
Boolean Searchable Symmetric Encryption
with Worst-Case Sub-Linear Complexity

Seny Kamara∗
Brown University

Tarik Moataz†
Brown University

Abstract
Recent work on searchable symmetric encryption (SSE) has focused on increasing its expres-

siveness. A notable example is the OXT construction (Cash et al., CRYPTO ’13) which is the
first SSE scheme to support conjunctive keyword queries with sub-linear search complexity. While
OXT efficiently supports disjunctive and boolean queries that can be expressed in searchable
normal form, it can only handle arbitrary disjunctive and boolean queries in linear time. This
motivates the problem of designing expressive SSE schemes with worst-case sub-linear search;
that is, schemes that remain highly efficient for any keyword query.

In this work, we address this problem and propose non-interactive highly efficient SSE schemes
that handle arbitrary disjunctive and boolean queries with worst-case sub-linear search and
optimal communication complexity. Our main construction, called IEX, makes black-box use of
an underlying single keyword SSE scheme which we can instantiate in various ways. Our first
instantiation, IEX-2Lev, makes use of the recent 2Lev construction (Cash et al., NDSS ’14) and
is optimized for search at the expense of storage overhead. Our second instantiation, IEX-ZMF,
relies on a new single keyword SSE scheme we introduce called ZMF and is optimized for storage
overhead at the expense of efficiency (while still achieving asymptotically sub-linear search).
Our ZMF construction is the first adaptively-secure highly compact SSE scheme and may be of
independent interest. At a very high level, it can be viewed as an encrypted version of a new
Bloom filter variant we refer to as a Matryoshka filter. In addition, we show how to extend IEX
to be dynamic and forward-secure.

To evaluate the practicality of our schemes, we designed and implemented a new encrypted
search framework called Clusion. Our experimental results demonstrate the practicality of IEX
and of its instantiations with respect to either search (for IEX-2Lev) and storage overhead (for
IEX-ZMF).

∗seny@brown.edu. Work done in part at Microsoft Research.
†tarik_moataz@brown.edu. Work done in part at IMT Atlantique and Colorado State.

1

Contents

1 Introduction 3
1.1 Our Contributions and Techniques . 3

2 Related Work 6

3 Preliminaries 7
3.1 Cryptographic Primitives . 8

4 Definitions 9

5 IEX: A Worst-Case Sub-Linear Disjunctive SSE Scheme 10
5.1 Correctness and Efficiency . 11
5.2 Security . 14

6 Boolean Queries with IEX 15

7 ZMF: A Compact and Adaptively-Secure SSE Scheme 17
7.1 An Adaptively-Secure and Multi-Structure Set Encryption Scheme 20
7.2 The ZMF Multi-Map Encryption Scheme . 22

8 Dynamic SSE with IEX 24
8.1 Security Definitions . 24
8.2 DIEX: A Dynamic SSE Scheme . 25

9 Empirical Evaluation 28
9.1 IEX-2Lev Evaluation . 29
9.2 IEX-ZMF Evaluation . 32

A Multi-Structure Structured Encryption 38

B Proof of Theorem 5.1 39

C Proof of Theorem 7.1 40

D Proof of Theorem 7.2 40

2

1 Introduction
A structured encryption (STE) scheme encrypts a data structure in such a way that it can be
privately queried. An STE scheme is secure if it reveals nothing about the structure and query
beyond a well-specified and “reasonable” leakage profile [21, 19]. STE schemes come in two forms:
response-revealing and response-hiding. The former reveals the query response in plaintext whereas
the latter does not. An important special case of STE is searchable symmetric encryption (SSE)
which encrypts search structures such as inverted indexes [21, 19, 29, 28, 17, 16] or search trees
[25, 28]. Another example is graph encryption which encrypts various kinds of graphs [19, 32]. STE
has received a lot of attention from Academia and Industry due to: (1) its potential applications
to cloud storage and database security; and (2) the fact that, among a host of different encrypted
search solutions (e.g., property-preserving encryption, fully-homomorphic encryption, oblivious
RAM, functional encryption) it seems to provide the best tradeoffs between security and efficiency.

In recent years, much of the work on STE has focused on supporting more complex structures
and queries. A notable example in the setting of SSE is the work of Cash et al. which proposed the
first SSE scheme to support conjunctive queries in sub-linear time [17]. Their scheme, OXT, is also
shown to support disjunctive and even boolean queries. Faber et al. later showed how to extend
OXT to achieve even more complex queries including range, substring, wildcard and phrase queries.
Another example is the BlindSeer project from Pappas et al. [35] and Fisch et al. [23] which present
a solution that supports boolean and range queries as well as stemming in sub-linear time.
Naive solutions. Any boolean query φ(w1, . . . , wq), where w1, . . . , wq are keywords and φ is a
boolean formula, can be handled using a single-keyword SSE scheme in a naive way. In the case
of response-revealing schemes it suffices to search for each keyword and have the server take the
intersection and unions of the result sets appropriately. The issue with this approach, of course, is
that the server learns more information than necessary: namely, it learns the result sets DB(w1), . . . ,
DB(wq) whereas it should only learn the set DB(φ(w1, . . . , wq)). For response-hiding schemes, one
can search for each keyword and compute the intersections and unions at the client. The problem
with this approach is that the parties communicate more information than necessary: namely, the
server sends elements within the intersections of the result sets multiple times. With this in mind,
any boolean SSE solution should improve on one of the naive approaches depending on whether it
is response-hiding or response-revealing.
Worst-case sub-linear search complexity. While OXT achieves sub-linear search complexity
for conjunctive queries, its extension to disjunctive and arbitrary boolean queries does not. More
precisely, OXT remains sub-linear only for queries in searchable normal form (SNF) which have the
form w1 ∧ φ(w2, . . . , wq), where w1 through wq are keywords and φ is an arbitrary boolean formula.
For non-SNF queries, OXT requires linear time in the number of documents. This motivates the
following natural question: can we design SSE schemes that support arbitrary disjunctive and
arbitrary boolean queries with sub-linear search complexity? In other words, can we design solutions
for these queries that are efficient even in the worst-case?

1.1 Our Contributions and Techniques
In this work, we address this problem and propose efficient disjunctive and boolean SSE schemes
with worst-case sub-linear search complexity and optimal communication overhead. Our schemes
are non-interactive and, as far as we know, the first to achieve optimal communication complexity.
To do this we make several contributions which we summarize below

3

Worst-case disjunctive search. Our first solution, which we call IEX, is a worst-case sub-linear
disjunctive SSE scheme. While it leaks more than the naive response-hiding solution, we stress
that it achieves optimal communication complexity which, for response-hiding schemes, is the main
tradeoff we seek. In addition, it leaks less than OXT (when used for disjunctive queries) while
achieving worst-case efficiency.

The underlying idea behind IEX’s design is best expressed in set-theoretic terms where we view
the result of a disjunctive query w1 ∨ · · · ∨ wq as the union of the results of each individual term.
More precisely, if we denote by DB(w) the set of document identifiers that contain the query w, then
DB(w1∨· · ·∨wq) = DB(w1)∪· · ·∪DB(wq). Using the naive response-hiding approach, one could use
a single-keyword response-hiding scheme to query each keyword and compute the union at the client
but, as discussed above, this would incur poor communication complexity. Our approach is different
and, intuitively speaking, makes use of the inclusion-exclusion principle as follows. Consider a
three-term query w1 ∨ w2 ∨ w3. Instead of searching for DB(w1), DB(w2), DB(w3) and computing
the union, we compute DB(w1) and remove from it

DB(w1) ∩ DB(w2) and DB(w1) ∩ DB(w3).

We then compute DB(w2) and remove from it DB(w2) ∩ DB(w3). Finally, we take the union of the
remaining sets and add DB(w3). It follows by the inclusion-exclusion principle that this results in
exactly DB(w1) ∪ DB(w2) ∪ DB(w3). If we could somehow support the intersection and removal
operations at the server, then we could achieve optimal communication complexity. Note that this
high-level approach is “purely disjunctive” in the sense that it does not rely on transforming the
query into another form as done in OXT. The avoidance of SNF in particular is what enables us to
achieve worst-case efficiency.

We stress that the intuition provided thus far is only a very high-level conceptual explanation of
our approach and cannot be translated directly to work on encrypted data. The challenge is that
no SSE scheme we are aware of directly supports the kind of set operations needed to implement
this idea. Therefore, a major part of our contribution is in designing and analyzing such a scheme.
Boolean search. While IEX is naturally disjunctive, we show that it also supports boolean
queries. Similarly to the disjunctive case, we explain our high-level approach in set-theoretic terms.
First, recall that any boolean query can be written in conjunctive normal form (CNF) so it has
the form ∆1 ∧ · · · ∧∆`, where each ∆i = wi,1 ∨ · · · ∨ wi,q is a disjunction. Given a response-hiding
disjunctive-search scheme like IEX, a naive approach for CNF queries is to execute disjunctive
searches for each disjunction ∆1, . . . ,∆` and have the client perform the intersection of the results.
This approach is problematic, however, because it requires more communication than necessary. To
avoid this we take the following alternative approach. We note that the result DB(∆1 ∧ · · · ∧∆`) is
a subset of DB(∆1) and that it can be computed by progressively keeping only the identifiers in
DB(∆1) that are also included in DB(∆2) through DB(∆`). Again, we stress that this description is
only a high-level conceptual explanation of our approach and requires more work to instantiate over
encrypted data.
The IEX structure. As mentioned above, a major challenge in this work is the design of an
encrypted structure that supports the set-theoretic operations needed to implement the strategies
discussed above. To achieve this, IEX makes use of a more complex structure than the traditional
encrypted inverted index. In particular, IEX combines several instantiations of two kinds of
structures: dictionaries and multi-maps. A dictionary (i.e., a key-value store) maps labels to values
whereas a multi-map (i.e., an inverted index) maps labels to tuples of values. More precisely, the

4

IEX design consists of an encrypted global multi-map that maps every keyword w to its document
identifiers DB(w) and an encrypted dictionary that maps every keyword to a local multi-map for w.
The local multi-map of a keyword w maps all the keywords v that co-occur with w to the identifiers of
the documents that contain both v and w. At a high-level, with the encrypted global multi-map we
can recover DB(w1). With the encrypted dictionary, we can recover the encrypted local multi-map
for keywords w2 through w`. And, finally, by querying the (encrypted) local multi-map of a keyword
w with a keyword v, we can recover the identifiers of the documents that contain both w and v.
With these basic operations, we can then execute a full disjunctive query as discussed above.
Instantiations. IEX is an abstract construction that makes black-box use of encrypted multi-
maps and dictionaries which, in turn, can be instantiated with several concrete constructions, e.g.,
[21, 19, 28, 16]. 1 While its asymptotic complexity is not affected by how the building blocks
are instantiated, its concrete efficiency is so we consider this choice carefully—especially how the
local multi-maps are instantiated. We consider two instantiations. The first, IEX-2Lev, uses the
2Lev construction of Cash et al. [16] to encrypt the multi-maps (local and global). This particular
instantiation is very efficient with respect to search time but produces large encrypted structures
(e.g., 9.8GB for datasets of 34M keyword/id pairs).

To address this we propose a second instantiation called IEX-ZMF which trades off efficiency
for compactness. In fact, we show that IEX-ZMF is an order of magnitude more compact than
IEX-2Lev (e.g., producing 0.9GB EDBs for datasets with 34M keyword/id pairs). This compactness
is achieved by encrypting IEX’s local multi-maps with a new construction called ZMF which may
be of independent interest and that we detail below.2

The ZMF scheme. ZMF is a multi-map encryption scheme that is inspired by and has similarities
to the classic Z-IDX construction of Goh [25]. Its core design as well as its security are very different,
however. While Z-IDX produces a collection of non-adaptively-secure fixed-size encrypted Bloom
filters, ZMF produces a collection of adaptively-secure variable-sized encrypted Bloom filters. In
addition, the hash functions used for each filter can all be derived from a fixed set of hash functions
(even though the filters store a different number of elements). This last property is non-standard but
is crucial for our approach to be practical as it allows us to generate constant-size tokens that can be
used with every filter in the collection. We refer to such collections of Bloom filters as matryoshka
filters and, as far as we know, they have not been considered in the past. As we detail in Section 7,
encrypting matryoshka filters with adaptive security is quite challenging. For this, we rely on the
random oracle model and on a non-standard use of online ciphers [10] which are streaming block
ciphers in the sense that every ciphertext block depends only on the previous plaintext blocks. Note
that like Z-IDX, ZMF has linear search time but we use it in our IEX construction only to encrypt
the local multi-maps which guarantees that IEX-ZMF is still sub-linear.
Dynamism and forward-security. We extend IEX to be dynamic resulting in a new scheme
DIEX. An important security property for dynamic SSE schemes is forward security which guarantees
that updates to an encrypted structure cannot be correlated with previous queries. Forward security
was introduced by Stefanov, Papamanthou and Shi [37] and recent work of Zhang, Katz and
Papamanthou [39] has shown that it mitigates certain injection attacks on SSE schemes. One
advantage of our DIEX construction is that it naturally inherits the forward-security of its underlying

1Other constructions such as [29, 17, 33, 37] could also be used but these are either dynamic or conjunctive
which is not needed for the IEX.

2Multi-map encryption schemes are equivalent to SSE schemes so ZMF is an adaptively-secure compact
SSE scheme with linear-time search.

5

encrypted multi-maps and dictionaries. That is, if the underlying structures are forward-secure then
so is DIEX.
Reduced leakage. As we mentioned above, IEX leaks more than the naive response-hiding
solution while achieving optimal communication complexity. We stress, however, that it leaks less
than the naive response-revealing solution and than OXT. As an example, consider that if OXT is
used to search for two conjunctions w = w1 ∧ w2 and w′ = w3 ∧ w2 which share a common term,
the server can recover the results for w′′ = w1 ∧w2 ∧w3. In the case of disjunctions, OXT’s leakage
is equivalent to the naive response-revealing solution.
Experiments. To evaluate the efficiency of IEX and its instantiations we designed and built
a new encrypted search framework called Clusion [5]. It is written in Java and leverages the
Apache Lucene search library [2]. It also includes a Hadoop-based distributed parser and indexer
we implemented to handle massive datasets. Our experiments show that IEX—specifically our
IEX-2Lev instantiation—is very efficient and even achieves faster search times than those reported
for a C++ implementation of OXT [17] on a comparable system. For example, for conjunctive,
disjunctive and boolean queries with selectivity on the order of thousands, IEX-2Lev takes 12, 14.8
and 23.7ms, respectively. For the same conjunctive query, OXT is reported to take 200ms on a
comparable system. Clearly, a C/C++ implementation of IEX would perform even better.

We also implemented IEX-ZMF to evaluate its efficiency and compactness. In our experiments,
it produced EDBs of size 198MB and 0.9GB from datasets with 1.5M and 34M keyword/id pairs,
respectively. This is highly compact in comparison to IEX-2Lev which produced 1.6GB, 9.8GB
EDBs for 1.5M and 34M keyword/id pairs, respectively. We also evaluated the efficiency of IEX-ZMF
and, as expected, its performance for setup, search and token size are worse than IEX-2Lev. For
example, for a dataset with 34M keyword/id pairs, EDB setup takes 7.58 hours to process compared
to 31 minutes for IEX-2Lev.

On a boolean query of the form (w ∨ x) ∧ (y ∨ z), where the disjunctions had selectivity 2K and
10K, respectively, IEX-ZMF took 1610ms whereas IEX-2Lev took only 23.7ms. As expected due to
its high degree of compactness, IEX-ZMF is slower than IEX-2Lev (this is the exact tradeoff we
seek).

2 Related Work
SSE was first considered by Song, Wagner and Perrig [36]. Curtmola, Garay, Kamara and Ostro-
vsky [21] introduced the notion of adaptive-security for SSE and presented the first constructions
that achieved optimal search time with a space-efficient index. STE was introduced by Chase and
Kamara [19] who proposed constructions for two-dimensional arrays, graphs and web graphs.

In [25], Goh introduced the Z-IDX construction which has linear search complexity and produces
highly compact indexes due to its use of Bloom filters. Here, we extract a general transformation
implicitly used in the Z-IDX construction and use it in part to construct our ZMF scheme. Kamara,
Papamanthou and Roeder gave the first optimal-time dynamic SSE scheme [29]. Cash et al. [17]
proposed OXT; the first optimal-time conjunctive keyword search scheme. Faber et al. [22] extend
OXT to handle range, substring, wildcard and phrase queries. Pappas et al. [35] and Fisch et
al. [23] present solutions based on garbled circuits and Bloom filters that can support boolean
formulas, ranges and stemming. In [35], the authors show how to build the first worst-case sub-linear
time boolean encrypted search solution. Like Goh’s Z-IDX construction and our ZMF scheme, the
solution makes use of Bloom filters. In addition, it is the first adaptively-secure construction based
on Bloom filters. For a disjunctive query w, the scheme has search complexity O(log(n) ·C ·DB(w)),

6

where n is the number of documents and C is the cost of a 2-party secure function evaluation of a
function that takes as input a Bloom filter of size O(#W) (i.e., the number of unique keywords
in DB) and a q-term disjunctive query. We note that unlike IEX and OXT, it does not achieve
optimal communication complexity. Also, while its search is sub-linear it involves multiple rounds
of interactions.

Ishai, Kushilevitz, Lu and Ostrovsky propose a two-server SSE scheme that hides the access
pattern and supports various complex queries including ranges, stemming and substring [27]. Cash
et al. [16] design several I/O-efficient SSE schemes including the 2Lev construction which we use in
one of our IEX instantiations. Kurosawa and Ohtaki [31] designed the first UC secure SSE scheme.
Kurosawa [30] designed a linear-time construction that handles arbitrary boolean queries while not
disclosing the structure of the boolean query itself. Forward Secrecy was first considered by Stefanov,
Papamanthou and Shi [37]. In [15], Bost introduced an efficient forward secure construction. In
[18], Cash and Tessaro give lower bounds on the locality of SSE by showing tradeoffs between
locality, space overhead and read efficiency. Recently, Asharov, Naor, Segev and Shahaf gave SSE
constructions with optimal locality, optimal space overhead and nearly-optimal read efficiency [9].
Encrypted search can also be achieved with other primitives like property-preserving encryption
[11, 12], functional encryption [13, 14, 34], oblivious RAM [26], full-homomorphic encryption [24]
and multi-party computation [38].

Online ciphers were introduced by Bellare, Boldyreva, Knudsen and Namprempre [10], where
they propose several schemes including the HCB1 construction which we make use of in our ZMF
implementation. More efficient constructions were later proposed by Andreeva et al. [8].

3 Preliminaries
Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite
binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}, and 2[n] is the corresponding power
set. We write x← χ to represent an element x being sampled from a distribution χ, and x

$← X
to represent an element x being sampled uniformly at random from a set X. The output x of an
algorithm A is denoted by x← A. Given a sequence v of n elements, we refer to its ith element
as vi or v[i]. If S is a set then #S refers to its cardinality. If s is a string then |s| refers to its bit
length and si to its ith bit. s|n denotes the string s padded with n− |s| 0’s and s|n represents the
first n bits of s. Given strings s and r, we refer to their concatenation as either 〈s, r〉 or s‖r. For
an n-bit string s and for all nonnegative d, we denote by s‖d the string 〈s|d1 , · · · , s

|d
n 〉. In this work,

padding takes precedence over truncation; that is, s‖d|p = (s‖d)|p.
Data types. An abstract data type is a collection of objects together with a set of operations
defined on those objects. Examples include sets, dictionaries (also known as key-value stores or
associative arrays) and graphs. The operations associated with an abstract data type fall into
one of two categories: query operations, which return information about the objects; and update
operations, which modify the objects. If the abstract data type supports only query operations it is
static, otherwise it is dynamic.
Data structures. A data structure for a given data type is a representation in some computational
model 3 of an object of the given type. Typically, the representation is optimized to support the
type’s query operation as efficiently as possible. For data types that support multiple queries, the
representation is often optimized to efficiently support as many queries as possible. As a concrete

3In this work, the underlying model will always be the word RAM.

7

example, the dictionary type can be represented using various data structures depending on which
queries one wants to support efficiently. Hash tables support Get and Put in expected O(1) time
whereas balanced binary search trees support both operations in worst-case log(n) time. For ease
of understanding and to match colloquial usage, we will sometimes blur the distinction between
data types and structures. So, for example, when referring to a dictionary structure or a multi-map
structure what we are referring to is an unspecified instantiation of the dictionary or multi-map
data type.
Basic structures. We make use of several basic data types including arrays, dictionaries and
multi-maps which we recall here. An array A of capacity n stores n items at locations 1 through n and
supports read and write operations. We write v = A[i] to denote reading the item at location i and
A[i] = v the operation of storing an item at location i. A dictionary DX of capacity n is a collection
of n label/value pairs {(`i, vi)}i≤n and supports Get and Put operations. We write vi = DX[`i]
to denote getting the value associated with label `i and DX[`i] = vi to denote the operation of
associating the value vi in DX with label `i. A multi-map MM with capacity n is a collection of n
label/tuple pairs {(`i, Vi)i}i≤n that supports Get and Put operations. Similarly to dictionaries, we
write Vi = MM[`i] to denote getting the tuple associated with label `i and MM[`i] = Vi to denote
operation of associating the tuple Vi to label `i. We sometimes write MM−1[v] to refer to the set of
labels in MM associated with tuples that include the value v. Multi-maps are the abstract data
type instantiated by an inverted index. In the encrypted search literature multi-maps are sometimes
referred to as indexes, databases or tuple-sets (T-sets) [17, 16].
Document collections. A document collection is a set of documents D = (D1, . . . , Dn), each
document consisting of a set of keywords from some universe W. We assume the universe of keywords
is totally ordered (e.g., using lexicographic order) and denote by W[i] the ith keyword in W. We
assume every document has an identifier that is independent of its contents and denote it id(Di).
We assume the existence of an efficient indexing algorithm that takes as input a data collection D
and outputs a multi-map that maps every keyword w in W to the identifiers of the documents that
contain w. In previous work, this multi-map is referred to as an inverted index or as a database.
For consistency, we refer to any multi-map derived in this way from a document collection as a
database and denote it DB. Given a keyword w, we denote by coDB(w) ⊆W the set of keywords
in W that co-occur with w; that is, the keywords that are contained in documents that contain w.
When DB is clear from the context we omit DB and write only co(w).

3.1 Cryptographic Primitives
Basic cryptographic primitives. A private-key encryption scheme is a set of three polynomial-
time algorithms SKE = (Gen,Enc,Dec) such that Gen is a probabilistic algorithm that takes a
security parameter k and returns a secret key K; Enc is a probabilistic algorithm takes a key K and
a message m and returns a ciphertext c; Dec is a deterministic algorithm that takes a key K and a
ciphertext c and returns m if K was the key under which c was produced. Informally, a private-key
encryption scheme is secure against chosen-plaintext attacks (CPA) if the ciphertexts it outputs do
not reveal any partial information about the plaintext even to an adversary that can adaptively
query an encryption oracle. We say a scheme is random-ciphertext-secure against chosen-plaintext
attacks (RCPA) if the ciphertexts it outputs are computationally indistinguishable from random
even to an adversary that can adaptively query an encryption oracle.4 In addition to encryption

4RCPA-secure encryption can be instantiated practically using either the standard PRF-based private-key encryption
scheme or, e.g., AES in counter mode.

8

schemes, we also make use of pseudo-random functions (PRF) and permutations (PRP), which are
polynomial-time computable functions that cannot be distinguished from random functions by any
probabilistic polynomial-time adversary.
Online ciphers. An online cipher (OC) is a block cipher that can encrypt data streams. In
particular, with an OC the encryption of the ith block in a stream depends only on the 1st through
ith message blocks. OCs were introduced by Bellare, Boldyreva, Knudsen and Namprempre [10].
More formally, we say that a cipher OC : {0, 1}k ×{0, 1}n×B → {0, 1}n×B , where B > 1 is the block
length, is B-online if there exists a function X : {0, 1}k × {0, 1}n×B → {0, 1}B such that for any
m ∈ {0, 1}n×B,

OCK(m) = OC1
K(m)‖ . . . ‖OCnK(m),

where OCiK(m) = X(K,m1, . . . ,mi) for all i ∈ [n] and where mi is the ith block of m. OCs cannot
be pseudo-random permutations (see [10] for a simple distinguisher) but can satisfy the weaker
requirement of being computationally indistinguishable from a random online permutation. An
online permutation is simply a permutation on a domain {0, 1}n×B whose ith block depends only
on the first i blocks of its input. We denote by OPermn,B the set of all online permutations over
{0, 1}n×B. Security for an online cipher OC : {0, 1}k × {0, 1}n×B → {0, 1}n×B then holds if for all
ppt adversaries A,∣∣∣∣Pr

[
AOCK(·) = 1 : K $← {0, 1}k

]
− Pr

[
Af(·) = 1 : f $← OPermn,B

]∣∣∣∣ ≤ negl(k).

4 Definitions
Structured encryption schemes encrypt data structures in such a way that they can be privately
queried. There are several natural forms of structured encryption. The original definition of
[19] considered schemes that encrypt both a structure and a set of associated data items (e.g.,
documents, emails, user profiles etc.). In [20], the authors also describe structure-only schemes which
only encrypt structures. Another distinction can be made between interactive and non-interactive
schemes. Interactive schemes produce encrypted structures that are queried through an interactive
two-party protocol, whereas non-interactive schemes produce structures that can be queried by
sending a single message, i.e, the token. One can also distinguish between response-hiding and
response-revealing schemes: the former reveal the response to queries whereas the latter do not.

STE schemes are used as follows. During a setup phase, the client constructs an encrypted data
structure EDS under a key K. The client then sends EDS to the server. During the query phase,
the client constructs and sends a token tk generated from its query q and the key K. The server
then uses the token tk to query EDS. If the scheme is response-revealing, it recovers a response r.
On the other hand, if the scheme is response-hiding it recovers a message that it returns to the
client who in turn decrypts it with a resolving algorithm.
Definition 4.1 (Structured encryption). A single-round response-hiding structured encryption
scheme ΣT = (Setup,Token,Query,Resolve) for data type T consists of four polynomial-time
algorithms that work as follows:
• (K,EDS)← Setup(1k,DS): is a probabilistic algorithm that takes as input a security parameter

1k and a structure DS of type T and outputs a secret key K and an encrypted structure EDS.
• tk ← Token(K, q): is a (possibly) probabilistic algorithm that takes as input a secret key K

and a query q and returns a token tk.
• c← Query(EDS, tk): is a (possibly) probabilistic algorithm that takes as input an encrypted

structure EDS and a token tk and outputs a message c.

9

• r ← Resolve(K, c): is a deterministic algorithm that takes as input a secret key K and a
message c and outputs a response r.

We say that a structured encryption scheme Σ is correct if for all k ∈ N, for all poly(k)-
size structures DS of type T , for all (K,EDS) output by Setup(1k,DS) and all sequences of m =
poly(k) queries q1, . . . , qm, for all tokens tki output by Token(K, qi), for all messages c output by
Query(EDS, tki), Resolve(K, c) returns the correct response with all but negligible probability. The
syntax of a response-revealing STE scheme can be recovered by omitting the Resolve algorithm and
having Query output the response.
Security. The standard notion of security for STE guarantees that an encrypted structure reveals
no information about its underlying structure beyond the setup leakage LS, and that the query
algorithm reveals no information about the structure and the queries beyond the query leakage LQ.
If this holds for non-adaptively chosen operations then this is referred to as non-adaptive security.
If, on the other hand, the operations are chosen adaptively, this leads to the stronger notion of
adaptive security [21]. This notion of security was first formalized by Curtmola et al. in the context
of searchable encryption [21] and later generalized to structured encryption in [19].
Definition 4.2 (Adaptive security [21, 19]). Let ΣT = (Setup,Token,Query) be a structured
encryption scheme for type T and consider the following probabilistic experiments where A is a
stateful adversary, S is a stateful simulator, LS and LQ are leakage profiles and z ∈ {0, 1}∗:
RealΣ,A(k): given z the adversary A outputs a structure DS of type T and receives EDS from

the challenger, where (K,EDS) ← Setup(1k,DS). The adversary then adaptively chooses
a polynomial number of queries q1, . . . , qm. For all i ∈ [m], the adversary receives tki ←
Token(K, qi). Finally, A outputs a bit b that is output by the experiment.

IdealΣ,A,S(k): given z the adversary A generates a structure DS of type T which it sends to
the challenger. Given z and leakage LS(DS) from the challenger, the simulator S returns
an encrypted data structure EDS to A. The adversary then adaptively chooses a polynomial
number of operations q1, . . . , qm. For all i ∈ [m], the simulator receives query leakage LQ(DS, qi)
and returns a token tki to A. Finally, A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ)-secure if for all ppt adversaries A, there exists a ppt simulator
S such that for all z ∈ {0, 1}∗,

|Pr [RealΣ,A(k) = 1]− Pr [IdealΣ,A,S(k) = 1]| ≤ negl(k).

5 IEX: A Worst-Case Sub-Linear Disjunctive SSE Scheme
Our main construction, IEX, makes black-box use of a dictionary encryption scheme ΣDX =
(Setup,Token,Get), a multi-map encryption scheme ΣMM = (Setup,Token,Get), a pseudo-random
function F , and of a private-key encryption scheme SKE = (Gen,Enc,Dec). The details of the
scheme are provided in Fig. 1. At a high-level, it works as follows.
Setup. The Setup algorithm takes as input a security parameter k and an index DB. It makes use
of two data structures: a dictionary DX and a global multi-map MMg. MMg maps every keyword
in w ∈W to an encryption of the identifiers in DB(w). We refer to these encryptions as tags and
they are computed by evaluating SKE.Enc using as coins the evaluation of F on keyword w and the
identifier. The global multi-map MMg is then encrypted using ΣMM, resulting in EMMg.

For each keyword w ∈W, the algorithm creates a local multi-map MMw, that maps the keywords
v ∈ co(w) to tags of identifiers in DB(v) ∩ DB(w). Intuitively, the purpose of the local multi-map
MMw is to quickly find out which documents contain both w and v, for any v 6= w. The local

10

multi-maps MMw are then encrypted with ΣMM. This results in encrypted multi-maps EMMw which
are then stored in the dictionary DX such that DX[w] = EMMw. In other words, it stores label/value
pairs (w,MMw) in DX. Finally, DX is encrypted with ΣDX, resulting in an encrypted dictionary
EDX. The output of Setup includes the encrypted structures

(
EDX,EMMg

)
as well as their keys.

There are several optimizations possible for Setup that we omit in our formal description for
ease of exposition. The first is that the encrypted local multi-maps can be stored “by reference”
in the encrypted dictionary EDX instead of “by value”. More precisely, instead of storing the
actual encrypted local multi-maps EMMw in EDX one can just store a pointer to them. Another
optimization is that, depending on how ΣMM is designed, the keys for the local encrypted multi-maps
could all be generated from a single key using a PRF (with a counter). This would reduce the size of
K. This optimization can be easily applied to most known encrypted multi-map schemes including
the ones from [21, 19, 28, 17, 16].
Token. The Token algorithm takes as input a key and a vector of keywords w = (w1, . . . , wq). For
all i ∈ [q − 1] it creates a “sub-token” tki = (dtki, gtki, ltki+1, . . . , ltkq) composed of a dictionary
token dtki, a global token gtki for wi and, for all keywords wi+1 through wq in the disjunction, a
local token ltkj for wj , with i+ 1 ≤ j ≤ q. Intuitively, the global token will allow the server to query
the encrypted global multi-map EMMg to recover tags of the ids in DB(wi). The dictionary token for
wi will then allow the server to query the encrypted dictionary EDX to recover wi’s local multi-map
EMMi. Finally, the local tokens will allow the server to query wi’s encrypted local multi-map EMMi

to recover the tags of the ids of the documents that contain both wi and wi+1, wi and wi+2, etc. As
we will see next, this information will be enough for the server to find the relevant documents. For
the last keyword wq in the disjunction, the algorithm only needs to create a global token.
Search. The Search algorithm takes as input EDB = (EDX,EMMg) and a token tk = (tk1, . . . , tkq−1,
gtkq). For each sub-token tki = (dtki, gtki, ltki+1, . . . , ltkq), the server does the following. It first
uses gtki to query the global multi-map EMMg and recover a set of identifier tags Ti for DB(wi). It
then uses dtki to query the encrypted dictionary EDX to recover the local multi-map EMMi for wi
and uses ltki+1 to query EMMi to recover the tags T ′ for identifiers of the documents that contain
both wi and wi+1; that is, the tags for the set I ′ = DB(wi)∩DB(wi+1). The server then removes T ′i
from Ti. It then repeats this process for all local tokens ltki+2 to ltkq. Once it finishes processing all
local tokens in tki, it holds the set of tags for the set

DB
(
wi
)
\
q−1⋃
j=i

(
DB
(
wi
)⋂

DB
(
wj+1

))
. (1)

Once it finishes processing all the sub-tokens, the server holds tags T1 through Tq−1. For gtkq,
the server just queries the global multi-map to recover Tq. Finally, it outputs the set

T =
q⋃
i=1

Ti. (2)

5.1 Correctness and Efficiency
We now analyze the correctness and efficiency of our construction. The correctness of IEX follows
from Eqs. (1) and (2) and from the inclusion-exclusion principle. Given a disjunctive query
w = (w1, . . . , wq), by Eq. (2), IEX.Search

(
EDB,Token(K,w)

)
will output

T =
q⋃
i=1

Ti

11

Let F be a pseudo-random function, SKE = (Gen,Enc,Dec) be a private-key encryption scheme,
ΣDX = (Setup,Token,Get) be a dictionary encryption scheme and ΣMM = (Setup,Token,Get) be a multi-
map encryption scheme. Consider the disjunctive SSE scheme IEX = (Setup,Token, Search) defined as
follows:

• Setup(1k,DB):

1. sample K1,K2
$← {0, 1}k;

2. initialize a dictionary DX and a multi-map MMg;
3. for all w ∈W,

(a) for all id ∈ DB(w), let tagid := EncK1

(
id;FK2

(
id‖w

))
;

(b) set MMg[w] :=
(
tagid

)
id∈DB(w);

(c) initialize a multi-map MMw of size #co(w);
(d) for all v ∈ co(w),

i. for all id ∈ DB(v) ∩ DB(w), let tagid := EncK1

(
id;FK2

(
id‖w

))
;

ii. set MMw[v] :=
(
tagid

)
id∈DB(v)∩DB(w);

(e) compute (Kw,EMMw)← ΣMM.Setup
(
1k,MMw

)
;

(f) set DX[w] := EMMw;
4. compute (Kg,EMMg)← ΣMM.Setup(1k,MMg);
5. compute (Kd,EDX)← ΣDX.Setup(1k,DX);
6. set K =

(
Kg,Kd, {Kw}w∈W

)
and EDB = (EMMg,EDX);

7. output (K,EDB).

• Token(K,w):
1. parse w as (w1, . . . , wq);
2. for all i ∈ [q − 1],

(a) compute gtki ← ΣMM.Token(Kg, wi);
(b) compute dtki ← ΣDX.Token(Kd, wi);
(c) for all i+ 1 ≤ j ≤ #w, compute ltkj ← ΣMM.Token(Kwi

, wj);
(d) set tki =

(
dtki, gtki, ltki+1, . . . , ltk#w

)
;

3. compute gtkq ← ΣMM.Token(Kg, wq);
4. output tk = (tk1, . . . , tkq−1, gtkq).

• Search(EDB, tk):
1. parse EDB as (EMMg,EDX);
2. parse tk as (tk1, . . . , tkq−1, gtkq);
3. for all i ∈ [q − 1],

(a) parse tki as
(
dtki, gtki, ltki+1, . . . , ltkq

)
;

(b) compute Ti ← ΣMM.Get(EMMg, gtki);
(c) compute EMMi ← ΣDX.Get(EDX, dtki);
(d) for all i+ 1 ≤ j ≤ q,

i. compute T ′ ← ΣMM.Get(EMMi, ltkj);
ii. set Ti = Ti \ T ′;

4. compute Tq ← ΣMM.Get(EMMg, gtkq);
5. output

⋃
i∈[q] Ti;

Figure 1: Our disjunctive SSE scheme IEX.

12

=
(q−1⋃
i=1

Ti

)⋃
Tq

=

q−1⋃
i=1

DB(wi) \
q−1⋃
j=i

(
DB(wi)

⋂
DB(wj+1)

)⋃DB(wq)

=

q−2⋃
i=1

DB(wi) \
q−1⋃
j=i

(
DB(wi)

⋂
DB(wj+1)

)
⋃(

DB(wq−1) \
(
DB(wq−1)

⋂
DB(wq)

))⋃
DB(wq)︸ ︷︷ ︸

U

(3)

where the first and third equalities hold by Eqs. (2) and (1), respectively. Note, however, that U
equals DB(wq−1)

⋃
DB(wq):

U = DB(wq−1)
⋂(

DB(wq−1)
⋃

DB(wq)
)⋃

DB(wq)

=
(
DB(wq−1)

⋂
DB(wq−1)

)⋃(
DB(wq−1)

⋂
DB(wq)

)⋃
DB(wq)

=
(
DB(wq−1)

⋂
DB(wq)

)⋃
DB(wq)

=
(
DB(wq−1)

⋃
DB(wq)

)⋂(
DB(wq)

⋃
DB(wq)

)
= DB(wq−1)

⋃
DB(wq)

Repeating the same argument for q − 2, q − 3 and so on and plugging into Eq. (3), we get that
T =

⋃q
i=1 DB(wi).

Efficiency. The search complexity of IEX is O(q2 ·M), where M = maxi∈[q] #DB(wi) and q is
the number of terms in the disjunction. Tokens are of size O(q). We also note that unlike BXT and
OXT [17], IEX tokens are selectivity-independent in the sense that they do not depend on the size
of the result. The IEX storage complexity is,

O

(
strg

(∑
w

#DB(w)
)

+
∑
w

strg
(∑
v∈co(w)

#DB(v) ∩ DB(w)
))

,

where strg is the storage complexity of the underlying encrypted multi-map encryption scheme ΣMM.
A storage optimization. As we can see, the storage complexity of IEX can be large, especially
if the underlying encrypted multi-maps are. This is indeed the case when they are instantiated with
standard sub-linear constructions. We observe, however, that we can tradeoff storage complexity
(and setup time) for the communication complexity of search as follows. When constructing a local
multi-map EMMw for a keyword w, we normally insert tags for the identifiers in DB(w) ∩DB(v) for
all v ∈ co(w). This is not necessary for correctness, however, so we can omit some of the co-occurring
keywords from w’s local multi-map. The tradeoff is that this will increase the communication
complexity of IEX’s search operation and, in particular, make it non-optimal.

To do this, we suggest using the following approach to decide whether to add a keyword v ∈ co(w)
or not. Let p < 1 be a filtering parameter and let

Tw,v
def= #DB(v) ∩ DB(w)

max(#DB(w),#DB(v)) .

13

If Tw,v > p, then add v to EMMw otherwise do not. With this filtering in place, the storage
complexity of IEX is now

O

(
strg

(∑
w

#DB(w)
)

+
∑
w

strg
(∑
v∈co(w)
Tw,v>p

#DB(v) ∩ DB(w)
))

.

In our experiments we set p = 0.2.
Remark. We note that when all the terms of the disjunctive query have selectivity O(n), IEX
has linear search complexity. This is, however, the best one can do. On the other hand, the
communication complexity of IEX remains optimal independently of the selectivity of the terms.
This similarly applies to OXT but not to BlindSeer since it induces a logarithmic (multiplicative)
overhead.

5.2 Security
The setup leakage of IEX consists of the setup leakage of its underlying building blocks. In
particular, this includes the setup leakage of the encrypted global multi-map and of the encrypted
dictionary. Assuming the use of standard optimal-time multi-map and dictionary encryption
schemes [21, 19, 28, 16], this reveals the size of the database DB as well as the total size of the
local multi-maps stored in the dictionary. The query leakage of IEX for a query w includes, for
each keyword wi ∈W, the query leakage of the encrypted dictionary and of the encrypted global
multi-map. It also includes the query leakage of every queried local multi-map as well as their setup
leakage. Again if instantiated with standard constructions, this will consist of the search and access
patterns which, respectively, capture whether or not the same query has been searched for and (in
our case) the tags. Finally, the query leakage also includes the number of documents containing
DB(wi)

⋂
DB(wj+1), for all j ≥ i and i ∈ [q − 1].

We now give a precise description of IEX’s leakage profile and show that it is adaptively-secure
with respect to it. Its setup leakage is

Liex
S (DB) =

(
Ldx

S (DX),Lmm
S (MMg)

)
,

where Ldx
S (DX) and Lmm

S (MMg) are the setup leakages of the underlying dictionary and multi-map
encryption schemes, respectively. Its query leakage is

Liex
Q (DB,w) =

((
Ldx

Q
(
DX, wi

)
,Lmm

S (MMi),

Lmm
Q
(
MMg, wi

)
, . . . ,Lmm

Q
(
MMi, wq

)
,TagPati(DB,w)

)
i∈[q−1]

,

Lmm
Q
(
MMg, wq

)
,TagPatq(DB,w)

)
,

where, for all i ∈ [q],

TagPati(DB,w) =
((

fi
(
id
))

id∈DB(wi)∩DB(wi+1)
, . . . ,

(
fi
(
id
))

id∈DB(wi)∩DB(wq)

)
,

and fi is a random function from {0, 1}|id|+log #W to {0, 1}k.

14

Theorem 5.1. If ΣDX is adaptively
(
Ldx

S ,Ldx
Q
)
-secure, ΣMM is adaptively

(
Lmm

S ,Lmm
Q
)
-secure, SKE

is RCPA-secure and F is pseudo-random, then IEX is (Liex
S ,Liex

Q)-secure.
The proof of Theorem 5.1 is in Appendix B.

6 Boolean Queries with IEX
While IEX is naturally disjunctive, it can also support boolean queries. The boolean variant is
similar to IEX in that it uses the same encrypted structures (i.e., it has the same Setup algorithm)
but different Token and Search algorithms. We refer to the boolean variant of IEX as BIEX. We
now provide an overview of how BIEX works.
Overview of BIEX. Recall that any query can be written in conjunctive normal form (CNF) so
it has the form ∆1 ∧ · · · ∧∆`, where each ∆i = wi,1 ∨ · · · ∨wi,q is a disjunction. Note that the result
DB(∆1 ∧ · · · ∧∆`) is the intersection of DB(∆1) through DB(∆`). But this intersection does not
have to be computed “directly” by executing a naive intersection operation. A better alternative
(from a leakage point of view) is to compute the intersection by starting with DB(w1), keeping
only the subset of identifiers of DB(w1) that are also in DB(w2), then keeping only the subset of
identifiers that are also in DB(w3) and so on. This alternative approach requires only information
about DB(w1) and the progressive subsets. Moreover, it uses operations that are already supported
by the IEX structures.

How we do this exactly, is best explained through a concrete example. Suppose we have a CNF
query with ∆1 = w1 ∨ w2 and ∆2 = w3. The first step would be to perform a disjunctive query for
∆1, resulting in tags for the identifiers in DB(∆1). In the second step, we want to filter out and
keep the tags of identifiers in DB(∆1) ∩ DB(w3). To find these tags, it suffices to query the local
multi-maps of w1 and w2 on w3. In the first case, EMMw1 will return tags for DB(w1) ∩ DB(w3)
and in the second case EMMw2 will return tags for DB(w2) ∩ DB(w3). Finally, we take the union of
both of these intersections and perform a final intersection with DB(∆1). The final result equals
DB(∆1) ∩ DB(w3). Fig. 2 describes this process in more detail and for arbitrary boolean queries.
Correctness. To show correctness we need to show that, given a boolean query in CNF form
∆1 ∧ · · · ∧∆` such that ∆i = wi,1 ∨ · · · ∨ wi,q (for simplicity we assume the disjunctions all have q
terms), BIEX.Search outputs ⋂

i∈[`]

⋃
j∈[q]

DB(wi,j). (4)

Looking at the description of BIEX.Search in Fig. 2, one can see that every time Step 4(d)i is
invoked it outputs ⋃

j∈[q]
DB(wi,t) ∩ DB(w1,j),

for all t ∈ [q] and i ∈ [`]. Note that this stems from the fact that ΣMM.Get(EMMj , ltkt,i,j) outputs
DB(wi,t) ∩ DB(w1,j) for every j ∈ [q].

Also, based on the correctness of IEX we know that the search for the first disjunction will
output

⋃
j∈[q] DB(w1,j) (with no redundant identifiers). So we have the final result of the query

I` =
⋃
j∈[q]

DB(w1,j)
⋂(⋃

j,l∈[q]

(
DB(w2,j) ∩ DB(w1,l)

))⋂
· · ·
(⋃
j,l∈[q]

(
DB(w`,j) ∩ DB(w1,l)

))
︸ ︷︷ ︸

`−1 terms

(5)

15

On the other hand, note that for all i ∈ [`] we have by Morgan’s laws that⋃
j∈[q]

DB(w1,j)
⋂ ⋃

j∈[q]
DB(wi,j) =

⋃
j∈[q]

DB(w1,j)
⋂ ⋃

j∈[q]
DB(w1,j)

⋂ ⋃
j∈[q]

DB(wi,j)

=
⋃
j∈[q]

DB(w1,j)
⋂(⋃

j,l∈[q]

(
DB(wi,j) ∩ DB(w1,l)

))

That is, we can recursively apply the above result on Eq. (5) for all l ∈ [`] to obtain Eq. (4).
Efficiency. The storage complexity of BIEX is the same as IEX. Its search complexity is

O

(
q2 ·

(
max
w∈∆1

#DB(w) + ` ·#DB(∆1)
))

.

The term q2 ·maxw∈∆1 #DB(w) is the time to search for the first disjunction and the second term
q2 · ` ·#DB(∆1) is the total number of local multi-map queries.

We can clearly see from the search complexity of BIEX that we can achieve better efficiency
if the selectivity of the first disjunction is as small as possible. In practice, therefore, the first
disjunction should be the one with the smallest selectivity; similarly to how the first keyword is
chosen in OXT. Note that if the first disjunction in the CNF form of the boolean query matches the
entire database then the search complexity of BIEX will be linear while the optimal complexity
might be sub-linear (the communication complexity of BIEX will remain optimal, however). It is not
obvious to us how to improve this without pre-computing every possible query as it seems almost
inherent to the query itself. With this in mind, it follows that BIEX has a sub-linear worst-case
search complexity when the first disjunction’s selectivity is sub-linear.

The communication complexity of BIEX is optimal since the final set I` does not contain any
redundant identifiers. Finally, note that it is non-interactive and token size is independent of the
query’s selectivity.

Security. The setup leakage of BIEX is the same as IEX’s. Its query leakage includes the query
leakage of IEX on the first disjunction and the query leakage of the encrypted local multi-maps
when queried on all the terms of disjunctions ∆2, . . . ,∆`. Finally, it also includes the number of
documents that match the terms of the first disjunction and the terms of remaining disjunctions.

We now give a precise description of the leakage profile of BIEX and show that it is adaptively-
secure with respect to it. The setup leakage is

Liexb
S (DB) = Liex

S (DB),

where Liex
S (DB) is the setup leakages of IEX. Given a CNF query ∆1 ∧ · · · ∧∆`, the query leakage is

Liexb
Q

(
DB,

∧̀
i=1

∆i

)
=
(
Liex

Q
(
DB,∆1

)
,

(
Lmm

Q
(
MMi, wl,1

)
, · · · ,Lmm

Q
(
MMi, wl,q

)
,

TagPati,l
(

DB,
∧̀
i=1

∆i

))
i∈[q]

l∈[2,··· ,`]

)
.

16

where,

TagPati,l
(

DB,
∧̀
i=1

∆i

)
=
((

fi(id)
)

DB(w1,i)∩DB(wl,1)
, . . . ,

(
fi(id)

)
DB(w1,i)∩DB(wl,q)

)

and fi is a random function from {0, 1}n+log #W to {0, 1}k.
Theorem 6.1. If ΣDX is adaptively

(
Ldx

S ,Ldx
Q
)
-semantically secure and ΣMM is adaptively

(
Lmm

S ,Lmm
Q
)
-

secure, then BIEX is adaptively (Liexb
S ,Liexb

Q)-secure.
The proof of Theorem 6.1 is similar (at a high-level) to the proof of Theorem 5.1.

7 ZMF: A Compact and Adaptively-Secure SSE Scheme
The main limitation of IEX is its storage complexity of

O

(
strgg

(
MMg

)
+
∑
w

strg`
(
MMw

))
,

where strgg and strg` are the storage complexity of the global and local EMMs, respectively. If the
latter are instantiated with standard sub-linear-time constructions such as [21, 29, 17, 16], we have

O

(∑
w

#DB(w) +
∑
w

∑
v∈co(w)

#DB(v) ∩ DB(w)
)
, (6)

which does not compare favorably to standard single-keyword search solutions which require only
O
(∑

w #DB(w)
)
, or to the OXT construction of [17] which requires

O

(∑
w

#DB(w) + log
(1
ε

)
·
∑
w

#DB(w)
)

when XSet is instantiated with a Bloom filter with a false positive rate of ε. In particular, note
that the second term in the asymptotic expression above hides a constant of 1, which makes OXT
reasonably compact.
Our approach. The main storage inefficiency in IEX comes from the local EMMs which contribute
the second term in Eq. (6). Ideally, we could improve things if we could use more compact local
EMMs. Unfortunately, all known sub-linear constructions require O(

∑
w #DB(w)) storage. We

observe, however, that for local EMMs sub-linear search is not necessary since in practice the
number of label/tuple pairs they store is small in comparison to the total number of documents n.
So, for our purposes, a linear-time construction would work as long as it was compact. In [25], Goh
proposed a very compact construction called Z-IDX based on Bloom filters. Specifically, it needs
only

O

(
log

(1
ε

)
·
∑
v∈V

#MM−1[v]
)

bits of storage, where V is the value space of the multi-map and ε is the false positive rate. If we
could encrypt the local EMMs of IEX with Z-IDX, the former’s storage would be

O

(∑
w

#DB(w) + log
(1
ε

)
·
∑
w

#co(w)
)
,

17

Let IEX = (Setup,Token, Search) be the IEX scheme described in Figure 1 and let ΣDX =
(Setup,Token,Get) and ΣMM = (Setup,Token,Get) be its underlying dictionary and multi-map encryp-
tion schemes, respectively. Consider the boolean SSE encryption scheme BIEX = (Setup,Token, Search)
defined as follows:

• Setup(1k,DB): output (K,EDB)← IEX.Setup(1k,DB).

• Token(K,w):
1. parse K as (Kg,Kd, {Kw}w∈W);

2. parse w as
(

∆1
∧
· · ·
∧

∆`

)
where for all i ∈ [`], ∆i =

(
wi,1

∨
· · ·
∨
wi,d

)
;

3. compute tk1 ← IEX.TokenK(∆1);
4. for all 2 ≤ i ≤ ` and all j ∈ [q],

(a) for all 1 ≤ s ≤ q, compute ltks,i,j ← ΣMM.Token(Kw1,s
, wi,j);

(b) set tki,j =
(
ltk1,i,j , . . . , ltkq,i,j

)
;

(c) set tki =
(
tki,1, . . . , tki,q

)
;

5. output tk = (tk1, . . . , tk`).

• Search(EDB, tk):
1. parse EDB as (EMMg,EDX);
2. parse tk as (tk1, . . . , tk`);
3. compute I1 ← IEX.Search(EDB, tk1);
4. for all 2 ≤ i ≤ `,

– instantiate an empty set Ii;
– parse tki =

(
tki,1, . . . , tki,q

)
;

– for j ∈ [q],
(a) get dtkj from tk1;
(b) compute EMMj ← ΣDX.Get(EDX, dtkj);
(c) parse tki,j =

(
ltk1,i,j , . . . , ltkq,i,j

)
;

(d) for s ∈ [q],
i. compute I ′ ← ΣMM.Get(EMMj , ltks,i,j);

ii. compute Ii = Ii
⋃(

Ii−1
⋂
I ′
)
;

5. output I`;

Figure 2: The scheme BIEX.

18

Let ΣSET = (Gen,Enc,Token,Test) be a multi-structure set encryption scheme and consider the multi-
map encryption scheme ΣMM = (Setup,Token,Get) defined as follows:

• Setup(1k,MM):
1. compute K ← Gen(1k);
2. let V be the range of MM;
3. for all v ∈ V,

(a) let Sv = MM−1(v);
(b) compute ESETv ← ΣSET.Enc(K,Sv);

4. output EMM = (ESETv)v∈V.

• Token(K, `): output tk← ΣSET.Token(K, `)

• Get(EMM, tk):
1. let I = ∅;
2. for all v ∈ V,

(a) if ΣSET.Test(ESETv, tk) outputs 1, set I = I ∪ {v};
3. output I.

Figure 3: The Z-IDX transformation.

which is much more competitive with OXT (note that the second term here also has a constant of 1).
Unfortunately, this approach does not work because Z-IDX is not adaptively secure. Nevertheless,
we show how to construct a highly compact scheme that is. In the following, we first recall how
Z-IDX works.
Goh’s Z-IDX scheme. Like any SSE scheme, Z-IDX can be viewed as a STE scheme and,
in particular, as a multi-map encryption scheme. Conceptually, we observe that Z-IDX can be
abstracted into two parts: (1) a compiler that transforms an underlying set encryption scheme into
a multi-map encryption scheme; and (2) a concrete set encryption scheme based on Bloom filters
and PRFs. We refer to the former as the Z-IDX transformation and describe it in detail in Fig. 3.
Given a set encryption scheme ΣSET, it produces a multi-map encryption scheme ΣMM that works
as follows. The ΣMM.Setup algorithm takes as input a multi-map MM that maps labels to tuples
of values from V. It creates #V sets (Sv)v∈V such that Sv holds the labels in MM that map to
v. It then encrypts each set Sv with ΣSET resulting in an encrypted set ESETv. The encrypted
multi-map EMM is simply the collection of encrypted sets (ESETv)v∈V. A ΣMM token for a label
` is a ΣSET token for ` and ΣMM.Get uses the token to test each set in EMM = (ESETv)v∈V and
outputs v if the test succeeds.

Note that for ΣMM to work, ΣSET must satisfy a stronger STE form than what is described
in Definition 4.1. In particular, it must be what we call multi-structure in the sense that the
tokens produced with a key K can be used to query all the structures encrypted under K. We
provide formal syntax and security definitions of multi-structure STE schemes in Appendix A.
The main difference between standard and multi-structure STE schemes are that in the latter the
Setup algorithm is replaced with a key generation algorithm Gen(1k) that takes as input a security
parameter and outputs a secret key K; and an encryption algorithm Enc(K,DS) that takes as input
a secret key K and a data structure DS and outputs an encrypted structure EDS.
Adaptive security. From our abstract perspective, the reason Z-IDX is not adaptively-secure
is because the Z-IDX transformation is (implicitly) applied to a set encryption scheme that is not

19

adaptively-secure. We show in Theorem 7.1 below, however, that if the transformation is applied
to an adaptively-secure set encryption scheme then the result is adaptively-secure as well. More
precisely, we show that if the set encryption scheme is adaptively (Lset

S ,Lset
Q)-secure then the Z-IDX

transformation yields a multi-map encryption scheme with the following leakage profile:

Lmm
S (MM) =

((
Lset

S
(
MM−1[v]

))
v∈V

,#V
)
,

and
Lmm

Q (MM, q) = Lset
Q

((
MM−1[v]

)
v∈V

, q

)
.

Theorem 7.1. If ΣSET is adaptively (Lset
S ,Lset

Q)-secure then the scheme ΣMM that results from
applying the Z-IDX transformation to it is adaptively (Lmm

S ,Lmm
Q)-secure.

The proof of Theorem 7.1 is in Appendix C.

7.1 An Adaptively-Secure and Multi-Structure Set Encryption Scheme
In this Section, we construct an adaptively-secure, highly-compact and multi-structure set encryption
scheme. Then, by applying the Z-IDX transformation to it we get an adaptively-secure and highly-
compact multi-map encryption scheme which we then use in IEX.
Adaptive security. The main difficulty in designing adaptively-secure encrypted structures is
supporting equivocation during simulation. Roughly speaking, the issue is that during the Ideal(k)
experiment the simulator first needs to simulate an encrypted structure for the adversary and later
needs to be able to simulate tokens that work correctly with the simulated structure produced in
the first step. The challenge in supporting equivocation is that at the time the encrypted structure
is simulated, the simulator has no information about the adversary’s queries so it is not clear how to
simulate the structure in a way that will work correctly at query time. So to handle equivocation, the
construction needs to be carefully designed and, typically, needs expensive cryptographic primitives.
Fortunately, as first shown by Chase and Kamara [19], in the setting of symmetric STE, equivocation
can be achieved very efficiently based only on XOR and PRF operations.
Our base scheme. One possible way to design an encrypted Bloom filter is as follows. Let U
be a universe of elements. Given a set S ⊆ U, insert the value FK(a), for all a ∈ S, in a standard
Bloom filter, where F is a pseudo-random function. The token for an element a ∈ U is tk = FK(a)
and the Bloom filter can be queried by doing a standard Bloom filter test on tk.

The main problems with this construction are that: (1) it reveals information about the size
of S; and (2) it is not adaptively-secure. To achieve adaptive security, we can encrypt the Bloom
filter by XORing each of its bits with a pad generated from another pseudo-random function G.
This encryption step both hides the size of S and allows for equivocation. Now the token tk for an
element a ∈ U includes FK1(a) and the pads for locations H1(FK1(a)) through Hλ(FK1(a)), where
(H1, . . . ,Hλ) are the hash functions used for the Bloom filter.

For this to work, however, the pads have to be designed carefully. More precisely, correctness
requires that the pads only depend on the locations that they mask otherwise two (or more) elements
a1 and a2 that collide under one of the hash functions will produce different masks for the same
location. To get such location-dependent pads we compute them as GK2(`), where ` is the `th bit of
the filter. Now, a token for element a is set to

tk =
(
FK1(a), GK2

(
H1
(
FK1(a)

))
, . . . , GK2

(
Hλ

(
FK1(a)

)))
.

The base construction described so far is compact and adaptively-secure but not multi-structure.

20

Reusability. Recall that a multi-structure STE scheme can produce multiple encrypted structures
(EDS1, . . . ,EDSn) under a single key K in such a way that a single (constant-size) token tk can be
used to query all the structures generated under key K. So to make our base scheme multi-structure,
the pads have to be filter-dependent in addition to being location-dependent so that different pads
are used for different filters even if they mask the same location. We do this by setting the pads
to be the output of a random oracle applied to the pair (GK2(`), id) where id is the identifier of
the filter. The purpose of the random oracle here is twofold. First, it enables the extraction of
n (random) pads from pairs (GK2(`), id1) through (GK2(`), idn) without relying on n secret keys.
This, in turn, means the tokens can be of size independent of n. Second, it allows the simulator to
equivocate on the pads while, again, keeping the tokens independent of n.

While the base scheme is now compact, adaptively-secure and multi-structure, it produces very
large tokens. The problem is that if two sets S1 and S2 have different sizes, then the parameters of
their Bloom filters (i.e., the array sizes, number of hash functions and hash function ranges) have to
be different. The consequence is that in our encrypted set scheme, we will need different sets of
hash functions for each filter which, in turn, means the tokens will have to include multiple pads for
every filter.
Matryoshka filters. We solve this problem as follows. Instead of encrypting a set of standard
Bloom filters as in our base construction, we encrypt a new filter-based structure we refer to as
matryoshka filters (MF).5 MFs are essentially a set of nested Bloom filters of varying sizes whose
hash functions are all derived from a fixed set of hash functions. More precisely, consider a sequence
of sets S1, . . . , Sn ⊆ U not necessarily of the same size. We assume for simplicity that the sets have
size a multiple of 2. For some false negative rate 2−λ, choose λ independent and ideal random hash
functions (H1, . . . ,Hλ) from U to [(λ/ ln 2) ·maxi #Si]. We refer to these functions as the maximal
hash functions and to their associated filter as the maximal filter. For every set Si, construct
a Bloom filter of size [d(λ/ ln 2) · #Sie] with hash functions (H i

1, . . . ,H
i
h) where, for all j ∈ [λ],

H i
j(a) = Hj(a)‖pi with pi = dlog

(
(λ/ ln 2) ·#Si

)
e. We refer to these hash functions as the derived

functions and to their associated filters as the derived filters. Note that if the maximal hash functions
are ideal random functions then so are the derived functions so the standard Bloom filter analysis
holds.
Encrypting matryoshka filters. As mentioned above, our final solution consists of adapting
our base scheme to encrypt matryoshka filters instead of standard Bloom filters. In other words,
we XOR each bit of each matryoshka filter with location- and filter-dependent pads. The main
difference with the base scheme is that here the pads also need to be nested; that is, given a pad for
the maximal filter we need to be able to construct the pads for the derived filters. To support this,
we make use of the properties of online ciphers; namely, that given an n-bit string s and a B-online
cipher OC, the following equality holds:

OCK
(
s
‖B
|p×B

)
= OCK

(
s‖B

)
|p×B

, (7)

where p < n. This can be derived as follows. From the correctness property of online ciphers, we
have

OCK
(
s
‖B
|p×B

)
= OC1

K

(
s
‖B
|p×B

)
‖ · · · ‖OCpK

(
s
‖B
|p×B

)
5The term matryoshka here refers to Russian nested dolls which are called matryoshka dolls.

21

= X

(
K, s

‖B
|B

)
‖ · · · ‖X

(
K, s

‖B
|p×B

)
,

and

OCK
(
s‖B

)
= OC1

K

(
s‖B

)
‖ · · · ‖OCnK

(
s‖B

)
= X

(
K, s

‖B
|B

)
‖ · · · ‖X

(
K, s

‖B
|n×B

)
,

for some function X. It follows then that

OCK
(
s‖B

)
|p×B

= X

(
K, s

‖B
|B

)
‖ · · · ‖X

(
K, s

‖B
|p×B

)

= OCK
(
s
‖B
|p×B

)
.

Now, to encrypt the `th bit of a matryoshka filter, we use a pad constructed as

R
(

OCK
(
`
‖B
|p×B

)
, id(S)

)
,

where R is a random oracle and id(S) is the identifier of the filter. Note that the pad is both filter-
and location-dependent. In addition, if the server is provided the value OCK

(
`‖B

)
for the maximal

filter, it follows by Eq. (7) that it can derive the above pad as

R
(

OCK
(
`‖B

)
|p×B, id(S)

)
.

The detailed description of our set encryption scheme is given in Fig. 4. In the Theorem below we
show that it is adaptively-secure with the following leakage profile:

Lest
S (S) = #S and Lset

Q

(
S1, . . . , Sn, q

)
=
(
b1, . . . , bn, SP(q)

)
,

where SP is the search pattern; that is, if and when two queries are the same. More formally, if t
queries have been made, SP(q) outputs a t-bit string with a 1 at location i if q is equal to the ith
query.
Theorem 7.2. If OC is secure, then the multi-structure set encryption scheme described in Fig. 4
is adaptively (Lset

S ,Lset
Q)-secure in the random oracle model.

The proof of Theorem 7.2 is in Appendix D.

7.2 The ZMF Multi-Map Encryption Scheme
By applying the Z-IDX transformation to our multi-structure set encryption scheme from Fig. 4,
we get a new adaptively-secure multi-map encryption scheme we call ZMF. We state its security
formally in the following Corollary of Theorems 7.1 and 7.2. Its leakage profile is,

Lzmf
S (MM) =

((
#MM−1[v]

)
v∈V

,#V
)

and Lzmf
Q (MM, q) =

(
b1, . . . , b#V, SP(q)

)
where bi is 1 if q ∈ MM−1[vi] and 0 otherwise, and vi is the ith value in V.
Corollary 7.3. The ZMF multi-map encryption scheme which results from applying the Z-IDX
transformation to the set encryption scheme of Fig. 4 is (Lzmf

S ,Lzmf
Q)-adaptively secure.

22

Let F be a pseudo-random function family, H : {0, 1}∗ → [σ] be a family of hash functions modeled
as random oracles where σ is a public upper bound, and R : {0, 1}∗ → {0, 1} be a random oracle. Let
OC : {0, 1}g(k)×{0, 1}γ×B → {0, 1}γ×B a B-online cipher with γ = log σ blocks. Let ε ∈ [0, 1] be a false
positive rate that is hardcoded in each algorithm. Set λ = log(1/ε) and set H1, . . . ,Hλ ← H. Consider
the set encryption scheme Σ = (Gen,Enc,Token,Test) defined as follows:

• Gen(1k):

1. sample K1
$← {0, 1}k and K2

$← {0, 1}g(k);
2. output K = (K1,K2);

• Enc(K,S):
1. let A be a binary array of size m = dλ ·#S/ ln 2e initialized to all 0’s;
2. for all items a ∈ S and all i ∈ [λ],

(a) compute T = FK1(a);
(b) compute ` = Hi

(
T
)
;

(c) compute s = OCK2

(
`
‖B
| logm×B

)
;

(d) set A
[
`| logm

]
= 1⊕ R

(
s, id(S)

)
;

3. for all i ∈ [m] such that A[i] = 0,
(a) compute s = OCK2

(
i
‖B
| logm×B

)
;

(b) set A
[
i
]

= 0⊕ R
(
s, id(S)

)
;

4. set ESET = A;
5. output ESET.

• Token(K, a):
1. compute T = FK1(a);
2. for all i ∈ [λ],

(a) compute ` = Hi(T);
(b) compute si = OCK2

(
`‖B
)
;

3. output tk =
(
T, s1, . . . , sλ

)
.

• Test(ESET, tk):
1. parse tk as (T, s1, . . . , sλ);
2. parse ESET as A;
3. set m = |A|;
4. for all i ∈ [λ],

(a) compute bi = A
[
Hi(T)| logm

]
⊕ R

((
si
)
| logm×B , id(ESET)

)
;

5. if, for all i ∈ [λ], bi = 1 output 1, otherwise output 0.

Figure 4: An adaptively-secure multi-structure set encryption scheme.

23

8 Dynamic SSE with IEX
Here, we describe a dynamic version of IEX. We first recall the syntax and security definitions for
dynamic STE and detail our construction in Section 8.2.

8.1 Security Definitions
An STE scheme is dynamic if it supports updates on the encrypted structure without requiring a
complete re-construction. Dynamic STE schemes are used in the same manner as static schemes
except that when the client wants to update the structure it generates an update token utk that it
sends to the server. Given utk and the encrypted structured EDS, the server generates an updated
structure EDS′. Here, we will consider dynamic schemes that are stateful.
Definition 8.1 (Dynamic structured encryption). A single-round response-hiding dynamic struc-
tured encryption scheme ΣT = (Setup,Tokensr,Query,Tokenup,Update,Resolve) for data type T
consists of six polynomial-time algorithms that work as follows:
• (K, st,EDS) ← Setup(1k,DS): is a probabilistic algorithm that takes as input a security

parameter 1k and a structure DS of type T and outputs a secret key K, a state st and an
encrypted structure EDS.
• tk← Tokensr(K, st, q): is a (possibly) probabilistic algorithm that takes as input a secret key
K, a query q and a state st and returns a token tk.
• c← Query(EDS, tk): is a (possibly) probabilistic algorithm that takes as input an encrypted

structure EDS and a token tk and outputs a message c.
• utk← Tokenup(k, st, u): is a (possibly) probabilistic algorithm that takes as input a secret key
K, the state st, an update u and returns an update token utk.
• EDS′ ← Update(EDS, utk): is a (possibly) probabilistic algorithm that takes as input an

encrypted structure EDS and an update token utk and outputs an encrypted structure EDS.
• r ← Resolve(K, c): is a deterministic algorithm that takes as input a secret key K and a

message c and outputs a response r.
We say that a dynamic structured encryption scheme ΣT is correct if for all k ∈ N, for all

poly(k)-size structures DS of type T , for all (K, st,EDS) output by Setup(1k,DS) and all sequences
of m = poly(k) operations o1, . . . , om each of which can be a query qi or an update ui, for all tokens
tki output by Tokensr(K, qi) or utki output by Tokenup(K,ui), for all encrypted structures EDS output
by Update(EDS, utki), for all messages c output by Query(EDS, tki), Resolve(K, c) returns the correct
response with all but negligible probability.

The syntax of a response-revealing dynamic STE scheme can be recovered by omitting the
Resolve algorithm and having Query output the response.
Security. We formalize the security of dynamic STE schemes similarly to the security of static
STE schemes. The main difference is that we also include the Tokenup and Update operations and
the potential update leakage LU. Intuitively, we require that a dynamic encrypted structure reveals
no information about its underlying structure beyond the setup leakage LS, and that the query and
update algorithms reveal no information about the structure, the queries or the updates beyond the
query and update leakage LQ and LU, respectively.
Definition 8.2 (Adaptive security [21, 19]). Let ΣT = (Setup,Tokensr,Query,Tokenup,Update)
be a dynamic structured encryption scheme for type T and consider the following probabilistic
experiments where A is a stateful adversary, S is a stateful simulator, LS, LQ and LU are leakage
profiles and z ∈ {0, 1}∗:

24

Real+Σ,A(k): given z the adversary A outputs a structure DS of type T and receives EDS from
the challenger, where (K, st,EDS)← Setup(1k,DS). The adversary then adaptively chooses a
polynomial number of operations o1, . . . , om such that oi is either a query qi or an update ui. For
all i ∈ [m], the adversary receives tki ← Token(K, st, qi) of oi = qi or utki ← Tokenup(K, st, ui)
if oi = ui. Finally, A outputs a bit b that is output by the experiment.

Ideal+Σ,A,S(k): given z the adversary A generates a structure DS of type T which it sends to
the challenger. Given z and leakage LS(DS) from the challenger, the simulator S returns an
encrypted structure EDS to A. The adversary then adaptively chooses a polynomial number
of operations o1, . . . , om such that oi is either a query qi or an update ui. For all i ∈ [m], the
simulator receives either query leakage LQ(DS, qi) or update leakage LU(DS, ui). In the former
case, it returns a query token tki to A and in the latter it returns an update token utki to A.
Finally, A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ,LU)-secure if for all ppt adversaries A, there exists a ppt
simulator S such that for all z ∈ {0, 1}∗,

|Pr
[
Real+Σ,A(k) = 1

]
− Pr

[
Ideal+Σ,A,S(k) = 1

]
| ≤ negl(k).

Forward security. An important property of dynamic STE schemes is forward security which,
informally, guarantees that updates to the encrypted structure cannot be correlated to previous
searches. Forward security, along with a construction that achieves it, was introduced in [37] but not
formally defined. Recently, a definition was proposed in [15] in the context of SSE. The definition,
however, does not seem to be strong enough to capture the intuition described above. The approach
of [15] is to define a forward-secure SSE scheme as one whose update leakage LU(DB, u), where
u = {(idi,Wi)}i, is such that

LU(DB, u) = f

({(
idi,#Wi

)}
i

)
for some function f . Essentially, what is guaranteed is that the update leakage only includes
information about the file ids that are updated and the number of keywords added to each file. In
particular, the intuition is that such a guarantee is strong enough for forward security since no
information about previous queries appears as input to f . The difficulty is that the inputs to f
could still be correlated with previous queries. As a concrete example, consider a client that makes
t ≥ 1 keyword queries w1 through wt. At a later point in time, it adds a file whose first keyword is
wλ, for λ ∈ [t], and with a number of unique keywords equal to λ. Such a scheme would satisfy the
above definition (where f is the identity function) but the leakage would reveal to the server that
the first keyword of the new file was queried at time t = #Wi, clearly breaking forward security.

To capture the intuition of forward security, we require that the update leakage be leakage-
free in the sense that it reveals nothing about the database or the update beyond what can be
derived from the security parameter. This is formalized simply by requiring that the scheme be
(LS,LQ,LU)-secure where LU(DB, u) = 1k which we sometimes write this as (LS,LQ,⊥)-secure.
Whether leakage-free updates are necessary to achieve forward-security is not clear. What is clear,
however, is that it is sufficient. We also note that the Sophos construction of Bost from [15] seems
to satisfy this stronger property.

8.2 DIEX: A Dynamic SSE Scheme
We describe our dynamic SSE construction DIEX. As far as we know, it is the first adaptively-secure
dynamic SSE scheme that is forward-secure and supports Boolean search queries in sub-linear time.

25

In particular, it supports the addition, deletion and editing of files.
Overview. As a starting point, we describe a dynamic version of IEX that is not forward-secure.
For this, we make two changes to our static construction. First, we replace the encrypted dictionary
EDX and the global encrypted multi-map EMMg with a dynamic encrypted dictionary EDX+ and a
dynamic global encrypted multi-map EMM+

g . The encrypted local multi-maps remain static. Second,
we require that these new structures be response-hiding. We provide a high level description of our
construction which is described in detail in Fig. 5.

The DIEX.Setup algorithm is the same as the IEX.Setup with the exception that it uses a
dynamic encrypted dictionary and a dynamic encrypted multi-map and outputs state information
st. The DIEX.Tokensr algorithm is similar to IEX.Token with the exception that it is stateful. Here,
the state is just used to generate tokens for the underlying dynamic dictionary and global multi-map
encrypted structures. The DIEX.Tokenup algorithm works as follows. It takes as inputs the key K,
the state st and an update u = (op, id,Wid) that consists of an operation op ∈ {edit+, edit−}, the
document identifier id being edited and a set of keywords Wid to add or delete based on op. We
have the following cases:
• if u = (edit+, id,Wid), the client will update the global multi-map EMMg with pairs (w, tagid)

for all w ∈ Wid. Here, tagid := EncK1

(
id;FK2

(
id‖w

))
as in IEX. This is done by generating

update tokens (utkwg)w∈Wid for EMMg using ΣMM.Tokenup. For all w ∈Wid, the client generates
a new local multi-map MMw that maps all v ∈Wid \ {w} to tagid. It encrypts all these local
multi-maps (MMw)w∈Wid with ΣDX.Setup, resulting in (EMMw)w∈Wid and creates update tokens
(utkwd)w∈Wid for EDX. The algorithm outputs an update token

utk =
(

op,
(
utkwd

)
w∈Wid

,
(
utkwg

)
w∈Wid

)
,

and st = (std, stg), where the former is the state maintained by ΣDX and the latter is the state
maintained by ΣMM.
• if u = (edit−, id,Wid), the client only updates EMMg. Specifically, it removes all pairs (w, tagid)

for w ∈ Wid. This can be done by computing tags as above and generating update tokens
(utkwg)w∈Wid using ΣMM.Tokenup. The algorithm outputs the update token

utk =
(

op, (utkwg)w∈Wid

)
,

and st = stg where stg is the state maintained by ΣMM.
The Update algorithm takes as input EDB and an update token utk and outputs EDB′. If

op = edit+, it uses the sub-tokens in utk to update EMMg and EDX. If op = edit−, it only updates
EMMg. The Search algorithm is the same as IEX.Search. Recall that we do not update the local
multi-maps already in EDX. This is not necessary to for correctness because, during search, the
server will take the intersection of the tags returned from the global multi-map EMMg and from
the appropriate local multi-maps. However, because EMMg is properly updated, the intersection
operation will filter out the old/stale tags from the local multi-map.
Forward security. We note that DIEX is forward secure if its underlying structures are. Specifi-
cally, if ΣMM and ΣDX are forward secure then so is DIEX. This is easy to see from the fact the
DIEX tokens only consist of ΣDX and ΣMM tokens so if the former can be simulated from the
security parameter, then the latter can. As a possible instantiation of a forward secure multi-map
and dictionary encryption scheme, one can use the Sophos scheme of Bost [15].

26

Let Σ+
DX = (Setup,Tokensr,Get,Tokenup,Update) and Σ+

MM = (Setup,Tokensr,Get,Tokenup,Update)
be dynamic dictionary and multi-map encryption schemes, respectively. Let IEX+ =
(Setup+,Token+, Search+) be the IEX scheme described in Fig. 1 with ΣMM and ΣDX replaced with
Σ+

MM and Σ+
DX, respectively, and let ΣMM = (Setup,Token,Query) be the static multi-map encryp-

tion scheme used to encrypt the local multi-maps. Consider the dynamic disjunctive SSE scheme
DIEX = (Setup,Tokensr, Search,Tokenup,Update) defined as follows:

• Setup(1k,DB): output (K, st,EDB)← IEX+.Setup(1k,DB);

• Tokensr(K,w): output tk← IEX+.Token(K, st,w);

• Tokenup(K, st, u)
1. parse u as (op, id,Wid) and st as (stg, std)
2. if op = edit+,

(a) for all w ∈Wid,
i. let tagid := EncK1

(
id;FK2

(
id‖w

))
;

ii. compute (utkwg , stg)← Σ+
MM.Tokenup(K, stg, (op, w, tagid));

iii. initialize a multi-map MMw of size #Wid;
iv. for all v ∈Wid \ {w}, set MMw[v] = tagid;
v. compute (Kw,EMMw)← ΣMM.Setup

(
1k,MMw

)
;

vi. compute (utkwd , std)← Σ+
MM.Tokenup(K, std, (op, w,EMMw));

(b) output utk =
(
op, (utkwd)w∈Wid , (utkwg)w∈Wid

)
;

3. if op = edit−,
(a) for all w ∈Wid

i. let tagid := EncK1

(
id;FK2

(
id‖w

))
;

ii. compute (utkwg , stg)← Σ+
MM.Tokenup(K, stg, (op,Wid, tagid));

(b) output utk =
(
op, (utkwg)w∈Wid) and the updated state st = (stg, std);

• Update(EDB, utk)
1. parse utk as

(
op, (utki)i∈[#tk]) and EDB = (EDX,EMMg);

2. if op = edit−, then for all i ∈ [#utk] compute EMMg ← Σ+
MM.Update(EMMg, utki, op);

3. if op = edit+, then for all i ∈ [#utk/2], compute EMMg ← Σ+
MM.Update(EMMg, utki, op)

and EDX← Σ+
DX.Update(EDX, utki+#utk/2+1, op);

4. output EDB = (EDX,EMMg);

• Search(EDB, utk): output
⋃
i∈[q] Ti ← IEX+.Search(EDB, tk).

Figure 5: The scheme DIEX.

27

Efficiency. The efficiency of DIEX depends on the underlying multi-map and dictionary encryption
schemes. Using optimal constructions, the search complexity of DIEX is the same as IEX; that is,
O(q2 ·M), where M = maxi∈[q] #DB(wi) and q is the number of terms in the disjunction.
Security. We show that DIEX is adaptively secure with respect to the following well-defined
leakage profile. The setup and query leakages are the same as IEX so we only describe the update
leakage. For an update u = (edit+, id,Wid),

LU

(
DB, u

)
=
(
Lmm

U
(
MMg, (op, w, id)

)
,Ldx

U
(
DX, (op, w, id)

)
,Lmm

S
(
MMw

))
w∈Wid

.

If u = (edit−, id,Wid): Ldiex
U

(
DB, u

)
=
(
Lmm

U
(
MMg, (op, w, id)

))
w∈Wid

.

Theorem 8.3. If ΣDX is adaptively
(
Ldx

S ,Ldx
Q ,Ldx

U
)
-semantically secure and ΣMM is adaptively(

Lmm
S ,Lmm

Q ,Lmm
U
)
-secure, then DIEX is adaptively (Ldiex

S ,Ldiex
Q ,Ldiex

U)-secure.
The proof of Theorem 8.3 is similar to the proof of Theorem 5.1.

9 Empirical Evaluation
To evaluate the practicality of our constructions, we designed and implemented a new SSE framework
called Clusion. It is implemented in Java and consists of 3445 lines of codes calculated using CLOC [4].
Parsing and indexing. Our framework uses the Lucene parser [2] to parse and index data.
Lucene is an open-source high-performance text search engine written in Java maintained by the
Apache project. We modify the Lucene parser to handle several types of files including pdf files,
Microsoft Office files (doc, docx, pptx, xlsx) and basic txt files. For media files, such as pictures
and movies, our framework only indexes the file name. Future work could include adding an image
processing step that extracts keywords from media files (e.g., using AlchemyAPI [1]). For massive
datasets, we also implemented a distributed Lucene-based parser and indexer using Hadoop [6].
Currently, the distributed parser/indexer only handles text files (e.g., txt, html etc.).
Cryptographic primitives. Cryptography in framework uses the Bouncy Castle library [3]. We
instantiate PRFs with HMAC-SHA256 and symmetric encryption with AES in the CTR mode with
a 128/256 bit key. For online ciphers, we implemented the HBC1 construction of Bellare et al. [10].
Because we never need to decrypt the OC-encrypted values, we replaced the encryption operation
in HBC1 with a PRF evaluation. 6

Experimental setup. We ran our experiments on Amazon EC2 instance c3.8xlarge an Intel
Xeon E5-2680 v2 (Ivy Bridge) Processors with 32 vCPU and 60 GiB of RAM running Ubuntu Linux.
All our benchmarks use the Enron email dataset which consists of 444, 482 files and has total size
1.3GB uncompressed. All our time measurements are based on 50 executions and we include (when
required) the minimum, maximum and average times.
Experiment overview. To evaluate IEX, we implemented two of its possible instantiations. The
first is IEX-2Lev and is optimized for search efficiency. It uses the 2Lev scheme from Cash et
al. [16] to encrypt its global and local multi-maps. Our second instantiation is IEX-ZMF and is
optimized for compactness. It uses 2Lev to encrypt its global multi-map and ZMF to encrypt its
local multi-maps.

6We verified that the proof of HBC1 follows as-is with a PRF

28

 0.001

 0.01

 0.1

 1

 10

 100

 100000 1x10
6

 1x10
7

 1x10
8

 1x10
9

T
im

e
 i
n
 h

o
u
rs

Number of pairs (w, id)

Setup time

Figure 6: IEX-2Lev.Setup

9.1 IEX-2Lev Evaluation
In our experiments we want to evaluate several characteristics of our constructions. The first is
setup time; that is, how long it takes to produce the encrypted data structures needed for search.
The second is search time, i.e., the time needed to search for different types of queries. In particular,
we consider conjunctive, disjunctive and boolean queries all on an EDB with 2M keyword/id pairs
generated from a subset of the Enron dataset. The third is token size for different types of queries.
Setup time. To evaluate setup we measured the time it takes to produce EDB from DB. Note
that IEX and BIEX have the same setup algorithm so our empirical results apply to both schemes.
We stress that our measurements do not reflect the time it takes to parse and index the input
dataset. The results of our experiments for IEX-2Lev with a filtering parameter of p = 0.2 are in Fig.
6. The Figure gives the setup time in seconds as a function of the number of keyword/id pairs in the
dataset. We ran experiments with number of keyword/id pairs ranging from 22, 460 to 61, 573, 757
and then extrapolated up to 109 under the assumption (validated by our theoretical analysis) that
setup time increases linearly in the number of keyword/id pairs with a filtering parameter p = 0.2.
Fig. 6 shows that IEX-2Lev requires 1.17 hours to process 61.5M pairs which is approximately 68µs
per pair. We extrapolate that 1B pairs would require 21.97 hours.

The setup time of IEX-2Lev is about three times slower than the setup time of OXT-2Lev as
reported in [16] (cf., the 2Lev graph in Fig 10) which is of 19.8µs per pair. Our implementation,
however, is in Java whereas the implementation of [16] is in C. 7

Conjunctive search time. Our first set of search experiments focus on conjunctive keyword
searches and are summarized in Fig. 7. The queries have the form (w ∧ x) and (x ∧ w), where
the selectivity of w is set to either 15 or 2K and the selectivity of x is increased up to 10K and
extrapolated to 1M. As can be seen, IEX-2Lev is very efficient for conjunctive queries. For example,

7 On our evaluation machine, a single PRF operation using Bouncy Castle’s HMAC-SHA256 implementation in
Java took 65µs whereas a PRF operation using OpenSSL’s HMAC-SHA256 implementation in C took 8.6µs on 1024
bytes. Given that PRF operations are the dominant operation in both constructions we can roughly say that the
setup time can greatly decrease if IEX was implemented in C.

29

 1

 10

 100

 1000

 10 100 1000 10000 100000 1x10
6

T
im

e
 i
n

 m
s

Selectivity of x

w AND x: DB(w)=15

w AND x: DB(w)=2000

x AND w: DB(w)=15

x AND w: DB(w)=2000

Figure 7: IEX-2Lev conjunctive keyword search

search time for q1 = (w ∧ x) with DB(w) = 15 is about 1.2ms (independent of DB(x)) which
compares favorably—especially considering our implementation is in Java—to the time of 5ms
reported for OXT on the same query. Similarly, for q2 = (w ∧ x) with DB(w) = 2000, IEX-2Lev
takes 12ms whereas OXT takes 200ms for a selectivity of x equal to 10K. The most noticeable
difference, however, occurs for q3 = (x ∧ w) with DB(w) = 15. If, for example, we set DB(x) = 10K,
IEX-2Lev takes just above 30ms whereas OXT takes just under 1s, a 30× improvement.

 1

 10

 100

 10 100 1000 10000 100000 1x10
6

T
im

e
 i
n

 m
s

Selectivity of x

w OR x: DB(w)=15

w OR x: DB(w)=2000

Figure 8: IEX-2Lev disjunctive keyword search

Disjunctive search time. In our second set of search experiments, summarized in Fig. 8,
we measure IEX-2Lev’s search time for two queries of the form (w ∨ x) with DB(w) = 15 and
DB(w) = 2K, respectively, and varying DB(x) up to 10K and extrapolating to 1M. Our results

30

 1

 10

 100

 10 100 1000 10000 100000 1x10
6

T
im

e
 i
n

 m
s

DB(y OR z): Selectivity of y OR z

(w OR x) AND (y or z): DB(w OR x)=15

(w OR x) AND (y or z): DB(w OR x)=2000

Figure 9: IEX-2Lev boolean keyword search

 0.1

 1

 10

 100

 2 4 6 8 10 12

Si
ze

 in
 K

By
te

Number of keywords per disjunction

One disjunction
Two disjunction

Figure 10: IEX-2Lev token Size

clearly show that IEX-2Lev is also very efficient for disjunctive queries as it takes 8.4 and 14.8ms
for DB(w) = 15 and DB(w) = 2K, respectively, when DB(x) = 10K.
Boolean search time. Our final set of search experiments are for boolean queries of the form((
w∨x

)
∧
(
y∨ z

))
. We consider two cases: namely, when DB(w∨x) = 15 and DB(w∨x) = 2K and,

in each case, with DB(y ∨ z) varied up to 10K and extrapolated to 1M. The results are summarized
in Fig. 9 and again show that IEX-2Lev performs very efficiently as it takes, e.g., only 2.4ms and
23.7ms when DB(y ∨ z) = 10K.
Token size. To evaluate the token size of IEX-2Lev, we considered two types of queries. The first
has the form qm1 =

(
w1 ∨ · · · ∨ wm

)
consisting of a single disjunction, and the second has the form

qm2 =
(
w1 ∨ · · · ∨wm

)
∧
(
x1 ∨ · · · ∨ xm

)
. We measured the size of the tokens when varying m from 2

31

 1

 10

 100

 1000

 10000

 10000 100000 1x10
6

 1x10
7

 1x10
8

S
iz

e
 i
n

 M
B

y
te

Number of pairs (w, id)

IEX-ZMF
IEX-2Lev

Figure 11: IEX-ZMF Storage Size

to 12. The results are summarized in Fig. 10. We can see that token size are very compact. For
example, for q12

2 , the token size is only 81KB and for q12
1 it is only 5.6KB. Recall that, unlike OXT,

the token size (and therefore the communication complexity) of IEX is independent of the query’s
selectivity.

9.2 IEX-ZMF Evaluation
We now turn our attention to IEX-ZMF and evaluate its setup time, conjunctive, disjunctive and
boolean search time, its token size and its storage size.
Storage size. We report our results for storage size in Fig. 11. We measured the size of the data
structures using SizeOF [7] Java agent which is based on serialization. Our experimental results
confirm our theoretical findings and show that IEX-ZMF is much more compact than IEX-2Lev.
For example, for 34, 220, 587 keyword/id pairs IEX-ZMF produced an EDB of 911MB whereas
IEX-2Lev produced an EDB of 9.8GB. In addition, we believe that IEX-ZMF’s compactness can be
further enhanced by improving the underlying data representations used in our implementation.
Setup time. Similarly to the setup experiment above, we measured the time it takes for IEX-ZMF
to produce its encrypted search structure. Again, recall that our measurements do not reflect the
time it takes to parse and index the input dataset. The results for IEX-ZMF are with a filtering
parameter of p = 0.2. We ran experiments with the number of keyword/id pairs ranging from 22, 460
to 34, 220, 587 and then extrapolated up to 1B. The results show that IEX-ZMF requires 7.58 hours
to process 34M keyword/id pairs which is approximately 797µs per pair. We extrapolate that 1B
keyword/id pairs would require 217 hours. This represents a 1 order of magnitude slowdown over
IEX-2Lev and 40× slower than OXT-2Lev as reported in [16].

32

 0.01

 0.1

 1

 10

 100

 1000

 10000 100000 1x10
6

 1x10
7

 1x10
8

 1x10
9

T
im

e
 i
n

 h
o

u
rs

Number of pairs (w, id)

Setup time

Figure 12: IEX-ZMF.Setup

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000 1x10
6

T
im

e
 i
n

 m
s

Selectivity of x

w AND x: DB(w)=15

w AND x: DB(w)=2000

x AND w: DB(w)=15

x AND w: DB(w)=2000

Figure 13: IEX-ZMF conjunctive keyword search

Conjunctive search time. We evaluated IEX-ZMF on the same conjunctive queries as IEX-2Lev.
The results are in Fig. 13 and show that IEX-ZMF is slower than IEX-2Lev, as expected. For
example, for (w ∧ x) with DB(w) = 15, IEX-ZMF takes around 54ms whereas IEX-2Lev only takes
1.5ms; a 30× slowdown. Similarly, for (w ∧ x) with DB(w) = 2K, IEX-ZMF takes 336ms whereas
IEX-2Lev takes, e.g., 23ms when DB(x) = 10K.
Disjunctive search time. Our disjunctive search experiments, which are the same as for
IEX-2Lev, are summarized in Fig. 14. Here, search time is constant, requiring around 59.5
and 322ms for DB(w) = 15 and DB(w) = 2K, respectively. In both cases, IEX-ZMF is considerably
slower than IEX-2Lev which requires 8.4 and 14.8ms for DB(w) = 15 and DB(w) = 2K even for

33

 10

 100

 1000

 10 100 1000 10000 100000 1x10
6

T
im

e
 i
n

 m
s

Selectivity of x

w OR x: DB(w)=15

w OR x: DB(w)=2000

Figure 14: IEX-ZMF disjunctive keyword search

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1x10
6

T
im

e
 i
n

 m
s

DB(y OR z): Selectivity of y OR z

(w OR x) AND (y or z): DB(w OR x)=15

(w OR x) AND (y or z): DB(w OR x)=2000

Figure 15: IEX-ZMF boolean keyword search

DB(x) = 10K.
Boolean search time. The results of our boolean search experiments are given in Fig. 15 and
again show that, as expected, IEX-ZMF is slower than IEX-2Lev. While its search time is constant,
it requires about 59.5ms and 1610ms, respectively, for the two boolean queries, whereas IEX-2Lev
requires only 2.4ms and 23.7ms even when DB(y ∨ z) = 10K.
Token size. The token sizes of IEX-ZMF are reported in Fig. 16. They are considerably larger
than the tokens of IEX-2Lev. In fact, whereas the former produces tokens of size 1.7MB and 25MB
for q12

1 and q12
2 , IEX-2Lev tokens are only of size 5.6KB and 81KB for the same queries. This is a

consequence of two reasons: first, we select a false positive rate equal to 20, this implies that we need

34

 0.1

 1

 10

 2 4 6 8 10 12

Si
ze

 in
 M

By
te

Number of keywords per disjunction

One disjunction
Two disjunction

Figure 16: IEX-ZMF token Size

 10

 100

 1000

(3K,212K) (17.4K,1.5M) (63K, 8.3M) (197K, 34M)

C
o
m

m
u
n
ic

a
ti
o
n
 i
n
 K

B
y
te

Maximum |DB(w)| and the number of (id, w) pairs

2 terms
4 terms

Figure 17: IEX-ZMF and IEX-2Lev communication upper bounds with p=0.2

20× larger local multi-map token compared to IEX-2Lev. Second, as we consider the upper-bound
when generating the OC tokens, this also makes our tokens much larger.
Communication overhead. The filtering parameter reduces the storage overhead at the cost
of loosing communication optimality. We set the filtering parameter to 0.2. The worst case
communication complexity for a k-terms disjunctive queries (or any arbitrary boolean query in the
CNF form with a k-terms first disjunction) equals: O(k · p ·maxw∈W |DB(w)|). The communication
upper bound for k = 2, 4 is reported in Fig. 17. The communication upper bound for a number of
pairs equal to 34M is 632KB as maxw∈W |DB(w)| = 197, 712.

35

References
[1] Alchemyvision api. https://www.ibm.com/watson/developercloud/alchemyvision/api/v1/#introduction.
[2] Apache lucene. http://lucene.apache.org.
[3] Bouncy castle. http://www.bouncycastle.org.
[4] Cloc. http://www.cloc.sourceforge.net.
[5] Clusion. https://github.com/orochi89/Clusion.
[6] Powered by hadoop. See http://wiki.apache.org/hadoop/PoweredBy.
[7] Sizeof. http://http://sizeof.sourceforge.net.
[8] E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, E. Tischhauser, and K. Yasuda. Parallelizable and au-

thenticated online ciphers. In Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference
on the Theory and Application of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013,
Proceedings, Part I, pages 424–443, 2013.

[9] G. Asharov, M. Naor, G. Segev, and I. Shahaf. Searchable symmetric encryption: Optimal locality in linear space
via two-dimensional balanced allocations. In ACM on Symposium on Theory of Computing (STOC ’16), 2016.

[10] M. Bellare, A. Boldyreva, L. R. Knudsen, and C. Namprempre. On-line ciphers and the hash-cbc constructions.
IACR Cryptology ePrint Archive, 2007:197, 2007.

[11] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In A. Menezes,
editor, Advances in Cryptology – CRYPTO ’07, Lecture Notes in Computer Science, pages 535–552. Springer,
2007.

[12] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill. Order-preserving symmetric encryption. In Advances in
Cryptology - EUROCRYPT 2009, pages 224–241, 2009.

[13] D. Boneh, G. di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword search. In
Advances in Cryptology – EUROCRYPT ’04, volume 3027 of Lecture Notes in Computer Science, pages 506–522.
Springer, 2004.

[14] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In Theory of Cryptography
Conference (TCC ’11), volume 6597 of Lecture Notes in Computer Science, pages 253–273. Springer, 2011.

[15] R. Bost. Sophos - forward secure searchable encryption. In ACM Conference on Computer and Communications
Security (CCS ’16), 20016.

[16] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Dynamic searchable encryption
in very-large databases: Data structures and implementation. In Network and Distributed System Security
Symposium (NDSS ’14), 2014.

[17] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable searchable symmetric
encryption with support for boolean queries. In Advances in Cryptology - CRYPTO ’13. Springer, 2013.

[18] D. Cash and S. Tessaro. The locality of searchable symmetric encryption. In Advances in Cryptology -
EUROCRYPT 2014, 2014.

[19] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances in Cryptology -
ASIACRYPT ’10, volume 6477 of Lecture Notes in Computer Science, pages 577–594. Springer, 2010.

[20] M. Chase and S. Kamara. Structured encryption and controlled disclosure. Technical Report 2011/010.pdf,
IACR Cryptology ePrint Archive, 2010.

[21] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: Improved definitions
and efficient constructions. In ACM Conference on Computer and Communications Security (CCS ’06), pages
79–88. ACM, 2006.

[22] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner. Rich queries on encrypted data: Beyond
exact matches. In Computer Security - ESORICS 2015 - 20th European Symposium on Research in Computer
Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part II, pages 123–145, 2015.

[23] B. A. Fisch, B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov, T. Malkin, and S. M. Bellovin. Malicious-
client security in blind seer: A scalable private dbms. In Security and Privacy (SP), 2015 IEEE Symposium on,
pages 395–410. IEEE, 2015.

36

https://www.ibm.com/watson/developercloud/alchemyvision/api/v1/#introduction
http://lucene.apache.org
http://www.bouncycastle.org
http://www.cloc.sourceforge.net
https://github.com/orochi89/Clusion
http://wiki.apache.org/hadoop/PoweredBy
http://http://sizeof.sourceforge.net

[24] C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium on Theory of Computing
(STOC ’09), pages 169–178. ACM Press, 2009.

[25] E.-J. Goh. Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography Archive, 2003. See
http://eprint.iacr.org/2003/216.

[26] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Journal of the ACM,
43(3):431–473, 1996.

[27] Y. Ishai, E. Kushilevitz, S. Lu, and R. Ostrovsky. Private large-scale databases with distributed searchable
symmetric encryption. In Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA
Conference 2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings, pages 90–107.

[28] S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric encryption. In Financial Cryptog-
raphy and Data Security (FC ’13), 2013.

[29] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In ACM Conference
on Computer and Communications Security (CCS ’12). ACM Press, 2012.

[30] K. Kurosawa. Garbled searchable symmetric encryption. In Financial Cryptography and Data Security (FC ’14),
2014.

[31] K. Kurosawa and Y. Ohtaki. Uc-secure searchable symmetric encryption. In Financial Cryptography and Data
Security (FC ’12), Lecture Notes in Computer Science, pages 285–298. Springer, 2012.

[32] X. Meng, S. Kamara, K. Nissim, and G. Kollios. GRECS: graph encryption for approximate shortest distance
queries. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-6, 2015, pages 504–517, 2015.

[33] M. Naveed, M. Prabhakaran, and C. Gunter. Dynamic searchable encryption via blind storage. In IEEE
Symposium on Security and Privacy (S&P ’14), 2014.

[34] A. O’Neill. Definitional issues in functional encryption, 2010. Cryptology ePrint Archive, Report 2010/556.
[35] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S.-G. Choi, W. George, A. Keromytis, and S. Bellovin.

Blind seer: A scalable private dbms. In Security and Privacy (SP), 2014 IEEE Symposium on, pages 359–374.
IEEE, 2014.

[36] D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted data. In IEEE Symposium
on Research in Security and Privacy, pages 44–55. IEEE Computer Society, 2000.

[37] E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable encryption with small leakage. In
Network and Distributed System Security Symposium (NDSS ’14), 2014.

[38] A. Yao. Protocols for secure computations. In IEEE Symposium on Foundations of Computer Science (FOCS
’82), pages 160–164. IEEE Computer Society, 1982.

[39] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The power of file-injection attacks
on searchable encryption. In USENIX Security Symposium, 2016.

37

http://eprint.iacr.org/2003/216

A Multi-Structure Structured Encryption
Multi-structure STE schemes are less restricted than standard schemes in the sense that their tokens
can be used with more than a single encrypted structure (generated under the same key). The
syntax and security definitions of multi-structure STE schemes is given below.
Definition A.1 (Multi-structure STE). Let T be an abstract data type. A multi-structure structured
encryption scheme Σ = (Gen,Enc,Token,Query) for T consists of four polynomial-time algorithms
that work as follows:
• K ← Gen(1k): is a probabilistic algorithm that takes as input a security parameter 1k and

outputs a key K.
• EDS← Enc(K,DS): is a probabilistic algorithm that takes as input a key K and a structure

DS of type T and outputs an encrypted structure EDS.
• tk ← Token(K, q): is a (possibly) probabilistic algorithm that takes as input a secret key K

and a query q and returns a token tk.
•
{
⊥, r

}
← Query(EDS, tk): is a (possibly) probabilistic algorithm that takes as input an en-

crypted structure EDS and a token tk and outputs either ⊥ or a response r.
We say that a multi-structure STE scheme Σ is correct if for all k ∈ N, for all K output

by Gen(1k), for all DS of type T , for all EDS output by Enc(K,DS), and for all sequences of
m = poly(k) queries q1, . . . , qm ∈ QDS, for all tokens tki output by Token(K, qi), Query(EDS, tki)
returns the correct response with all but negligible probability.

Ideally, we would like multi-structure STE schemes to provide the same notion of security as
standard schemes as formalized in Definition 8.2. Intuitively speaking, this is the guarantee that
an encrypted structure EDS leaks nothing beyond a well-specified leakage function LS(DS) of the
plaintext structure and that the encrypted structure EDS and a token tk for some query q leaks
nothing beyond a well-specified leakage function LQ(DS, q) of the plaintext structure and query. Of
course, we want to this to hold even against adaptive adversaries.

For multi-structure schemes, however, this intuition needs to be augmented to capture the
fact that the tokens are used with all the structures generated under some key K. In particular,
this means that the scheme should guarantee that, given a token for a query q, nothing is leaked
beyond a well-specified leakage function LQ(DS1, . . . ,DSn, q), where DS1, . . . ,DSn are the structures
encrypted under the key K.
Definition A.2 (Multi-structure adaptive semantic security). Let ΣT = (Setup,Token,Query) be a
multi-structure STE scheme for type T and consider the following probabilistic experiments where
A is a stateful adversary, S is a stateful simulator, LS and LQ are leakage profiles and z ∈ {0, 1}∗:
RealΣ,A(k): the challenger generates a key K ← Gen(1k). Given z the adversary A adaptively

sends polynomially-many structures DS1, . . . ,DSn to the challenger who returns their encryp-
tions EDS1, . . . ,EDSn. The adversary adaptively sends polynomially-many queries q1, . . . , qm
and receives tokens tk1, . . . , tkm. Finally, A outputs a bit b that is output by the experiment.

IdealΣ,A,S(k): given z the adversary A adaptively sends polynomially-many structures DS1, . . . ,DSn
to the challenger. For all 1 ≤ i ≤ n, given leakage LS(DSi), the simulator returns EDSi to
the adversary. The adversary adaptively sends polynomially-many queries q1, . . . , qm to the
challenger. For all 1 ≤ i ≤ m, given leakage LQ(DS1, . . . ,DSn, qi), the simulator returns tki
to the adversary. Finally, A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ)-secure if for all ppt adversaries A, there exists a ppt simulator

38

S such that for all z ∈ {0, 1}∗, the following expression is negligible in k:∣∣∣Pr
[
RealmΣ,A(k) = 1

]
− Pr

[
IdealmΣ,A,S(k) = 1

]∣∣∣
B Proof of Theorem 5.1
Theorem 5.1. If ΣDX is adaptively

(
Ldx

S ,Ldx
Q
)
-secure, ΣMM is adaptively

(
Lmm

S ,Lmm
Q
)
-secure, SKE

is RCPA-secure and F is pseudo-random, then IEX is (Liex
S ,Liex

Q)-secure.

Proof. Let SDX and SMM be the simulators guaranteed to exist from the adaptive semantic security
of ΣDX and ΣMM. Consider the simulator S for IEX that works as follows. To simulate EDB, it
takes as input the setup leakage

Liex
S =

(
Ldx

S (DX),Lmm
S (MMg)

)
,

computes EDX← SDX
(
Ldx

S (DX)
)
, EMMg ← SMM

(
LS(MMg)

)
and outputs EDB = (EDX,EMMg).

To simulate a token, it takes as input the query leakage

Liex
Q (EDB,w) =((

Ldx
Q
(
DX, wi

)
,Lmm

S (MMi),

Lmm
Q
(
MMg, wi

)
,

Lmm
Q
(
MMi, wi+1

)
,

. . . ,

Lmm
Q
(
MMi, wq

)
,TagPati(EDB,w),

)
i∈[q−1]

,

Lmm
Q
(
MMg, wq

)
,TagPatq(EDB,w)

)
,

and constructs a token tk = (tk1, . . . , tkq−1, tkq) as follows. For all i ∈ [q − 1], it sets

tki =
(
dtki, gtki, ltki+1, . . . , ltkq

)
.

Here dtki is simulated as dtki ← SDX
(
LDX

Q (DX, wi),EMMi
)
, where EMMi ← SMM

(
Lmm

S
(
MMi

))
. gtki

is simulated as gtki ← SMM
(
Lmm

Q (MMg, wi),
(
tagid

)
id∈DB(wi)

)
. For all i+ 1 ≤ j ≤ q, ltkj is simulated

as
ltkj ← SMM

(
Lmm

Q
(
MMi, wj

)
,
(
tagid

)
id∈DB(wi)∩DB(wj)

)
.

It remains to show that for all probabilistic polynomial-time adversaries A, the probability
that Real(k) outputs 1 is negligibly-close to the probability that Ideal(k) outputs 1. This can
be shown with a standard sequence of games argument that shows that the simulated EDB and
tk are indistinguishable from the real ones due to the adaptive security of ΣMM and ΣDX, the
RCPA-security of SKE and the pseudo-randomness of F . In particular, the last two properties
are used to show that the random tags from the leakage are indistinguishable from the encrypted
identifiers in the Real(k) experiment.

39

C Proof of Theorem 7.1
Theorem 7.1 If ΣSET is adaptively (Lset

S ,Lset
Q)-secure then the scheme ΣMM that results from

applying the Z-IDX transformation to it is adaptively (Lmm
S ,Lmm

Q)-secure.

Proof. Let SSET be the simulator guaranteed to exist by the adaptive (multi-structure) security of
ΣSET and consider the simulator S for ΣMM that works as follows. To simulate EMM, it takes as
input the setup leakage

Lmm
S (MM) =

((
Lset

S
(
MM−1[v]

))
v∈V

,#V
)

and simulates #V encrypted sets as follows. For 1 ≤ i ≤ #V, it computes

ESETi ← SSET
(
Li
)
,

where Li is the ith element in Lmm
S (MM). It then outputs EMM = (ESET1, . . . ,ESET#V).

To simulate a token, S takes as input the query leakage

Lmm
Q (MM, q) = Lset

Q

((
MM−1[v]

)
v∈V

, q

)
and computes

tk← SSET

(
Lset

Q

((
MM−1[v]

)
v∈V

, q

))
.

It remains to show that for all probabilistic polynomial-time adversaries A, the probability that
Real(k) outputs 1 is negligibly-close to the probability that Ideal(k) outputs 1. This can be done
using a standard sequence of games argument that shows that the simulated EMM and tk are
indistinguishable from the real ones due to the adaptive (multi-structure) security of ΣSET.

D Proof of Theorem 7.2
Theorem 7.2 If OC is secure, the multi-structure set encryption scheme described in Fig. 4 is
adaptively (Lset

S ,Lset
Q)-secure in the random oracle model.

Proof. Here, we describe in detail a simulator for the proof and defer its full analysis to an ulterior
version of this work. Consider the simulator S that works as follows. To simulate an encrypted set
ESETi, for i ∈ [n], it takes as input the setup leakage Lset

S (Si) = #Si and initializes a binary array
Ai of size m = dlog(1/ε) ·#Si/ ln 2e, where ε is the false positive rate. For all 1 ≤ j ≤ m, it then
sets Ai[j]

$← {0, 1}. Finally, it outputs ESETi = Ai. For clarity, we assume that each Ai has size 2i.
To simulate a token, S takes as input the query leakage

Lset
Q

(
S1, . . . , Sn, q

)
=
(
b1, . . . , bn,SP(q)

)
,

where, for all 1 ≤ i ≤ n, bi is 1 if q ∈ Si and 0 otherwise, and where SP(q) is the search pattern as
defined in Section 7.1.

Note that in the Realm(k) experiment the adversary learns the size of the encrypted Bloom
filters and that from this it can infer information about the number of elements it contains and,

40

therefore, about its number of 1s and 0s. Indeed, it can be shown by a standard argument that, if
X0
i is the random variable that counts the number of 0s in Ai, E[X0

i] = m · (1− 1/m)#Si·log(1/ε).
Moreover, it can be shown that X0

i is concentrated around its expected value such that for all i ∈ [n]
and all λ > 0

Pr[|X0
i − E[X0

i]| ≥ λ] ≤ 2e−
2λ2
m .

In other words, the adversary has some knowledge about the plaintext distribution of 1s and 0s in
the encrypted sets that the simulator has to respect throughout its simulation. In the following, we
denote by #S0

1 , · · · ,#S0
n the expected number of 0s associated to ESET1, · · · ,ESETn.

We first provide a high level description of the simulator before getting into the details. The
difficult part of simulating multiple encrypted matryoshka filters is to make sure that the number of
0s and 1s will always verify the publicly available bound detailed above, for every possible sequence
of adaptive queries. Throughout the query simulation, the simulator has therefore to construct a
set of location sets that will help it to keep track of all locations that have been unmasked. The
main difficulty of this process is the inherent dependence between the nested matryoshka filters.
When a position gets unmasked in the smallest filter, determining the positions in the largest filters
becomes dependent and cannot anymore chosen arbitrary. This is a consequence of using the online
cipher property. For example, if an element exists in more than one filter, the unmasked positions
in the smallest filter have to verify the following properties: (1) there are available positions that
can be set to 1 in larger filters containing the element, and (2) the number of positions opened to
be 1 has to verify the publicly known bounds of the Bloom Filters detailed above. In the following,
we keep track of the opened positions by creating three sets Loci, Zeroesi and Onesi for all i ∈ n. In
this simulation, we have to program the random oracles that we use in the construction. For this,
we use λ+ 1 dictionaries RDX and RDX1, · · · ,RDXλ respectively for the hash used in the masking
phase, and λ used as the hash functions of the Bloom filters. Finally, we use two dictionaries DX1
and DX2 to simulate the behavior of a random function and an online permutation, respectively.
We provide the details of the simulation below:

First, S it initializes three dictionaries DX1, DX2 and RDX, λ dictionaries RDX1, · · · ,RDXλ, n
empty sets Onesi and Zeroesi, and one empty set R. To simulate the token, we can have two cases
for all S ∈ (S1, . . . , Sn) such that:
• (first case) If q is a repeated query, then set T = DX1[q] and for all j ∈ [λ], compute
sj = DX2[RDXj [T]]
• (second case) otherwise, set T $← {0, 1}k \R. Update the set R and dictionary DX1 such that
R = R ∪ {T} and DX1[q] = T

• for all j ∈ [λ]
1. initialize n sets Loci for all i ∈ [n]. For i ∈ [n], if bi = 0, then set Loci = {1, · · · , 2i},

otherwise if bi = 1 and #Onesi < (2i −#S0
i), then set Loci = [2i] \ Zeroesi, otherwise if

bi = 1 and #Onesi = (2i −#S0
i), then set Loci = Onesi

2. set γ to be the smallest integer in [n] such that bγ = 1, for all i ∈ [n], compute
Locγ =

⋂
i∈[n]
bi=1

Locγi , where Locγi contains all elements in Loci truncated at position γ.

3. generate the position posγ
$←− Locγ . For all i < γ, set posi = (posγ)|i. For all i > γ,

if bi = 0, then set posi = posi−1‖b where b
$←− {0, 1}, otherwise if bi = 1, then set

posi = posi−1‖b, where b $←− {0, 1}, if posi /∈ Loci, then flip the bit b such that posi =
posi−1‖(1− b)

41

4. set RDXj [T] = posn. For all i ∈ [n], if bi = 1, then add posi to Onesi, otherwise if
bi = 0 and posi /∈ Onesi ∪ Zeroesi, then toss a coin distributed following the Bernoulli
distribution with parameter p = #Onesi/2i, if the coin toss equals a head then add posi
to Onesi, and to Zeroesi otherwise.

5. compute s = GCP(posn,DX2.labels), where GCP denotes the greatest common prefix
between the string posn and all strings in DX2.labels. S computes κ = s‖r, where
r

$← {0, 1}logm×B−|s|.
6. finally, S updates the two dictionaries DX2 and RDX such that DX2[posn] = κ and

RDX[κ‖i] = 1⊕ A[posn] if bi = 1 and RDX[κ‖i] = A[posn] otherwise.
For programming the random oracle R, Hi, for i ∈ [λ], we perform the following:
R(s): if s ∈ RDX.labels, then R[s] = RDX[s]. Otherwise, compute r $← {0, 1}, set R[s] = r, and

set RDX[s] = r.
Hi(s): if s ∈ RDXi.labels, then Hi[s] = RDXi[s]. Otherwise, compute r $← {0, 1}k, set Hi[s] = r ,

and set RDXi[s] = r.
Now, we have to show that for ppt adversariesA, the output of the real experiment RealΣESET,A(k)

and ideal experiment IdealΣESET,A,S(k) are indistinguishable. For this, we define one reduction
defined in the following sequence of games.
• Game0: is the same as the real experiment.
• Game1: is the same as Game0 except that we do not generate the key K1 and the PRF

calls in line 2.(a) are replaced by a random function f generated uniformly at random from
{{0, 1}k ← [σ]}
• Game2: is exactly the same as Game1 except that we instantiate the random function f as

follows. First, define R, an empty set and, DX1 an empty dictionary. Fill it as follows, for all
i ∈ [

∑n
i #Si], compute ri ← {0, 1}k and then set R← ri. Then, whenever, there is a call to

the random function evaluation of an element a ∈ Si for i ∈ [n], the call is either replaced by
randomly sampling an element T from R if a was not queried before, or by DX1[a] otherwise.
We then update R such that R = R \ {T} and DX1[a] = T .
• Game3: is exactly the same as Game2 except that we program the random oracle Hi, for all
i ∈ [λ], as follows: instantiate two empty sets Onesi and Zeroesi, for i ∈ [n]. Instantiate λ
empty dictionaries RDX1 to RDXλ. For all i ∈ [n] and j ∈ [λ], if a ∈ Si, determine γ ≤ i such
that a ∈ Sγ and a /∈ Sl for all γ + 1 ≤ l ≤ i− 1, otherwise set γ = ⊥. There are three cases:

– if γ = ⊥ and #Onesi < 2i −#S0
i , then set pos $← {1, · · · , 2i} \ Zeroesi, update Onesi ←

{pos} and then set RDXj [DX1[a]] = pos,
– if γ = ⊥ and #Onesi = 2i−#S0

i , then set pos $← Onesi and then update RDXj [DX1[a]] =
pos,

– otherwise set pos = RDXj [DX1[a]], update RDXj [DX1[a]] = pos‖r1‖r2‖ · · · ‖ri−γ where
rl

$← {0, 1}, then for all l ∈ {γ, · · · , i}, toss a coin distributed following Bernoulli
distribution with parameter p = #Onesi/2i,
∗ if it is head add pos‖r1‖ · · · ‖rl to Onesγ+l,
∗ and to Zeroesγ+l otherwise.

• Game4: is exactly the same as Game3 except that we do not generate the key K2, and the
online cipher OC evaluations in line 2.(c) are replaced by a valid random online permutation
in Opermlogm,B.

42

• Game5: is exactly the same as Game4 except that we implement the random online permutation
from Opermlogm,B as follows. First, instantiate an empty dictionary DX2. Second, we verify
whether there is an online permutation that was previously generated and that has a common
prefix with the computed position such that: if for j ∈ [λ], posj = RDXj [T], then the common
prefix s equals to s = GCP(posj ,DX2.labels). Finally, to generate the online permutation,
we pad s with random bits to reach the required bit length logm × B, and finally update
DX2[posj] = s.
• Game6: is exactly the same as Game5 except that the evaluations of the random oracles R, H1,

..., Hλ are replaced by a random bits sampled uniformly at random.

43

	Introduction
	Our Contributions and Techniques

	Related Work
	Preliminaries
	Cryptographic Primitives

	Definitions
	IEX: A Worst-Case Sub-Linear Disjunctive SSE Scheme
	Correctness and Efficiency
	Security

	Boolean Queries with IEX
	ZMF: A Compact and Adaptively-Secure SSE Scheme
	An Adaptively-Secure and Multi-Structure Set Encryption Scheme
	The ZMF Multi-Map Encryption Scheme

	Dynamic SSE with IEX
	Security Definitions
	DIEX: A Dynamic SSE Scheme

	Empirical Evaluation
	IEX-2Lev Evaluation
	IEX-ZMF Evaluation

	Multi-Structure Structured Encryption
	Proof of Theorem 5.1
	Proof of Theorem 7.1
	Proof of Theorem 7.2

