
Hardware Bit-Mixers
Laszlo Hars

January, 2016

Abstract—A new concept, the Bit-Mixer is introduced. It is a
function of fixed, possibly different size of input and output, which
computes statistically uncorrelated output from correlated input
values, and its behavior is altered by parameters, called keys.
Several constructions are presented, with very fast, power efficient
implementations in electronic hardware, having very little side
channel leakage. In information security bit-mixers have many
applications, mostly when their output is hidden from an adversary.
They include key generators, parallel stream ciphers, hash
functions, data dependent authentication codes, and many more.

Keywords—Information security, cryptography, cryptographic
hardware, electronics, side channel analysis, side channel attack

I. INTRODUCTION

Many information security applications require high-
performance, fix-sized input and output functions which
thoroughly “mix” their input value. These functions, which are
called bit-mixers, produce statistically uncorrelated output from
correlated input values. E.g. any “simple” change in the input
causes on average half of the out-put bits to change. Bit-mixers
also utilize parameters (keys), which make their behavior
unpredictable to an observer.

While performance and power consumption are critical in
embedded applications, advanced VLSI technologies provide
designers the ability to improve security by modest increase of
circuit size. The extra gates add normally very little to the costs.

Even though many other uses are feasible, the most
important applications are in which one or both the input and
output interfaces are internal to the design and thus hidden from
the observer. In these instances the cryptographic requirements
beyond a generalized strict avalanche criterion are minimized if
not eliminated. Specifically, the primary remaining attacks
exploit data-dependent information exposed through the
circuit’s side channel emanations, including variations in
response time, electromagnetic radiation, fluctuations in power
consumption…

We define bit-mixers as mathematical functions, propose
definitions for good mixing properties, describe and analyze
three sets of constructions of thorough, arbitrary size bit-mixers
which are high-performance, low-power and minimize their side
channel leakage, when implemented in electronic hardware. We
laid out each construction in a 32 nm Silicon on Insulator (SOI)
ASIC and verified these claims with a Differential Power
Analysis (DPA) workstation.

In [1] many information security applications of bit-mixers
are discussed. We invite further research on constructing bit-
mixers and analyzing their use in security applications.

II. BIT-MIXERS

One may generally think of bit-mixing as performed by
reduced round ciphers with arbitrary block sizes. The input can
be padded, or the output folded together (via XOR functions or
compression S-Boxes) for the required sizes of the input and
output of the bit-mixer. While there are indeed other
constructions, the desired properties of bit-mixers are:

1. The fixed lengths of the input and output values can be
independently and arbitrarily chosen

2. Every input bit affects every output bit
3. Simple changes in the input cause on average half of the

output bits to change
4. A series of simple changes in the input yield output

values without apparent correlation to the input or to the
change pattern of the input, i.e. standard statistical tests
accept the output sequence as random

5. Parameters (keys) alter the behavior of the function

As the term “simple change” above can have various
definitions, further research will ultimately determine which
definition proves to be the most suitable. More pointedly, we
may find that a simple change is one in which less than half of
the bits change simultaneously or even one which results from
a software-based transformation using fewer than a dozen
instructions.

It is instructive to note that property 3 above is a
generalization of the Strict Avalanche Criterion [2].

III. MIXING QUALITY

Besides theoretical considerations, we employed test
methodologies similar to differential cryptanalysis to verify
good mixing properties. For iterative bit-mixers, the number of
rounds was determined, required to generate output values
satisfying the Strict Avalanche Criterion [2], i.e. are statistically
random, after changing single input bits. For illustration purposes,
graphic representations of data evolutions are also plotted.

The bitwise differences of the individual rounds of iterative
bit-mixers were tested using the following 3σ statistics:

 The Hamming weight

 The number of times any bit pair occurs

 The number of times any bit triplet occurs

 The longest run of equal consecutive bits

 The length of the 2nd, 3rd, … 10th longest runs of equal bits

When random subkeys are used for testing, we can set the
input to all 0’s. 1000 or more unrelated keys were tried as
certain intermediate bits may unpredictably interact with keys.

The results of a typical experiment are plotted in Figure 1
with rows of dots corresponding to rounds, iterations of mixing
steps. The dots show the positions of the output bits which
changed in that round, caused by a flip of a single input bit.

When compared to a plot of true random numbers on Figure
2, the results in row 8 and beyond “look” equally random. It
confirmed visually the outcome of our statistical tests.

To verify statistical randomness (property 4) data sets of 10
million bytes were generated from input values 0, 1, 2… and
tested with Diehard- [17] and with the NIST statistical
randomness tests [18]. Because of the regular structure of the
presented bit-mixer constructions, shifted or permuted versions
of input sequences behave similarly.

IV. XOR-TREE BASED BIT-MIXERS

In XOR-tree based bit-mixers, the input is partitioned into
multiple, possibly different length bit groups. Using multiplexers
the bits of the groups select certain parts of the key material,
called subkeys. These subkeys are bitwise XOR-ed together to
generate the final bit-mixer output as shown in Figure 3.

While the XOR operation in ASICs is typically implemented
using a tree of 2-input XOR gates, multi-input gates or parity
generators can be used depending on the target technology, e.g.
in FPGAs that provide wide lookup tables.

Bit-mixers of this construction are straightforward to
implement and offer high performance, improved security, low
power consumption, and a minimal side channel leakage.

A. Properties of the XOR-tree Construction

As the width of the input and the width of the output of
XOR-tree based bit-mixers can be independently chosen,
expansion and compression functions are created by selecting a
longer output width or longer input width, respectively.

Having random key material, any single input bit change
will cause the output to change by a random subkey. As such
every output bit is influenced by any input bit change. Further,
given the bit-mixers construction, multiple input bit changes
will cause the output to change by an XOR-ed aggregation of
random subkeys which is in itself random. Therefore, XOR-tree
based bit-mixers satisfy each of the desired properties as
enumerated above and ensure theoretically perfect mixing.

Figure 1. Differential behavior of an iterative bit-mixer

Figure 2. True random rows of dots

Figure 3. XOR-tree Bit-Mixer

B. Performance of the XOR-Tree Construction

The circuit we evaluated in our test ASIC expanded an 80-
bit input into a 256-bit output utilizing 2-to-1 multiplexers for
subkey selection and 2-input XOR gates to implement a seven
layer XOR-tree. Even with the limited fanout/loading of the
gates within the circuit, the bit-mixer circuit can operate in one
clock cycle in systems with clock rates in excess of 1.2 GHz.

C. 4-Way Correlation – Linearity

The XOR-tree construction is linear in a binary Galois field,
because it only uses bit selection and XOR operations. In these
constructions some 4-way correlations exist among the output
values computed from simply correlated input values. In this
instance, correlations arise as follows:

Assuming at least 2-bit input groups, choose a bit b from
one of the input bit-groups B, and bit c from a different input
bit-group C. Holding all bits of group B except b constant, let
K0 denote the subkey selected when b is logic 0 and K1 denote
the subkey selected with b is logic 1. Similarly, let L0 and L1
denote the subkeys selected based on the logical value of c
while other bits of group C are held constant. Finally, let M
denote the XOR of all subkeys selected by other input bit-groups
where their inputs are held constant (M = 0…0 if there is no
more bit-group). The bitwise XOR of the output values resulted
from all possible 2x2 values of b and c will yield a vector of 0’s,
what we call “4-way correlation”.

(M K0 L0) (M K1 L0)
(M K0 L1) (M K1 L1) = 0…0

In applications where the output values cannot be observed,
this type of correlation does not pose security problems. For
applications where this correlation is a concern, the output can
be further processed by a nonlinear function such as:

 A parallel collection of nonlinear functions such as
S-Boxes. See in [3], [4] and [5].

 The outputs of a collection of nonlinear functions such as
S-Boxes, XOR-ed with the original output: [6], [7].

 Rotate-Add-XOR (RAX) constructions as described in [8]
and [9] (suitable for microprocessor implementations)

Another way to make the construction nonlinear, is to
replace the XOR operations in one or more levels of the XOR-
tree with nonlinear compressing S-Boxes, similar to the one
shown in Figure 5. While straightforward to implement, the
resulting uneven circuit delays may require manual balancing
for low side channel leakage. With moderate effort, replacing
two layers of the XOR-tree with 4-to-1 S-Boxes achieves single
clock cycle operation still at clock rates upwards of 1.2 GHz.

V. SUBSTITUTION-PERMUTATION NETWORK BASED BIT-MIXERS

Invertible bit-mixers can be defined based on the well-known
substitution-permutation networks, SPNs [10]. For compression
or expansion bit-mixers the block size B of the SPN is chosen
to be the larger of the input I and output O sizes of the bit-
mixer. If I < B, keep the unused bits of B constant or repeat
some bits. If O < B, discard bits of B or fold bits of B together
via XOR or S-Box functions to produce the output of the bit-mixer.

Substitution-Permutation (SP) networks are customarily built
according to Figure 4 with iterations of the following 3 steps:

1. The input is transformed by a series of nonlinear
functions, S-Boxes

2. The bits of the result are rerouted, permuted
3. The permuted data is XOR-ed with a round key (in

bit-mixers it is called “subkey”)

Note that the first and last round are often simplified,
omitting one or two steps.

If the S-Boxes are invertible, the SP Network will also be
invertible, and if the S-Boxes are nonlinear, the SP network will
be nonlinear, as well.

SP networks can be arbitrarily wide but the number of rounds
required for a thorough mixing depends on this width, as
discussed below in section C.

A. S-Boxes

There are many S-Boxes described in literature which are
appropriate for use in SP networks, e.g. in [5]. In hardware
implementations, small S-Boxes yield faster bit-mixers. The
smallest practical S-Box, one with 3 input bits and 3 output bits,
is implemented in PRINTcipher [3]. The three output bits of
this 3x3 S-Box are defined as follows:

F0 = A B' C' + A' (C + B)
F1 = A' B C + B' (C' + A)
F2 = A B C' + C (B' + A')

We designed small and fast circuits to implement this S-Box.
They require only a handful of gates for each output bit, shown
in Figure 6.

Similarly, the PRESENT cipher [4] uses the 4x4 S-Boxes as
follows:

F0 = A'B C' + A C D + A'B D' + A B'C' + A C'D'
F1 = A'B'C + B C'D + A B'C'D' + A B C + B C D'
F2 = A B C' + A C'D + A'B'D' + A'B C + A'B D
F3 = A'B D + A'C'D + A B D'+ A C'D'+ A B'C D + A'B'C D'

Figure 4. Substitution-Permutation Network

 Our circuit designs to implement this S-Box required twice
as many gates as the PRINTcipher. See e.g. F1 in Figure 5.

Many other good 4x4 S-Boxes are discussed in [5]. They
offer similar performance and mixing properties. Simpler, faster
S-Boxes can also be used, although they require additional
rounds to achieve the same thorough mixing properties, which
effectively reduces the overall performance of the bit-mixer.

B. Permutation

Many suitable permutations have been published for ciphers
such as PRINTcipher, the ciphers PRESENT and AES [10] as
well as for hash functions such as SHA3 [11]. The simple
permutation used in the first two ciphers above achieves perfect
dispersion in the first few rounds; the bits affected by a single
input bit-flip are fed into different S-boxes. This permutation,
where the input block size to be mixed is b and the width of the
S-Box is s, is defined as follows:

P i 	 	s i		mod	b 1		for		0	 	i	 	b 2;	and	P b 1 	 	b 1	

C. Number of Layers (Rounds)

A b-by-b S-Box distributes a single input bit-flip to b bits of
the next round. A proper permutation routes these bits to different
S-Boxes of the next round, distributing the changes to b2 bits.
After r rounds, a single bit-flip in the input affects br output bits
until all bits are affected. We want br ≥ n, that is a single input
bit affects all output bits: r ≥ log(n) / log(b). Naturally, more
rounds will achieve more thorough mixing.

D. Mixing Properties with the PRINTcipher S-Box

In our implementation of an SP network using PRINTcipher
S-Boxes, the block size was 255 bits. For a perfect mixing, the
minimum number of rounds required is log(255) / log(3) ≈ 5. A
few cases from 1000 random key sets required more rounds, but
9 rounds always achieved statistically perfect mixing. Figure 1
shows typical improvements of mixing with the rounds, which
“look” perfect already after 8 rounds. Executing 9 rounds in a
single clock cycle, as needed in the worst cases, allows clock
rates upwards of 500 MHz.

E. Mixing Properties with the PRESENT Cipher S-Box

Using the PRESENT cipher S-Boxes in our implementation
of another SP network, we set the input and output width to 256
bits. To achieve perfect mixing, the minimum number of rounds
required is log(256) / log(4) = 4, but a few of our statistical tests
of 1000 random key sets required 6 rounds, to achieve perfect
mixing. Figure 7 shows typical mixing properties, which “look”
perfect after 5 rounds. Even at a worst case 6 rounds, SP
networks utilizing the PRESENT cipher S-Box require 3 fewer
rounds than those that utilize the PRINTcipher S-Box, as they
mix in each round more thoroughly, farther from any linear
function. The difference in the number of rounds yields a
performance increase. Executing all 6 rounds in a single clock
cycle allows clock rates upwards of 600 MHz.

VI. DOUBLE-MIX FEISTEL NETWORK BASED BIT-MIXERS

We devised another family of invertible bit-mixers based on
a new type of mixing operation, a balanced variant of Feistel
Networks [7]. Similar to the SP network based bit-mixers, the
block size can be the larger of the input and the output size,
repeating input bits or folding output bits as required for
compressing or expanding bit-mixers.

Even though Feistel ciphers [7] transform only half their
input bits in each round, direct implementation in software can
completely consume a CPU. On the other hand, parallel

Figure 7. Differential behavior of an SP Network Bit-Mixer with the PRESENT Cipher S-Box

Figure 5. F1 output of the PRESENT cipher S-Box

A

B

C

D

[1]
[2]

[3]

D0
D1
S

OUT

[4] [5]

D0
D1
S

OUT

[6]

D0
D1
S

OUT F1

Figure 6. PRINTcipher S-Box circuits

hardware implementations can gain a twofold speedup for the
same mixing quality by transforming all intermediate data. It is
achieved by a Feistel Network variant, which we call the
Double-Mix Feistel Network (DMFN) as shown in Figure 8.

In DMFN the data is processed in rounds similar to Feistel
Networks. The data is handled in two halves L and R. In each
round, Roundi, two functions F and G compute values from Li
and Ri, which give Li+1, Ri+1 after 2 XOR operations. The very
first values L0 and R0 are set to the input of the bit-mixer and
the very last values Lr, Rr constitute the output.

While Li+1 is generated using a bitwise XOR operation of the
output of F and Ri, a round key ki is mixed-in using a bitwise
XOR operation with the output of G to generate Ri+1 as follows:

Li 1	 	F Li 	⊕	Ri	
Ri 1	 	G Li 	⊕	ki	

If we need invertible bit-mixers, G must to be an invertible
function. The inverse of G need not be easily computed unless
the application uses the inverse of the bit-mixer. As such G can
be faster computable than a typical S-Box layer, and it can
process bits in distant positions, mixing the data better.

An example of such a function is XOR-ing each input bit of
G with two input bits from circular distances (d1, d2), taking
minimal time in electronics. At power-of-two block lengths,
these 3-way XORs define invertible functions, as proved in [9].

F does not have to be invertible as its inverse is not needed
even for the inverse of the bit-mixer. In our implementations,
we used a fast, sufficiently complex construction, which is
nonlinear in the Galois field of binary polynomials, as follows:

1. NAND bits of Li from circular distances d3 and d4
2. NOR bits of Li at circular distances d5 and d6

3. NAND bits of Li at circular distances d7 and d8
4. XOR the above three blocks of bits to Li

In hardware implementations, shifts are wirings, consuming
little time. F and G are nearly equal in path length requiring
only a moderate amount of manual effort to balance the critical
timing paths, needed for reduced side channel leakage. While F
and G could be different in certain, if not all rounds, in our tests,
for simplicity, we kept them the same in all rounds.

An invertible function G makes the DMFN invertible: one
can compute from bottom up, i.e. from Ri+1 compute Li,
knowing the round key ki and the inverse of G. Having Li
compute F(Li), which is XOR-ed to Li+1 to yield Ri.

Invertibility can be useful for ensuring that all possible output
values occur once, computed from certain unique input values.

As described previously, in each round only half-length
subkeys (ki) are mixed-in with G. We found no noticeable
mixing improvements with subkeys of the full block length,
realized e.g. if another half-length subkey was XORed to Ri.

A. Mixing Properties

In our DMFN implementation, the input and output width
was 256 bits. Thousands of software simulation runs led to
good sets of shift distances. For example, Figure 9 shows the
evolution of mixing using the following shift distances:

d1,	d2…,	d8 	 	 9,	73,	1,	17,	6,	25,	11,	26 .	

In 1000 tests using random key material, we found that 6
rounds were always enough to achieve statistically perfect
mixing. Implementing all 6 rounds in a single clock cycle
allows a clock rate upwards of 660 MHz.

VII. SIDE CHANNEL ATTACK RESISTANCE

Even though a function may be cryptographically secure, its
physical implementation could leak information about the data
and or keys via side channels. Relevant side channels include
response time variations, fluctuations in power consumption,
electromagnetic emanations, and even varying voltage levels on
device pins. See, for example, [12] and [13].

Because the functions described above can be implemented
in asynchronous circuits of simple combinatorial logic gates,
side channel leakage is minimized. More pointedly, as the
circuits do not require structures that are typically the main
source of side channel leakage such as flip-flops, latches and

Figure 8. One round of a Double-Mix Feistel Network

Figure 9. Differential behavior of a DMFN bit-mixer with shift distances: {9, 73, 1, 17, 6, 25, 11, 26}

other types of storage devices, the circuits are less susceptible
to side channel analysis.

Variations of the lengths of the signal paths that may still
exist can be reduced using manual layout techniques [14] to
balance the already highly symmetric paths, thereby ensuring
that many concurrent switching events occur at almost exactly
the same time. This balancing step may not be necessary,
because switching transients in e.g. our test ASIC’s 32 nm SOI
target technology are in the picoseconds. Recording/analyzing
such transients in an effort to mount a template attack [15]
would require a data acquisition system with a sampling rate in
the THz range, an order of magnitude faster than available in
the foreseeable future.

Using a DPA side channel analysis workstation [16], no
exploitable side channel leakage was measured, such as
correlations between power traces and output bits while varying
the input bits. Note that other type of physical attacks have to
be mitigated at the applications. They include probing [19] and
fault injection [20].

VIII. KEY MATERIAL

While different subkeys taken from the key material can
share bits, there are obvious restrictions. E.g. for XOR-tree bit-
mixers the same key material bit must not appear in the same
position of multiple subkeys, as the XOR operations could
effectively cancel this bit. That in mind, a simple bit reuse
method is to generate a few subkeys by rotating a block of key
material bits. Rotation as well as more complex mappings can
be used to reduce the size of the key storage or minimize the
bandwidth required to distribute keys.

Another solution for key distribution at limited bandwidth
employs a second bit-mixer with hardcoded key material. From
a shorter key the second bit-mixer can iteratively generate
subkeys for the first bit-mixer. Ciphers and cryptographic hash
functions can also be used to generate key material before use.

IX. SOFTWARE IMPLEMENTATIONS

While the bit-mixers listed above were optimized for
hardware implementation, they work well when implemented
in software, too, even though other constructions are also
viable. Software bit-mixing in single clock cycles is not
possible, but bit-mixers can still operate orders of magnitude
faster than ciphers or hash functions of similar input and output
sizes. When no high security, only statistical independence of
some generated data is required, one can save significant
computation time even in software.

A family of bit-mixers is based on Rotate-Add-XOR (RAX)
constructions. It is well suited for software implementations.
Below is a 64-bit example, taken from [9]. The constants are
hard coded subkeys, to be replaced with subkeys from the key
storage. In the following pseudocode the function ROL is
ROtate-Left and the internal variable k is initialized to 0:

x = (k += 0x3779884922721DEB)
x = (x ^ ROL(x,L) ^ ROL(x,R)) + 0x49A8D5B36969F969
x = (x ^ ROL(x,L) ^ ROL(x,R)) + 0x6969F96949A8D5B3
x = (x ^ ROL(x,L) ^ ROL(x,R)).

X. SUMMARY

We introduced the concept of “bit-mixers”, with possible
alternative definitions and measures for the quality of mixing.
Three families of example constructions were discussed, which
are extremely fast with little side channel leakage. The input of
the XOR-tree based bit-mixer constructions select sub-keys
from a key storage, to be mixed together by bit-wise XOR
operations. The second family of bit-mixer constructions uses
the well-known substitution-permutation networks, presented
with optimized implementations of small S-Boxes. The third
group of bit-mixer constructions employs new circuits, called
“double-mix Feistel networks”, with appropriate component
functions optimized by extensive simulations. The mixing
quality of all the constructions were experimentally verified.

REFERENCES
[1] Laszlo Hars “Information Security Applications of Bit-Mixers.”

Cryptology ePrint Archive 2017.

[2] Webster, A. F.; Tavares, Stafford E. "On the design of S-boxes".
Advances in Cryptology - Crypto '85. Lecture Notes in Computer Science
218. New York, NY, Springer-Verlag New York, Inc. pp. 523–534.

[3] Lars Knudsen, Gregor Leander, Axel Poschmann, Matthew J. B.
Robshaw. “PRINTcipher: A Block Cipher for IC-Printing.”
Cryptographic Hardware and Embedded Systems, CHES 2010 Volume
6225 of the series Lecture Notes in Computer Science, pp 16-32.

[4] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
B. Robshaw, Y. Seurin, C. Vikkelsoe. “PRESENT: An Ultra-Lightweight
Block Cipher.” Cryptographic Hardware and Embedded Systems - CHES
2007. Volume 4727 Lecture Notes in Computer Science pp 450-466

[5] Markku-Juhani O. Saarinen. “Cryptographic Analysis of All 4 × 4-Bit S-
Boxes.” Selected Areas in Cryptography. Volume 7118 Lecture Notes in
Computer Science, pp 118-133.

[6] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. “The SIMON and SPECK lightweight
block ciphers.” In Proceedings of the 52nd Annual Design Automation
Conference (DAC 2015). ACM, New York, NY, USA, Article 175 , 6
pages. DOI=http://dx.doi.org/10.1145/2744769.2747946

[7] D. Coppersmith. “The Data Encryption Standard (DES) and its Strength
against Attacks.” Technical report rc 186131994, IBM Thomas J. Watson
Research Center, December 1994.

[8] L. Hars, G. Petruska: “Pseudorandom Recursions - Small and Fast
Pseudorandom Number Generators for Embedded Applications.”
EURASIP Journal on Embedded Systems, vol. 2007, Article ID 98417,
13 pages, 2007. doi:10.1155/2007/98417.

[9] L. Hars, G. Petruska: “Pseudorandom Recursions II.” EURASIP Journal
on Embedded Systems 2012, 2012:1 doi:10.1186/1687-3963-2012-1.

[10] Kam, John B., and George I. Davida. "Structured design of substitution-
permutation encryption networks." Computers, IEEE Transactions on
100.10 (1979): 747-753.

[11] Guido Bertoni, Joan Daemen1, Michael Peeters and Gilles Van Assche.
“Keccak specifications.” October 27, 2008. http://keccak.noekeon.org/

[12] Kocher, Paul. "Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems". Advances in Cryptology—
CRYPTO’96(1996). Lecture Notes in Computer Science 1109: 104–113.

[13] Kocher, Paul, Joshua Jaffe, and Benjamin Jun. "Differential power
analysis." CRYPTO’99. Springer Berlin Heidelberg, 1999.

[14] Tiri, K., Verbauwhede, I.: “A Logic Level Design Methodology for a
Secure DPA Resistant ASIC or FPGA Implementation.” In: DATE '04:
Proceedings of the conference on Design, automation and test in Europe,
Washington, DC, USA, IEEE Computer Society (2004) 246–251

[15] Chari, Suresh, Josyula R. Rao, and Pankaj Rohatgi. "Template attacks."
Cryptographic Hardware and Embedded Systems-CHES 2002. Springer
Berlin Heidelberg, 2002. 13-28.

[16] Rambus: “DPA Workstation Analysis Platform.”
https://www.rambus.com/security/dpa-countermeasures/dpa-
workstation-platform/

[17] Marsaglia, George. "DIEHARD: a battery of tests of randomness."
http://stat. fsu. edu/∼ geo/diehard. html (1996).

[18] Rukhin, Andrew, et al. “A statistical test suite for random and
pseudorandom number generators for cryptographic applications.” Booz-
Allen and Hamilton Inc Mclean Va, 2001.

[19] Nikawa, K. "Applications of focused ion beam technique to failure
analysis of very large scale integrations: A review." Journal of Vacuum
Science & Technology B 9.5 (1991): 2566-2577.

[20] Hayashi, Yu-ichi, et al. "Non-invasive EMI-based fault injection attack
against cryptographic modules." Electromagnetic Compatibility (EMC),
2011 IEEE International Symposium on. IEEE, 2011.

