Attacks on Secure Logging Schemes

Gunnar Hartung*

Karlsruhe Institute of Technology, Karlsruhe, Germany
gunnar.hartung@kit.edu

Abstract. We present four attacks on three cryptographic schemes in-
tended for securing log files against illicit retroactive modification. Our
first two attacks regard the LogFAS scheme by Yavuz et al. (Financial
Cryptography 2012), whereas our third and fourth attacks break the BM-
and AR-FssAgg schemes by Ma (AsiaCCS 2008).

All schemes have an accompanying security proof, seemingly contradict-
ing the existence of attacks. We point out flaws in these proofs, resolving
the contradiction.

Keywords: Log Files - LogFAS - FssAgg - Digital Signatures - Forward
Security - Attack - Cryptanalysis

1 Introduction

Log files record user-actions and events in computer systems, providing valuable
information for intrusion detection, after-the-fact digital forensics, as well as
system maintenance. For all of these objectives, having reliable information is
imperative. Therefore, a number of historical and contemporary works on system
security (e.g. [10, p. 10], [16] Sects. 18.3, 18.3.1], [7, Sect. 8.6]) recommend or
require that log files be protected from unauthorized or retroactive modification.

It is generally desirable to use dedicated hardware (e.g. write-once read many
times drives, so-called WORM drives) for this task, since such hardware can ac-
tually prevent the modification of log data. However, such special-purpose hard-
ware is not always available. Therefore, cryptographers have devised schemes
to provide integrity checks for log files that can purely be implemented in soft-
ware. Such mechanisms can not prevent the manipulation of log data in the first
place, but must be able to discern correct from manipulated information. The
cryptographic schemes must retain their functionality even if an attacker has
broken into the system and obtained the secret key. In order to achieve this,
cryptographers have resorted to schemes (e.g. [5], [I7], [8], [13], [11], [21], [22],
[14]) that do not use a single secret key to authenticate information, but use a

* The research project leading to this report was funded by the German Federal Mi-
nistry of Education and Research under grant no. 01|S15035A. The author bears
the sole responsibility for the content of this report. This paper will appear in the
proceedings of the Financial Cryptography and Data Security conference 2017.



sequence of secret keys sky, ..., skp insteadﬂ FEach key sk; is used for some time
period (called the i-th epoch), until it is eventually replaced by its successor. In
the following, we will focus on digital signature schemes, though MAC schemes
using such a key-chain are used as well.

Informally speaking, a cryptographic signature scheme is called forward-
secure if no attacker, who is given signatures on messages of his choice as well
as a secret key sk; from the sequence, can forge a signature relating to an epoch
before the key-compromise. If a forward-secure signature scheme is used to sign
log entries, an attacker breaking into the system during some epoch ¢ will not
be able to modify log entries from previous epochs j < i without this change
being detectable. (The attacker may, however, be able to arbitrarily modify log
entries from later epochs. But since the attacker is in control of the input to the
logging system once he has corrupted the signer, the attacker could control the
log file’s content even if the cryptographic scheme somehow prevented him from
computing a signature.)

Since a log file will accumulate log entries over a possibly long period of time,
the number of signatures being stored to verify the log messages will grow ac-
cordingly. For efficiency reasons, it is therefore desirable to be able to “compress”
the signatures. Aggregate signature schemes [6] allow the signer to merge signa-
tures on different messages (possibly even originating from different signers) into
just one signature, which may be as small as a signature for a single message.
Using aggregate signatures for secure logging does not only improve the logging
system’s efficiency, but also helps preventing so-called truncation attacks [I3].

A special, but restricted case of aggregation is sequential aggregation. Se-
quential aggregation demands that aggregation/compression must be done at
the time of creating a new signature. Ad-hoc aggregation of signatures that
have been created independently needs not be supported. Ma and Tsudik [12]
introduced the abbreviation “FssAgg” for forward-secure sequential aggregate
signatures.

The LogFAS scheme [22] as well as the BM-FssAgg and AR-FssAgg [11]
schemes are modern constructions for securing log files. Both try to attain
forward-security and aggregation, and were published on notable and peer-
reviewed conferences.

Our Contribution. We describe two attacks on LogFAS [22123], which allow for
virtually arbitrary log file forgeries and for the confusion of legitimate signers,
respectively, in Section [2] Our attacks on LogFAS have been acknowledged in
private communication by one of authors of [22].

Furthermore, we present two attacks against the BM-FssAgg and AR-FssAgg
schemes [II], which even allow for recovery of the signing key sk; for specific
epochs 4. Our findings are given in Section [3} We implemented these attacks to
verify our findings and to determine the required effort. We found that our first

! For efficiency reasons, schemes where each secret key can be computed from the pre-
vious one, and where there is only single, compact key for verification are desirable.
However these properties are not strictly required.



attack on the BM-FssAgg scheme takes (depending on the parameters) between
two and fifty minutes of computation, even with an implementation that misses
a number of rather obvious optimizations. Our attack on AR-FssAgg required
less than 0.05 seconds in all of our experiments. We present our experimental
results in Section

While LogFAS is a rather recent scheme, the BM- and AR-FssAgg schemes
have been proposed several years ago. Nonetheless, the attacks we present have
not been brought to public attention.

All three schemes have an accompanying security proof, which should rule out
any meaningful attack on the schemes. We analyzed these proofs and identified
a flaw in each of them, resolving the contradiction between our findings and
the claimed security properties of the schemes. Note that our second attack on
LogFAS is outside the security model considered in [22]; it therefore does not
contradict the claimed security.

2 LogFAS

LogFAS [22] is a recently proposed forward-secure and aggregate audit log scheme.
It offers high computational efficiency and compact public key sizes at the ex-
pense of large secret keys.

Before we describe our attacks, we will briefly introduce LogFAS. The reader
is referred to [22123] for a more detailed presentation.

2.1 Description of LogFAS

*

Let G be a subgroup of prime order g of Z;, where p is a prime number such
that ¢ divides p — 1. Let a be a generator of G and T be the total number
of supported epochs. LogFAS assumes a Key Generation Center (KGC) that
generates keys for individual signers. Each signer i has an identity ID;. Signatures
of the LogFAS scheme consist of several values, some of which can be aggregated.
For the remainder of this section, we employ the convention that variables with
two indices are aggregated values of several epochs. For instance, sg; is the
aggregation of the values sy, ..., s;.

LogFAS uses three fundamental building blocks: an ordinary signature scheme
Y = (KeyGen,Sign, Verify), the Schnorr signature scheme [I8/I9] (briefly re-
capped in Appendix , and an incremental hash function IH based on a
collision-resistant hash function H, which is modelled as a random oracle [4].

The key of IH consists of T factors zg, ..., zr—1. The hash value of a sequence
of l € {0,...,T — 1} messages (my,..., m;) is then given by

l

IH (mo,...,my) = Z[—I(mz)zZ (mod q) .
=0

The security of this hash function can be shown under subset-sum-style assump-
tions, see the references in [2223] for details.



An individual signer’s secret key is derived from a central long-term secret
b € Z; held by the KGC (which can be compared to a secret key of the Schnorr
scheme) and several values chosen uniformly at random. Each signer’s secret
key includes a set of coeflicients zg, ..., zr_1 (derived from b) that form the key
of TH. The exact relations between the values in the secret key, the public key
and the signature are a little complicated, but our attack can be understood
without fully comprehending how these values relate to each other.

The algorithms used by LogFAS are given below.

Key Generation.
The KGC chooses a random value b € Z; and generates a key pair (EE,EE)
using ¥. The long term private and public keys are (b,sk) and (B :=
ab”! (mod ‘”,BE), respectively. These values are shared for all signers.
Next, for each identity ID;, the KGC generates temporary keys for each
epoch j € {0,...,T — 1} based on random values 7;, a;,d;, z; < Z;. These
values are used to create interdependent variables as follows:

y; =a; —d, (mod q),

zj = (a; —x;)b (mod q),
M; = %% (mod p), and
R :=a's (mod p)

Finally, the KGC generates “tokens” f; < Sign(s/lz, H(ID; || 4)) for each
signer ID; and each epoch number j. These serve as witnesses that signer
ID; has created at least j signatures. Let sk := (14, y;, 2, M;, R;, 3;) for each
i € {0,...,T — 1}. The initial secret key of ID; is skg = (sky, ..., skip_).
Key Update.
Updates the key sk; (I € {0,...,T —2}) to the next epoch sk; 1 by simply
erasing 7, y;, M;, and 3; from skj.
Signature Generation.
A LogFAS signature o ;1 consists of aggregate-so-far values sg;—1 € Zj4
and Mé,lq € Zy, the most recent token (1, as well as the random group
elements R; and the elements z; of IH’s key for all j € {0,...,l — 1}E|
Given an aggregate signature 00,1—1 for (mo7 R ,ml,1>7 a new entry m; and
the temporary secret key (r7, yi, z1, My, Ry, B;) for epoch [, first compute the
hash value e; := H(my || 1| 2z || Ri). Then compute s; := r; — e;y; (mod q)
and aggregate this value into sg; 1= so;—1 + s; (mod ¢). Next, set M| :=
M;* (mod p) and aggregate this into My, := Mg, ;M (mod p). The new
aggregate signature is

o0, 1= (s0.0, My 1. B ((Ry 7)) ) -

Verification.
To verify an aggregate signature (so,1, My ;, 81, (R, zj)>;:O) =og overl+1

2 The original scheme in [22] includes the value e; in the signature. We have omitted
this, as e; can be recomputed by the verifier.



log entries (myg,...,m;), one first checks the validity of the token §;. If
Verify(pk, H(ID; || 1), ;) = 0, then output 0 and exit. Otherwise, compute
20,1 *= IH(mO H 0 || 20 H Ro, ceey Yy || l || Zl || Rl)7 check if

!
H R, L Mg, - B -t (mod p) (1)
3=0

and accept if the equation holds (output 1 and exit). Otherwise, reject the
signature (output 0 and exit).

2.2 The Attacks

We report two simple and efficient attacks on LogFAS. The first one allows for
virtually arbitrary modification of log entries, but can not change the log file
size. It requires only minimal computation and a single signature. This attack
contradicts the claimed security of LogFAS. We analyzed the proof of security
in [23] and found a flaw, resolving this contradiction.

Our second attack allows an attacker to masquerade a signature as origi-
nating from another (valid) signer. This attack is outside the formal security
model considered in [22], and therefore does not contradict the claimed secu-
rity. It nonetheless presents a serious threat, as it undermines the signature’s
authenticity.

Signature Forgery. Our first attack can be used to sign any sequence of log
messages (mg,...,m;) (I € {0,...,T —1}), provided the attacker has a valid
signature for some other sequence of log messages (mg,...,m;) of the same
length, and knows the public key pk.

On a high level, our attack exploits the fact that the right hand side of Eq. (1
can be fully determined M(’)J. Since M(’)’l is part of the signature, an attacker
can simply set M(/),z to a value such that the equation holds. Computing the
respective value essentially only requires modular multiplication, exponentiation
and inversion, which can be implemented quite efficiently.

Concretely, let o0, = (s0,1, My ;, 81, (R, zj)>;:0) be the signature known to

the attacker. At first, the adversary computes Ry; = Hé‘:o R; (mod p), and

200 = IH(m§ || 0] 20 || Ro, -.., mj ||l]|z|| Ri). (S)he then sets Mg, == Ro, -
B=#:t.q7%: (mod p). The forged signature is oy ; = (s0,1, Mg, 1, ((R;, zj)>;:0).

It is easy to see that this signature will be accepted by the verification al-
gorithm. Since §; is taken from the original signature, it is a valid signature for
H(ID; ||1) and so Verify(BE, H(ID; || 1), 8;) will return 1, i.e. the first check of the
verification algorithm will succeed. Now, by our setup, we have

l
Mg,l . B0l . g0 = (Ro,l . B0 ,a—s(),z) . B0l . g0 = Ry, = H R; (mod p) .
7=0



Therefore, the verification algorithm will accept the signature, and the attack is
successful. Note that the attack only replaces a single component of the signa-
ture, namely Méy ;- All other parts of the signature are copied without modifica-
tion. This simple attack is possible due to the structure of Eq. , where the
right hand side can be fully determined by M(IJ,I and this requires only modular
multiplication, exponentiation and inversion.

Sender Confusion. If an attacker has two aggregate signatures o, U(l)J for
two sequences of log messages of the same length [+1, created by different signers
ID;, ID;s the attacker can just exchange the §; tokens. The receiver will accept
09,1 as a signature from ID;/, when the messages were really signed by signer ¢,
and vice versa. This attack is due to the fact that the identity ID; of the signer
is only bound to 3; but not to the other signature components sg;, M{ ;, R;, z;.

2.3 Attack Consequences

In this section we present a scenario that shows how our attacks might be used
in a real-world attack. Consider a corporate network, where there are multiple
servers S1,...S, (n € N) offering different services. Each server S; collects in-
formation in its log files, and regularly transfers all new log entries together with
a signature to some central logging server L. The logging server L checks the
signatures, stores the log data, and might examine it automatically for signs of
a security breach using an intrusion detection system (IDS). If a server S; does
not transmit any new log entries to L within a certain amount of time, L raises
an alarm (as there might be an attacker suppressing the delivery of log messages
to L). Assume that LogFAS is used for signing log entries.

An attacker who has broken into a server \S; in the corporate network without
raising an alarm might retroactively change the log entries not yet transmitted
to L to cover his traces, and then create a new (valid) signature for the modified
log file using our first attack. He continues to transmit log entries to L regularly,
in order not to raise an alarm, albeit he suppresses log entries that might raise
suspicion.

Now, assume that the attacker can bring himself into a man-in-the-middle
position between some other server S; and L. (This might be achieved using
techniques such as ARP spoofing.) He may now filter and change log entries
sent from S; to L on-the-fly, while our first attack allows him to create valid
signatures. Thus, the attacker may attack S; without risking detection by the
IDS at L.

To illustrate our second attack, suppose that the logging system was fixed
to prevent the signature forgery. However, bringing himself into a man-in-the-
middle position again, the attacker might still exchange the identities of some
servers S;, Sj included in the signature using our sender confusion attack. He
may then try to compromise S;, while the IDS raises an alarm regarding an
attack on Si. The attacker can thus misdirect the network administrators’ efforts
to defend their network, giving him an advantage, or at least gaining time until
the administrators notice the deception.



2.4 The Proof of Security

In this section we point out the mistake in LogFAS’ proof of security that allowed
for the false conclusion of LogFAS being secure. The reader is advised to consider
[23] while reading this section, or to skip this section entirely.

The security proof for LogFAS follows a simple and mostly standard scheme.
One assumes an attacker A that breaks LogFAS, and constructs an attacker F
against the Schnorr signature scheme, using A as a subroutine. F first guesses an
index w of a message block that A will modify. F’s challenge public key (for the
Schnorr scheme) is then embedded into the temporary key pair for that message,
the remaining key pairs are set up honestly.

When the attacker outputs a forgery, the proof considers three cases. The
first case deals with attackers that actually create a new message together with
a valid signature (as does our attack). The second case deals with truncation
attacks and the third case models a hash collision.

The error is located in the first case, where the authors conclude that a forgery
for an entirely new message must imply a forgery of a Schnorr-type signature,
i.e. that the values Ry, s, (when properly extracted from the LogFAS signature)
must be a valid signature for the message m,,. We can see that this conclusion is
false, since our attack does not modify the values R,,, s,, at all, but only replaces
the original message with an arbitrary one. Thus, the verification algorithm of
the Schnorr scheme will reject the signature with very high probability, while
the authors conclude that the signature will be accepted.

3 The FssAgg Schemes

This section presents the BM-FssAgg scheme, the AR-FssAgg scheme and our
attacks on these constructions. Both schemes were presented in [11], and are
intended to provide a single signature per epoch. Thus, the respective key must
be updated every time a message has been signed.

3.1 Description of the BM-FssAgg Scheme

The BM-FssAgg signature scheme [I1] is based on a forward-secure signature
scheme by Bellare and Miner [3]. Both schemes utilize repeated squaring modulo
a Blum integer N. (An integer N is called a Blum integer if it is a product of
two primes p,q such that p = ¢ = 3 (mod 4).) Again, we first describe the
BM-FssAgg scheme before we turn to our attack.

Let T be the number of supported epochs and H a hash function that maps
arbitrary bit strings to bit strings of some fixed length [ € N.

Intuitively, the scheme is built on [ + 1 sequences of units modulo N, where
in each sequence, each number is obtained by squaring the predecessor. Once
the starting points 7o and s;¢ (for i € {1,...,1}) have been selected during key
generation, the scheme successively computes

rjy1 =75  (mod N)  forje{0,...,T} @)
Z. (mod N) forje€{0,...,T} and i€ {1,...,1}.



When 79 and the s; o are clear from the context, we may thus naturally refer
tor; and s; ; for j € {1,...,T + 1} throughout this section. Observe that these
sequences form one-way chains: Given any element s; ; of a chain, it is easy to
compute the subsequent elements s; ;; with j° > j, but it is unknown how to
efficiently compute the previous ones without knowing the factorization of V.
(Obviously, the same holds for the chain of the r;-s.)

We now describe the BM-FssAgg scheme in more detail.

Key Generation.
Pick two random, sufficiently large primes p, ¢, each congruent to 3 modulo
4, and compute N = pq. Next, pick [ + 1 random integers 79, 51,0, ... S1,0 <
ZY. Compute y := 1/rpy; (mod N), and w; := 1/s; 741 (mod N) for all
i € {1,...,1l}. The public key is then defined as pk := (N, T,uy,...u;y),
whereas the initial secret key is sky := (N,j =1,T,811,...,81,1,71)-

Key Update.
In order to update the secret key, simply replace all r;, s; ; by the respective
Tj+1,8i,j+1 (1.e., square all these values), and increment the epoch counter j.
Signing.
In order to sign a message m;, first compute the hash value ¢ := H(j,y,m).
Let ¢1,...,¢ € {0,1} be the bits of ¢. The signature for m is o; :=r; Hézl st
i.e., the signature is the product of r; and all s; ; where ¢; = 1. An aggregate
signature for multiple messages is computed by multiplying the individual
signatures. Thus, a signature can be added to an aggregate signature oy ;1
by computing the new aggregate as o1 ; = 01 j—1 - 0; (mod N).

Verification.
Given an aggregate signature oy ; for messages ms,...,m; signed in epochs
1 through ¢, the verification algorithm will effectively “strip off” the individ-
ual signatures one-by-one, starting with the last signature.

More precisely, to verify o; ¢, act as follows: Recompute the hash value ¢; =
c1t-.-c = H(t,y,m;) of the last message. (Recall that the signature for
my is ry Hézl sft') Square o1 exactly T+ 1 — ¢ times, effectively adding
T + 1 —t to the j-indices of all r;, s; ; contained in oy . (In particular, this
effectively changes the signature for m; to roy1 Hizl szlel .) Multiply the
result with y]_[i:1 uf”, cancelling out the last signature because y and the
u; are the modular inverses of r7; and the s; 741.

For the last-but-one message, square the result another time (projecting

the last-but-one signature into the epoch T' 4+ 1), recompute the hash value

C1,t-1---Clt—1, and cancel out the last-but-one signature by multiplication
. l Cit—1

with y [, w7

The scheme continues analogously for the remaining messages m;_o, ..., m1.

If the procedure terminates at a value of 1, the aggregate signature is ac-

cepted as valid, otherwise it is rejected as invalid.



3.2 Attack on the BM-FssAgg Scheme

We show a conceptually simple way to recover the secret key sky (t > 14 1) from
t successive aggregate signatures and the public key pk. (Our attack may work
with ¢ = [+ 1 signatures, but has a higher success probability if ¢ > [+ 1. In our
experiments, ¢ = [ + 11 signatures have been sufficient for all cases.)

Our attack makes use of the fact that the r; values, which are supposed
to randomize the signatures, are not chosen independently at random, but are
strongly interdependentﬂ This allows us to set up a set of equations with a
limited number of variables (namely, 7, and the s; ;), and then solve the equations
for these variables, which together make up the secret key sk;.

We will now describe our attack in more details. Fix arbitrary messages
mi, ..., m; and the respective aggregate signatures oy ;, each valid for messages
mi,...,m;. Let ¢; ; denote the i-th bit of the hash value of message m;, as
computed by the signing algorithm.

First, recover the individual signatures o; := o1 ;/01,j—1 (mod N) for all
JjeA{l,...,t}, letting 01,0 = 1. Observe that

. C1,1 Ci,1
o1 =71 8171 Sl,l
_ Ci1,t Cl,t
Oy = T¢ sl,t e sl,t .
For ease of presentation, we let so; = 7; and cp; = 1 for all j. We define

t—j
Tj = ot? J), i.e. we square each signature o; for ¢ — j times, effectively adding
t — j to the j-index of the r;, s; ; because of Eq. . We thus obtain

_ @Y _con c11 cit

T =0, = Sgi  S14 -S4
_ (2 _ _coe c1,2 ci2

Ty =0y = Soi St .- S

: : : (3)
_ o (2Y) _ o1 cre-a cli—1
Tt—1 = Ut,()l = S0, S1t Ce sl,t

_(2°) _  _coe 1t ct

T = 0y = So4 Sid e Siis

where all ¢; ; € {0,1}. We thus have ¢t > [ + 1 equations in the [ + 1 unknown
variables s; ;. We now want to solve these equations for the s;;, by doing linear
algebra “in the exponent”. We can later realize addition and subtraction of
row vectors (co j,...,¢,;) by multiplication and division of the 7;, respectively.
Likewise, multiplication of a row vector by a scalar z € Z can be realized by
raising the respective 7; to its z-th power.

More concretely, we consider the ¢; ; as a matrix C' over the integers, and try
to express each standard basis vector e; as an integer linear combination of the
row vectors ¢; = (o j,--.,Clj)-

3 For this reason, our attack does not carry over to the underlying forward-secure
signature scheme by Bellare and Miner [3]. There, the values r; are chosen uniformly
and independently at random, which prevents our attack.



Note that the Gaussian elminiation method is not suited for this setting,
since it will compute a linear combination of the row-vectors if one exists, but
the output may not be an integer linear combination. Moreover, a set of [ + 1
row vectors (co ;. ..¢; ;) may not form a basis of ZH1 even if they are linearly
independent, since the integers are not a field, and thus Z*! is not a vector space
but only a Z-module. (We will nonetheless continue to refer to elements of Z!*?
as “vectors” for simplicity.) We therefore need to employ different algorithms.

Specifically, we compute the Hermite Normal Form (HNF) of C. The exact
definitions and conventions used for the HNF differ in the literature. The fol-
lowing definition is a special case of Definition 2.8 given by [2] p. 301], applying
the preceding Example 2.7 (1) on the same page.

Definition 1. Let A € Z™*™ be an integer matrix. Denote the i-th row of A
by a;, and the j-th entry of the i-th row by a;; (fori € {1,...,m} and j €
{1,...,n}). A is in Hermite Normal Form iff there is a non-negative integer r
with 0 < r < m such that

1. a;Z0 foralll<i<randa; =0 forallr+1<i<m, and
2. there is a sequence of column indices 1 < ny < ... < n, < m such that for
alli € {1,...,r} the following three conditions hold:

Qi p; > 0
a; ;=0 for j <mn;, and
0<ajn, <aipn, forl<j<i.

Intuitively, a matrix is in HNF if only the first r rows are occupied (and the
remaining m —r rows are zero), each non-zero row has a positive “pivot” element
@; n, (which is the first non-zero element in this row), the pivot element of each
row is further to the right than the pivot of the preceding row, and all elements
above a pivot element are between 0 (inclusive) and the pivot (exclusive).

Each integer matrix A can be transformed into a matrix H in HNF by a set of
invertible row operations, represented by a unimodular matrix R (i.e. RA = H)
[2, Theorem 2.9, p. 302], and the HNF H of a given integer matrix A is unique
[2, Theorem 2.13, p. 304]. Furthermore, the HNF is known to be computable in
polynomial time, see e.g. [9I5].

Assume for now that the rows of C' span Z!*!. (We will show that this is a
realistic assumption given enough signatures in Section . If this is the case,

then the HNF of C is
14
H = 4
<0t(l+1),l+1> )

where 1;1; is the (I + 1) x (I + 1) identity matrix and 0;_(41);41 is the all-
zero matrix with ¢ — (I 4+ 1) rows and [ + 1 columns. In the following, let e; =

(€i1,---,€i1+1) € Z!T! be the i-th unit vector. (Thus e; ; = 1 if i = j, and
ei,; = 0 otherwise.)
Continuing our attack, we compute the matrix R = (r; ;) € Z'*' that

transforms C' into its Hermite Normal Form H (i.e., RC = H). We then fix



i €{0,...,l} and compute

t
()"0 = (5o - sy )™+ (sl sy )™
j=1
_ (ng,tlco,lerJr’/’i,tCo,t) . (S;j{lcl,l"!‘-“"!"’“i,tcl,t)
=0 s
= Sit

where the first equality follows from substituting the signatures according to
Eq. and writing out the product, and the second equality can be obtained
by sorting the product by the base terms. To see the third and fourth equality,
note that the exponents for the s;; match the i-th row of the matrix RC = H,
and that the first [ + 1 rows of H are the unit vectors (see Eq. ().

Overall, this gives away s; ;. Repeating this step for all i € {0,...,1} allows
us to reconstruct all s; ¢, thus leaking the entire secret key sk; of the ¢-th epoch.
This concludes the description of our attack against BM-FssAgg.

3.3 Description of the AR-FssAgg Scheme

The AR-FssAgg scheme by Ma [I1] is based on a forward-secure digital signature
scheme by Abdalla and Reyzin [I], which itself is based on the forward-secure
signature scheme by Bellare and Miner [3], but is considerably more efficient.

In the following, we will briefly describe the differences between the AR-
FssAgg scheme and the BM-FssAgg scheme. The reader is referred to [11] for a
complete description of the AR-FssAgg construction.

The main difference between the AR-FssAgg scheme and the BM-FssAgg
scheme is that the former interprets the hash function’s output ¢ as an integer
in [0,2! — 1]. Consequently, the [ + 1 chains of squares r;,s; ; are replaced by
just two chains 7}, s; of higher powers, namely:

Tyl = rj(.gl) (mod N)  for j €{0,...,T}
l
Sj41 1= s§2) (mod N)  for j €{0,...,T}.

As for the BM-FssAgg scheme, the starting points rg and sg are chosen randomly,
and N is a Blum integer. The key update procedure is adapted canonically: r;
and s; are raised to their 2l-th power instead of being squared. Thus, they are
replaced by r?—l and s?l, respectively. In the signing procedure, the hash value c is
computed as before, but the signature for the single message is now o := r; - 5§

(mod N). The aggregate signature is again o1 ; := 01 j_1-0; (mod N), as before.

3.4 Attack on the AR-FssAgg Scheme

As with the BM-FssAgg scheme, our attack on the AR-FssAgg scheme allows us
to reconstruct the secret key of a particular epoch t (¢ > 3), requiring only the



public key and a few consecutive aggregate signatures oy 1,...,01,. Our attack
again exploits the fact that the supposedly random values r; are not actually
chosen independently at random, but depend on each otherﬁj

As before, we first recover the individual signatures as o; := o0y ;/01,;-1
(mod N) for j € {1,...,t}, and “project” them into the epoch ¢, by computing:
Tj = aj?l(tﬂ). We again obtain a system of equations:

= 0%1(171) — - Sfl
: Do (5)
0

Tt = 0'752) :7",5‘3?

We pick one of the 7; arbitrarily, say 71, and use it to strip the r; from the
other 7;-s, by computing ¢; := 7, /71 = s% /s = 5%~ for all j € {2,...,t}.

For brevity, let ¢; = ¢; — ¢ for all j € {2,...t}. We assume for now that
the greatest common divisor of all c;- is 1. (We will revisit this assumption in
Section [3.7])

Once we have the ¢;, we use the extended Euclidean algorithm to obtain
coefficients fa, ..., f; such that chfa + chfs + ... + cifr = ged(ch, ch,...c;) = 1.
We can then compute ¢J? - ¢J* .. ¢ft = sgéh : s§5f3 - s?ft =5 = 5.

Once we know s;, r; can be recovered trivially from (e.g.) 71, by computing
re:=71/s;" (mod N). We have thus recovered the secret key for epoch t.

3.5 Attack Consequences

Reconsider the scenario from Section [2.3] but assume that log entries are signed
with the BM-FssAgg or AR-FssAgg scheme instead of LogFAS.

Assume again that an attacker has managed to break into a server S; without
raising an alarm. He may then bring himself into a man-in-the-middle position
between another server S; and L again, and first passively observes several trans-
missions of log entries from S; to L, storing the respective signatures.

If at least t signatures for individual messages can be recovered from the
(aggregate) signatures sent to L, the attacker can launch one of the attacks
described above to recover a recent secret keyﬂ He may then attack the server .S,
filtering the log messages sent from S; to L on-the-fly, and create valid signatures
using the known secret key.

While it may seem unnatural that the aggregate signatures observed by the
attacker are directly consecutive, it is actually a plausible scenario. For example,
this might happen when the server \S; is mostly idle, e.g. at night.

4 As with our attack on the BM-FssAgg scheme, our attack does not carry over to
the underlying forward-secure signature scheme by Abdalla and Reyzin [I], since the
values r; are chosen independently at random in their signature scheme.

® Our attacks can be easily generalized to work with any ¢ + 1 consecutive aggre-
gate signatures o1 k,...,01 k+t+1 Or even with any ¢ pairs of directly consecutive
aggregate signatures (01,6, 01 ky1+1)y -+ (1, 01, ky+1)-



3.6 The Proofs of Security

Security proofs for the BM-FssAgg and AR-FssAgg schemes are given in the
appendix of [I1]. Both proofs give a reduction to the hardness of factoring a Blum
integer, assuming an efficient forger A on the respective scheme, and constructing
an attacker BB on the factorization of N. The proofs are incorrect for they assume
that not only A may use a signing oracle, but B has access to a signing oracle,
too.

3.7 Experimental Results

We implemented our attacks on the BM-FssAgg and AR-FssAgg schemes in
order to verify them, and to empirically determine the number ¢ of signatures
required. (Recall that we assumed that the matrix C' spanned Z'*! for the at-
tack on BM-FssAgg, and that ged(c), ..., c;) = 1 for the attack on AR-FssAgg,
respectively.) We measured the run times of our attacks, and found that they
are entirely practical.

Since the attacks require a number of signatures, we also implemented the
key generation, key updating and signing procedures of the two schemesﬂ The
implementations are written for the computer algebra system Sage [20].

Our attack implementations miss a number of quite obvious optimizations:
we did not parellelize independent tasks, and some computations are repeated
during the attacks. Our measurements should therefore not be regarded as a
precise estimate of the resources required for the respective attacks, but as an
upper bound.

Experiment Setup. All experiments used a modulus size of 2048 bit and were
conducted on a desktop office PC, equipped with a four-core AMD A10-7850K
Radeon R7 processor with a per-core adaptively controlled clock frequency of
up to 3.7 GHz, different L1-caches with a total capacity of 256 KiB, two 2 MiB
L2-Caches, each shared between two cores, and 14.6 GiB of RAM. The PC was
running version 16.04 of the Ubuntu Desktop GNU/Linux operating system,
Sage in version 6.7, and Python 2.7.

For our attack on the BM-FssAgg scheme, we used the SHA-224, SHA-
256, SHA-384 and SHA-512 hash functions to examine the influence of the
hash length [ on the runtime of our attack. The BM-FssAgg scheme was instan-
tiated with 512 epochs for the SHA-224, SHA-256 and SHA-384 hash functions,
and with 1024 epochs for the SHA-512 hash function. (Recall that the scheme
signs exactly one message per epoch, and our attack on the BM-FssAgg scheme
requires at least [ signatures, where [ is the hash 1ength.)|2|

5 Our implementation of the schemes is only intended to provide a background for
our attacks. We did therefore not attempt to harden our implementation against
different types of attacks at all.

" The number of supported epochs T may be unrealistically low. But since T does not
influence the time required for executing our attacks, a small T is sufficient for our
demonstration.



Our implementation of the attacks first collects the minimum required num-
ber of signatures (I + 1 for the BM-FssAgg scheme, where [ is the output length
of the hash function, and 3 for the AR-FssAgg scheme), and then checks if the
respective requirement on the hash values is fulfilled. If this is the case, the at-
tack is continued as described above. Otherwise, our implementation gradually
requests additional signatures until the requirements are fulfilled.

For both of our schemes, we measured the time that was necessary to collect
the total number of signatures. (This includes the time necessary to compute the
signatures in the first place, and to update the keys respectively.) For our BM-
FssAgg implementation, this time also includes the computation of the Hermite
Normal Form of the given matrix, along with the transformation matrix. For the
AR-FssAgg attack, the time includes the computation of the ged of the ¢, as
well as the factors f;. We refer to these times as the signature collection times.
The remaining time required for the attacks is referred to as reconstruction time.
A measurement corresponds to one execution of an attack.

Our experiments quickly showed that the reconstruction times for BM-FssAgg
were quite long. Given the large amount of time required for the reconstruction
and the small amount of variation in the reconstruction times, we restricted
our examination of the reconstruction times of BM-FssAgg to 50 measurements
per hash-function. For the reconstruction time of the attack on the AR-FssAgg
scheme, the number of requested signatures (for both schemes), and the the sig-
nature collection times (for both schemes), we collected 250 measurements per
scheme and hash-function.

Results Our results are summarized in Table[I} All times are given in seconds.

In our experiments regarding the attack on BM-FssAgg, the greatest differ-
ence d = t—({4+1) between ¢ (the number of actual required signatures) and [+ 1
(the minimum number of required signatures) was 10. (So, t = [ + 11 signatures
were always sufficient.) For AR-FssAgg, t = 3 + 4 have been sufficient for all
of our 250 tries. The number of signatures actually required in our experiments
is shown in the top third of Table [I] The theoretical minimum of signatures
required to launch the attacks is given for comparison, denoted as “Theoretical
Optimum”.

We found that despite the lack of optimizations, our attack on BM-FssAgg
took only minutes to recover the respective secret key (in the case of SHA-224)
and at most 50 minutes (in the case of SHA-512). Our attack on the AR-FssAgg
scheme took less than 0.05 seconds in all 250 measurements.

For BM-FssAgg, the reconstruction time turned out to be the major part of
the attack time. In retrospect, this is understandable, since the computation of
a single s; ;+ requires t modular exponentiations, so the reconstruction of all s; ;
(including 7; = so+) required ¢ - (I + 1) > (I + 1)? modular exponentiations.



Scheme BM-FssAgg AR-FssAgg
Hash Function SHA-224 SHA-256 SHA-384 SHA-512 SHA-256

Signatures Required

Theoretical Optimum 225 257 385 513 3
Observed Minimum 226 258 386 514 3
Average 227.15 259.05 387.27 514.97 3.67
Standard Deviation 1.42 1.33 1.73 1.38 0.97
Maximum 234 264 395 522 7

Signature Collection Times

Minimum 11.74 17.13 65.46 180.02 9.0e-3
Average 22.18 28.79 118.98  292.33 11e-3
Standard Deviation 9.88 12.34 62.34 136.14 3.0e-3
Maximum 67.87 76.59  430.97 1006.61 22e-3

Reconstruction Times

Minimum 104.06 154.14 580.41 1502.37 6.0e-3
Average 121.48 170.81 634.34 1753.68 9.2e-3
Standard Deviation 9.09 17.17 48.24 126.57 4.4e-3
Maximum 137.94 207.54 736.52 1935.59 24e-3

Table 1. Experimental Results. All times are given in seconds.

4 Summary

We have presented four attacks on LogFAS [22], the BM-FssAgg scheme, and the
AR-FssAgg scheme [I1]. The attacks on LogFAS have been acknowledged by one
of LogFAS’ authors, and we have demonstrated the practicality of our attacks
on BM-FssAgg and AR-FssAgg experimentally. Our attacks allow for virtually
arbitrary forgeries, or even reconstruction of the secret key. We conclude that
neither of these schemes should be used in practice. If one of these should already
be in use, we suggest immediate replacement.

Acknowledgements

I'd like to thank Alexander Koch for his detailed comments, as well as for ques-
tioning the security proof of the BM-FssAgg scheme, which was the starting
point for my research presented in Section

References

1. Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme.
In Tatsuaki Okamoto, editor, Advances in Cryptology — ASIACRYPT 2000, vol-



10.

11.

12.

13.

14.

15.

16.

17.

ume 1976 of Lecture Notes in Computer Science, pages 116-129. Springer Berlin
Heidelberg, 2000.

William A. Adkins and Steven H. Weintraub. Algebra: An Approach via Module
Theory, volume 136 of Graduate Texts in Mathematics. Springer, New York, 1992.

. Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In

Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, volume 1666 of
Lecture Notes in Computer Science, pages 431-448. Springer Berlin Heidelberg,
1999.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, CCS ’93, pages 62-73, New York, NY,
USA, 1993. ACM.

Mihir Bellare and Bennet S. Yee. Forward integrity for secure audit logs. Technical
report, University of California at San Diego, 1997.

Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and ver-
ifiably encrypted signatures from bilinear maps. In Eli Biham, editor, Advances
in Cryptology — EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 416-432. Springer Berlin Heidelberg, 2003.

Common Criteria for Information Technology Security Evaluation, version 3.1 r4,
part 2, September 2012. https://www.commoncriteriaportal.org/cc/l

Jason E. Holt. Logcrypt: Forward security and public verification for secure au-
dit logs. In Proceedings of the 2006 Australasian Workshops on Grid Computing
and e-Research — Volume 54, ACSW Frontiers '06, pages 203-211, Darlinghurst,
Australia, Australia, 2006. Australian Computer Society, Inc.

Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing
the smith and hermite normal forms of an integer matrix. SIAM Journal on
Computing, 8(4):499-507, 1979.

Donald C. Latham, editor. Department of Defense Trusted Computer System Eval-
uation Criteria. US Department of Defense, December 1985. http://csrc.nist.
gov/publications/history/dod85.pdf.

Di Ma. Practical forward secure sequential aggregate signatures. In Proceedings
of the 2008 ACM Symposium on Information, Computer and Communications
Security, ASTACCS ’08, pages 341-352, New York, NY, USA, 2008. ACM.

Di Ma and Gene Tsudik. Forward-secure sequential aggregate authentication.
Cryptology ePrint Archive, Report 2007/052, 2007. http://eprint.iacr.org/.
Di Ma and Gene Tsudik. A new approach to secure logging. In Vijay Atluri, editor,
Data and Applications Security XXII, volume 5094 of Lecture Notes in Computer
Science, pages 48—-63. Springer Berlin Heidelberg, 2008.

Giorgia Azzurra Marson and Bertram Poettering. Practical Secure Logging: Seek-
able Sequential Key Generators, pages 111-128. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

Daniele Micciancio and Bogdan Warinschi. A linear space algorithm for computing
the hermite normal form. In Proceedings of the 2001 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’01, pages 231-236, New York, NY,
USA, 2001. ACM.

An introduction to computer security: The NIST handbook, October 1995. NIST
Special Publication 800-12.

Bruce Schneier and John Kelsey. Cryptographic support for secure logs on un-
trusted machines. In The Seventh USENIX Security Symposium Proceedings, 1998.


https://www.commoncriteriaportal.org/cc/
http://csrc.nist.gov/publications/history/dod85.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://eprint.iacr.org/

18. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology — CRYPTO’ 89 Proceedings, vol-
ume 435 of Lecture Notes in Computer Science, pages 239-252. Springer New York,
1990.

19. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161-174, 1991.

20. William Stein. Sagemath. http://www.sagemath.org/, last accessed 2016-10-25.

21. Attila A. Yavuz and Ning Peng. BAF: An efficient publicly verifiable secure au-
dit logging scheme for distributed systems. In Computer Security Applications
Conference, 2009. ACSAC ’09. Annual, pages 219-228, Dec 2009.

22. Attila A. Yavuz, Ning Peng, and Michael K. Reiter. Efficient, compromise resilient
and append-only cryptographic schemes for secure audit logging. In Angelos D.
Keromytis, editor, Financial Cryptography and Data Security, volume 7397 of Lec-
ture Notes in Computer Science, pages 148-163. Springer Berlin Heidelberg, 2012.

23. Attila A. Yavuz and Michael K. Reiter. Efficient, compromise resilient and append-
only cryptographic schemes for secure audit logging. Technical Report TR-2011-
21, North Carolina State University. Department of Computer Science, September
2011. http://www.lib.ncsu.edu/resolver/1840.4/4284.

A The Schnorr Signature Scheme

The Schnorr Signature Scheme [I8T9] is based on the hardness of the discrete
logarithm problem in some group G. It uses a prime-order subgroup G of Zj,
where p is large a prime, G’s order ¢ is also a large prime, and ¢ divides p — 1.
Let o be a generator of G. A secret key for Schnorr’s scheme is y < Z7, the
corresponding public key is Y := o¥ (mod p).

In order to sign a message m, choose 7 < Z;, set R := a" (mod p), compute
the hash value e := H(m || R) and set s :==r — ey (mod ¢). The signature is the
tuple (R, s). To verify such a signature, recompute the hash value e := H(m || R)
(where R is taken from the signature and m is given as input to the verification
algorithm). Then check if R = Y°a® (mod p) and return 1 if and only if this
holds.

The Schnorr signature scheme can be shown to be secure based on the hard-
ness of the discrete logarithm problem in G, if H is modelled as a random
oracle [4].


http://www.sagemath.org/
http://www.lib.ncsu.edu/resolver/1840.4/4284

	Attacks on Secure Logging Schemes

