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Abstract—A Bit-Mixer is a function of fixed size input and 
output, which computes uncorrelated output from correlated 
input values, and its behavior is altered by parameters, called keys. 
Several bit-mixer constructions have been published with very 
fast, power efficient implementations in electronic hardware, 
having very little side channel leakage. In this paper a dozen 
cryptographic applications are discussed, in most of which the 
output of the employed bit-mixers are hidden from an adversary. 
In these cases bit-mixers don’t have to satisfy strict cryptographic 
requirements, but the security of the applications is improved by 
reducing exploitable correlations among intermediate values, and 
by diminishing side channel leakage of electronic implementations.  

Keywords—Information security, cryptography, cryptographic 
hardware, electronics, side channel analysis, side channel attack 

I. INTRODUCTION 

Many information security applications require high-
performance, fix-sized input and output functions which 
thoroughly mix their input value.  These functions V, which are 
called bit-mixers, produce statistically uncorrelated output from 
correlated input values. E.g. any “simple” change in the input 
causes on average half of the output bits to change.  Bit-mixers 
may also utilize secret keys, so their behavior becomes 
unpredictable to an observer. 

While performance and power consumption are critical in 
embedded applications, advanced VLSI technologies provide 
designers some ability to trade circuit size for improved security. 

Even though many other uses are possible, we focused on 
applications in which one or both the input and output interfaces 
are internal to the design and thus hidden from the observer.  In 
these instances the cryptographic requirements beyond a 
generalized strict avalanche criterion are minimized if not 
eliminated.  Specifically, the primary remaining attacks exploit 
data-dependent information exposed through the circuit’s side 
channel emanations, including variations in response time, 
electromagnetic radiation, fluctuations in power consumption… 

Fault injection attacks [22] are also ineffective against most 
of these applications, because the output and/or the input of the 
employed bit-mixers are not accessible to an adversary. 

In the paper an overview of bit-mixers is provided, and a 
dozen of their information security (cryptographic) applications 
are informally discussed, ranging from key generators to 
whitening raw entropy, from improved ciphers to fast hash 
functions. 

We invite further research on constructing bit-mixers and 
analyzing their use in security applications. 

II. BIT-MIXERS 

A Bit-Mixer is a function of fixed size input and output, 
computing statistically uncorrelated output from correlated 
input values. Its behavior is altered by parameters, called keys. 
More precisely, the properties of bit-mixers are: 

1. The fixed lengths of the input and output values can be 
independently and arbitrarily chosen 

2. Every input bit affects every output bit 

3. Simple changes in the input cause on average half of 
the output bits to change 

4. A series of simple changes in the input yields output 
values without apparent correlation to the input or to 
the change pattern of the input. I.e. standard statistical 
tests accept the output sequence as random 

5. Parameters (keys) alter the behavior of the function 

Several families of bit-mixer constructions have been 
discussed in V, with power efficient, fast (single clock cycle) 
implementations for electronic hardware. They produce very 
little side channel leakage, as introduced in [2], [3] and [4]. 

Software implementations of bit-mixers from V are also 
orders of magnitude faster than cryptographic functions of 
similar parameters. Software bit-mixers may be based on 
different (e.g. RAX) constructions: [5] and [6]. 

III. APPLICATIONS OF BIT-MIXERS 

Below we informally present a dozen information security 
applications where bit-mixers are beneficial. If not only the 
keys, but also the output and maybe even the input of the bit-
mixers remain hidden from an observer, there are no special 
security requirements, or they are less stringent than at ciphers 
or other cryptographic functions, which are designed for high 
security even at visible input and output. 

Hardware bit-mixers are very fast, and produce statistically 
uncorrelated output from correlated input, with low side 
channel leakage. By these properties bit-mixers can improve the 
speed and/or the security of cryptographic functions, when they 
perform certain internal computations. 

A. Protected Memory in Secure Computers 

In this application bit-mixers are used as key generators for 
secure ciphers, e.g. AES [7].  A memory transaction unit 
between the RAM and the CPU transparently encrypts or 
decrypts data, and generates or verifies data authentication tags 
(stored together with the encrypted data). See in [8] and [9]. 



To prevent copying encrypted data to other memory 
locations, the encryption and authentication has to depend on 
the memory address. 

To prevent memory rollback attacks, a global write counter 
is maintained, incremented at every memory write operation, 
while protected from illicit changes. The current write counter 
value also influences the generated keys. It has to be stored 
together with the encrypted data (like an IV) to enable 
decryption. 

Note that individual memory blocks of encrypted and 
authenticated data could use their own write counters, but a 
single global write counter also offers the ability of testing the 
valid range of the read back values, for detecting tampering. See 
details in [20]. 

A fast implementation of a key generator for the memory 
protection feeds the memory address (e.g. 32 bits) and the write 
counter (e.g. 48 bits) into bit-mixers to generate 256 bit long 
encryption- and authentication-keys for a secure cipher, e.g. 
AES, using a large pool of secret key material. This way, each 
encryption and authentication uses a different, secret, 
statistically uncorrelated key – thwarting most side channel 
attacks, too. 

During the startup of computing sessions the key material 
can be generated on-chip from physical random numbers (there 
is no need for sharing keys). 

Figure 2 shows the block diagram of decryption in Protected 
Memory. 

B. Key Rolling in Encrypted Communications 

In this application, as in the previous one, bit-mixers are 
used as key generators for secure ciphers, e.g. AES, but the 
setup and usage is different. 

When many messages are encrypted and/or authenticated 
with constant keys, and an adversary can observe side channel 
leakage of the equipment of the sender or the recipient, then 
side channel attacks become feasible. They are mounted, e.g. 

by correlating data and the corresponding power traces, 
measured on the power lines of a security device, or analyzing 
EM emanations. To thwart these attacks, the encryption keys 
are changed after every-, or after every few messages, in a 
manner that both the sender and receiver can deduct the same 
key, but an adversary cannot (computed from secret keys). 

Bit-mixers are ideal for this task: the input is an internal 
message index (counter), or a transmitted, non-repeating IV, 
and possibly the previous key and other, auxiliary information. 
Using shared secret key material, statistically uncorrelated secret 
keys are generated by both the sender and the recipient. All the 
input, the output and the keys of the bit-mixer remain hidden, 
thus only statistically good mixing is required. 

C. Message Authentication Code with Data Dependent Keys 

An encrypted message is encrypted again with a secure 
cipher (or hashed, together with a secret key), and possibly 
truncated to form a MAC: a Message Authentication Code. It 
accompanies transmitted or stored messages [10]. 

There is no need for reversing these data authentication 
operations. When the authenticity of the message (ciphertext) 
is verified, the recipient repeats the computations of the MAC 
on the received message, and compares the result to the 
received MAC. They have to be the same to accept the message 
as authentic. 

For a side channel attack, an adversary can systematically 
modify messages and feed them to the originally intended 
recipient, while observing side channel leakages of the 
corresponding computations of MAC values. Data bits and 
power traces could be correlated, when the MAC key remains 
constant. 

To prevent these types of side channel attacks on the MAC 
computation, data-dependent MAC keys can be generated. 
Statistically uncorrelated keys make these side channel attacks 
infeasible, assuming that the key generation for the MAC has 
no significant side channel leakage. 

Bit-mixers work for this key generation task, too: input is 
the data (ciphertext message) and possibly other, auxiliary 
information; output is the MAC key (e.g. for AES). Using 
shared secret key material, statistically uncorrelated secret 
MAC keys are generated, dependent on the data. 

Figure 1. Stream cipher 

Figure 2. Decryption in Protected Memory 



D. Parallel Stream Ciphers 

Bit-mixers can be implemented by reduced rounds ciphers. 
It is straightforward to cascade such invertible bit-mixers 
(maybe different ones) to obtain true block ciphers. However, 
this way we lose any computational speed advantage. An 
alternative is blending the output of a large number of different 
bit-mixers (e.g. by bitwise XOR-trees with possibly some S-
Box layers). 

The input of these joint bit-mixers is formed by some 
previous outputs, maybe including a counter, as standard stream 
cipher modes specify [11]. 

The key material can be mostly hardcoded, consisting of 
arbitrary data without simple nonrandom patterns, and the 
cipher key is the first subkey, but there are many other ways to 
incorporate secrets in the key material and/or in the input. 

The resulting joint bit-mixer functions are not invertible, but 
suitable for stream generation for stream ciphers. They use the 
same (pseudorandom) stream for encryption and decryption, as 
depicted on Figure 1. High speed is one of the advantages of 
these constructions. Another advantage is that the very short 
switching transients of the gates are hard to capture, and the 
parallel structure of hardware implementations mask side 
channel leakages very well. 

The cryptographic security of the resulting stream cipher 
rests on the large number of parallel operating different bit-
mixers, with each individual output is now masked by the 
output of other bit-mixers, and so each one remains hidden from 
an adversary. 

E. Scrambled-Counter Encryption Mode 

The values of a repetitively incremented counter can be 
encrypted by a secure cipher (e.g. AES), using a secret key. This 
results in an arbitrary long bit stream, to be XOR-ed to 
messages, defining a specific stream cipher [12]. 

The encryption of counters values is an ideal target of side 
channel attacks, because the key is fixed, and most of the time 
a large part of the counter is constant (initialized by a practically 
never repeating IV). The other (counting) bits are known to an 
adversary. 

A simple and fast remedy is using bit-mixers to scramble 
the counter values before they get encrypted, potentially mixing 
in previous outputs, too. 

The key material can be mostly hardcoded, consisting of 
arbitrary data without simple nonrandom patterns, and the 
cipher key is the first subkey, but there are many other ways to 
incorporate secrets in the key material and/or in the input. 

F. Scrambled Tweak Encryption Mode 

The XTS encryption mode [13] of AES on Figure 3 is an 
example of tweaked encryption: an encryption mode with 
modifications of the input and output values of a secure cipher 
by a secret key (Key2), and by the position of the data block 
within a long message. The security is enhanced by reducing 
information leakage about repeated plaintext blocks, because 
the same data at different locations gets encrypted differently. 
Furthermore, data blocks cannot be moved around, without 

completely randomizing the decrypted plaintext of the moved 
blocks. 

The first tweak value is the encrypted location information 
of the data (or an IV), which is then repeatedly transformed by 
an LFSR (Galois multiplication with the polynomial (x) = x). 
Accordingly, half of the time, on average, a tweak value is a 1 
bit rotated variant of the previous tweak, and in the other times 
a handful of the rotated bits are also flipped. Such simple 
correlations between consecutive tweak values make certain 
side channel attacks feasible. 

Replacing the LFSR operations (×α) with bit-mixers 
reduces this vulnerability, without slowing down sequential 
implementations. The input of each bit-mixer is the previous 
tweak value, the output is the current tweak value, and the key 
material can be arbitrarily hardcoded, but without simple 
nonrandom patterns. 

Using the data location as the input of the bit-mixer instead 
of the previous tweak, is equally secure, and allows parallel 
implementations: for the current tweak value only the location 
of the given cipher block within the message is needed, besides 
the secret key material. 

G. Pseudorandom Number Generator 

Repeated calls of a bit-mixer with a counter or with the 
previous output as input yield statistically uncorrelated 
sequence of numbers. They are suitable as random numbers in 
technical computing, simulations. 

Invertible bit-mixers mix a simple counter well, with 
guaranteed very long cycle, as opposed to re-mixing previous 
output (with unknown cycle lengths). A counter could replace 
a part of the output of an invertible bit-mixer, to form the input 
of the next mixing step. This gives very good mixing properties 
and guaranteed long cycles. See also in [5], [6]. 

Bit-mixer based compression functions may also provide 
security, when the pseudorandom number generator has a large 
internal state. This state is updated at every request for random 
numbers, and a much smaller output is computed from the 
internal state by a compression bit-mixer. 

The key material can be hard coded, or the internal state of 
the random number generator may be used also as key material. 

Many simple bit-mixers can operate in parallel, with their 
output blended together, e.g. by a bitwise XOR operations. Any 
single bit-mixer output is masked by the other bit-mixer 
outputs, so it remains hidden from an observer. This way an 

 

Figure 3. XTS Encryption Mode 



adversary cannot find out even small parts of the internal state 
of the pseudorandom number generator from observed small 
joint output values, therefore this pseudorandom number 
generator is sufficiently secure. 

One can also implement the NIST SP800-90A DRBG 
constructions [14] with two simple compression bit-mixers, for 
low security applications. Employing many such bit-mixers in 
parallel with their output combined (e.g. with bitwise XOR-
trees with possibly some S-Box layers) yields higher security 
DRBG constructions. 

H. Entropy Distillation (Whitening) 

True random numbers are needed for seeding and re-
seeding pseudorandom number generators, also known as 
Deterministic Random Bit Generators (DRBG). Physical 
entropy sources are rarely perfect as they often yield biased and 
correlated bits. To reduce these non-randomness, one needs to 
mix the bits of the entropy source together, and then reduce the 
output size until the resulting bits are unbiased and statistically 
uncorrelated, and so they reach entropy close to 1 bit. Another 
alternative procedure is used in [19]. 

A compression bit-mixer with hardcoded key material and 
of the desired compression ratio can perform this whitening. It 
consumes very little computation time, when implemented in 
electronics (often in one clock cycle of an embedded system). 
See also in [14] and [15]. 

I. Round Key Generator for Ciphers 

Many ciphers have been broken due to their correlated 
round keys. Other ciphers are slow, spending too much 
computation to generate uncorrelated round keys. Hardware 
based bit-mixers offer remedies for both problems. 

Constructs, similar to the bit-mixer based Pseudorandom 
Number Generator can be used to iteratively derive round keys 
from the secret cipher key. These improve the speed and/or the 
security of an iterative cipher C, which have too slow or too 
simple key schedule, resulting in a new cipher D, as follows. 

1. Pick a bit-mixer B with the output size the same as the 
size of the round keys of cipher C, but the input size of 
B may be larger 

2. Pick random key material M for the bit-mixer B. M can 
be chosen arbitrarily, avoiding simple non-random 
patterns 

3. Distribute M among all communicating parties, 
intending to use the new cipher D 

4. Replace the round-key generator of cipher C, with the 
bit-mixer B. 

The employed bit-mixer can be used in different modes: 

 The round number and/or the previous round key can 
constitute the input of B (with the original cipher key 
as the first input). 

 The cipher key can be used as the first subkey of the 
bit-mixer B, and the round number is the input. 

 A combination of the above constructions, and other 
similar ones could work, too. 

Note that we have large freedom to choose the key material 
M for the bit-mixer B. With the choice of the key material one 
can personalize ciphers, that is, create as many different 
ciphers, as desired. 

M can also be viewed as an additional, very long key for the 
new cipher D. In this case M is not hardcoded, but stored in 
registers. 

J. Iterative Hash Functions 

Compression bit-mixers with hard coded key material can 
be directly used in Merkle-Damgård constructions, described in 
[16], as shown on Figure 5. This simple setup is suitable for 
high performance, low security applications (e.g. integrity 
checks of files, faster and still more secure than CRC). 

For higher security, one can again use large numbers of bit-
mixers working in parallel. Their outputs are combined (e.g. 
bitwise XOR-ed with possibly some S-Box layers). As we saw 
earlier, this parallel bit-mixer construction produces joint 
compression functions, with the output of any single bit-mixer 
hidden, masked by the output of the other bit-mixers, therefore 
the construction is sufficiently secure.  

Bit-mixers also work in sponge constructions [17], which 
make use of compression functions, too. Simple bit-mixers are 
suitable for low cost, low security applications, while joint bit-
mixers can replace the secure compression functions in 
cryptographic hash functions of the type SHA-3, see in [21]. 

Figure 4. Iterative cipher with key schedule  Figure 5. Merkle–Damgård hash function construction 



K. Parallel Hash Functions 

In certain communication systems (e.g. Internet protocols) 
the messages, to be hashed e.g. for integrity checks, may not 
become available sequentially. Message blocks can arrive at the 
recipient out of order. 

There are also security platforms, which provide multiple 
compression functions, which can operate concurrently on 
different blocks of a message. 

In these cases, the system could benefit from hash 
constructions, which can process blocks of the message out of 
order, or concurrently. Hardware bit-mixers allow us to 
construct such systems very efficiently, with little side channel 
leakage. 

Bit-mixers are easily diversified. The same hard-coded keys 
can be used for bit-mixers of different architectures, or different 
keys can be used for similarly built bit-mixers. The simplest 
diversification of (extended input) bit-mixers can be done with 
using the same bit-mixers, but including a block number into 
their input. 

Every block of the message to be hashed is processed by a 
diverse bit-mixer. Their outputs are combined, e.g. by a bitwise 
XOR-tree, or by an XOR-tree in where one or more layers are 
replaced with small (fast) compression S-Boxes, having fewer 
output bits, than input bits. 

The corresponding construction is, faster and more flexible 
than the traditional parallel cipher construction depicted on 
Figure 6, (see also in [18]) where the combining simple hash 
function makes sure, that message blocks cannot be permuted 
without altering the overall massage digest. In our construction 
the diversity of the bit-mixers ensures that changing the order 
of the message blocks results in a different message digest (hash 
value). 

For higher security, here again one can replace all simple 
bit-mixers with clusters of many bit-mixers working in parallel. 
Their outputs are combined (e.g. with bitwise XOR-trees with 

possibly some S-Box layers) to produce secure compression 
functions. As noted before, the output of any simple bit-mixer 
is now hidden, masked by the output of the other bit-mixers, 
making the construction secure.  

L. Message Authentication Code (MAC) 

The bit-mixers in the iterative and parallel hash functions 
constructions, as discussed above, depend on sets of secret key 
material. If the key material is not hard coded, but shared 
between communicating parties, the hash functions described 
above become traditional MACs. See also in [10]. 

The key material can be generated from one or more smaller 
keys, e.g. by another bit-mixer or cryptographic expansion 
functions (e.g. the streams of cryptographic stream ciphers). 
Nonlinear bit-mixers (working in parallel or sequentially) are 
necessary for security (preventing an observer to build linear 
models, which could be solved with sufficient amount of data 
collected). 

IV. OPTIMIZATIONS CAVEATS 

While the XOR-tree based bit-mixers can indeed be 
constructed at arbitrary input and output sizes, iterative bit-
mixers (Substitution-Permutation networks, Feistel networks, 
Double-Mix Feistel networks or even Rotate-Add-XOR 
constructions, as described in V) are naturally created with 
equal input and output sizes n, called block length. 

One may chose the block length n, larger than the required 
output size. There can be security reasons for it (not to use too 
small circuits, which an adversary can easily model) or practical 
reasons, including required long input sizes, or requirements 
resulting from sizes of intermediate values (which can be, e.g. 
multiples of the width of employed S-Boxes). 

When n is larger than the required output size, a few gates 
can be saved by not computing the output bits, which are not 
returned. This saving is normally insignificant, because only the 
last round can be simplified, for good mixing all bits are needed 
from previous rounds. 

On the other hand, when the required input size I is larger 
than n, one would be tempted to use one of the following tricks, 
or a similar one, to pack the extra I−n input bits into a block of 
width n. 

1. XOR the extra bits to the rest of the input, maybe to 
more than one other bit 

2. XOR the extra input bits to the first (few) subkeys 
3. Use small compressing S-Boxes for packing the extra 

bits to the rest of the input 
4. Replace certain bits of the first subkeys with the extra 

input bits 

Each of these simple bit packing strategies leads to the 
violation of at least the requirement 3 of bit-mixing: pairs, or 
groups of input bits are handled together, and so they can be 
modified, such that the output does not change. Therefore, bit-
mixers of block size n ≥ I, (not smaller than the required input 
size) must always be used, without any bit-packing tricks. 

 

Figure 6. Parallel hash function 



V. SUMMARY 

Twelve areas of information security applications of the 
new concept of “bit-mixers” are presented, where the security 
and the processing speed are greatly improved by the bit-
mixers. In these applications the output of individual bit-mixers 
are hidden from an adversary, making many attacks irrelevant. 
Nevertheless, the paper contains no rigorous security proofs, 
which will be included in future papers, where the parameters 
get fixed, including the block size, the key storage and the reuse 
strategy of the bits of the key material. 
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