x0, x1) ∈ Xλ with respect to index 1 < ` ≤ t, B
samples τ ∈ {0, 1}λ (if i = k`, we use τ`,k` that was sampled in the beginning), queries the en-
cryption oracle FEt.Eσ(mskin, ·, ·, ·) with the triple ((xb, x1, τ, i), (xb, x1, τ, i), `) and returns the out-
put to A1 When A1 requests the ith encryption of the pair (x0, x1) ∈ Xλ with respect to index
t ≤ ` + t ≤ 2t, B samples Kenc ← PRF.Gen(1λ), computes a punctured key Kenc|τ1,k1 ,...,τt,kt =
PRF.Gen(Kenc, τ1,k1 , . . . , τt,kt), queries the key-generation oracle FEt.KGσ(mskin, ·, ·) with the pair
(AGGxb,x1,`,Kmsk,Kenc,⊥,AGGxb,x1,`,Kmsk|τ1,k1 ,...,τt,kt ,K

enc|τ1,k1 ,...,τt,kt ,γ`,t
), where γ = FEt.E(mskτ1,k1 ,...,τt,kt ,

(xb`,k` , x
b);PRF.Eval(Kenc, τ1,k1 . . . τt,kt)), and returns the output to A1. We do the above with all

input triples until A1 outputs state and halts.
Then, we emulate the execution of A2 on input 1λ, state and all the ciphertexts that were

already generated by simulating the key-generation oracle as follows: When A2 requests a functional
key for (f0, f1) ∈ F × F , B samples a random Kkey ← PRF.Gen(1λ), computes Kkey|τ1,k1 ...τt,kt =

PRF.Punc(Kkey, τ1,k1 . . . τt,kt), queries the key-generation oracle FEt.KGσ(mskin, ·, ·) with the pair of
circuits (Genfb,f1,Kmsk,Kkey,⊥,Genfb,f1,Kmsk|τ1,k1 ...τt,kt ,K

key|τ1,k1 ...τt,kt ,δ
), where δ = FEt.KG(mskτ1,k1 ...τt,kt ,

Cfb ;PRF.Eval(K
key, τ1,k1 . . . τt,kt)), and returns the output to A2. We do the above until A2 outputs

b′ and halts. Finally, B outputs 1 if b′ = b and otherwise it outputs 0.
Note that when σ = 0 then A’s view is identical to its view in the experiment H(2,k1,...,kt), and

when σ = 1 then A’s view is identical to its view in the modified experiment H(3,k1,...,kt) described
above. Therefore,∣∣∣Pr

[
H(2,k1,...,kt)(λ) = 1

]
− Pr

[
H(3,k1,...,kt)(λ) = 1

]∣∣∣ ≤ AdvselFEt

FEt,F ′,B′(2,k1,...,kt)→(3,k1,...,kt)
(λ).

Proof of Claim 3.4. The proof of this claim proceeds by (1 + t(λ) · Q′enc(λ) + Q′key(λ)) hybrid
experiments, where in each we replace only one PRF evaluation with sampling a string uniformly at
random. Since all indistinguishability proofs of the experimets are very similar, we provide the proof
for one and omit the missing details. In what follows we prove that the experiment H(3,k1,...,kt) is

37

indistinguishable from an experiment H′(3,k1,...,kt) where the randomness for mskτ1,k1 ...τ1,k1 is chosen

uniformly at random (rather than using Kmsk).
The adversary B given input 1λ is defined as follows. First, B samples mskin ← FEt.S(1λ),

τ1,k1 , . . . , τt,kt ← {0, 1}λ and b← {0, 1}. Now, A is given R(τ1,k1 . . . τt,kt) and a punctured PRF key
Kmsk|τ1,k1 ...τt,kt and its goal is to guess if R(τ1,k1 . . . τt,kt) is uniformly random or the output of a PRF.

First, B computes mskτ1,k1 ,...,τt,kt = FEt.S(1λ;R(τ1,k1 . . . τt,kt)). Then, B emulates the execution of A
on input 1λ by simulating the encryption oracle as follows: When A1 requests the ith encryption of
the pair (x0, x1) ∈ Xλ with respect to index ` = 1, B samples τ ∈ {0, 1}λ (if i = k1, we use τ1,k1 that
was sampled in the beginning), computes FEt.E(mskin, ·, ·) with the pair ((xb, x1, τ, i, k1, . . . , xt), 1)
and returns the output to A1. When A1 requests the ith encryption of the pair (x0, x1) ∈ Xλ
with respect to index 1 < ` ≤ t, B samples τ ∈ {0, 1}λ (if i = k`, we use τ`,k` that was sam-
pled in the beginning), computes the encryption FEt.E(mskin, ·, ·) with the pair ((xb, x1, τ, i), `) and
returns the output to A1 When A1 requests the ith encryption of the pair (x0, x1) ∈ Xλ with
respect to index t ≤ ` + t ≤ 2t, B samples Kenc ← PRF.Gen(1λ), computes a punctured key
Kenc|τ1,k1 ,...,τt,kt = PRF.Gen(Kenc, τ1,k1 , . . . , τt,kt), computes the functional key FEt.KG(mskin, ·) with

the function AGGxb,x1,`,Kmsk|τ1,k1 ,...,τt,kt ,K
enc|τ1,k1 ,...,τt,kt ,γ`,t

, where γ = FEt.E(mskτ1,k1 ,...,τt,kt , (x
b
`,k`

, xb);

PRF.Eval(Kenc, τ1,k1 . . . τt,kt)), and returns the output to A1. We do the above with all input triples
until A1 outputs state and halts.

Then, we emulate the execution of A2 on input 1λ, state and all the ciphertexts that were
already generated by simulating the key-generation oracle as follows: When A2 submits a key-
generation query (f0, f1) ∈ F × F , B samples a Kkey ← PRF.Gen(1λ), computes Kkey|τ1,k1 ...τt,kt =

PRF.Punc(Kkey, τ1,k1 . . . τt,kt), computes a functional for Genfb,f1,Kmsk|τ1,k1 ...τt,kt ,K
key|τ1,k1 ...τt,kt ,δ

using

the algorithm FEt.KG(mskin, ·), where δ = FEt.KG(mskτ1,k1 ...τt,kt , Cfb ;PRF.Eval(K
key, τ1,k1 . . . τt,kt)),

and returns the output to A2. We do the above until A2 outputs b′ and halts. Finally, B outputs 1
if b′ = b and otherwise it outputs 0.

Note that when the value R(τ1,k1 . . . τt,kt) is sampled using Kmsk, then A’s view is identical to its
view in the experiment H(3,k1,...,kt), and when R(τ1,k1 . . . τt,kt) is sampled uniformly at random, then
A’s view is identical to its view in the modified experiment H′(3,k1,...,kt) described above. Therefore,∣∣∣Pr

[
H(3,k1,...,kt)(λ) = 1

]
− Pr

[
H′(3,k1,...,kt)(λ) = 1

]∣∣∣ ≤ AdvPRF,B(λ).

An analogous argument shows that every two consecutive experiments are indistinguishable
(with the same advantage). Thus,∣∣∣Pr

[
H(3,k1,...,kt)(λ) = 1

]
− Pr

[
H(4,k1,...,kt)(λ) = 1

]∣∣∣
≤ (1 + t(λ) ·Q′enc(λ) +Q′key(λ)) · AdvPRF,B(3,k1,...,kt)→(4,k1,...,kt)(λ).

Proof of Claim 3.5. The adversary B(4,k1,...,kt)→(5,k1,...,kt) = B given input 1λ is defined as follows.
First, B samples mskin ← FEt.S(1λ), Kmsk ← PRF.Gen(1λ), τ1,k1 , . . . , τt,kt ← {0, 1}λ, b ← {0, 1},
computed the punctured PRF key Kmsk|τ1,k1 ,...,τt,kt = PRF.Punc(Kmsk, τ1,k1 , . . . , τt,kt), and emulates

the execution of A1 on input 1λ by simulating the encryptions as follows: When A1 requests the
ith encryption of the pair (x0, x1) ∈ Xλ with respect to index ` = 1, B samples τ ∈ {0, 1}λ (if
i = k1, we use τ1,k1 that was sampled in the beginning), computes the encryption FEt.E(mskin, ·, ·)
with the pair ((xb, x1, τ, i, k1, . . . , xt), 1) and returns the output to A1. When A1 requests the ith

encryption of the pair (x0, x1) ∈ Xλ with respect to index 1 < ` ≤ t, B samples τ ∈ {0, 1}λ (if

38

i = k`, we use τ`,k` that was sampled in the beginning), computes the encryption FEt.E(mskin, ·, ·)
with the pair ((xb, x1, τ, i), `) and returns the output to A1 When A1 requests the ith encryption
of the pair (x0, x1) ∈ Xλ with respect to index t ≤ ` + t ≤ 2t, B samples Kenc ← PRF.Gen(1λ),
computes a punctured key Kenc|τ1,k1 ,...,τt,kt = PRF.Gen(Kenc, τ1,k1 , . . . , τt,kt), computes the func-
tional key FEt.KG(mskin, ·) with the function AGGxb,x1,`,Kmsk|τ1,k1 ,...,τt,kt ,K

enc|τ1,k1 ,...,τt,kt ,γ`,t
, where γ is

the output of the output of the encryption oracle FEt.Eσ(mskτ1,k1 ...τt,kt , ·, ·, ·) on input the triple

((xb`,k` , x
b), (x1

`,k`
, x1), `), and returns the output to A1. We do the above with all input triples until

A1 outputs state and halts.
Then, we emulate the execution of A2 on input 1λ, state and all the ciphertexts that were already

generated by simulating the key-generation oracle as follows: When A2 submits a key-generation
query (f0, f1) ∈ F × F , B samples a random Kkey ← PRF.Gen(1λ), computes Kkey|τ1,k1 ...τt,kt =

PRF.Punc(Kkey, τ1,k1 . . . τt,kt), computes a functional key using FEt.KG(mskin, ·) for the t-input circuit
Genfb,f1,Kmsk|τ1,k1 ...τt,kt ,K

key|τ1,k1 ...τt,kt ,δ
), where δ is the value returned by the key-generation oracle

FEt.KGσ(mskτ1,k1 ...τt,kt , ·, ·) on input the pair of functions (Cfb , Cf1), and returns the output to A2.
We do the above until A2 outputs b′ and halts. Finally, B outputs 1 if b′ = b and otherwise it
outputs 0.

Note that when σ = 0 then A’s view is identical to its view in the experiment H(4,k1,...,kt), and
when σ = 1 then A’s view is identical to its view in the modified experiment H(5,k1,...,kt) described
above. Therefore,∣∣∣Pr

[
H(4,k1,...,kt)(λ) = 1

]
− Pr

[
H(5,k1,...,kt)(λ) = 1

]∣∣∣ ≤ AdvselFEt

FEt,F ′,B′(4,k1,...,kt)→(5,k1,...,kt)
(λ).

A.2 Proof of Lemma 4.8

Let A = (A1,A2) be a valid adversary that runs in time T = T (λ) and issues at most Qkey = Qkey(λ)
key-generation queries. Following [Wat15], we present a sequence of experiments and upper bound
A’s advantage in distinguishing each two consecutive experiments. The first experiment is the
experiment Expsel-pkFEpkFE,F ,A (see Definition 2.10), and the last experiment is completely independent of
the bit b. This enables us to prove that

Advsel-pkFEΠ,F ,A (λ)
def
=

∣∣∣∣Pr
[
Expsel-pkFEΠ,F ,A (λ) = 1

]
− 1

2

∣∣∣∣ ≤ µ(λ),

for all sufficiently large λ ∈ N. We denote by (x0, x1) the challenge ciphertext and by fi the ith

function with which the adversary queries the key-generation oracle with.

Experiment H(0)(λ). This is the original experiment Expsel-pkFEpkFE,F ,A corresponding to b ← {0, 1}
chosen uniformly at random. Recall that in this experiment the ciphertexts and the functional keys
are generated as follows.

1. Public parameters:

mpk← iO(CK)

K ← PRF.Gen(1λ) (This is msk)

39

2. Challenge ciphertext:

ct∗ = (z∗, c∗)

r∗ ← {0, 1}t(λ)/6,

z∗ = PRG(r∗),

k∗ = PRF.Eval(K, z∗),

c∗ = PDE.E(k∗, xb)

3. Functional keys (i = 1, . . . , T):

skfi ← iO(Pfi,K,⊥,⊥,⊥,⊥,⊥)

Experiment H(1)(λ). This experiment is obtained from the experiment H(1)(λ) by modifying the
challenge ciphertexts to sample z∗ uniformly at random rather than using a PRG.

1. Public parameters:

mpk← iO(CK)

K ← PRF.Gen(1λ)

2. Challenge ciphertext:

ct∗ = (z∗, c∗)

r∗ ← {0, 1}t(λ)/6,

z∗ ← {0, 1}t(λ)/3 ,

k∗ = PRF.Eval(K, z∗),

c∗ = PDE.E(k∗, xb)

3. Functional keys (i = 1, . . . , T):

skfi ← iO(Pfi,K,⊥,⊥,⊥,⊥,⊥)

By the pseudorandomness of PRG we have the following claim.

Claim A.1. There exists an adversary B(0)→(1) that runs in time T ′(λ) · poly(λ), such that∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣ ≤ AdvPRG
PRG,B(0)→(1)(t(λ)/6).

Experiment H(2)(λ). This experiment is obtained from the experiment H(1)(λ) by modifying the
master public key as follows. Instead of obfuscating the circuit CK , we obfuscate a circuit CK|{z∗}
in which instad of embedding the PRF key K, we the punctured PRF key K|{z∗} at the point z∗.

1. Public parameters:

mpk← iO(C
K|{z∗}

)

K ← PRF.Gen(1λ)

40

2. Challenge ciphertext:

ct∗ = (z∗, c∗)

r∗ ← {0, 1}λ,
z∗ ← {0, 1}2λ,
k∗ = PRF.Eval(K, z∗),

c∗ = PDE.E(k∗, xb)

3. Functional keys (i = 1, . . . , T):

skfi ← iO(Pfi,K,⊥,⊥,⊥,⊥,⊥)

For any adversary, with very high probability, it is impossible to distinguish iO(CK) from
iO(CK|{z∗}) since CK is functionally equivalnet to CK|{z∗} . Indeed, for any input to CK , we apply

the PRF on an input which is the output of PRG. Since z∗ /∈ Im(PRG) with probability 1− 2t(λ)/6,
for every input to CK|{z∗} , the PRF is never evaluated at the point z∗. Thus, from the security of
iO, we have the following claim.

Claim A.2. There exists an adversary B(1)→(2) that runs in time T ′(λ) · poly(λ), such that∣∣∣Pr
[
H(1)(λ) = 1

]
− Pr

[
H(2)(λ) = 1

]∣∣∣ ≤ AdviO
iO,B(1)→(2)(λ) + 1/2t(λ)/6.

Experiment H(3)(λ). This experiment is obtained from the experiment H(2)(λ) by modifying the
functional keys as follows. In each such key for a function fi, we replace in the circuit Pfi,K,⊥,⊥,⊥,⊥,⊥
the PRF key K with the punctured key K|{z∗} and also embed the values k′ = PDE.P(k∗, x0, x1),
c′0 = PDE.E(k∗, x0), c′1 = PDE.E(k∗, x1), c0 = c′b′ , c1 = c′1−b′ for b′ ← {0, 1}, and y = fi(x

0) = fi(x
1).

1. Public parameters:

mpk← iO(CK|{z∗})

K ← PRF.Gen(1λ)

2. Challenge ciphertext:

ct∗ = (z∗, c∗)

r∗ ← {0, 1}λ,
z∗ ← {0, 1}2λ,
k∗ = PRF.Eval(K, z∗),

c∗ = PDE.E(k∗, xb)

3. Functional keys (i = 1, . . . , T):

skfi ← iO(P
fi, K|{z∗} , z∗ , c0 , c1 , y , k′

)

k′ = PDE.P(k∗, x0, x1)

c′0 = PDE.E(k∗, x0)

c′1 = PDE.E(k∗, x1)

c0 = c′b′ , c1 = c′1−b′ for b′ ← {0, 1}
y = fi(x

0) = fi(x
1).

41

The only difference between iO(Pfi,K,⊥,⊥,⊥,⊥,⊥) and iO(Pfi,K|{z∗},z∗,c0,c1,y,k′) is that the output
of the circuit is hardwired for two inputs. Thus, if the PDE is correct, then the two circuits are
equivalent. Using the security of iO and a simple hybrid argument (over the sequence of functional
keys) we have the following claim.

Claim A.3. There exists an adversary B(2)→(3) that runs in time T ′(λ) · poly(λ), such that∣∣∣Pr
[
H(2)(λ) = 1

]
− Pr

[
H(3)(λ) = 1

]∣∣∣ ≤ Qkey · (AdviOiO,B(2)→(3)(λ) + ηPDE(t(λ)/6)).

Experiment H(4)(λ). This experiment is obtained from the experiment H(3)(λ) by modifying the
challenge ciphertext as follows. Instead of computing k∗ using a PRF with key K, we sample it
uniformly at random.

1. Public parameters:

mpk← iO(CK|{z∗})

K ← PRF.Gen(1λ)

2. Challenge ciphertext:

ct∗ = (z∗, c∗)

r∗ ← {0, 1}λ,
z∗ ← {0, 1}2λ,

k∗ ← {0, 1}λ ,

c∗ = PDE.E(k∗, xb)

3. Functional keys (i = 1, . . . , T):

skfi ← iO(Pfi,K|{z∗},z∗,c0,c1,y,k′)

k′ = PDE.P(k∗, x0, x1)

c′0 = PDE.E(k∗, x0)

c′1 = PDE.E(k∗, x1)

c0 = c′b′ , c1 = c′1−b′ for b′ ← {0, 1}
y = fi(x

0) = fi(x
1).

We observe that the key K does not exist in the scheme anymore and is replaced with a punctured
key K|{z∗}. Thus, by the pseudorandomness at a punctured point property of the PRF, we have
the following claim.

Claim A.4. There exists an adversary B(3)→(4) that runs in time T ′(λ) · poly(λ), such that∣∣∣Pr
[
H(3)(λ) = 1

]
− Pr

[
H(4)(λ) = 1

]∣∣∣ ≤ AdvpuPRF
PRF,B(3)→(4)(t(λ)).

Experiment H(5)(λ). This experiment is obtained from the experiment H(4)(λ) by modifying the
challenge ciphetext as follows. Instead of encrypting xb, we encrypt x0.

Notice that this experiment is completely independent of the bit b, and therefore Pr[H(5)(λ) =
1] = 1/2.

42

1. Public parameters:

mpk← iO(CK|{z∗})

K ← PRF.Gen(1λ)

2. Challenge ciphertext:

ct∗ = (z∗, c∗)

r∗ ← {0, 1}λ,
z∗ ← {0, 1}2λ,
k∗ = PRF.Eval(K, z∗),

c∗ = PDE.E(k∗, x0)

3. Functional keys (i = 1, . . . , T):

skfi ← iO(Pfi,K|{z∗},z∗,c0,c1,y,k′)

k′ ← {0, 1}λ

c′0 = PDE.E(k∗, x0)

c′1 = PDE.E(k∗, x1)

c0 = c′b′ , c1 = c′1−b′ for b′ ← {0, 1}
y = fi(x

0) = fi(x
1).

We observe that the security of the PDE gives the following claim.

Claim A.5. There exists an adversary B(4)→(5) that runs in time T ′(λ) · poly(λ), such that∣∣∣Pr
[
H(3)(λ) = 1

]
− Pr

[
H(4)(λ) = 1

]∣∣∣ ≤ AdvPDE
PDE,B(4)→(5)(t(λ)/6).

Putting together Claims A.1–A.5 we get that

Advsel-pkFEΠ,F ,A
def
=

∣∣∣∣Pr
[
Expsel-pkFEΠ,F ,A (λ) = 1

]
− 1

2

∣∣∣∣
=
∣∣∣Pr
[
H(0)(λ) = 1

]
− Pr

[
H(5)(λ) = 1

]∣∣∣
≤ AdvPRG

PRG,B(0)→(1)(t(λ)/6) + AdviO
iO,B(1)→(2)(λ) + 1/2t(λ)/6

+Qkey · (AdviOiO,B(2)→(3)(λ) + ηPDE(t(λ)/6)) + AdvpuPRF
PRF,B(3)→(4)(t(λ))

+AdvPDE
PDE,B(4)→(5)(t(λ)/6)

≤ µPRG(t(λ)/6) + µiO(λ) + 1/2t(λ)/6

+Qkey(λ)(µiO(λ) + ηPDE(t(λ)/6)) + µPRF(t(λ)) + µPDE(t(λ)/6).

43

	Introduction
	Our Contributions
	Overview of Our Constructions
	Additional Related Work
	Paper Organization

	Preliminaries
	One-Way Functions and Pseudorandom Generators
	Pseudorandom Functions
	Private-Key Multi-Input Functional Encryption
	Public-key Functional Encryption
	Indistinguishability Obfuscation

	Private-Key MIFE for a Poly-Logarithmic Number of Inputs
	From t Inputs to 2t Inputs
	Efficiency Analysis
	Iteratively Applying Our Transformation

	Applications of Our Construction
	Obfuscation for Circuits with Poly-logarithmic Input Length
	Public-Key Functional Encryption
	Puncturable Deterministic Encryption
	The Construction
	Proof of Theorem 4.4

	Average-Case PPAD Hardness

	References
	Deferred Proofs
	Proof of Claims 3.2–3.5
	Proof of Lemma 4.8

