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Abstract

This paper describes a radically different privacy, security and integrity solution. Dispersed
Cryptography converts the cloud from a security threat into a security asset by combining a
standard stream cipher and the Quotient Ring Transform (QRT). The result is an integrated
error correction/encryption algorithm. This encoding disperses data, breaking it into many
smaller pieces and scattering them to different sites. No single site is critical; any can be lost
without losing data. No single site can access data, even if the cryptovariable (secret key) is
compromised.

The resulting system is more flexible and seamlessly adds both data integrity and security.
The underlying codes are linear, and therefore have homomorphic properties and may be used
in coding based quantum resistant cryptography.

Keywords: encryption, encoding

1 Introduction

Dispersed Cryptography integrates encryption and error correction capabilities into a single cipher-

coding system. This system disperses and decentralizes both security and integrity.

Assume a message m needs to be transmitted from user 1 to user 2. Messages are not usually

sent directly (figure 1). For example, email is sent through a host, cloud storage is stored on a host

before being retrieved.
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Figure 1: User 1 wants to send user 2 message m. Data passes through host.

Dispersed cryptography takes a different view. Instead of sending the entirety of the message

through a single host, it encodes the message into n smaller pieces which are transmitted to n

hosts. These hosts then transmit their piece to user 2 (figure 2). This decentralizes both security

and integrity.

Integrity: Data at individual hosts can be lost without losing the integrity of the data (figure 3).

This also helps stop ransomware attacks, as an attacker would have to destroy or encrypt

data at many sites to prevent recovery.

Security: The underlying cryptography is the main security component of the system. However,

if the cryptovariable (key) was compromised an attacker would still have to access data from

multiple hosts to recover the data.
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Figure 2: User 1 encodes m into n smaller pieces and transmits to n hosts.
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Figure 3: User 2 can still get message even if some number of hosts are lost

Dispersed Cryptography’s integrated cipher-coding uses a standard cryptographic stream ci-

pher1 and a new coding process, the Quotient Ring Transform - QRT (definition 4.1). The stream

cipher determines which QRT code to use, adding security, integrity, and dispersing data in a single

encoding process.

Dispersal could also be achieved using a non-integrated process: use a standard encryption tech-

nique followed by an error correction code with similar dispersal properties. However, integrating

the process adds important properties which are otherwise missing:

• Diffusion: Input in a QRT block is diffused across the output, with each output piece equiv-

alent to a key dependent hash of the input.

• Combined algorithms deter many practical cryptanalysis techniques: Attacks against modern

cryptography requires cipher text and some information about the matching plain text. Non-

integrated systems reveal non-encoded cipher text, allowing the cryptography to be analyzed

on its own. Integrating code and cryptography minimizes leakage of straight cipher text,

preventing cryptanalysis without first recovering the full code.

• Lack of flexibility: Most encoding techniques have size requirements. Quotient Ring Trans-

form based coding has a wide range of block and word sizes.

The remainder of this paper describes the Quotient Ring Transform, and how it can be used

to encode, decode, and correct errors in coded data. There are a few things about the QRT that

should be kept in mind:

1Examples of stream ciphers are AES in counter mode or one of the eStream ciphers[4].
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1. The QRT is an extension of the iterative da yen (Chinese remainder theorem)2.

2. The QRT enables a very flexible linear error correction code.

3. Encoding with the QRT is not Reed-Solomon encoding or secret sharing. However, restricting

the QRT to quotient rings of the form F[x]/(x − c), where c ∈ F, reduces it to a non-cyclic,

non-BCH code similar to Reed-Solomon codes. It converts to I Restricting data further to the

the ring F[x]/(x− 0), using random input for the remaining the quotient rings, F[x]/(x− j)
for 1 ≤ j < k, and using the QRT to find the values for F[x]/(x − j) for k ≤ j ≤ n reduces

the QRT to a k out of n secret sharing variant3.

Algorithm CookBook in Appendix

This paper describes algorithms required to implement

dispersed cryptography, including the QRT.

More detailed, cookbook versions of the algorithms are listed in the appendix.

2 Data as Relations

Encrypted or transformed data is represented as a set of equivalence relations in reduced form. In

this paper, a relation is a quotient ring element over a Euclidean domain E such as the integers or

a polynomial ring. A relation (µ) consists of an value (µ̇) and modulus or ideal generator (µ̂), both

in E .

See example C.1

Size of data must be carefully controlled for any sort of encoding. Dispersed cryptography

requires that the size of a relations value is non-negative and bounded by the modulus. For

the integers this size boundary implies that values are non-negative and less than the modulus

(generator of the ideal). For polynomial rings it implies that the degree of the polynomial is

non-negative and less than the degree of the polynomial modulus.

These size restricted values paired with their moduli will be called q-relations.

2Ta-yen/Da-yan, translates to ‘Great Extension’, the name given by Qin Jiushao (Shushu Jiuzhang - Mathematical
Treatise in Nine Sections in 1247) to the indeterminate analysis solution, also known as the Chinese remainder
theorem.

3Equivalently, data is the constant of a polynomial with all other coefficients random.
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Definition 2.1 (q-Relation): Let E be a Euclidean domain with function (norm) N : E → N. A

q-relation, µ, is a pair of elements in E with µ = (µ̇, µ̂) representing (µ̇ mod µ̂) with

1. µ̂ > 0 and a non-unit;

2. µ̇ ≥ 0 and µ̇ = 0 or N (µ̇) < N (µ̂).

Defining q-relations as a pair of elements simplifies the description but neglects a few important

details. q-Relations will be compared to other q-relations or to other ring elements. Relative

primality between q-relations will be discussed as will operations between q-relations. The following

definitions are given to clarify what these comparisons and statements imply:

Definition List 2.2: (q-Relationships)

Let µj , µk be two q-relations.

2.2.1: µj , µk are relatively prime if their respective moduli, µ̂j , µ̂k, are relatively prime.

A set of relations R is relatively prime if all of its elements are pair-wise relatively

prime.

2.2.2: µj , µk are equivalent (µj ≡ µk) if respective moduli are the same size (N (µ̂j) =

N (µ̂k)) and µ̇j = µ̇k.

2.2.3: A set of relations R is regular if every relation in R has the same size: N (µi) =

N (µj) for all µi, µj ∈ R.

2.2.4: For all x ∈ E , x ≡ µ implies x ≡ µ̇ mod µ̂

2.2.5: For all x ∈ E , µ+ x = x+ µ represents the q-relation (x+ µ̇ mod µ̂).

3 The Da Yen

In simple terms, the da yen equates a set of relations to a larger relation (figure 4). It states that the

direct product of the set of relations is isomorphic to the larger relation. Errors in an overdetermined

set of relations can be detected and corrected using the independence of the individual relations.

Both Reed-Solmon and the QRT use the da yen, but the QRT uses it in a slightly different way.

The transform converts a set of relations to another equivalent (definition 2.2.2) set of relations

without computing the larger intermediate relation (figure 5).
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Figure 4: The da yen modulo 3, 5, 11, 13
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Figure 5: Transforming one relation set to another

Notation: If R = {µ} is a set of co-prime q-relations, then 〈R〉 =
(

˙〈R〉, 〈̂R〉
)

represents

the q-relation, value ˙〈R〉 and modulus 〈̂R〉, with:

〈̂R〉 =
∏
µ∈R

µ̂ ˙〈R〉 ≡ µ ∀ µ ∈ R.

N (R) = N
(
〈̂R〉
)

The existence of 〈R〉 is guaranteed by the da yen.

Computationally, working in R (independent set of smaller moduli) is much more efficient than

in 〈R〉 (modulo the product of all the small moduli). The QRT uses an intermediate transform

called a weave (section 5) which converts R = {µj | 0 ≤ j < n} into a modified set of q-relations
x

R = {ωj | 0 ≤ j < n} with matching moduli µ̂j = ω̂j . The woven set
x

R enables computation of
˙〈R〉 reduced modulo any other modulus using only the smaller modular operations. The full value
˙〈R〉 is never computed. The woven set also streamlines the detection and correction of errors.

The general ring version of the da yen can be found in [1][3]. Here is the da yen using q-relations.

Theorem 3.1 (Da Yen Isomorphism): Let R be a set of relatively prime q-relations. Then there

exists an isomorphism from R to a q-relation 〈R〉 such that
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1. 〈̂R〉 =
∏
µ∈R µ̂ and ˙〈R〉 ≡ µ for all µ ∈ R.

2. (homomorphic) For any two q-relation sets R = {µj | 0 ≤ j < n} , Q = {νk | 0 ≤ k < n}
with equal moduli (i.e., µ̂j = ν̂j for 0 ≤ j < n),

〈R〉+ 〈Q〉 = 〈{µ̇j + ν̇j mod µ̂j | 0 ≤ j < n}〉

〈R〉 〈Q〉 = 〈{µ̇j ν̇j mod µ̂j | 0 ≤ j < n}〉

See example C.2

4 Iterative Da Yen Algorithm

The weave starts with the iterative version of the da yen (see [2]). This technique maps a set of

q-relations R to the q-relation 〈R〉 by adding one q-relation at a time. Let Rt = {µj | 0 ≤ j < t}.

1. Let ω̂i = µ̂i for 0 ≤ i < n and ω̇0 = µ̇0. R1 = {µ0}, and ˙〈R1〉 = µ̇0.

2. For t = 1 to n− 1, let

ω̇t =

(
〈̂Rt〉

−1 (
µ̇t − ˙〈Rt〉

)
mod µ̂t

)
(4.1)

˙〈Rt+1〉 = ˙〈Rt〉+ 〈̂Rt〉ω̇t. (4.2)

3. Rn = R, and 〈R〉 =
(

˙〈Rn〉 mod 〈̂Rn〉
)

.

Note that ˙〈Rt〉 < 〈̂Rt〉 without any further reduction.

See example C.3

The iterative da yen creates these woven q-relations ωt = (ω̇t mod µ̂t) (equation 4.1). Notice

that ˙〈R〉 can be computed with just the set of {ωj} q-relations:

˙〈R〉 = ω̇0 + ω̂0

(
ω̇1 + ω̂1

(
. . .
(

˙ωn−2 + ω̂n−2 ˙ωn−1
)
. . .
))
. (4.3)

The weave transform (section 5) computes these woven q-relations without computing the large

intermediate q-relations 〈Rt〉. Once the ωt have been computed, the full (or any intermediate ˙〈Rt〉)
q-relation value can be computed outright, with the result already in reduced form (equation 4.3).

This avoids all large quotient ring computations and parallelizes much of the computation.
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Definition 4.1 (Woven Relations and the Quotient Ring Transform (QRT)): Let

R = {µj | 0 ≤ j < n} Q = {αj | 0 ≤ j < m}

be two sets of q-relations with gcd(µ̂j , µ̂i) = 1 and gcd(α̂j , α̂i) = 1 for all i 6= j.

• The Woven Set of R is:
x

R = {ωt = (ω̇t mod µ̂t) | 0 ≤ t < n} with ω̇t from equation (4.1)

• R evaluated at a relation α is

R(α) = ω̇0 + ω̂0

(
ω̇1 + ω̂1

(
. . .
(

˙ωn−2 + ω̂n−2 ˙ωn−1
)
. . .
))

mod α̂. (4.4)

(cookbook algorithm B.2)

• The Quotient Ring Transform (QRT) from R to Q (also called the encoding of R) is:

R(Q) = {R(α) | α ∈ Q} . (4.5)

See example C.4

If the size of the relation sets and their values are equal, i.e., N (R) = N (Q) and ˙〈R〉 = ˙〈Q〉,
then R and Q contain the same information even though the individual relations in R and Q appear

quite different. If N (Q) > N (R), errors in Q can be detected. If N (Q) is sufficiently larger than

N (R), errors can also be corrected (section 8).

4.1 Integers vs Polynomials

Note that distinct (µ̂j 6= µ̂k) yet equivalent q-relations are not possible in E = Z. For this reason

Dispersed Cryptography is not practical over Z. The QRT over the integers is still interesting and

may have applications for large integer operations.

The choice of the polynomial domain type of moduli used effect the efficiency of the QRT and

dispersed cryptography.

• The most efficient and practical Euclidian domains for dispersed cryptography are polynomial

rings Fq[x] where q = 2n.

• Degree one polynomials in F[x] (i.e., µ̂ = (x− c) where c ∈ F) simplify the QRT even further.

• Note that using degree one polynomials as moduli reduces the QRT to converting a set of

points on a polynomial to another set of points on the same polynomial (figure 6)
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Figure 6: Relations as Points

5 QRT Weave

The QRT weave converts a co-prime set of q-relations, R = {µj | 0 ≤ j < n}, to their iterative

components. Computation of
x

R = {ωj | 0 ≤ j < n} requires (n − 1) parallel steps (theorem 5.1)

or ( n2 ) in serial.

Lemma 5.1 (Weave Terms): Let R = {µk | 0 ≤ k < n} be a set of n relatively prime q-relations.

If

ω
(0)
k = µk k = 0, 1, . . . , (n− 1)

ω
(j)
k =

(
µ̂j−1

−1
(

˙
ω
(j−1)
k − ˙ωj−1

)
mod µ̂k

)
1 ≤ j ≤ k < n

ωk = ω
(k)
k .

then ωk are the weaving q-relations needed in the iterative da yen (equation 4.1).

Proof. The following will prove that ω
(j)
k =

(
〈̂Rj〉

−1 (
µ̇k − ˙〈Rj〉

)
mod µ̂k

)
for all 0 ≤ j ≤ k < n,

and ωk = ω
(k)
k . By definition, ω

(0)
k = µk and ω0 = ω

(0)
0 = µ0, and R1 = {µ0}. Using induction on t
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• For t = 1: ˙〈R1〉 = µ̇0 = ω0 = ω
(0)
0 , therefore

ω
(1)
k = µ̂0

−1
(
ω
(0)
k − ω0

)
≡ 〈̂R1〉

−1
(µ̇k − µ̇0) ≡ 〈̂R1〉

−1 (
µ̇k − ˙〈R1〉

)
mod µ̂k

for all 1 ≤ k < n. Furthermore, ω
(1)
1 ≡ 〈̂R1〉

−1 (
µ̇1 − ˙〈R1〉

)
≡ ω1 mod µ̂1.

• For t > 1, assume

ω
(t−1)
k = ̂〈R(t−1)

〉−1 (
µ̇k − ˙〈Rt−1〉

)
mod µ̂k

ωt−1 = ω
(t−1)
j

for all j ≤ k < n.

• Then ω
(t)
k for t ≤ k < n is:

ω
(t)
k ≡ µ̂t−1

−1
(
ω
(t−1)
k − ωt−1

)
mod µ̂k

≡ µ̂t−1−1
(
〈̂Rt−1〉

−1 (
µ̇k − ˙〈Rt−1〉

)
− ωt−1

)
mod µ̂k

≡ 〈̂Rt〉
−1 (

µ̇k −
(

˙〈Rt−1〉+ 〈̂Rt−1〉ωt−1
))

mod µ̂k

We know (equation 4.2) that ˙〈Rt〉 = ˙〈Rt−1〉+ 〈̂Rt−1〉ωt−1, therefore

ω
(t)
k ≡ 〈̂Rt〉

−1 (
µ̇k − ˙〈Rt〉

)
mod µ̂k

and ωt = ω
(t)
t ≡ 〈̂Rt〉

−1 (
µ̇t − ˙〈Rt〉

)
mod µ̂t

(cookbook algorithm B.1)

See example C.5

6 Weave-Swap

If R = {µj | 0 ≤ j < n}, the weave transform
x

R lets us extract not only 〈R〉, but the relation 〈Rt〉,
where Rt = {µ0, µ1, . . . , µt−1}, for every 0 < t ≤ n. It does not let us extract the relations for other

subsets, such as {µ1, µ3, µ5}.
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The order of q-relations in R does not matter for 〈R〉, but it matters in the woven set
x

R. Lower

indexed woven relations are not dependent on higher indexed relations. More precisely, the j-th

weave relation ωj (equation 4.1) depends only on Rj and µj . In other words, only on the unordered

set of relations µk with 0 ≤ k ≤ j.
Errors are detected and corrected in an overdetermined set of q-relations by extracting data

from different minimal subsets, and comparing computed values to the remaining q-relations. Re-

computing the weave for each subset would be computationally prohibitive. Fortunately, the order

of the transform can be easily permuted with a ‘weave swap’.

Notation (Relation Weave and Permutations): Let π be a permutation on the

integers 0 ≤ j < n: π(j) = j for 0 ≤ j < n. Then for R = {µj | 0 ≤ j < n}, any

0 < t ≤ n,
x

Rπt =
{
ωπ(j) | 0 ≤ j < t

}
is the woven q-relation set ordered by π. q-Relation ωj has modulus ω̂j = µ̂j and values

ω̇j such that:

˙〈Rπt 〉 = ˙ωπ(0) + ω̂π(0)
(

˙ωπ(1) + ω̂π(1)
(
. . .
(

˙ωπ(t−2) + ω̂π(t−2) ˙ωπ(t−1)
)
. . .
))

(6.1)

Weave swapping switches the order of two adjacent q-relations in a woven transform with

minimal work. Only one multiply and one ‘divide’ are required. If E = F2v and moduli are all

degree one, only the single multiply is required (equation 6.5, 6.4).

Recall that the weave transform (theorem 5.1) has intermediate results

ω
(k)
π(j) =

(
˙ωπ(j) − ˙ωπ(k)

)
ω̂π(k)

−1
mod µ̂π(j)

with

ωπ(j) = ω
(j)
π(j).

If the initial permutation is π and the (j, (j + 1)) terms need to be swapped, with σ as the resulting

permutation, then:

1. ˙ωσ(j) =
˙

ω
(j)
π(j+1), therefore just the (j)-th step of the weave must be undone:

˙ωσ(j) = ˙ωπ(j+1)ω̂π(j) + ˙ωπ(j) mod ω̂σ(j). (6.2)
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2. ˙ωσ(j+1)
(j) = ˙ωπ(j) and we need ˙ωσ(j+1) = ˙ωσ(j+1)

(j+1), so to move it one term higher:

˙ωσ(j+1) =
(

˙ωπ(j) − ˙ωσ(j)
)
ω̂σ(j)

−1 mod ω̂σ(j+1). (6.3)

The second half of the swap above (equation 6.3) disappears completely if moduli are degree

one monic. Let E = F[x] for some field F and moduli be µ̂j = (x− cj), with cj ∈ F. Then:

µ̂j ≡ (ck − cj) mod µ̂k.

Replacing the moduli with the sum of the constants also eliminates any need for reduction – every

term in the equation is now an element of F.

˙ωσ(j) = ˙ωπ(j+1)

(
cπ(j+1) − cπ(j)

)
+ ˙ωπ(j) (6.4)

˙ωσ(j+1) =
(

˙ωπ(j) − ˙ωσ(j)
) (
cπ(j) − cπ(j+1)

)−1
=
(

˙ωπ(j) −
(

˙ωπ(j+1)

(
cπ(j+1) − cπ(j)

)
+ ˙ωπ(j)

)) (
cπ(j) − cπ(j+1)

)−1
=
(

˙ωπ(j+1)

(
cπ(j) − cπ(j+1)

)) (
cπ(j) − cπ(j+1)

)−1
= ˙ωπ(j+1) (6.5)

Algorithms detailing the general case (cookbook algorithm B.3) and the special case (cookbook

algorithm B.4): E = F[x] using degree one, monic polynomials as moduli are in the appendix.

7 Encoding

The QRT allows for error correction by transforming R into a larger set Q. Data is stored as

values, µ̇j , in a set of relatively prime regular q-relations (definition 2.2), R, over a polynomial

ring F[x]. If there are 2r data q-relations, then transforming that to Q, a distinct set of 2(r + s)

q-relations, allows for s errors to be detected and corrected (theorem A.1). Moduli of the q-relation

sets (R
⋃
Q) may be chosen at random or be fixed, as long as the relations are regular, pair-wise

relatively prime (definition 2.2.3, 2.2.1).

Salt is random data used in some cryptographic systems to insure input is sufficiently random.

Dispersed cryptography adds salt q-relations to R to improve encryption on repeated data, such

as all zeros. The salt q-relations, both value and moduli, will be generated by the cryptographic

stream cipher and will be known to both encoder and decoder. Salt helps mask constant data and

is used along with the data to create the coded q-relations.

Here is a short description of the encoding process. The full encoding algorithm is in the

appendix (cookbook algorithm B.5).
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• Let the data and salt q-relation set be: R = {µj | 0 ≤ j < 2r + l}. Data will be the first 2r

relations, salt the remaining l relations.

• Encoded data will be Q = {νj | 0 ≤ j < 2(r + s)} with ν̇j ≡ ˙〈R〉 mod ν̂j .

Note that the amount of salt added has no effect on the number of encoded relations. It also has

minimal effect on the error correction process.

8 Error Correction

The decoding process is identical to encoding if there are no errors and at least 2r q-relations were

received. If 2(r+t) q-relations were received with at most t errors, an error free set of 2r q-relations

can be found and error free plain text extracted.

The decoded values are determined by 2r data and l salt q-relations. Let the number of received

q-relations be 2(r+ t): Q = {νj | 0 ≤ j < 2(r + t)}. We know that if Q has at most t errors, then

there exist subsets of Q of size 2r which are error free. Furthermore, if a subset Q′ ⊂ Q contains

errors, more than t of the q-relations in Q \Q′ will contain errors (theorem A.1). This gives us an

easy way to check if a given subset is error free.

1. Weave salt {µj | 2r ≤ j < 2r + l} and Q = {νj | 0 ≤ j < 2(r + t)} to form

x

Q = {ωj | 0 ≤ j < l + 2(r + t)} .

Salt is error free, so should be fixed as the lower l terms: µ̂2r+j = ω̂j for 0 ≤ j < l.

2. Check that Q2r+l(νj) = νj for all l + 2r ≤ j < l + 2(r + t).

3. If all the upper 2t q-relations check (i.e., equal their computed values), then there are no

errors;

4. If more than t q-relations fail, then there is an error in the set {ωj | l ≤ j < l + 2r}.

5. Otherwise (less than or equal to t failed q-relations) the errors are in the upper q-relations

which fail the check.

Brute force decoding requires at most
(
2r+2t
2r

)
tests and associated weave swaps (section 6).

This number is reduced to at most ( r+tr ) tests with a simple pairing of relations. q-Relations are

paired with their adjacent q-relation: pair j is (νl+2j , νl+2j+1). Of the (r + t) q-relation pairs, r

13
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are needed to extract data for the test, and t are used for the check. In the worst case recoverable

scenario – t errors – there are at most t pairs which could contain errors and at least one set of r

pairs which is error free. In other words, one of these (r + t) choose r pair subsets is an error free

transformation. This reduces the number of subsets to ( r+tr ). Pairs of q-relations will always be

swapped together (cookbook algorithm B.7).

The decoding algorithm (cookbook algorithm B.8) intelligently exhausts over subsets of received

q-relations by pairing adjacent q-relations. This reduces computation time per subset by replacing

the full transform with a few pair q-relation pair swaps. The full transform only once, at the

beginning of the decoding process. If a set of 2r + l q-relations contains errors, the woven data

is modified to a new subset by doing pair swaps (cookbook algorithm B.7). Notice that the

addition of salt equations effects the initial weave, the subset checks, and final extraction, but does

not increase the number of swaps required.
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A Proofs for Woven Transform and Encoding

A.1 Proof of Error Correction Capabilities

Forcing the number of words used in the encoding to be even reduces computational cost, so

in this description there will be 2r q-relations for plain text and 2s correction q-relations: R =

{µj | 0 ≤ j < 2(r + s)}. Any subset I ⊂ R with |I| ≥ 2r determines all 2(r + s) q-relations in R.

In other words, I(µ) = µ for all µ ∈ R.

14
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Let the corrupted set be R′ = {µ′ = µj + ej | 0 ≤ j < 2(r + s)} with at most s of the ej ∈ E
not zero, and I ⊂ R with |I| = 2r. The following proof will show that if there are at most s errors

in R′ and |I(R) \R′| ≤ s (i.e., I(R) and R′ are equal in all but at most s q-relations), then I

contains no errors and R = I(R).

The following set definitions will solidify the concepts and simplify the proof. The sets G,B

contain the actual correct (good) and corrupted (bad) q-relations, while the sets GI , BI contain

the observed correct and corrupted q-relations derived with a subset I ∈ R′.

G = R′ ∩R =
{
µ′j ∈ R′ | ej ≡ 0

}
B = R′ \R =

{
µ′j ∈ R′ | ej 6≡ 0

}
(A.1)

GI = R′ ∩ I
(
R′
)

=
{
µ′ ∈ R′

∣∣ I(µ′) = µ′
}

BI = R′ \ I
(
R′
)

=
{
µ′ ∈ R′

∣∣ I(µ′) 6= µ′
}

(A.2)

Notice that:

• Both pairs, G,B and GI , BI partition the set of observed q-relations R′:

R′ = G ∪B ∅ = G ∩B

R′ = GI ∪BI ∅ = GI ∩BI

• The sets G,B depend only on R and R′.

• The sets GI , BI depend only on the results of 〈I〉, therefore if I, J are equivalent, 〈I〉 ≡ 〈J〉
and GI = GJ and BI = BJ .

This encoding scheme is essentially an application of the da yen4[1], as is Reed-Solomon coding.

The proofs rely on this theorem.

Theorem A.1 (Error Correction Capabilities): Let R = {µj | 0 ≤ j < 2(r + s)} be a set of rela-

tively prime q-relations uniquely determined by any subset of 2r elements. Let the set with added

errors be

R′ =
{
µ′j = µj + ej | ej ∈ E , 0 ≤ j < 2(r + s)

}
with at most s non-zero ej . If I ⊂ R′ with |I| = 2r, then |BI | ≤ s if and only if I ⊂ G.

Proof. Let R,R′ be defined as above with I ⊂ R′ be a subset with 2r elements and |B| ≤ s. Because

any 2r q-relations in R uniquely determine R and G ⊂ R, and subset I ⊂ G with |I| = 2r generates

R: I(R) = I(R′) = R. Any subset J ⊂ I(R) with |J | ≥ |I| contains , and GI ⊂ I(R), therefore

any subset J ⊂ GI is equivalent to I:

4aka: Chinese Remainder Theorem

15
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1. If I ⊂ G, then I(µ) = µ for all µ ∈ R and |BI | = |B| ≤ s.

2. If |BI | ≤ s:

• |GI | = |R′| − |BI | ≥ 2(r + s)− s = 2r + s.

• Since |GI ∩B| ≤ s, we know |GI ∩G| = |GI | − |GI ∩B| ≥ 2r + s− s = 2r.

• Therefore there exists J ⊂ (GI ∩G) ⊂ G with |J | = 2r and J ≡ I.

• Finally, since J ⊂ G, |J | = 2r we know that J(R′) = R. Since J ≡ I, I(R′) = R

therefore I ⊂ G.

B Algorithms

B.1 Basic QRT Weave (section 5)

Algorithm B.1: Weave Transform (section 5)

Input: R = {µj | 0 ≤ j < n}, a set of relatively prime q-relations

Output:
x

R = {ωj | 0 ≤ j < n} an ordered set of relatively prime q-relations satisfying equation

(4.1).

I : Initialize:

A: ω0 = µ0

B : for k = 1 to (n− 1): ω
(0)
k = µk;

II : For j = 1 to (n− 1):

A: ωj = ω
(j)
j

B : For k = (j + 1) to (n− 1): ω
(j)
k =

(
ω̂j
−1
(

˙
ω
(j−1)
k − ω̇j

)
mod ω̂k

)

End of Algorithm B.1

16



Dispersed Cryptography and the Quotient Ring Transform

B.2 Reduction with Woven Values (equation 4.4)

Algorithm B.2: Simplified Reduction (section 4)

Input:
x

R = {ωj | 0 ≤ j < n} and q-relation α

Output: q-relation R(α) =
(

˙〈R〉 mod α̂
)

I : Set v = ˙ωn−1 mod α̂

II : for j = (n− 2) down to 0: v = vω̂j + ω̇j mod α̂

III : return R(α) = (v mod α̂)

End of Algorithm B.2

B.3 Weave Swapping (section 6)

Algorithm B.3: Weave Swap, General (section 6)

Input:
x

Rπ, 0 ≤ j < (n− 1)

Output:
x

Rσ (equation 6.2, 6.3)

I : ˙ωπ(j+1) = ˙ωπ(j+1)ω̂π(j+1) + ˙ωπ(j) mod ω̂π(j+1)

II : ˙ωπ(j) =
(

˙ωπ(j) − ˙ωπ(j+1)

)
ω̂π(j+1)

−1
mod ω̂π(j)

III : σ = π

IV : σ(j) = π(j + 1)

V : σ(j + 1) = π(j)

VI :
x

Rπ is now
x

Rσ

17
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End of Algorithm B.3

Algorithm B.4:
Weave Swap
E = F[x], |µ̂| = 1

(section 6)

Input:

x

Rπ, 0 ≤ j < (n− 1)
with ω̂j = (x− cj)

Output:
x

Rσ (equation 6.4, 6.5)

I : tmpV al = ˙ωπ(j+1)

II : ˙ωπ(j+1) = ˙ωπ(j+1)

(
cπ(j+1) − cπ(j)

)
+ ˙ωπ(j)

III : ˙ωπ(j) = tmpV al

IV : σ = π

V : σ(j) = π(j + 1)

VI : σ(j + 1) = π(j)

VII :
x

Rπ is now
x

Rσ

End of Algorithm B.4

B.4 QRT Encoding (section 7)

Algorithm B.5: Woven Encoding With Salt (section 7)

Input:

E For efficiency E = F2n [x]
though any polynomial ring will work

v the fixed degree of moduli;

2r the number of data q-relations per block

l the number of salt q-relations (l ≥ 0)

2s the number of spare q-relations

R = {µj | 0 ≤ j < 2r + l} µj are q-relations over E containing
data (0 ≤ j < 2r) and salt (2r ≤ j < 2r + l).

Q = {νj | 0 ≤ j < 2(r + s)} output q-relation moduli (i.e., ν̇j is not set).

18
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Output: {ν̇j | 0 ≤ j < 2(r + s)}, encoded words in E

I : Return the set of elements: ˙R(Q) (definition 4.1) using algorithm B.2

End of Algorithm B.5

B.5 QRT Decoding (section 8)

Algorithm B.6: Check Decoding Weave (section 8)

Input:

Q = {µj | 0 ≤ j < d+ 2t} A set of q-relations
x

Qσ = {ωj | 0 ≤ j < d+ 2t} the transformed version of Q using permutation σ

d d q-relations determine Q

t 2t check q-relations in Q

Output: true, if weave is correct; false is fails correct check

I : numPass = 0

II : for j = 0 to 2t− 1, and numPass < t:

A: Extract Qσd
(
µσ(d+j)

)
= τ using

x

Qσd (cookbook algorithm B.2).

B : If τ equals µσ(d+j): numPass = numPass + 1.

III : return: if numPass ≥ t, return true; else return false

End of Algorithm B.6

Algorithm B.7: Pair Swapping (section 8)

Input:

x

Dσ =
{
ωσ(j) | 0 ≤ j < l + 2(r + t)

}
set of l + 2(r + t) woven q-relations ordered by σ

j pair index 0 < j < (r + t) to swap with (j − 1)

l number of salt q-relations in D
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Output:
x

Dπ with altered permutation

I : swap (cookbook algorithm B.3, B.4)
x

Dσ at l + 2j and l + (2j − 1);

II : swap (cookbook algorithm B.3, B.4)
x

Dσ at l + (2j − 1) and l + (2j − 2);

III : swap (cookbook algorithm B.3, B.4)
x

Dσ at l + (2j + 1) and l + 2j

IV : swap (cookbook algorithm B.3, B.4)
x

Dσ at l + 2j and l + (2j − 1)

End of Algorithm B.7

Algorithm B.8: Decoding (section 8)

Input:

E For efficiency E = F2n [x]
though any polynomial ring will work

v
the fixed degree of moduli; for efficiency
v = 1 (monic degree one polynomials).

r 2r data words per block

t 2t spare words, t ≤ s
l l known salt words l ≥ 0

Qπ2(r+t) =
{
νπ(j) | 0 ≤ j < 2(r + t)

} received code words and
initial permutation

S = {κj | 0 ≤ j < l} known salt q-relations

R = {µj | 0 ≤ j < 2r} set of output q-relations, moduli only

Output: R = {µj | 0 ≤ j < 2r} or Error

I : L = z = 0, nVet = 0, LVet[j] = 0 0 ≤ j < t

II : Set δj = κj for 0 ≤ j < l and δj = νπ(j−l) for l ≤ j < 2(r + t).

III : Set σ(j) = j and D = {δj | 0 ≤ j < 2(r + t) + l}

IV : Weave (cookbook algorithm B.1) Dσ into
x

Dσ.
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V : pass=check weave (cookbook algorithm B.6) on Dσ and
x

Dσ
2r with d = 2r + l and t

VI : while (pass is false) and L < t

A: for j = (r − z) to r: pair swap (cookbook algorithm B.7)
x

Dσ at j

B : pass=check weave (cookbook algorithm B.6) on Dσ and
x

Dσ
l+2r

C : + + z; + + LVet[0]; + + nVet

D : if (pass is false) and nVet ≥ r

1 : While (pass is false) and L < t and nVet ≥ r:
i : nVet = nVet− LVet[L]

ii : LVet[L] = 0

iii : + + L

iv : for j = (r+ L) down to r: pair swap (cookbook algorithm B.7)
x

Qσ

at j.

v : pass =check weave (cookbook algorithm B.6) on Qσ and
x

Qσl+2r

vi : + + LVet[L]; + + nVet

2 : if (pass is false) and nVet < r: z = 1; L = 0

VII : if (pass is false) return fail;

VIII : else return Qσl+2r(R).

End of Algorithm B.8

C Examples

Example C.1: q-Relations
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Domain relation value modulus Domain relation value modulus
E µ µ̇ µ̂ E µ µ̇ µ̂

Z (2 mod 3) 2 3 F11[x] (5 mod (x− 2)) 5 (x− 2)
Z (1 mod 5) 1 5 F11[x] (7 mod (x− 1)) 7 (x− 1)
Z (3 mod 7) 3 7 F11[x] (2 mod (x− 4)) 2 (x− 4)

Domain relation value modulus
E µ µ̇ µ̂

F2[x] (x3 + x+ 1 mod x4 + x3 + 1) x3 + x+ 1 x4 + x3 + 1
F2[x] (x2 + x+ 1 mod x5 + x2 + 1) x2 + x+ 1 x5 + x2 + 1

End of Example C.1

Example C.2: Da Yen

Continued from (example C.1). Note that polynomials over F2 will be written in hexadecimal

notation. For example 0xB = x3 + x+ 1.

E Relation Set R Combined Relation 〈R〉
Z {(2, 3), (1, 5), (3, 7)} (101, 105)
Z {(1, 2), (2, 11), (10, 13)} (101, 286)

F11[x] {(5, (x− 2)) , (7, (x− 1)) , (2, (x− 4))}
((

2x2 + 3x+ 2
)
,
(
x3 + 4x2 + 3x+ 3

))
F11[x] {(1, (x− 5)) , (0, (x− 7)) , (7, (x− 3))}

((
2x2 + 3x+ 2

)
,
(
x3 + 7x2 + 5x+ 5

))
F2[x] {(0xb, 0x19) , (0x7, 0x25)} (0x1d4, 0x35d)
F2[x] {(0x4, 0xb) , (0x1d, 0x43)} (0x1d4, 0x2dd)

End of Example C.2

Example C.3: Iterative Da Yen

Continued from (example C.2): ˙ωt−1 in bold and :

1. Over Z: R = {(2, 3), (1, 5), (3, 7)}

〈R1〉 = 2 mod 3

〈R2〉 = 2 + 3
(
3−1(1− 2) mod 5

)
= 2 + 3(3) = 11 mod 15

〈R3〉 = 11 + 15
(
15−1(3− 11) mod 7

)
= 11 + 15(6) = 101 mod 105

x

R = {2 mod 3, 3 mod 5, 6 mod 7} .
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2. Over F11[x]: R = {(5, (x− 2)) , (7, (x− 1)) , (2, (x− 4))}

〈R1〉 = 5 mod (x− 2)

〈R2〉 = 5 + (x− 2)
(
(x− 2)−1(7− 5) mod (x− 1)

)
= 5 + (x− 2) (9)

= 9x+ 9 mod (x2 + 8x+ 2)

〈R3〉 = 9x+ 9 + (x2 + 8x+ 2)
(
(x2 + 8x+ 2)−1(2− (9x+ 9)) mod (x− 4)

)
= 9x+ 9 + (x2 + 8x+ 2)

(
6−1(1)

)
= 9x+ 9 + (x2 + 8x+ 2)(2)

= 2x2 + 3x+ 2 mod (x3 + 4x2 + 3x+ 3)
x

R = {5 mod (x− 2), 9 mod (x− 1), 2 mod (x− 4)} .

3. Over F2[x]: R = {(0xb, 0x19) , (0x7, 0x25)}.

〈R1〉 = 0xb mod 0x19

〈R2〉 = 0xb⊕ 0x19
(
0x19−1 (0x7⊕ 0xb) mod 0x25

)
= 0xb⊕ 0x19 (0xa0xc mod 0x25)

= 0xb⊕ 0x19 · 0x17

= 0x1d4

End of Example C.3

Example C.4: Simplified Reduction, from (example C.3)

1. Over Z: from (example C.3), R = {(2, 3), (1, 5), (3, 7)} and the woven set is
x

R = {(2, 3), (3, 5), (6, 7)}.
If α̂ = 11, compute R(α):

R(α) ≡ 2 + 3(3 + 5(6)) ≡ 2 + 3(3 + 8) ≡ 2 + 3(0) ≡ 2 mod 11

2. Over F11[x]: from (example C.3), R = {(5, (x− 2)) , (7, (x− 1)) , (2, (x− 4))}, and the wo-

ven set is
x

R = {(5, (x− 2)), (9, (x− 1)), (2, (x− 4))}. If α̂ = (x− 3), compute R(α):

R(α) ≡ 5 + (x− 2) (9 + (x− 1)2) mod (x− 3)

≡ 5 + (3− 2) (9 + (3− 1)2) ≡ 7 mod (x− 3)
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3. Over F2[x]: from (example C.3), R = {(0xb, 0x19) , (0x7, 0x25)}, and the woven set is
x

R =

{(0xb, 0x19) , (0x17, 0x25)}. If α̂ = 0xb, compute R(α):

R(α) = 0xb⊕ 0x19 · 0x17 mod 0xb

= 0x0⊕ 0x4 · 0x1 mod b

= 4

End of Example C.4

Example C.5: Integer Weave Transform

Let R =
{

(2 mod 3)(3 mod 5)(1 mod 11)(7 mod 13)
}

, find ˙〈R〉 mod 7.

µ̂0 = 3 µ̂1 = 5 µ̂2 = 11 µ̂3 = 13

ω
(0)
k 2 3 1 7

ω
(1)
k − 3−1 (3− 2) 3−1 (1− 2) 3−1 (7− 2)

− 2(1) 4(−1) 9(5)
− 2 7 6

ω
(2)
k − 5−1(7− 2) 5−1(6− 2)

− 9(5) 8(4)
− 1 6

− 11−1(6− 1)
− 6(5)
− 4

x

Rπ (2 mod 3) (2 mod 5) (1 mod 11) (4 mod 13)

Using the transformed set it is easy to compute the value modulo 7:

˙〈R〉 ≡ 2 + 3(2 + 5(1 + 11(4))) mod 7

≡ 2 + 3(2 + 5(1 + 4(4))) mod 7

≡ 2 + 3(2 + 5(3)) mod 7

≡ 2 + 3(3) mod 7

≡ 4 mod 7

or the value modulo 2:

˙〈R〉 ≡ 2 + 3(2 + 5(1 + 11(4))) mod 2 ≡ 0 + 1(0 + 1(1 + 0)) ≡ 1 mod 2
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Notice that the full value of 〈R〉 would be 〈R〉 = (2 + 3(2 + 5(1 + 11(4))) = 683 mod 2145, which

is equivalent to ˙〈R〉 ≡ 4 mod 7.

End of Example C.5

Example C.6: Weave Coding/Decoding– E = F19[x] using monic degree 1

In this example I’ll be using all ones for my input data to see the effect of using known data to

encode. Let R = {µj = (1 mod (x− cj)) | c0 = 5, c1 = 1, c2 = 2, c3 = 7}, encoding moduli set be

Q̂ = {(x− bi) | b0 = 3, b1 = 4, b2 = 8, b3 = 11, b4 = 6, b5 = 14}.
The first encoding uses only R. Because all the data is constant, the returned value will also

be constant: νi = (1 mod (x− bi)). Lets say an error occurs in q-relation ν1, changing it to

ν ′1 = (2 mod (x− 4)). Here’s the woven transform:

ν̂j (x− 3) (x− 4) (x− 8) (x− 11) (x− 6) (x− 14)

˙
ω
(0)
j 1 2 1 1 1 1
˙

ω
(1)
j −− 1 0 0 0 0
˙

ω
(2)
j −− 14 8 9 17
˙

ω
(3)
j −− 17 12 10
˙

ω
(4)
j −− 1 4
˙

ω
(5)
j −− 17

ω̇j 1 1 14 17 1 17

To decode we’ll use the set
x

Qπ4 to compute Qπ4
(
νπ(4)

)
and Qπ4

(
νπ(5)

)
. If at least one of these

matches then we’ve found a uncorrupted set and can decode. Let ν̂j = (x− cj)

x

Qπ
Qπ4 (ν0) Qπ4 (ν1) Qπ4 (ν2) Qπ4 (ν3) Qπ4 (ν4) Qπ4 (ν5)

?
= 1

?
= 2

?
= 1

?
= 1

?
= 1

?
= 1

bπ(j) 3 4 8 11 6 14
1 2 1 1 17 4

˙ωπ(j) 1 1 14 17 1 17

bπ(j) 3 4 6 14 8 11
1 2 17 14 1 1

˙ωπ(j) 1 1 9 1 14 17

bπ(j) 6 14 8 11 3 4
1 1 1 1 1 1

˙ωπ(j) 1 0 0 0 0 17
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The first two pair swaps creates mismatches in every spare element, but the third pair swap weave

has only one error. Since no more than half the spares are errors, the weave creates the original set

of q-relations, correcting the error.

This example encodes the exact same data using two known q-relations, κ0 = (13 mod (x− 9))

and κ1 = (6 mod (x− 17))

End of Example C.6

Example C.7: Weave Coding/Decoding – E = F19[x] using degree 1 moduli and salt

The data used in example C.6 was very repetitive. This example encodes the exact same data

using two salt q-relations, S = {κ0 = (13 mod (x− 9)) , κ1 = (6 mod (x− 17))}, to mask the data.

Adding salt data q-relations adds a little work to the extraction process but does not increase the

number of trials or pair swaps required for detecting and correcting errors.

Using the known q-relations S and R (example C.6) produces the coded data

Q =

[
bi 3 4 8 11 6 14
ν̇i 4 15 12 7 15 0

]
We’ll introduce an error in the q-relation (15 mod (x− 4)) by changing 15 to 10. Here’s the weave

of the known data S and the received data with the error:

ν̂j (x− 9) (x− 17) (x− 3) (x− 4) (x− 8) (x− 11) (x− 6) (x− 14)

˙
ω
(0)
j 13 6 4 10 12 7 15 0
˙

ω
(1)
j −− 11 11 12 1 16 12 5
˙

ω
(2)
j −− 0 16 18 15 12 2
˙

ω
(3)
j −− 16 15 9 4 14
˙

ω
(4)
j −− 14 18 13 15
˙

ω
(5)
j −− 14 10 16
˙

ω
(5)
j −− 16 7
˙

ω
(5)
j −− 6

ω̇j 13 11 12 13 8 8 0 6

The known q-relations in the weave,
x

S, remain in the lowest positions of the weave, never change,

and will always be used for checking. The other q-relations will be swapped into the lower positions
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as needed.

x

Qπ Qπ2+4

(
νπ(6)

)
Qπ2+4

(
νπ(7)

)
bπ(j) 9 17 3 4 8 11 6 14 6 14

˙ωπ(j) 13 11 0 16 14 14 16 6 8 6≡ 15 2 6≡ 18

bπ(j) 9 17 3 4 6 14 8 11 8 11

˙ωπ(j) 13 11 0 16 13 5 15 6 17 6≡ 10 0 6≡ 18

bπ(j) 9 17 6 14 8 11 3 4 3 4

˙ωπ(j) 13 11 12 13 8 8 0 6 4 15 6≡ 10

End of Example C.7
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