
Information Security Applications of Bit-Mixers

Laszlo Hars
January, 2016

Abstract—A Bit-Mixer is a function of fixed size input and
output, which computes uncorrelated output from correlated
input values, and its behavior is altered by parameters, called keys.
Several bit-mixer constructions have been published with very
fast, power efficient implementations in electronic hardware,
having very little side channel leakage. In this paper a dozen
cryptographic applications are discussed, in most of which the
output of the employed bit-mixers are hidden from an adversary.
In these cases bit-mixers don’t have to satisfy strict cryptographic
requirements, but the security of the applications is improved by
reducing exploitable correlations among intermediate values, and
by diminishing side channel leakage of electronic implementations.

Keywords—Information security, cryptography, cryptographic
hardware, electronics, side channel analysis, side channel attack

I. INTRODUCTION

Many information security applications require high-
performance, fix-sized input and output functions which
thoroughly mix their input value. These functions V, which are
called bit-mixers, produce statistically uncorrelated output from
correlated input values. E.g. any “simple” change in the input
causes on average half of the output bits to change. Bit-mixers
may also utilize secret keys, so their behavior becomes
unpredictable to an observer.

While performance and power consumption are critical in
embedded applications, advanced VLSI technologies provide
designers some ability to trade circuit size for improved security.

Even though many other uses are possible, we focused on
applications in which one or both the input and output interfaces
are internal to the design and thus hidden from the observer. In
these instances the cryptographic requirements beyond a
generalized strict avalanche criterion are minimized if not
eliminated. Specifically, the primary remaining attacks exploit
data-dependent information exposed through the circuit’s side
channel emanations, including variations in response time,
electromagnetic radiation, fluctuations in power consumption…

Fault injection attacks [22] are also ineffective against most
of these applications, because the output and/or the input of the
employed bit-mixers are not accessible to an adversary.

In the paper an overview of bit-mixers is provided, and a
dozen of their information security (cryptographic) applications
are informally discussed, ranging from key generators to
whitening raw entropy, from improved ciphers to fast hash
functions.

We invite further research on constructing bit-mixers and
analyzing their use in security applications.

II. BIT-MIXERS

A Bit-Mixer is a function of fixed size input and output,
computing statistically uncorrelated output from correlated
input values. Its behavior is altered by parameters, called keys.
More precisely, the properties of bit-mixers are:

1. The fixed lengths of the input and output values can be
independently and arbitrarily chosen

2. Every input bit affects every output bit

3. Simple changes in the input cause on average half of
the output bits to change

4. A series of simple changes in the input yields output
values without apparent correlation to the input or to
the change pattern of the input. I.e. standard statistical
tests accept the output sequence as random

5. Parameters (keys) alter the behavior of the function

Several families of bit-mixer constructions have been
discussed in V, with power efficient, fast (single clock cycle)
implementations for electronic hardware. They produce very
little side channel leakage, as introduced in [2], [3] and [4].

Software implementations of bit-mixers from V are also
orders of magnitude faster than cryptographic functions of
similar parameters. Software bit-mixers may be based on
different (e.g. RAX) constructions: [5] and [6].

III. APPLICATIONS OF BIT-MIXERS

Below we informally present a dozen information security
applications where bit-mixers are beneficial. If not only the
keys, but also the output and maybe even the input of the bit-
mixers remain hidden from an observer, there are no special
security requirements, or they are less stringent than at ciphers
or other cryptographic functions, which are designed for high
security even at visible input and output.

Hardware bit-mixers are very fast, and produce statistically
uncorrelated output from correlated input, with low side
channel leakage. By these properties bit-mixers can improve the
speed and/or the security of cryptographic functions, when they
perform certain internal computations.

A. Protected Memory in Secure Computers

In this application bit-mixers are used as key generators for
secure ciphers, e.g. AES [7]. A memory transaction unit
between the RAM and the CPU transparently encrypts or
decrypts data, and generates or verifies data authentication tags
(stored together with the encrypted data). See in [8] and [9].

To prevent copying encrypted data to other memory
locations, the encryption and authentication has to depend on
the memory address.

To prevent memory rollback attacks, a global write counter
is maintained, incremented at every memory write operation,
while protected from illicit changes. The current write counter
value also influences the generated keys. It has to be stored
together with the encrypted data (like an IV) to enable
decryption.

Note that individual memory blocks of encrypted and
authenticated data could use their own write counters, but a
single global write counter also offers the ability of testing the
valid range of the read back values, for detecting tampering. See
details in [20].

A fast implementation of a key generator for the memory
protection feeds the memory address (e.g. 32 bits) and the write
counter (e.g. 48 bits) into bit-mixers to generate 256 bit long
encryption- and authentication-keys for a secure cipher, e.g.
AES, using a large pool of secret key material. This way, each
encryption and authentication uses a different, secret,
statistically uncorrelated key – thwarting most side channel
attacks, too.

During the startup of computing sessions the key material
can be generated on-chip from physical random numbers (there
is no need for sharing keys).

Figure 2 shows the block diagram of decryption in Protected
Memory.

B. Key Rolling in Encrypted Communications

In this application, as in the previous one, bit-mixers are
used as key generators for secure ciphers, e.g. AES, but the
setup and usage is different.

When many messages are encrypted and/or authenticated
with constant keys, and an adversary can observe side channel
leakage of the equipment of the sender or the recipient, then
side channel attacks become feasible. They are mounted, e.g.

by correlating data and the corresponding power traces,
measured on the power lines of a security device, or analyzing
EM emanations. To thwart these attacks, the encryption keys
are changed after every-, or after every few messages, in a
manner that both the sender and receiver can deduct the same
key, but an adversary cannot (computed from secret keys).

Bit-mixers are ideal for this task: the input is an internal
message index (counter), or a transmitted, non-repeating IV,
and possibly the previous key and other, auxiliary information.
Using shared secret key material, statistically uncorrelated secret
keys are generated by both the sender and the recipient. All the
input, the output and the keys of the bit-mixer remain hidden,
thus only statistically good mixing is required.

C. Message Authentication Code with Data Dependent Keys

An encrypted message is encrypted again with a secure
cipher (or hashed, together with a secret key), and possibly
truncated to form a MAC: a Message Authentication Code. It
accompanies transmitted or stored messages [10].

There is no need for reversing these data authentication
operations. When the authenticity of the message (ciphertext)
is verified, the recipient repeats the computations of the MAC
on the received message, and compares the result to the
received MAC. They have to be the same to accept the message
as authentic.

For a side channel attack, an adversary can systematically
modify messages and feed them to the originally intended
recipient, while observing side channel leakages of the
corresponding computations of MAC values. Data bits and
power traces could be correlated, when the MAC key remains
constant.

To prevent these types of side channel attacks on the MAC
computation, data-dependent MAC keys can be generated.
Statistically uncorrelated keys make these side channel attacks
infeasible, assuming that the key generation for the MAC has
no significant side channel leakage.

Bit-mixers work for this key generation task, too: input is
the data (ciphertext message) and possibly other, auxiliary
information; output is the MAC key (e.g. for AES). Using
shared secret key material, statistically uncorrelated secret
MAC keys are generated, dependent on the data.

Figure 1. Stream cipher

Figure 2. Decryption in Protected Memory

D. Parallel Stream Ciphers

Bit-mixers can be implemented by reduced rounds ciphers.
It is straightforward to cascade such invertible bit-mixers
(maybe different ones) to obtain true block ciphers. However,
this way we lose any computational speed advantage. An
alternative is blending the output of a large number of different
bit-mixers (e.g. by bitwise XOR-trees with possibly some S-
Box layers).

The input of these joint bit-mixers is formed by some
previous outputs, maybe including a counter, as standard stream
cipher modes specify [11].

The key material can be mostly hardcoded, consisting of
arbitrary data without simple nonrandom patterns, and the
cipher key is the first subkey, but there are many other ways to
incorporate secrets in the key material and/or in the input.

The resulting joint bit-mixer functions are not invertible, but
suitable for stream generation for stream ciphers. They use the
same (pseudorandom) stream for encryption and decryption, as
depicted on Figure 1. High speed is one of the advantages of
these constructions. Another advantage is that the very short
switching transients of the gates are hard to capture, and the
parallel structure of hardware implementations mask side
channel leakages very well.

The cryptographic security of the resulting stream cipher
rests on the large number of parallel operating different bit-
mixers, with each individual output is now masked by the
output of other bit-mixers, and so each one remains hidden from
an adversary.

E. Scrambled-Counter Encryption Mode

The values of a repetitively incremented counter can be
encrypted by a secure cipher (e.g. AES), using a secret key. This
results in an arbitrary long bit stream, to be XOR-ed to
messages, defining a specific stream cipher [12].

The encryption of counters values is an ideal target of side
channel attacks, because the key is fixed, and most of the time
a large part of the counter is constant (initialized by a practically
never repeating IV). The other (counting) bits are known to an
adversary.

A simple and fast remedy is using bit-mixers to scramble
the counter values before they get encrypted, potentially mixing
in previous outputs, too.

The key material can be mostly hardcoded, consisting of
arbitrary data without simple nonrandom patterns, and the
cipher key is the first subkey, but there are many other ways to
incorporate secrets in the key material and/or in the input.

F. Scrambled Tweak Encryption Mode

The XTS encryption mode [13] of AES on Figure 3 is an
example of tweaked encryption: an encryption mode with
modifications of the input and output values of a secure cipher
by a secret key (Key2), and by the position of the data block
within a long message. The security is enhanced by reducing
information leakage about repeated plaintext blocks, because
the same data at different locations gets encrypted differently.
Furthermore, data blocks cannot be moved around, without

completely randomizing the decrypted plaintext of the moved
blocks.

The first tweak value is the encrypted location information
of the data (or an IV), which is then repeatedly transformed by
an LFSR (Galois multiplication with the polynomial (x) = x).
Accordingly, half of the time, on average, a tweak value is a 1
bit rotated variant of the previous tweak, and in the other times
a handful of the rotated bits are also flipped. Such simple
correlations between consecutive tweak values make certain
side channel attacks feasible.

Replacing the LFSR operations (×α) with bit-mixers
reduces this vulnerability, without slowing down sequential
implementations. The input of each bit-mixer is the previous
tweak value, the output is the current tweak value, and the key
material can be arbitrarily hardcoded, but without simple
nonrandom patterns.

Using the data location as the input of the bit-mixer instead
of the previous tweak, is equally secure, and allows parallel
implementations: for the current tweak value only the location
of the given cipher block within the message is needed, besides
the secret key material.

G. Pseudorandom Number Generator

Repeated calls of a bit-mixer with a counter or with the
previous output as input yield statistically uncorrelated
sequence of numbers. They are suitable as random numbers in
technical computing, simulations.

Invertible bit-mixers mix a simple counter well, with
guaranteed very long cycle, as opposed to re-mixing previous
output (with unknown cycle lengths). A counter could replace
a part of the output of an invertible bit-mixer, to form the input
of the next mixing step. This gives very good mixing properties
and guaranteed long cycles. See also in [5], [6].

Bit-mixer based compression functions may also provide
security, when the pseudorandom number generator has a large
internal state. This state is updated at every request for random
numbers, and a much smaller output is computed from the
internal state by a compression bit-mixer.

The key material can be hard coded, or the internal state of
the random number generator may be used also as key material.

Many simple bit-mixers can operate in parallel, with their
output blended together, e.g. by a bitwise XOR operations. Any
single bit-mixer output is masked by the other bit-mixer
outputs, so it remains hidden from an observer. This way an

Figure 3. XTS Encryption Mode

adversary cannot find out even small parts of the internal state
of the pseudorandom number generator from observed small
joint output values, therefore this pseudorandom number
generator is sufficiently secure.

One can also implement the NIST SP800-90A DRBG
constructions [14] with two simple compression bit-mixers, for
low security applications. Employing many such bit-mixers in
parallel with their output combined (e.g. with bitwise XOR-
trees with possibly some S-Box layers) yields higher security
DRBG constructions.

H. Entropy Distillation (Whitening)

True random numbers are needed for seeding and re-
seeding pseudorandom number generators, also known as
Deterministic Random Bit Generators (DRBG). Physical
entropy sources are rarely perfect as they often yield biased and
correlated bits. To reduce these non-randomness, one needs to
mix the bits of the entropy source together, and then reduce the
output size until the resulting bits are unbiased and statistically
uncorrelated, and so they reach entropy close to 1 bit. Another
alternative procedure is used in [19].

A compression bit-mixer with hardcoded key material and
of the desired compression ratio can perform this whitening. It
consumes very little computation time, when implemented in
electronics (often in one clock cycle of an embedded system).
See also in [14] and [15].

I. Round Key Generator for Ciphers

Many ciphers have been broken due to their correlated
round keys. Other ciphers are slow, spending too much
computation to generate uncorrelated round keys. Hardware
based bit-mixers offer remedies for both problems.

Constructs, similar to the bit-mixer based Pseudorandom
Number Generator can be used to iteratively derive round keys
from the secret cipher key. These improve the speed and/or the
security of an iterative cipher C, which have too slow or too
simple key schedule, resulting in a new cipher D, as follows.

1. Pick a bit-mixer B with the output size the same as the
size of the round keys of cipher C, but the input size of
B may be larger

2. Pick random key material M for the bit-mixer B. M can
be chosen arbitrarily, avoiding simple non-random
patterns

3. Distribute M among all communicating parties,
intending to use the new cipher D

4. Replace the round-key generator of cipher C, with the
bit-mixer B.

The employed bit-mixer can be used in different modes:

 The round number and/or the previous round key can
constitute the input of B (with the original cipher key
as the first input).

 The cipher key can be used as the first subkey of the
bit-mixer B, and the round number is the input.

 A combination of the above constructions, and other
similar ones could work, too.

Note that we have large freedom to choose the key material
M for the bit-mixer B. With the choice of the key material one
can personalize ciphers, that is, create as many different
ciphers, as desired.

M can also be viewed as an additional, very long key for the
new cipher D. In this case M is not hardcoded, but stored in
registers.

J. Iterative Hash Functions

Compression bit-mixers with hard coded key material can
be directly used in Merkle-Damgård constructions, described in
[16], as shown on Figure 5. This simple setup is suitable for
high performance, low security applications (e.g. integrity
checks of files, faster and still more secure than CRC).

For higher security, one can again use large numbers of bit-
mixers working in parallel. Their outputs are combined (e.g.
bitwise XOR-ed with possibly some S-Box layers). As we saw
earlier, this parallel bit-mixer construction produces joint
compression functions, with the output of any single bit-mixer
hidden, masked by the output of the other bit-mixers, therefore
the construction is sufficiently secure.

Bit-mixers also work in sponge constructions [17], which
make use of compression functions, too. Simple bit-mixers are
suitable for low cost, low security applications, while joint bit-
mixers can replace the secure compression functions in
cryptographic hash functions of the type SHA-3, see in [21].

Figure 4. Iterative cipher with key schedule Figure 5. Merkle–Damgård hash function construction

K. Parallel Hash Functions

In certain communication systems (e.g. Internet protocols)
the messages, to be hashed e.g. for integrity checks, may not
become available sequentially. Message blocks can arrive at the
recipient out of order.

There are also security platforms, which provide multiple
compression functions, which can operate concurrently on
different blocks of a message.

In these cases, the system could benefit from hash
constructions, which can process blocks of the message out of
order, or concurrently. Hardware bit-mixers allow us to
construct such systems very efficiently, with little side channel
leakage.

Bit-mixers are easily diversified. The same hard-coded keys
can be used for bit-mixers of different architectures, or different
keys can be used for similarly built bit-mixers. The simplest
diversification of (extended input) bit-mixers can be done with
using the same bit-mixers, but including a block number into
their input.

Every block of the message to be hashed is processed by a
diverse bit-mixer. Their outputs are combined, e.g. by a bitwise
XOR-tree, or by an XOR-tree in where one or more layers are
replaced with small (fast) compression S-Boxes, having fewer
output bits, than input bits.

The corresponding construction is, faster and more flexible
than the traditional parallel cipher construction depicted on
Figure 6, (see also in [18]) where the combining simple hash
function makes sure, that message blocks cannot be permuted
without altering the overall massage digest. In our construction
the diversity of the bit-mixers ensures that changing the order
of the message blocks results in a different message digest (hash
value).

For higher security, here again one can replace all simple
bit-mixers with clusters of many bit-mixers working in parallel.
Their outputs are combined (e.g. with bitwise XOR-trees with

possibly some S-Box layers) to produce secure compression
functions. As noted before, the output of any simple bit-mixer
is now hidden, masked by the output of the other bit-mixers,
making the construction secure.

L. Message Authentication Code (MAC)

The bit-mixers in the iterative and parallel hash functions
constructions, as discussed above, depend on sets of secret key
material. If the key material is not hard coded, but shared
between communicating parties, the hash functions described
above become traditional MACs. See also in [10].

The key material can be generated from one or more smaller
keys, e.g. by another bit-mixer or cryptographic expansion
functions (e.g. the streams of cryptographic stream ciphers).
Nonlinear bit-mixers (working in parallel or sequentially) are
necessary for security (preventing an observer to build linear
models, which could be solved with sufficient amount of data
collected).

IV. OPTIMIZATIONS CAVEATS

While the XOR-tree based bit-mixers can indeed be
constructed at arbitrary input and output sizes, iterative bit-
mixers (Substitution-Permutation networks, Feistel networks,
Double-Mix Feistel networks or even Rotate-Add-XOR
constructions, as described in V) are naturally created with
equal input and output sizes n, called block length.

One may chose the block length n, larger than the required
output size. There can be security reasons for it (not to use too
small circuits, which an adversary can easily model) or practical
reasons, including required long input sizes, or requirements
resulting from sizes of intermediate values (which can be, e.g.
multiples of the width of employed S-Boxes).

When n is larger than the required output size, a few gates
can be saved by not computing the output bits, which are not
returned. This saving is normally insignificant, because only the
last round can be simplified, for good mixing all bits are needed
from previous rounds.

On the other hand, when the required input size I is larger
than n, one would be tempted to use one of the following tricks,
or a similar one, to pack the extra I−n input bits into a block of
width n.

1. XOR the extra bits to the rest of the input, maybe to
more than one other bit

2. XOR the extra input bits to the first (few) subkeys
3. Use small compressing S-Boxes for packing the extra

bits to the rest of the input
4. Replace certain bits of the first subkeys with the extra

input bits

Each of these simple bit packing strategies leads to the
violation of at least the requirement 3 of bit-mixing: pairs, or
groups of input bits are handled together, and so they can be
modified, such that the output does not change. Therefore, bit-
mixers of block size n ≥ I, (not smaller than the required input
size) must always be used, without any bit-packing tricks.

Figure 6. Parallel hash function

V. SUMMARY

Twelve areas of information security applications of the
new concept of “bit-mixers” are presented, where the security
and the processing speed are greatly improved by the bit-
mixers. In these applications the output of individual bit-mixers
are hidden from an adversary, making many attacks irrelevant.
Nevertheless, the paper contains no rigorous security proofs,
which will be included in future papers, where the parameters
get fixed, including the block size, the key storage and the reuse
strategy of the bits of the key material.

REFERENCES
[1] Laszlo Hars “Hardware Bit-Mixers.” Cryptology ePrint Archive, 2017.

[2] Kocher, Paul, Joshua Jaffe, and Benjamin Jun. "Differential power
analysis." Advances in Cryptology—CRYPTO’99. Springer Berlin
Heidelberg, 1999.

[3] Kocher, Paul (1996). "Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems". Advances in Cryptology—
CRYPTO’96. Lecture Notes in Computer Science 1109: 104–113.
doi:10.1007/3-540-68697-5_9.

[4] Chari, Suresh, Josyula R. Rao, and Pankaj Rohatgi. "Template attacks."
Cryptographic Hardware and Embedded Systems-CHES 2002. Springer
Berlin Heidelberg, 2002. 13-28.

[5] L. Hars, G. Petruska: Pseudorandom Recursions - Small and Fast
Pseudorandom Number Generators for Embedded Applications.
EURASIP Journal on Embedded Systems, vol. 2007, Article ID 98417,
13 pages, 2007. http://jes.eurasipjournals.com/content/2007/1/098417.
doi:10.1155/2007/98417.

[6] L. Hars, G. Petruska: Pseudorandom Recursions II. EURASIP Journal on
Embedded Systems 2012, 2012:1 doi:10.1186/1687-3963-2012-1.
http://jes.eurasipjournals.com/content/2012/1/1

[7] J. Daemen and V. Rijmen. The Design of Rijndael. Springer Verlag,
Berlin, 2002.

[8] United States Patent 8,839,001, “Infinite key memory transaction unit”.

[9] United States Patent 8,843,767, “Secure Memory Transaction Unit”.

[10] Bellare, Mihir, Ran Canetti, and Hugo Krawczyk. "Keying hash functions
for message authentication." Advances in Cryptology—CRYPTO’96.
Springer Berlin Heidelberg, 1996.

[11] Stream Cipher: https://en.wikipedia.org/wiki/Stream_cipher

[12] Lipmaa, Helger; Wagner, David; Rogaway, Phillip. "Comments to NIST
concerning AES Modes of Operations: CTR-Mode Encryption".
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/c
tr/ctr-spec.pdf

[13] Morris Dworkin (January 2010). "Recommendation for Block Cipher
Modes of Operation: The XTS-AES Mode for Confidentiality on Storage
Devices". NIST Special Publication 800-38E. National Institute of
Standards and Technology.

[14] Elaine Barker, John Kelsey. DRAFT SP 800-90A. Recommendation for
Random Number Generation Using Deterministic Random Bit
Generators January 2012. http://csrc.nist.gov/publications/nistpubs/800-
90A/SP800-90A.pdf

[15] Elaine Barker, John Kelsey. DRAFT SP 800-90B (second draft),
Recommendation for the Entropy Sources Used for Random Bit
Generation, January 27, 2016 http://csrc.nist.gov/publications/drafts/800-
90/draft-sp800-90b.pdf

[16] R.C. Merkle. Secrecy, authentication, and public key systems.
http://www.merkle.com/papers/Thesis1979.pdf Stanford Ph.D. thesis
1979, pages 13-15.

[17] Guido Bertoni, Joan Daemen1, Michael Peeters and Gilles Van Assche.
Keccak specifications. October 27, 2008. http://keccak.noekeon.org/

[18] Goto, Eiichi, Tetsuo Ida, and Takao Gunji. "Parallel hashing algorithms."
Information Processing Letters 6.1 (1977): 8-13.

[19] Peres, Yuval (March 1992), "Iterating Von Neumann's Procedure for
Extracting Random Bits", Annals of Statistics 20 (1): 590–97,
doi:10.1214/aos/1176348543

[20] United States Patent Application 20160063279, Hars; Laszlo: “Periodic
memory refresh in a secure computing system”. March 3, 2016

[21] (NIST FIPS) – 202, Morris J. Dworkin “SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions” August 04, 2015
https://dx.doi.org/10.6028/NIST.FIPS.202

[22] Hayashi, Yu-ichi, et al. "Non-invasive EMI-based fault injection attack
against cryptographic modules." Electromagnetic Compatibility (EMC),
2011 IEEE International Symposium on. IEEE, 2011.

