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Abstract—A new concept, the Bit-Mixer is introduced. It is a 
function of fixed, possibly different size of input and output, which 
computes statistically uncorrelated output from correlated input 
values, and its behavior is altered by parameters, called keys. 
Several constructions are presented, with very fast, power efficient 
implementations in electronic hardware, having very little side 
channel leakage. In information security bit-mixers have many 
applications, mostly when their output is hidden from an adversary. 
They include key generators, parallel stream ciphers, hash 
functions, data dependent authentication codes, and many more. 

Keywords—Information security, cryptography, cryptographic 
hardware, electronics, side channel analysis, side channel attack 

I. INTRODUCTION 

Many information security applications require high-
performance, fix-sized input and output functions which 
thoroughly “mix” their input value.  These functions, which are 
called bit-mixers, produce statistically uncorrelated output from 
correlated input values. E.g. any “simple” change in the input 
causes on average half of the out-put bits to change.  Bit-mixers 
also utilize parameters (keys), which make their behavior 
unpredictable to an observer. 

While performance and power consumption are critical in 
embedded applications, advanced VLSI technologies provide 
designers the ability to improve security by modest increase of 
circuit size. The extra gates add normally very little to the costs. 

Even though many other uses are feasible, the most 
important applications are in which one or both the input and 
output interfaces are internal to the design and thus hidden from 
the observer.  In these instances the cryptographic requirements 
beyond a generalized strict avalanche criterion are minimized if 
not eliminated.  Specifically, the primary remaining attacks 
exploit data-dependent information exposed through the 
circuit’s side channel emanations, including variations in 
response time, electromagnetic radiation, fluctuations in power 
consumption… 

We define bit-mixers as mathematical functions, propose 
definitions for good mixing properties, describe and analyze 
three sets of constructions of thorough, arbitrary size bit-mixers 
which are high-performance, low-power and minimize their side 
channel leakage, when implemented in electronic hardware. We 
laid out each construction in a 32 nm Silicon on Insulator (SOI) 
ASIC and verified these claims with a Differential Power 
Analysis (DPA) workstation. 

In [1] many information security applications of bit-mixers 
are discussed. We invite further research on constructing bit-
mixers and analyzing their use in security applications. 

II. BIT-MIXERS 

One may generally think of bit-mixing as performed by 
reduced round ciphers with arbitrary block sizes. The input can 
be padded, or the output folded together (via XOR functions or 
compression S-Boxes) for the required sizes of the input and 
output of the bit-mixer. While there are indeed other 
constructions, the desired properties of bit-mixers are: 

1. The fixed lengths of the input and output values can be 
independently and arbitrarily chosen 

2. Every input bit affects every output bit 
3. Simple changes in the input cause on average half of the 

output bits to change 
4. A series of simple changes in the input yield output 

values without apparent correlation to the input or to the 
change pattern of the input, i.e. standard statistical tests 
accept the output sequence as random 

5. Parameters (keys) alter the behavior of the function 

As the term “simple change” above can have various 
definitions, further research will ultimately determine which 
definition proves to be the most suitable. More pointedly, we 
may find that a simple change is one in which less than half of 
the bits change simultaneously or even one which results from 
a software-based transformation using fewer than a dozen 
instructions. 

It is instructive to note that property 3 above is a 
generalization of the Strict Avalanche Criterion [2]. 

III. MIXING QUALITY 

Besides theoretical considerations, we employed test 
methodologies similar to differential cryptanalysis to verify 
good mixing properties. For iterative bit-mixers, the number of 
rounds was determined, required to generate output values 
satisfying the Strict Avalanche Criterion [2], i.e. are statistically 
random, after changing single input bits. For illustration purposes, 
graphic representations of data evolutions are also plotted. 

The bitwise differences of the individual rounds of iterative 
bit-mixers were tested using the following 3σ statistics: 

 The Hamming weight 

 The number of times any bit pair occurs 

 The number of times any bit triplet occurs 

 The longest run of equal consecutive bits 

 The length of the 2nd, 3rd, … 10th longest runs of equal bits 



When random subkeys are used for testing, we can set the 
input to all 0’s. 1000 or more unrelated keys were tried as 
certain intermediate bits may unpredictably interact with keys. 

The results of a typical experiment are plotted in Figure 1 
with rows of dots corresponding to rounds, iterations of mixing 
steps. The dots show the positions of the output bits which 
changed in that round, caused by a flip of a single input bit. 

When compared to a plot of true random numbers on Figure 
2, the results in row 8 and beyond “look” equally random. It 
confirmed visually the outcome of our statistical tests. 

To verify statistical randomness (property 4) data sets of 10 
million bytes were generated from input values 0, 1, 2… and 
tested with Diehard- [17] and with the NIST statistical 
randomness tests [18]. Because of the regular structure of the 
presented bit-mixer constructions, shifted or permuted versions 
of input sequences behave similarly. 

IV. XOR-TREE BASED BIT-MIXERS 

In XOR-tree based bit-mixers, the input is partitioned into 
multiple, possibly different length bit groups. Using multiplexers 
the bits of the groups select certain parts of the key material, 
called subkeys. These subkeys are bitwise XOR-ed together to 
generate the final bit-mixer output as shown in Figure 3. 

While the XOR operation in ASICs is typically implemented 
using a tree of 2-input XOR gates, multi-input gates or parity 
generators can be used depending on the target technology, e.g. 
in FPGAs that provide wide lookup tables. 

Bit-mixers of this construction are straightforward to 
implement and offer high performance, improved security, low 
power consumption, and a minimal side channel leakage. 

A. Properties of the XOR-tree Construction 

As the width of the input and the width of the output of 
XOR-tree based bit-mixers can be independently chosen, 
expansion and compression functions are created by selecting a 
longer output width or longer input width, respectively. 

Having random key material, any single input bit change 
will cause the output to change by a random subkey. As such 
every output bit is influenced by any input bit change. Further, 
given the bit-mixers construction, multiple input bit changes 
will cause the output to change by an XOR-ed aggregation of 
random subkeys which is in itself random. Therefore, XOR-tree 
based bit-mixers satisfy each of the desired properties as 
enumerated above and ensure theoretically perfect mixing. 

Figure 1. Differential behavior of an iterative bit-mixer 

Figure 2. True random rows of dots 

Figure 3. XOR-tree Bit-Mixer 



B. Performance of the XOR-Tree Construction 

The circuit we evaluated in our test ASIC expanded an 80-
bit input into a 256-bit output utilizing 2-to-1 multiplexers for 
subkey selection and 2-input XOR gates to implement a seven 
layer XOR-tree. Even with the limited fanout/loading of the 
gates within the circuit, the bit-mixer circuit can operate in one 
clock cycle in systems with clock rates in excess of 1.2 GHz. 

C. 4-Way Correlation – Linearity 

The XOR-tree construction is linear in a binary Galois field, 
because it only uses bit selection and XOR operations. In these 
constructions some 4-way correlations exist among the output 
values computed from simply correlated input values. In this 
instance, correlations arise as follows: 

Assuming at least 2-bit input groups, choose a bit b from 
one of the input bit-groups B, and bit c from a different input 
bit-group C. Holding all bits of group B except b constant, let 
K0 denote the subkey selected when b is logic 0 and K1 denote 
the subkey selected with b is logic 1. Similarly, let L0 and L1 
denote the subkeys selected based on the logical value of c 
while other bits of group C are held constant. Finally, let M 
denote the XOR of all subkeys selected by other input bit-groups 
where their inputs are held constant (M = 0…0 if there is no 
more bit-group). The bitwise XOR of the output values resulted 
from all possible 2x2 values of b and c will yield a vector of 0’s, 
what we call “4-way correlation”. 

(M  K0  L0)  (M  K1  L0)  
(M  K0  L1)  (M  K1  L1) = 0…0 

In applications where the output values cannot be observed, 
this type of correlation does not pose security problems. For 
applications where this correlation is a concern, the output can 
be further processed by a nonlinear function such as: 

 A parallel collection of nonlinear functions such as 
S-Boxes. See in [3], [4] and [5]. 

 The outputs of a collection of nonlinear functions such as 
S-Boxes, XOR-ed with the original output: [6], [7]. 

 Rotate-Add-XOR (RAX) constructions as described in [8] 
and [9] (suitable for microprocessor implementations) 

Another way to make the construction nonlinear, is to 
replace the XOR operations in one or more levels of the XOR-
tree with nonlinear compressing S-Boxes, similar to the one 
shown in Figure 5. While straightforward to implement, the 
resulting uneven circuit delays may require manual balancing 
for low side channel leakage.  With moderate effort, replacing 
two layers of the XOR-tree with 4-to-1 S-Boxes achieves single 
clock cycle operation still at clock rates upwards of 1.2 GHz. 

V. SUBSTITUTION-PERMUTATION NETWORK BASED BIT-MIXERS 

Invertible bit-mixers can be defined based on the well-known 
substitution-permutation networks, SPNs [10]. For compression 
or expansion bit-mixers the block size B of the SPN is chosen 
to be the larger of the input I and output O sizes of the bit-
mixer. If I < B, keep the unused bits of B constant or repeat 
some bits. If O < B, discard bits of B or fold bits of B together 
via XOR or S-Box functions to produce the output of the bit-mixer. 

Substitution-Permutation (SP) networks are customarily built 
according to Figure 4 with iterations of the following 3 steps: 

1. The input is transformed by a series of nonlinear 
functions, S-Boxes 

2. The bits of the result are rerouted, permuted 
3. The permuted data is XOR-ed with a round key (in 

bit-mixers it is called “subkey”) 

Note that the first and last round are often simplified, 
omitting one or two steps. 

If the S-Boxes are invertible, the SP Network will also be 
invertible, and if the S-Boxes are nonlinear, the SP network will 
be nonlinear, as well. 

SP networks can be arbitrarily wide but the number of rounds 
required for a thorough mixing depends on this width, as 
discussed below in section C. 

A. S-Boxes 

There are many S-Boxes described in literature which are 
appropriate for use in SP networks, e.g. in [5]. In hardware 
implementations, small S-Boxes yield faster bit-mixers. The 
smallest practical S-Box, one with 3 input bits and 3 output bits, 
is implemented in PRINTcipher [3]. The three output bits of 
this 3x3 S-Box are defined as follows: 

F0 = A  B' C' + A' (C  + B ) 
F1 = A' B  C  + B' (C' + A ) 
F2 = A  B  C' + C  (B' + A') 

We designed small and fast circuits to implement this S-Box. 
They require only a handful of gates for each output bit, shown 
in Figure 6. 

Similarly, the PRESENT cipher [4] uses the 4x4 S-Boxes as 
follows: 

F0 = A'B C' + A C D + A'B D'   + A B'C' + A C'D' 
F1 = A'B'C  + B C'D + A B'C'D' + A B C  + B C D' 
F2 = A B C' + A C'D + A'B'D'   + A'B C  + A'B D 
F3 = A'B D + A'C'D + A B D'+ A C'D'+ A B'C D + A'B'C D' 

 

Figure 4. Substitution-Permutation Network 



  Our circuit designs to implement this S-Box required twice 
as many gates as the PRINTcipher. See e.g. F1 in Figure 5. 

Many other good 4x4 S-Boxes are discussed in [5]. They 
offer similar performance and mixing properties. Simpler, faster 
S-Boxes can also be used, although they require additional 
rounds to achieve the same thorough mixing properties, which 
effectively reduces the overall performance of the bit-mixer. 

B. Permutation 

Many suitable permutations have been published for ciphers 
such as PRINTcipher, the ciphers PRESENT and AES [10] as 
well as for hash functions such as SHA3 [11]. The simple 
permutation used in the first two ciphers above achieves perfect 
dispersion in the first few rounds; the bits affected by a single 
input bit-flip are fed into different S-boxes. This permutation, 
where the input block size to be mixed is b and the width of the 
S-Box is s, is defined as follows: 

Pሺiሻ	ൌ	s൉i		mod	bെ1		for		0	൑	i	൑	bെ2;	and	Pሺbെ1ሻ	ൌ	bെ1	

C. Number of Layers (Rounds) 

A b-by-b S-Box distributes a single input bit-flip to b bits of 
the next round. A proper permutation routes these bits to different 
S-Boxes of the next round, distributing the changes to b2 bits. 
After r rounds, a single bit-flip in the input affects br output bits 
until all bits are affected. We want br ≥ n, that is a single input 
bit affects all output bits: r ≥ log(n) / log(b). Naturally, more 
rounds will achieve more thorough mixing. 

D. Mixing Properties with the PRINTcipher S-Box 

In our implementation of an SP network using PRINTcipher 
S-Boxes, the block size was 255 bits. For a perfect mixing, the 
minimum number of rounds required is log(255) / log(3) ≈ 5. A 
few cases from 1000 random key sets required more rounds, but 
9 rounds always achieved statistically perfect mixing. Figure 1 
shows typical improvements of mixing with the rounds, which 
“look” perfect already after 8 rounds. Executing 9 rounds in a 
single clock cycle, as needed in the worst cases, allows clock 
rates upwards of 500 MHz. 

E. Mixing Properties with the PRESENT Cipher S-Box 

Using the PRESENT cipher S-Boxes in our implementation 
of another SP network, we set the input and output width to 256 
bits. To achieve perfect mixing, the minimum number of rounds 
required is log(256) / log(4) = 4, but a few of our statistical tests 
of 1000 random key sets required 6 rounds, to achieve perfect 
mixing. Figure 7 shows typical mixing properties, which “look” 
perfect after 5 rounds. Even at a worst case 6 rounds, SP 
networks utilizing the PRESENT cipher S-Box require 3 fewer 
rounds than those that utilize the PRINTcipher S-Box, as they 
mix in each round more thoroughly, farther from any linear 
function. The difference in the number of rounds yields a 
performance increase. Executing all 6 rounds in a single clock 
cycle allows clock rates upwards of 600 MHz. 

VI. DOUBLE-MIX FEISTEL NETWORK BASED BIT-MIXERS 

We devised another family of invertible bit-mixers based on 
a new type of mixing operation, a balanced variant of Feistel 
Networks [7]. Similar to the SP network based bit-mixers, the 
block size can be the larger of the input and the output size, 
repeating input bits or folding output bits as required for 
compressing or expanding bit-mixers. 

Even though Feistel ciphers [7] transform only half their 
input bits in each round, direct implementation in software can 
completely consume a CPU. On the other hand, parallel 

Figure 7. Differential behavior of an SP Network Bit-Mixer with the PRESENT Cipher S-Box

 

Figure 5. F1 output of the PRESENT cipher S-Box 
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Figure 6. PRINTcipher S-Box circuits 



hardware implementations can gain a twofold speedup for the 
same mixing quality by transforming all intermediate data. It is 
achieved by a Feistel Network variant, which we call the 
Double-Mix Feistel Network (DMFN) as shown in Figure 8. 

In DMFN the data is processed in rounds similar to Feistel 
Networks. The data is handled in two halves L and R. In each 
round, Roundi, two functions F and G compute values from Li 
and Ri,  which give Li+1, Ri+1 after 2 XOR operations. The very 
first values L0 and R0 are set to the input of the bit-mixer and 
the very last values Lr, Rr constitute the output. 

While Li+1 is generated using a bitwise XOR operation of the 
output of F and Ri, a round key ki is mixed-in using a bitwise 
XOR operation with the output of G to generate Ri+1 as follows: 

Li൅1	ൌ	FሺLiሻ	⊕	Ri	
Ri൅1	ൌ	GሺLiሻ	⊕	ki	

If we need invertible bit-mixers, G must to be an invertible 
function. The inverse of G need not be easily computed unless 
the application uses the inverse of the bit-mixer. As such G can 
be faster computable than a typical S-Box layer, and it can 
process bits in distant positions, mixing the data better. 

An example of such a function is XOR-ing each input bit of 
G with two input bits from circular distances (d1, d2), taking 
minimal time in electronics. At power-of-two block lengths, 
these 3-way XORs define invertible functions, as proved in [9]. 

F does not have to be invertible as its inverse is not needed 
even for the inverse of the bit-mixer. In our implementations, 
we used a fast, sufficiently complex construction, which is 
nonlinear in the Galois field of binary polynomials, as follows: 

1. NAND bits of Li from circular distances d3 and d4 
2. NOR bits of Li at circular distances d5 and d6 

3. NAND bits of Li at circular distances d7 and d8 
4. XOR the above three blocks of bits to Li 

In hardware implementations, shifts are wirings, consuming 
little time. F and G are nearly equal in path length requiring 
only a moderate amount of manual effort to balance the critical 
timing paths, needed for reduced side channel leakage. While F 
and G could be different in certain, if not all rounds, in our tests, 
for simplicity, we kept them the same in all rounds. 

An invertible function G makes the DMFN invertible: one 
can compute from bottom up, i.e. from Ri+1 compute Li, 
knowing the round key ki and the inverse of G. Having Li  
compute F(Li), which is XOR-ed to Li+1 to yield Ri. 

Invertibility can be useful for ensuring that all possible output 
values occur once, computed from certain unique input values. 

As described previously, in each round only half-length 
subkeys (ki) are mixed-in with G. We found no noticeable 
mixing improvements with subkeys of the full block length, 
realized e.g. if another half-length subkey was XORed to Ri. 

A. Mixing Properties 

In our DMFN implementation, the input and output width 
was 256 bits. Thousands of software simulation runs led to 
good sets of shift distances. For example, Figure 9 shows the 
evolution of mixing using the following shift distances: 

ሼd1,	d2…,	d8ሽ	ൌ	ሼ9,	73,	1,	17,	6,	25,	11,	26ሽ.	

In 1000 tests using random key material, we found that 6 
rounds were always enough to achieve statistically perfect 
mixing. Implementing all 6 rounds in a single clock cycle 
allows a clock rate upwards of 660 MHz.  

VII. SIDE CHANNEL ATTACK RESISTANCE 

Even though a function may be cryptographically secure, its 
physical implementation could leak information about the data 
and or keys via side channels. Relevant side channels include 
response time variations, fluctuations in power consumption, 
electromagnetic emanations, and even varying voltage levels on 
device pins. See, for example, [12] and [13]. 

Because the functions described above can be implemented 
in asynchronous circuits of simple combinatorial logic gates, 
side channel leakage is minimized. More pointedly, as the 
circuits do not require structures that are typically the main 
source of side channel leakage such as flip-flops, latches and 

 

Figure 8. One round of a Double-Mix Feistel Network  

Figure 9. Differential behavior of a DMFN bit-mixer with shift distances: {9, 73, 1, 17, 6, 25, 11, 26} 



other types of storage devices, the circuits are less susceptible 
to side channel analysis. 

Variations of the lengths of the signal paths that may still 
exist can be reduced using manual layout techniques [14] to 
balance the already highly symmetric paths, thereby ensuring 
that many concurrent switching events occur at almost exactly 
the same time. This balancing step may not be necessary, 
because switching transients in e.g. our test ASIC’s 32 nm SOI 
target technology are in the picoseconds. Recording/analyzing 
such transients in an effort to mount a template attack [15] 
would require a data acquisition system with a sampling rate in 
the THz range, an order of magnitude faster than available in 
the foreseeable future. 

Using a DPA side channel analysis workstation [16], no 
exploitable side channel leakage was measured, such as 
correlations between power traces and output bits while varying 
the input bits. Note that other type of physical attacks have to 
be mitigated at the applications. They include probing [19] and 
fault injection [20].  

VIII.  KEY MATERIAL 

While different subkeys taken from the key material can 
share bits, there are obvious restrictions. E.g. for XOR-tree bit-
mixers the same key material bit must not appear in the same 
position of multiple subkeys, as the XOR operations could 
effectively cancel this bit. That in mind, a simple bit reuse 
method is to generate a few subkeys by rotating a block of key 
material bits. Rotation as well as more complex mappings can 
be used to reduce the size of the key storage or minimize the 
bandwidth required to distribute keys. 

Another solution for key distribution at limited bandwidth 
employs a second bit-mixer with hardcoded key material. From 
a shorter key the second bit-mixer can iteratively generate 
subkeys for the first bit-mixer. Ciphers and cryptographic hash 
functions can also be used to generate key material before use. 

IX. SOFTWARE IMPLEMENTATIONS 

While the bit-mixers listed above were optimized for 
hardware implementation, they work well when implemented 
in software, too, even though other constructions are also 
viable. Software bit-mixing in single clock cycles is not 
possible, but bit-mixers can still operate orders of magnitude 
faster than ciphers or hash functions of similar input and output 
sizes. When no high security, only statistical independence of 
some generated data is required, one can save significant 
computation time even in software. 

A family of bit-mixers is based on Rotate-Add-XOR (RAX) 
constructions. It is well suited for software implementations. 
Below is a 64-bit example, taken from [9]. The constants are 
hard coded subkeys, to be replaced with subkeys from the key 
storage. In the following pseudocode the function ROL is 
ROtate-Left and the internal variable k is initialized to 0: 

x = (k += 0x3779884922721DEB) 
x = (x ^ ROL(x,L) ^ ROL(x,R)) + 0x49A8D5B36969F969 
x = (x ^ ROL(x,L) ^ ROL(x,R)) + 0x6969F96949A8D5B3 
x = (x ^ ROL(x,L) ^ ROL(x,R)). 

X. SUMMARY 

We introduced the concept of “bit-mixers”, with possible 
alternative definitions and measures for the quality of mixing. 
Three families of example constructions were discussed, which 
are extremely fast with little side channel leakage. The input of 
the XOR-tree based bit-mixer constructions select sub-keys 
from a key storage, to be mixed together by bit-wise XOR 
operations. The second family of bit-mixer constructions uses 
the well-known substitution-permutation networks, presented 
with optimized implementations of small S-Boxes. The third 
group of bit-mixer constructions employs new circuits, called 
“double-mix Feistel networks”, with appropriate component 
functions optimized by extensive simulations. The mixing 
quality of all the constructions were experimentally verified. 
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