
Ad Hoc PSM Protocols:
Secure Computation Without Coordination

Amos Beimel1, Yuval Ishai2,3, and Eyal Kushilevitz2

1 Dept. of Computer Science, Ben Gurion University, Beer Sheva, Israel
amos.beimel@gmail.com

2 Dept. of Computer Science, Technion, Haifa, Israel
{yuvali,eyalk}@cs.technion.ac.il

3 Dept. of Computer Science, UCLA, Los Angeles, USA

Abstract. We study the notion of ad hoc secure computation, recently
introduced by Beimel et al. (ITCS 2016), in the context of the Private
Simultaneous Messages (PSM) model of Feige et al. (STOC 2004). In ad
hoc secure computation we have n parties that may potentially partici-
pate in a protocol but, at the actual time of execution, only k of them,
whose identity is not known in advance, actually participate. This sit-
uation is particularly challenging in the PSM setting, where protocols
are non-interactive (a single message from each participating party to
a special output party) and where the parties rely on pre-distributed,
correlated randomness (that in the ad-hoc setting will have to take into
account all possible sets of participants).

We present several different constructions of ad hoc PSM protocols from
standard PSM protocols. These constructions imply, in particular, that
efficient information-theoretic ad hoc PSM protocols exist for NC1 and
different classes of log-space computation, and efficient computationally-
secure ad hoc PSM protocols for polynomial-time computable functions
can be based on a one-way function. As an application, we obtain an
information-theoretic implementation of order-revealing encryption whose
security holds for two messages.

We also consider the case where the actual number of participating par-
ties t may be larger than the minimal k for which the protocol is designed
to work. In this case, it is unavoidable that the output party learns the
output corresponding to each subset of k out of the t participants. There-
fore, a “best possible security” notion, requiring that this will be the only
information that the output party learns, is needed. We present connec-
tions between this notion and the previously studied notion of t-robust
PSM (also known as “non-interactive MPC”). We show that construc-
tions in this setting for even simple functions (like AND or threshold) can
be translated into non-trivial instances of program obfuscation (such as
point function obfuscation and fuzzy point function obfuscation, respec-
tively). We view these results as a negative indication that protocols
with “best possible security” are impossible to realize efficiently in the
information-theoretic setting or require strong assumptions in the com-
putational setting.

1 Introduction

The notion of ad hoc secure computation was recently put forward in [4]. In the
ad-hoc secure computation problem, there are n parties that may potentially
take part in a secure computation protocol. At the time that the protocol is
executed, some k of these n parties actually participate in the execution. The
goal is to design (efficient) protocols that can work for every set of k parties
S, without knowing the set of participants in advance. As a concrete example,
think of a voting application, where n parties are registered to the elections but
only k of them (the identity of which becomes known only in real time) end up
participating in the vote.

In most standard secure computation models, the ad-hoc nature of the pro-
tocol does not pose a significant challenge: the participating parties can interact
with each other and use a standard general-purpose secure protocol to per-
form the computation. The problem is most challenging in situations where pre-
processing or setup are required, or where interaction is limited. In the extreme,
where non-interactive secure protocols are needed, the single message sent by
each party Pi cannot depend on the messages of other parties, whose identities
are not even known to Pi.

A simple model for non-interactive secure computation is the Private Simul-
taneous Messages (PSM) model of [14, 17]. In this model, there are n parties
P1, . . . , Pn and a special party called the referee. Before the input is known, the
parties are given correlated randomness4 (r1, . . . , rn). In the online phase, each
party Pi gets an input xi and sends a single message mi, depending on xi and
ri, to the referee. Based on the n received messages, the referee should be able to
compute the value of a pre-determined function f on the input x = (x1, . . . , xn),
namely f(x). The security requires that the referee learns no additional informa-
tion about x. It is known that PSM protocols exist for every finite function f [14]
and efficient PSM protocols exist for every function in NC1 and for classes of
functions defined by different types of (polynomial-size) branching programs [14,
17]. In a computational setting, efficient PSM protocols for all polynomial-time
computable functions can be based on one-way functions by using Yao’s gar-
bled circuit construction [20, 14]. The simplicity of the PSM model makes it an
attractive candidate for a complexity theoretic study (see, e.g., [2]) and its lim-
ited interaction pattern makes it useful in applications, such as minimizing the
round-complexity of secure protocols in the standard point-to-point model (see,
e.g., [18]).

In this paper, we study the ad hoc version of the PSM model, where the
referee receives messages from a subset of size k out of the n parties. We assume
that the parameter k is known in advance, but the parties are not aware of
the identity of other participating parties. Before describing our results in detail
(in Section 1.1), we discuss some possible variants of the question. First, the

4 Both in the original PSM model and in its ad-hoc variant, it suffices for the parties
to share a source of common randomness that is unknown to the referee. The use of
more general correlated randomness can help reduce the randomness complexity.

original PSM model was mainly studied in the information-theoretic security
setting. In this work, we consider both the information-theoretic variant and the
computational variant. In fact, the computational version of ad hoc PSM was
first considered in [4], where it was shown that such protocols can be constructed
based on the existence of a weak form of Multi-Input Functional Encryption
(MIFE) [15], a primitive whose general realization is essentially equivalent to
the existence of general indistinguishability obfuscation.

Second, the problem of ad hoc PSM is significantly different in the case where
we are guaranteed that exactly k parties will send messages vs. the case where
possibly more than k parties may participate. Most of the time, we will assume
that only k parties send messages and that this guarantee is assured by some
other mechanism, such as a public bulletin board reporting the current partici-
pant count, or an anonymous communication medium that hides all information
except the fact that a message has been sent. On the other hand, in a setting
where a set S of more than k parties may send messages in the protocol, the
referee unavoidably may compute the function f on any subset S′ ⊂ S of size k
and learn the value f(xS′). Therefore, in this case, our security notion is a “best
possible security” definition, requiring that this will be the only information that
the referee learns in the protocol. This can be formalized either using a strong
simulation-based definition or a weaker indistinguishability-based definition.

Finally, it will be convenient and, in fact, very natural in the ad-hoc setting
to think of f as a symmetric function. Most of our results do not rely on this
and can be extended to even allow the computed function to depend on the set
of participants S, i.e. to output fS(xS).

1.1 Our results

Let us start by demonstrating our results using a concrete task of comput-
ing the SUM function. In this case, each party Pi is given an input xi ∈ Zm
and the goal is to compute their sum

∑
i∈[n] xi (all additions in this example

are mod m). A standard PSM protocol for SUM works by giving the parties
randomness r1, . . . , rn ∈R Zm subject to the constraint that

∑
i∈[n] ri = 0.

Then, each party Pi, sends a message mi = xi + ri to the referee who outputs∑
i∈[n]mi =

∑
i∈[n] xi, as needed. Moreover, due to the choice of the ri’s, no

additional information about the inputs is revealed to the referee.

In the ad-hoc version of the problem, we wish to compute the SUM of any set
S of k parties that may send messages in the protocol. One option is to prepare,
for each potential set S of size k, independent randomness rS1 , . . . , r

S
k that is

random subject to their sum being 0 and proceed by Pi sending a message (using
the corresponding randomness rSj), for each set S to which it belongs. While this
solution works, its randomness complexity and communication complexity are
proportional to

(
n
k

)
, which is much more than what we are shooting for. Instead,

we describe an efficient solution for this problem.

In our ad hoc PSM protocol, the randomness consists of values r1, . . . , rn ∈R
Zm subject to the constraint that

∑
i∈[n] ri = 0, as in the original PSM protocol.

In addition, we produce shares {rj,i}i∈[n], for each rj , using a k-out-of-n secret
sharing scheme (e.g., Shamir). The randomness given to each Pi consists of its
ri and its shares of all other random values; that is {rj,i}j∈[n]\{i}. Then, each
party Pi that participates in the protocol (i.e., i ∈ S) sends as its message the
value mi = xi + ri, as well as all its shares. The referee sums up all the mi’s
that it got from the k participants, as well as all the values rj , for j /∈ S, that
it can reconstruct from the k shares that it received for each such rj , to get∑
i∈S(xi + ri) +

∑
i/∈S ri =

∑
i∈S xi, as needed. In terms of security, each ri, for

i ∈ S, remains hidden as the referee receives exactly k−1 shares for these random
elements. In fact, the view of the referee can be simulated from its view in the
original PSM, where parties Pj , for j /∈ S, have input xj = 0. Also note that if,
say, k + 1 parties send messages then the referee learns all inputs. However, for
the SUM function, the best possible security definition (that allows the referee
to learn the output on all subsets of size k) allows to recover all k + 1 inputs in
most cases (at least when gcd(k,m) = 1).

Next, we describe in some detail our main results. The first question that we
ask (in Section 3) is whether the existence of a standard k-party PSM computing
a function f guarantees the existence of a k-out-of-n ad hoc PSM protocol for
f . We first prove the existence of an inefficient transformation of this kind but
that has an overhead of

(
n
k

)
. While this transformation may be useful for the

case where the number of parties is small (and also proves the existence of an
ad hoc PSM protocol for every function f), our aim is to get an efficient trans-
formation (i.e., with poly(n) overhead). We next present such a transformation
that works whenever f is symmetric, and is efficient whenever k is small (essen-
tially, 2O(k) log n). When k = O(1), the overhead is as small as O(log n) (this
construction relies on perfect hash families, and its complexity depends on the
size of such families of functions from [n] to [k]). The fact that the complexity of
each party grows only logarithmically with the number of parties will be useful
for the application discussed in Section 6.

Then, in Section 4, we ask whether an ad hoc PSM protocol for f can be
constructed more efficiently based on a standard PSM protocol for a related (n-
argument) function g. We prove that this is indeed possible, while incurring only
O(n) overhead over the complexity of the protocol for g. Moreover, the compu-
tational complexity of g is closely related to that of f in computational models
for which efficient PSM protocols are known (e.g., if f is in NC1 then so is g, and
if f has a polynomial-size branching program then so does g). This implies effi-
cient ad hoc PSM protocols for branching programs in the information-theoretic
setting and for circuits in the computational setting, where the latter relies on
the existence of a one-way function. In addition, in Section 5, we present an
explicit ad hoc PSM for the equality function.

In Section 6, we show an interesting application of ad hoc PSM protocols.
Specifically, we show how to construct an order revealing encryption (ORE)
from an ad hoc PSM protocol for the “greater-than” function. An order reveal-
ing encryption, presented in [10] as a generalization of order preserving encryp-
tion [1], is a private-key encryption that enables computing the order between

two messages (that is, checking if m1 < m2, m1 = m2, or m1 > m2), given
their encryptions (without knowing the private key), but does not disclose any
additional information. We construct information-theoretically secure order re-
vealing encryption that is secure as long as only two messages are encrypted. In
our construction, we use an ad hoc PSM protocol constructed in Section 3 with
n = 2λ parties (where λ is the security parameter), relying on the fact that the
complexity of each party in the protocol from Section 3 only grows logarithmi-
cally with the number of parties. We also give a solution for a bigger number of
messages, but with a weaker security guarantee.

The above results refer to the case where exactly k parties send messages in
the protocol. We next examine (in Section 7) the case where more than k (but
up to some threshold t) parties may send messages. In this case, as discussed
above, one needs to settle for a “best possible security” definition. We extend the
above transformation from standard PSM to ad hoc PSM to this case, showing
that it is possible to construct a PSM protocol for f with best possible security
from a so-called “t-robust PSM” protocol [5] for a related function g′, incurring
only O(n) overhead. A t-robust PSM is a protocol where up to t parties may
collaborate with the referee in trying to learn information about the inputs of
other parties. In this case, it is always possible for the adversary to get the output
of f on many inputs, by replacing the messages of the collaborating parties with
messages that correspond to other inputs. Therefore, for such protocols also one
may only hope for a “best possible security”. Our results connect these two
best possible security settings (in both directions). It should be noted, however,
that efficient t-robust PSM protocols in the information-theoretic setting are
currently known only for limited families of functions, and limited values of t [5].

In Section 8, we examine the possibility of constructing efficient PSM proto-
cols with best possible security, in the computational setting. (The naive transfor-
mation of Section 3 shows that it is possible to get best possible security even in
the information theoretic case but without efficiency.) The two-way connection
with t-robust PSM already implies a two-way connection between this prob-
lem and general-purpose obfuscation. However, it is not clear a-priori that the
connection has relevance in the case of simple functions. We give evidence that
efficient ad-hoc PSM protocols with best possible security are difficult to design
even for very simple functions. For instance, a protocol for a threshold function
implies a construction of fuzzy point function obfuscation [7], a primitive whose
only known constructions rely on multilinear maps. In fact, even a protocol for
the AND function, gives a construction of point function obfuscation.

2 The Setting

We consider a network of n parties, denoted P1, . . . , Pn, and a referee; Each
party Pi holds an input xi, and the parties hold correlated random strings
r1, . . . , rn. We want to execute a protocol, where only a subset of the parties
S ⊆ {P1, . . . , Pn} participates in the protocol, each one of them sends a single
message to the referee. If exactly k parties participate and send messages then,

based on these k messages, the referee should be able to compute the value
f(xS) but learn no other information about xS , where xS = (xi)i∈S . The subset
S of participating parties is selected in an ad hoc manner and, in particular,
the participating parties are not aware of each other. This is the main source
of difficulty in this model. The referee itself necessarily learns the set of par-
ticipants S (as it receives messages directly from the participants; avoiding this
would require the use of anonymous communication). We often assume that f
is symmetric; while this is a natural assumption in such a setting, most of our
constructions can handle a much more general requirement, where the computed
function itself may also depend on the set of participants S (i.e., the output is
fS(xS)). We call the above model ad hoc PSM. We formalize this notion below
starting with information-theoretic secure protocols.

Definition 2.1 (Ad hoc PSM: Syntax and correctness). Let X ,R1, . . . ,Rn,
M and Ω be finite domains. A k-out-of-n ad hoc PSM for a function f : X k → Ω
is a triplet Π = (Gen,Enc,Dec) where

– Gen() is a randomized function with output in R1 × · · · × Rn,
– Enc is an n-tuple of deterministic functions (Enc1, . . . ,Encn), where Enci :
X ×Ri →M,

– Dec :
(

[n]
k

)
× Mk → Ω is a deterministic function satisfying the follow-

ing correctness requirement: for any S = {i1, . . . , ik} ⊆ [n] and xS =
(xi1 , . . . , xik) ∈ X k,

Pr
[
r = (r1, . . . , rn)← Gen() :

Dec(S,Enci1(xi1 , ri1), . . . ,Encik(xik , rik)) = f(xS)

]
= 1.

The randomness complexity of Π is the maximum of log |R1|, . . . , log |Rn|.
The communication complexity of Π is log |M|.

Definition 2.2 (Ad hoc PSM: Perfect and statistical security). We say
that an ad hoc PSM protocol Π for f is k-secure if:

– For every set S ∈
(

[n]
k

)
, given the messages of S, the referee does not get

any additional information beyond the value of f(xS). Formally, there exists

a randomized function Sim (a “simulator”) such that, for every S ∈
(

[n]
k

)
and for every xS ∈ X k, we have Sim(S, f(xS)) ≡ MS , where MS are the
messages defined by R← Gen() and MS = (Enci(xi, Ri))i∈S.

– For every k′ < k and every set S′ ∈
(

[n]
k′

)
, given the messages of S′, the

referee does not get any information on the input xS′ . Formally, there exists
a randomized function Sim such that, for every k′ < k, every S′ ∈

(
[n]
k′

)
and

every xS′ ∈ X k
′
, we have Sim(S′) ≡MS′ , where MS′ is defined as above.

We say that an ad hoc PSM protocol Π for f is (k, ε)-(statistically) secure

if there exists a randomized function Sim such that for every S ∈
(

[n]
k

)
and for

every xS ∈ X k,
dist(Sim (S, f(xS)) ,MS) ≤ ε.

Similarly, for every S′ ∈
(

[n]
k′

)
, we have dist(Sim(S′),MS′) ≤ ε.

Example 2.3. We next describe a very simple ad hoc PSM protocol for com-
puting the difference of inputs for k = 2 parties; that is, for i < j we want to
compute f(xi, xj) = xi−xj (over some Abelian group G). The randomness gen-
eration chooses a random element r ∈R G and gives it to each party. The message
of each Pi on input xi is mi = xi + r. The output of the referee on messages
mi,mj from parties Pi, Pj (where i < j) is mi −mj = xi − xj . The simulator
Sim proving the security of the protocol gets as an input a set S = {i, j} and
∆ = xi − xj . It chooses a random value r and outputs r, r − ∆. Notice that
both the messages in the protocol and the output of Sim is a pair (a, b), where
a is uniformly distributed in G and b is a − f(xi, xj), thus the simulation is as
required.

While in most parts of this paper we will assume that at most k parties send
messages, we next consider the scenario that parties execute an ad hoc PSM
protocol and a set T of more than k parties sends messages. Clearly, for every
S ⊂ T of size k, the referee can compute the output of f on the inputs of S.
Thus, the best possible security requirement is that the referee does not learn any
additional information.

Definition 2.4. An ad hoc PSM protocol Π for f is (k, t, ε)-secure if there

exists a randomized function Sim such that, for every t′ ≤ t, every T ∈
(

[n]
t′

)
and

every xT ∈ X t,

dist(Sim
(
T, (f(xS))S⊆T,|S|=k

)
,MT) ≤ ε.

An ad hoc PSM protocol Π for f is (k, t)-secure if it is (k, t, 0)-secure.

Remark 2.5. In Section 3.2, for every function f , we construct an inefficient
(k, n) ad hoc PSM protocol. It follows from [16] (together with our result that
(k, n)-secure ad hoc PSM protocols imply obfuscation) that efficient (k, n)-
secure ad hoc PSM protocols for every function in NC1 do not exist unless
the polynomial-time hierarchy collapses. This impossibility result does not rule
out, for example, efficient (2, n)-secure ad hoc PSM protocols for every function
in NC1 (and beyond) or efficient (k, k+ 1)-secure ad hoc PSM protocols. We do
not know if such efficient ad hoc PSM protocols exist.

For some functions the (k, t)-security requirement is not interesting as the
best possible security already reveals a lot of information. For other functions
this notion is interesting.

Example 2.6. Let f be the 2-party addition function over a field whose charac-
teristic is not 2. Suppose that a referee got messages from parties P1, P2, P3 in
an ad hoc PSM for f , thus, it can compute the sum of every two inputs of these
parties, namely, x1 + x2 = s1,2, x1 + x3 = s1,3, and x2 + x3 = s2,3. From these
sums it can compute the inputs, e.g., x1 = 2−1(s1,2 + s1,3 − s2,3).

Example 2.7. Consider the n/2-party AND function and an input where the
value of exactly n/2 of the input variables is 1. Assume that the referee gets
messages from the n parties for this input. If the referee does not know the set
of variables whose value is 1, then it will not be able to efficiently determine it.

We next consider computationally-secure ad hoc PSM protocols. In such pro-
tocols we want all algorithms to be efficient. We start by defining their syntax.

Definition 2.8 (Computational ad hoc PSM: Syntax). Let n(λ), k(λ),
and `(λ) be polynomials, and F = {fλ : ({0, 1}`(λ))k(λ) → {0, 1}∗}λ∈N be a
collection of functions. A protocol Π = (Gen,Enc,Dec) is a (k(λ), n(λ))-
computational ad hoc PSM protocol for F if

– Algorithm Gen(1λ) is a polynomial time algorithm that generates n(λ) ran-
dom strings (for n(λ) parties).

– Algorithms Enc and Dec run in polynomial time.
– There exists a negligible function negl() such that for any λ ∈ N, any S ⊆

[n(λ)], and any xS = (xi)i∈S ∈
(
{0, 1}`(λ)

)k(λ)
,

Pr
[
r ← Gen(1λ) : Dec (S, (Enci(xi, ri))i∈S) = fλ(xS)

]
≥ 1− negl(λ).

We next present three definitions of security for computational ad hoc PSM
protocols. The first definition is simulation-based and it applies to k-security
(i.e., to the scenario where exactly k parties send their messages).

Definition 2.9 (Computational ad hoc PSM: Simulation-based secu-
rity). Let n(λ), k(λ), and `(λ) be polynomials, and F = {fλ : ({0, 1}`(λ))k(λ) →
{0, 1}∗}λ∈N be a collection of functions. We say that an ad hoc PSM protocol
(Gen,Enc,Dec) is k(λ)-simulation-based secure if there exists a probabilistic
non-uniform polynomial algorithm Sim whose inputs are 1λ and the value of f
such that the two ensemble of distributions(

(mi)i∈S :
r ← Gen(1λ),
∀i∈Smi ← Enc(xi, ri)

)
λ ∈ N, S ∈

(
[n(λ)]
k(λ)

)
,

(xi)i∈S ∈
(
{0, 1}`(λ)

)k(λ)

and (
Sim(1λ, fλ((xi)i∈S)

)
λ ∈ N, S ∈

(
[n(λ)]
k(λ)

)
,

(xi)i∈S ∈
(
{0, 1}`(λ)

)k(λ)

are indistinguishable in polynomial time.

Simulation-based security is a strong requirement that cannot be achieved for
computational ad hoc PSM protocols with best possible security (see discussion
in [3]). Thus, for such protocols, we define weaker security – virtual black-box
(VBB) security, where the adversary can output only one bit and that uses
indistinguishability-based security. To simplify the notation, we only consider
the case where t = n(λ).

Definition 2.10 (Computational ad hoc PSM: Virtual black-box Secu-
rity). Let n(λ), k(λ), and `(λ) be polynomials, and F = {fλ : ({0, 1}`(λ))k(λ) →
{0, 1}∗}λ∈N be a collection of functions. We say that an ad hoc PSM protocol

(Gen,Enc,Dec) is (k(λ), n(λ))-VBB-secure if, for every non-uniform polyno-
mial time adversary A that outputs one bit, there exists a non-uniform proba-
bilistic polynomial time algorithm Sim and a negligible function negl(λ) such that

for every λ ∈ N, every S ∈
(

[n(λ)]
k(λ)

)
, and every x1, . . . , xn(λ) ∈ ({0, 1}`(λ))n(λ)

∣∣∣Pr
[
A(1λ,m1 . . . ,mn(λ)) = 1

]
− Pr

[
Simfλ(1λ) = 1

]∣∣∣ ≤ negl(λ),

where

– The first probability is over the messages generated in the following way: first
compute r ← Gen(1λ) and then mi ← Enc(xi, ri), for every i ∈ [n(λ)].

– The second probability is over the randomness of the simulator, which has
access to an oracle fλ that on query S ∈

(
[n(λ]
k(λ)

)
returns fλ(xS).

Definition 2.11 (Computational ad hoc PSM: Indistinguishability-based
security). Let n(λ), k(λ), and `(λ) be polynomials, and F = {fλ : ({0, 1}`(λ))k(λ) →
{0, 1}∗}λ∈N be a collection of functions. Consider the following game between an
adversary A and a challenger:

1. The adversary on input 1λ chooses a set T ⊆ [n(λ)] and two inputs (x0
i)i∈T

and (x1
i)i∈T and sends T and the two inputs to the challenger.

2. The challenger chooses a uniformly random bit b ∈ {0, 1} and computes
(r1, . . . , rn) ← Gen(1λ) and mi ← Enc(xbi , ri), for every i ∈ T . It then
sends (mi)i∈T to the adversary.

3. The adversary outputs a bit b′.

The adversary wins the game if b′ = b and fλ(x0
S) = fλ(x1

S), for every S ⊆ T
such that |S| = k(λ).

We say that a computational ad hoc PSM protocol (Gen,Enc,Dec) is a
(k(λ), n(λ))-indistinguishably-secure ad hoc PSM protocol for F if, for every
non-uniform polynomial-time adversary A, the probability that A wins is at most
1/2 + negl(λ) for some negligible function negl.

Our default model in the rest of the paper, unless explicitly mentioned, is
(k, k)-secure ad hoc PSM protocol with perfect security.

3 Ad hoc PSM Protocols for a Function f from a PSM
for f

In this section we present a k-out-of-n ad hoc PSM protocol for any function f
by applying transformations to k-party PSM protocols for the same f .

3.1 From a PSM for f to an n-out-of-n ad hoc PSM for f

In an n-party PSM protocol for f , if all n parties send messages, then the
referee learns f(x1, . . . , xn) and does not learn any additional information. In
an n-out-of-n ad hoc PSM protocol, there is an additional requirement: if less
than n parties send messages, then the referee should learn no information. The
definition of PSM does not imply the latter requirement.

Example 3.1. Consider a function which returns x1. In a PSM for this function,
P1 can send its input, while in an ad hoc PSM protocol, this should not be done.

In many PSM protocols this additional requirement does hold. Furthermore, for
many functions, the requirement for smaller sets of active participants follows
from the security requirements of the PSM.

Example 3.2. Consider a PSM protocol for the AND function. If the input of
Pn is 0, then the output of AND is 0 for every input for P1, . . . , Pn−1. Thus,
the messages m1, . . . ,mn of P1, . . . , Pn are equally distributed when xn = 0, for
every input for P1, . . . , Pn−1. Since the messages of P1, . . . , Pn−1 are independent
of xn, the messages of parties P1, . . . , Pn−1 are equally distributed for every input
for these parties. I.e., in any PSM protocol for AND the referee does not learn
any information from the messages of P1, . . . , Pn−1 or, similarly, any other set
of less than n active participants.

Lemma 3.3. If there is an n-party PSM protocol Π for f with randomness
complexity Rand(Π) and communication complexity Comm(Π), then there is an
n-out-of-n ad hoc PSM protocol for f with randomness complexity Rand(Π) +
n · Comm(Π) and communication complexity n · Comm(Π).

Proof. We construct an ad hoc PSM protocol Πah for f from the PSM protocol
Π for f , as follows.

Randomness generation:
– Generate randomness for the PSM protocol Π; denote r1, . . . , rn the gen-
erated randomness of P1, . . . , Pn, respectively.

– Choose n uniformly random strings u1, . . . , un, each of length Comm(Π).
– Share each uj , for j ∈ [n], using an n-out-of-n secret sharing scheme; let
uj,i be the i-th share of uj .

– The randomness of Pi in Πah is ri, (uj,i)j∈[n].
Message generation:
– Let mi be the messages of Pi in Π on input xi and randomness ri.
– The message of Pi in Πah is mi ⊕ ui and (uj,i)j∈[n].

If the n parties send their messages, then the referee can reconstruct ui for
every i ∈ [n], compute mi, and reconstruct f(x1, . . . , xn) using the decoding
algorithm of Π.

The security of Πah when n parties send messages follows from the security
of Π (as the strings u1, . . . , un are random). When less than n parties send their
messages, the referee gets less than n shares of each ui, thus, these strings act
as random pads and the referee learns no information. ut

3.2 A naive ad hoc PSM protocol for any f

In this section we show how to construct, given a (standard) k-party PSM pro-
tocol for f , a k-out-of-n ad hoc PSM protocol for f that is n-secure (that is,
if a set T of at least k parties send their messages, then the referee can com-
pute the output of f on any subset of inputs of size k and learns no additional
information).

Theorem 3.4. If there is a k-party PSM protocol Π for f with randomness
complexity Rand(Π) and communication complexity Comm(Π), then there is
a (k, n)-secure ad hoc PSM protocol for f with randomness complexity

(
n
k

)
·

(Rand(Π) + n · Comm(Π)) and communication complexity
(
n
k

)
· n · Comm(Π).

Proof. Let Πah be the k-out-of-k ad hoc PSM protocol constructed from Π in
Lemma 3.3. We construct an ad hoc PSM protocol Π ′ for f as follows:

Randomness generation:
– For each set S ∈

(
[n]
k

)
, independently generate randomness for Πah and give

this randomness to the parties in S.
Message generation:
– Each party Pi sends its message in protocol Πah, associated with the set
S′, for every S′ of size k such that i ∈ S′.

Function reconstruction by the referee: For a set S of k participating
parties, the referee (only) uses the messages of the parties in S of the PSM
Πah for S to reconstruct f(xS).

We next prove the security when a set T of size at least k sends messages.
We claim that the referee only learns f(xS) for every S ⊆ T of size k. Since the
randomness of each execution of the PSM protocol Πah is chosen independently,
the referee can only learn information from the messages of Πah for each set S of
size k. In an execution for a set S ⊆ T it can only learn f(xS). In any execution
of the PSM protocol for S such that S 6⊆ T , the referee misses a message of at
least one party thus, by Lemma 3.3, learns no information from this execution.

The randomness and communication of the ad hoc PSM protocol Π ′ are
(
n
k

)
times larger than the randomness and communication, respectively, of the PSM
protocol Πah. ut

As every function f has a PSM realizing it [14, 17], the previous theorem
implies that every function has an ad hoc PSM protocol.

Corollary 3.5. For every k-argument function f , there is an n-secure k-out-
of-n ad hoc PSM protocol realizing f .

3.3 A 2-out-of-n ad hoc PSM protocol from a PSM protocol for f

Suppose that we have a 2-party PSM protocol Π for a symmetric function f .
We denote the parties in this PSM by Q0 and Q1. We want to construct an ad
hoc PSM protocol Π∗ for f using Π. The idea is to instruct the first party Pi

to simulate Q0 and instruct the second party Pj to simulate Q1. The problem
is that in an ad hoc PSM protocol a party does not know who the other party
is; informally, it does not know if it is the “first party” or the “second party”.
Instead, we execute a few copies of the PSM protocol Π where, in some copies
of the PSM, party Pi plays the role of Q0, and in other copies it plays the role
of Q1. Specifically, we view each i ∈ [n] in its log n-bit binary representation
i = (i1, . . . , ilogn), and execute log n copies of Π, where in the `th copy Pi plays
the role of Qi` . Since for any i 6= j, there exists an index ` such that i` 6= j`,
in the `th copy Pi, Pj simulate both Q0 and Q1 and the referee can compute f
from this copy.

However, information can now leak when Pi and Pj simulate, in some copy,
the same Qb; that is, if i` = j`, for some `. In particular, in such copy, Pi and
Pj send the same message if xi = xj . To overcome this problem, in the `th copy,
where party Pi plays the role of Qi` , party Pi “encrypts” its message m using
a key ki` and each party playing the role of Qī` sends the key ki` as part of its
message. Thus, if both Pi, Pj play the role of the same party Qb, then the referee
does not obtain the key, and cannot learn any information from this copy of the
PSM. The formal description of the ad hoc PSM protocol Π∗ follows.

Randomness generation:
– Let p be a prime such that log p ≥ max{Comm(Π), log n}, where Comm(Π)

is the length of the messages in the PSM protocol Π. All arithmetic in the
protocol is in Fp.

– For ` = 1 to log n:
• Independently generate randomness for the PSM protocol Π; denote by
r`,0, r`,1 the generated randomness of Q0, Q1, respectively.
• Choose four random values a`,0, b`,0, a`,1, b`,1 ∈R Fp.

– The randomness of Pi, where i = (i1, . . . , ilogn), is

(r`,i` , a`,0, b`,0, a`,1, b`,1)1≤`≤logn.

Message generation for every Pi ∈ S:
– For every ` ∈ {1, . . . , log n}, party Pi computes mi,` – the message that Qi`

sends in Π on input xi with randomness r`,i` .
Pi sends (mi,` + a`,i` · i+ b`,i`)1≤`≤logn and (a`,ī` , b`,ī`)1≤`≤logn.

Assume that Pi and Pj send messages and the referee wants to compute
f(xi, xj). It finds an index ` such that i` 6= j`. Without loss of generality, i` = 0
and j` = 1, that is, in the `th copy of Π, party Pi plays the role of Q0 and Pj
plays the role of Q1. As Pi sends mi,` + a`,0 · i+ b`,0 and Pj sends a`,0, b`,0, the
referee can recover mi,` – the message of Q0. Similarly, the referee can recover
mj,` – the message of Q1 – and, using the reconstruction procedure of Π, it can
compute f(xi, xj).

By the privacy property of protocol Π, the referee does not learn any addi-
tional information from an `th copy of the PSM, where i` 6= j`. Furthermore,
this is true also for the concatenation of the messages in all the copies where
i` 6= j`; note that since f is symmetric the output of the protocol in each such

copy is the same. On the other hand, in any copy where i` = j`, the referee gets
two “encrypted” messages mi,` + a`,i` · i+ b`,i` and mj,` + a`,i` · j + b`,i` . Since
i 6= j (and a`,i` , b`,i` are random), then all pairs of “encrypted” messages are
possible and the referee learns no information from this copy of Π. The security
of Π∗ follows.

Let Rand(Π) and Comm(Π) be the randomness complexity and communi-
cation complexity of Π, respectively. The randomness complexity of the new Π∗

is

O (log n ·max{Rand(Π),Comm(Π), log n}) ,

and the communication complexity of Π∗ is O(log n ·max{Rand(Π), log n}).

3.4 A k-out-of-n ad hoc PSM protocol from a PSM protocol for f

We want to generalize the above ad hoc PSM protocol Π∗ to larger values of k.
Again, we will execute many copies of the original k-party PSM protocol Π. The
properties we require are: (1) for every set S ⊆ [n] of size k, there exists a copy
in which the parties in S play roles of distinct parties in Π, and (2) in copies
where the parties in S do not play roles of distinct parties in Π, no information
is leaked. To achieve the first requirement, we use a perfect hash family.

Definition 3.6. A perfect hash family H = {h : [n]→ [k]} is a set of functions
such that for any set S ⊆ [n] of size k, there exists at least one h ∈ H that is
1-1 over S.

Example 3.7. For k = 2, the family of bit-functions H = {h1, . . . , hlogn}, where
h`(i) = i` + 1 (and i` is the `th bit in the binary representation of i) is a perfect
hash family.

A perfect hash family with
(
n
k

)
functions can be easily constructed, but much

more efficient constructions, probabilistic or explicit, are possible. E.g., picking
the h’s at random, it is enough to have |H| ≈ ek · k log n (for a specific size-k set
S, a random function is 1-1 w/prob k!/kk > e−k, by Sterling formula, and we
need to take care of about nk such sets).

We next describe the ad hoc PSM protocol, assuming a k-party PSM protocol
Π for a symmetric function f and a perfect hash family H.

Theorem 3.8. Assume that there is a k-party PSM protocol Π for a symmetric
function f with randomness complexity Rand(Π) and communication complex-
ity Comm(Π). Then, there is a k-out-of-n ad hoc PSM protocol for f with
randomness complexity O(ek · k log n ·

(
Rand(Π) + k2 ·max{Comm(Π), log n}

)
)

and communication complexity O(ek · k3 log nmax{Comm(Π), log n}).

Proof. Denote the parties of Π by Q1, . . . , Qk. We construct a k-out-of-n ad hoc
PSM protocol Π∗ as follows.

Randomness generation:

– Let p be a prime such that log p ≥ max{Comm(Π), log n}, where Comm(Π)
is the length of the messages in Π.

– For every h ∈ H do:
• Independently generate randomness for the hth copy ofΠ; let rh,1, . . . , rh,k

be the generated randomness for Q1, . . . , Qk respectively.
• Choose k random polynomials Ah,1(Y), . . . , Ah,k(Y) of degree k−1 over
Fp.

• Consider each polynomial Ah,j(Y) as an element in Fkp and share it in a k-
out-of-k additive sharing scheme; denotes its shares as Ah,j,1, . . . , Ah,j,k.

– The randomness of Pi in the ad hoc PSM protocol Π∗ is

(rh,h(i), Ah,h(i), Ah,1,h(i), . . . , Ah,k,h(i))h∈H .

Message generation for every Pi ∈ S:
– For every h ∈ H, party Pi computes mi,h – the messages that Qh(i) sends
in the PSM protocol Π on input xi with randomness rh,h(i). Party Pi sends
(Ah,h(i)(i) +mi,h)h∈H and, in addition, the shares (Ah,j,h(i))h∈H,j∈[k].

Assume that a set S of size k sends messages and the referee wants to compute
f(xS). The referee finds a function h ∈ H that is 1-1 on S. Let i ∈ S. Party Pi
plays the role of Qh(i) in the hth copy of Π, and sends the message Ah,h(i)(i) +
mi,h. Furthermore, all k parties in S send their shares in a k-out-of-k secret-
sharing scheme with the secret Ah,h(i). Thus, the referee can reconstruct Ah,h(i),
compute Ah,h(i)(i), and recover mi,h. Similarly, the referee can recover all k
messages in the hth copy of Π and can decode f(xS).

By the privacy property of protocol Π, the referee does not learn any addi-
tional information from an hth copy of Π, for every h such that h is 1-1 on S.
Furthermore, this is true also for the concatenation of the messages in all such
copies and, since f is symmetric, the output of the protocol in each such copy
is the same. On the other hand, in any copy where h is not 1-1 on S, the referee
does not get any information on Ah,h(i), since it gets at least two identical shares
of this secret. The referee gets at most k messages “encrypted” by the same se-
cret key Ah,h(i). The values {Ah,h(i)(i)}i∈S are k points on a random polynomial
of degree k − 1, thus, they are uniformly distributed and serve as random pads,
i.e., the referee gets no information from such hth copy of the PSM Π.

The randomness complexity of Π∗ is

|H| ·
(
Rand(Π) + k2 ·max{Comm(Π), log n}

)
≈ ek · k log n ·

(
Rand(Π) + k2 ·max{Comm(Π), log n}

)
,

To analyze the communication complexity of Π∗, note that for each h, each
party Pi sends its encrypted message and also a share for Ah,j , for all j ∈ [k].
All together, the communication complexity of each party is

|H| · k2 ·max{Comm(Π), log n} ≈ ekk3 log n ·max{Comm(Π), log n}.

ut

Remark 3.9. There may be several functions in H, say h, h′, that are 1-1 on S
(and, moreover, hS is different than h′S). Since we assume here that the function
f is symmetric, the output is the same in both copies of Π and, since the
randomness is independent, there is no additional information. If f was not
symmetric the referee may learn multiple outputs (under different orders) and
hence additional information on the input.

4 An ad hoc PSM Protocol based on a PSM Protocol for
a Related Function

In this section we construct an ad hoc PSM protocol for f from a PSM protocol
for a related function g. The construction is similar to the construction of the
ad hoc PSM protocol for SUM described in Section 1.1. To construct the ad hoc
PSM protocol for the k argument function f : Xk → Y , we define a (partial)
n-argument function g : (X ∪ {⊥})n → Y ∪ {⊥}, where if there are more than
n−k inputs that are ⊥, the function outputs ⊥, if there are exactly n−k inputs
that are ⊥, the function outputs the output of f on the k non-⊥ inputs, and if
there are less than n − k inputs that are ⊥, then the function is undefined (in
the latter case, we do not care what g outputs).

Lemma 4.1. If there exists a PSM protocol Πg for g with randomness com-
plexity Rand(Πg) and communication complexity Comm(Πg), then there exists
an ad hoc PSM protocol for f with randomness complexity Rand(Πg) + n ·
max{Comm(Πg), log n} and communication complexity n·max{Comm(Πg), log n}.

Proof. We construct an ad hoc PSM protocol Πf for f from the PSM protocol
Πg as follows.

Randomness generation:
– Generate randomness for the PSM protocol Πg; let r1, . . . , rn be the gen-
erated randomness of P1, . . . , Pn, respectively.

– Let m⊥,j be the message that Pj sends in Πg with randomness rj and input
⊥. Share m⊥,j using a k-out-of-n secret sharing scheme; let m⊥,j,i be the
i-th share.

– The randomness of Pi in the ad hoc PSM protocol is ri, (m⊥,j,i)j 6=i.
Message generation:
– The message of Pi on input xi is its message on input xi and randomness
ri in the PSM protocol Πg and, in addition, (m⊥,j,i)j 6=i.

Assume that parties in a set S of size exactly k send messages. Then, the
referee has the k messages in Πg of the parties in S with inputs xi 6= ⊥ and, for
each j /∈ S, it has k shares of the message m⊥,j . Thus, the referee can reconstruct
g(y1, . . . , yn) = f((xi)i∈S), where yi = xi if i ∈ S and yi = ⊥ otherwise. On the
other hand, since each party pi ∈ S does not send its share of m⊥,i, the referee
gets k − 1 shares of m⊥,i; hence, the referee has no information on m⊥,i. Thus,
when k parties send messages, the referee in Πf has the same information that

the referee has in Πg and the privacy requirement for Πf protocol follows from
the privacy requirement of the PSM Πg.

Assume that parties in a set S of size less than k parties send messages. In
this case, we claim that the referee in Πf gets no information even if we give it
more information, namely, m⊥,j for every Pj /∈ S. In this case, the referee gets
messages of inputs whose output is ⊥. By the privacy of the PSM protocol, these
messages are distributed as the messages when all the inputs are ⊥, that is, the
referee does not learn any information on the inputs.

The randomness in the above ad hoc PSM Πf is Rand(Πg) +n ·Comm(Πg).
The communication in Πf is O(n ·Comm(Πg)) (assuming Comm(Πg) is at least
log n). ut

Example 4.2. Assume that f : {0, 1}k → {0, . . . , k} is a symmetric function
(that is, the output of f only depends on the number of 1’s in the input). The
function f has a small branching program (i.e., the size of the branching program
is O(k2)), thus f itself has an efficient PSM protocol [17]. Furthermore, the
function g has a branching program of size O(nk2), thus, it has an efficient PSM
protocol, i.e., a PSM with communication complexity O(n2k4). This implies an
ad hoc PSM protocol for f with communication O(n3k4).

If a function f has a small non-deterministic branching program, then the
corresponding function g has a small non-deterministic branching program, thus,
by [17], g has an efficient PSM protocol. By Lemma 4.1, we get for all k ≤ n
efficient k-secure ad hoc PSM protocols for every function that has a small non-
deterministic branching programs.

Similarly, if f has a small circuit, then g has a small circuit, thus, by using
Yao’s garbled circuit construction [20, 14] we get a simulation-based-secure PSM
for g assuming the existence of a one-way function. By Lemma 4.1, we get for all
k ≤ n efficient computational k-secure ad hoc PSM protocols (with simulation-
based-security) for every function that has a small circuit assuming the existence
of a one-way function.

5 A Protocol for Equality

Define the equality function EQ : ({0, 1}`)k → {0, 1} as the function, whose
input is k strings of length ` and whose output is 1 if and only if all strings are
equal. We next present an ad hoc PSM protocol for EQ.

Lemma 5.1. There is a statistically-secure ad hoc PSM protocol for EQ whose
randomness complexity and communication complexity are O(n+ `).

Proof. We next describe the ad hoc PSM protocol.

Randomness generation:
– Let p be a prime number such that log p > max{n, `}.
– Choose at random an element a ∈ Fp such that a 6= 0.

– Choose k−1 random elements r0, . . . , rk−2 in Fp and define the polynomial

Q(Y) =
∑k−2
i=0 riY

i (over Fp).
– Choose n random elements j1, . . . , jn in Fp
– The randomness of Pi in the ad hoc PSM protocol is (ji, Q(ji), a).
Message generation for every Pi ∈ S:
– Pi sends ji, Q(ji) + axi.
Function reconstruction by the referee:
– Assume the referee gets k pairs (`1, z1), . . . , (`k, zk). If all point lie on a
polynomial of degree k − 2 answer “equal”, otherwise answer “not equal”.

First assume that all k inputs are equal, say to α. In this case the k pairs
lie on the polynomial Q(Y) + aα and the referee answers “equal”. Furthermore,
since the free coefficient of Q(Y) + aα is r0 + aα, the values (`1, z1), . . . , (`k, zk)
are independent of α.

We next consider the case that not all of the k inputs are equal. Since
j1, . . . , jn are uniformly distributed, we can assume, without loss of general-
ity, that S = {P1, . . . , Pk}. Fix any inputs x1, . . . , xk such that xk 6= x` for some
1 ≤ ` < k (again, this is w.l.o.g.). We prove that with probability at least 1−k/p
over the choice of j1, . . . , jk, the values z1, . . . , zk are uniformly distributed in
Fkp. In particular, this implies that with probability at least 1− k/p, the referee
answers “not equal”. Furthermore, it implies the privacy for this case.

Fix any j1, . . . , jk−1 and z1, . . . , zk−1. Let H(Y) and M(Y) be the polynomi-
als of degree k− 2 such that H(ji) = xi and M(ji) = zi for every 1 ≤ i ≤ k− 1.
Such polynomials exist and they are unique. Notice that for every a 6= 0 there
exists a unique polynomial Q(Y) of degree k − 2 that can be chosen in the ran-
domness generation of the protocol, where Q(Y) = M(Y)−a ·H(Y) (since both
the r.h.s. and the l.h.s. are polynomials of degree k − 2 that agree on the k − 1
points j1, . . . , jk−1). Thus, the message of Pk is

zk = Q(jk) + axk = M(jk)− a ·H(jk) + axk.

The protocol fails (i.e., outputs “equal” although not all inputs are equal) if and
only if zk = M(jk); the last equality is true if and only if H(jk) = xk. Notice that
since H(Y) 6= xk since H(j`) = x` 6= xk. Since H(Y) 6= xk is a polynomial of
degree k−2, there are at most k−2 values of jk such that H(jk) = xk. Thus, with
probability at least 1−(k−2)/p ≥ 1−(k−2)/2n, the referee in this case outputs
“not equal”. Assuming that such jk is not chosen, zk = M(jk)+a(−H(jk)+xk);
as a is chosen at random, the value zk is random (provided that the kth pair
does not lie on the polynomial). ut

6 Order Revealing Encryption from an Ad Hoc PSM
Protocol

An order revealing encryption is a private-key encryption that enables computing
the order between two messages (that is, checking if m1 < m2, m1 = m2, or
m1 > m2), given their encryptions (without knowing the private key), but does

not disclose any additional information. In this section, we show how to use ad
hoc PSM protocols to construct information-theoretically secure order revealing
encryption that is 2-bounded (namely, the encryption is secure as long as only
two messages are encrypted).

Definition 6.1. The greater than function, GTE` : {0, 1}`×{0, 1}` → {−1, 0, 1},
is defined as follows:

GTE`(x, y) =


−1 If x < y

0 If x = y

1 If x > y,

where we identify the strings in {0, 1}` with the integers in {0, . . . , 2` − 1}.
Definition 6.2 (Order Revealing Encryption (ORE): Syntax and cor-
rectness). Let ε : N→ [0, 0.5). An ε(λ)-ORE for messages in {0, 1}` is composed
of 4 efficient algorithms:

– GenORE is a randomized key generation algorithm, that on input 1λ (where
λ is a security parameter), outputs a key k;

– EncORE is an encryption algorithm, that on input message m and a key k,
outputs an encryption c;

– DecORE is a decryption algorithm, that on input an encryption c and a key
k, outputs a message m satisfying the following correctness requirement for
any m ∈ {0, 1}`:

Pr
[
k ← GenORE(1λ) : DecORE (EncORE(m, k), k) = m

]
≥ 1− ε(λ).

– CompORE is a comparison algorithm, that given any two encryptions c1, c2,
outputs a value in {−1, 0, 1} such that for any m1,m2 ∈ {0, 1}`:

Pr

[
k ← GenORE(1λ), c1 ← EncORE(m1, k),
c2 ← EncORE(m2, k) : CompORE (c1, c2) = GTE`(m1,m2)

]
≥ 1−ε(λ).

If the comparison algorithm is the comparison over the integers (e.g., it returns
−1 whenever c1 < c2), then the encryption is called Order Preserving Encryption
(OPE).

Remark 6.3. Given the private key k and an encryption c, one can use a bi-
nary search using CompORE to decrypt c. That is, we do not need to specify
the decryption algorithm. For efficiency, one can avoid this binary search by en-
crypting the message using a standard (semantically secure) encryption scheme
in addition to the ORE encryption.

We next define the security requirement of ORE. Our definition is the in-
formation theoretic analogue of the IND-OCPA security requirement from [8].
The definition of IND-OCPA is similar to the traditional IND-CPA definition of
private key encryption, however, as the adversary can learn the order between
two messages from their encryptions, the IND-OCPA definition prevents the ad-
versary from using this information by limiting the encryption queries that it
can make (see (1) in Definition 6.4 below).

Definition 6.4 (ORE: Security). Consider the following game between an
all-powerful adversary and a challenger:

– The input of both parties is a security parameter 1λ and a bound on the
number of queries 1t.

– The challenger chooses a random bit b with uniform distribution and gener-
ates a key k ← GenORE(1λ).

– For i = 1 to t do:
• The adversary chooses two message mi

0,m
i
1 ∈ {0, 1}` and sends them to

the challenger.
• The challenger computes ci ← EncORE(mi

b, k) and sends ci to the ad-
versary.

– The adversary returns a bit b′.

We say that the adversary wins if b = b′ and for every 1 ≤ i < j ≤ t

GTE`(m
i
0,m

j
0) = GTE`(m

i
1,m

j
1). (1)

Let ε : N → [0, 0.5). We say that an ORE is ε(λ)-secure if for every polyno-
mial t(λ) and every adversary A the probability that A with parameters 1λ, 1t(λ)

wins is at most 1/2 + ε(λ). We say that an ORE is t-bounded ε(λ)-secure if for
every adversary A the probability that A with parameters 1λ, 1t wins is at most
1/2 + ε(λ).

We next describe some relevant results for OPE and ORE. In this discussion
all encryption schemes are computationally secure. Order preserving encryption
was introduced by Agrawal et al. [1]; their motivation was encrypting a database
while allowing to answer range queries given the encrypted data (without the
secret key). A cryptographic treatment of OPE was given by Boldyreva et al. [8,
9]; they gave a formal definition of OPE (called IND-OCPA) and showed that,
in any OPE satisfying this definition, the length of the encryption is 2ω(`), where
` is the length of the messages (this is true even if the attacker can only ask to
encrypt 3 messages). In a follow up work, Boldyreva et al. [10, 11] defined ORE.
As ORE is a special case of multi-input functional encryption (MIFE) [15], it
is implied by indistinguishability obfuscation (iO). Boneh et al. [12] constructed
ORE directly from multi-linear maps (with bounded multi-linearity). t-bounded
ORE can be constructed based on the LWE assumption or from pseudorandom
generators computable by small-depth circuits [13].

We next show how to construct ORE from an ad hoc PSM protocol for the
greater than function GTE`.

Theorem 6.5. There exists a 2-bounded 1/2λ-secure ORE with messages in
{0, 1}` and encryptions of length O(`2λ+ λ2).

Proof. We start with a 2-out-of-n ad hoc PSM protocol ΠGTE for GTE: The
function GTE` has a deterministic branching program of size O(`) thus, by [17],
it has a PSM protocol with randomness and communication complexity O(`2).
By Theorem 3.8, GTE` has an ad hoc PSM protocol with complexity O(`2 log n+

log2 n). Note that Theorem 3.8 requires that the function for which we construct
an ad hoc PSM protocol is symmetric. As GTE`(m2,m1) = −GTE`(m1,m2),
the transformation described in Theorem 3.8 from a PSM protocol to an ad hoc
PSM protocol is valid for GTE`.

We next describe a construction of ORE, that is, we desribe algorithms
(GenORE,EncORE,CompORE) (by Remark 6.3 we do not need to describe
DecORE). We use the ad hoc PSM ΠGTE with n = 2λ parties (where λ is
the security parameter).

– Algorithm GenORE generates a key k by choosing a random string for
GenGTE, this key has length O(`2 log n+ log2 n). We emphasize that during
the key generation we do not apply GenGTE as its output is too long (it
contains n stings).

– Algorithm EncORE encrypts a message x by choosing a random party Pi
(where 1 ≤ i ≤ n) and using GenGTE(k) to generate the random string ri
of Pi in ΠGTE.5 The encryption of x is i and c ← EncGTE,i(x, ri) – the
message of Pi on input x and randomness ri.

– Algorithm CompORE((i1, c1), (i2, c2)) returns DecGTE({i1, i2}, c1, c2) if i1 6=
i2 and “FAIL” otherwise.

If two messages are encrypted using different parties (i.e., i1 6= i2), then
the correctness of the comparison and the security of ΠGTE guarantees that,
given the two encryptions, exactly their order is revealed (i.e., the first message
is smaller, equal, or greater than the second message). If the two messages are
encrypted using the same party (i.e., i1 = i2), then correctness and security are
not guaranteed. However, the probability of this event is 1/n = 1/2λ, which is
negligible. ut

Remark 6.6. In the proof of Theorem 6.5, we can replace the ad hoc PSM pro-
tocol for GTE` obtained via the PSM protocol from [17] by any ad hoc PSM
protocol for GTE` as long as its complexity is η(n, λ) logc n for some function η
and constant c. In particular, if we use a (2, t)-secure ad hoc PSM protocol for
GTE`, then the resulting ORE would be t-bounded secure.

The ORE of Theorem 6.5 is secure only when 2 messages are encrypted. If 3
messages are encrypted, then the adversary gets 3 messages of the ad hoc PSM
protocol for GTE` and the security of the ad hoc PSM protocol is broken. We
can construct a t-bounded 1/λ-secure ORE as sketched below:

– The key generation algorithms generates keys for α = poly(λ, t) copies of
the ORE of Theorem 6.5.

– The encryption algorithms encrypts m using a random subset of the keys of
size λ

√
α.

– Given encryptions of two messages, if there is a key that was used to encrypt
both messages, then use the comparison algorithm of that copy to compare
the two messages. The probability that no such key exists is 2−O(λ).

5 The time required to generate ri is O(`2 logn + log2 n).

The security of the above ORE is guaranteed as long as no 3 messages are
encrypted with the same key. The probability that there are 3 messages that are
encrypted under the same key can be reduced to 1/λ if α is big enough.

7 NIMPC vs. (k, t)-Secure Ad Hoc PSM

In this section we consider two notions of PSM protocols, (k, t)-secure ad hoc
PSM protocols and Non-Interactive secure MPC (NIMPC) protocols. Recall that
an ad hoc PSM is (k, t)-secure if the referee getting at most t messages does not
learn any information beyond the value of f on any subset of size k of the inputs.
A t-robust NIMPC for a function f is a PSM protocol, where a referee colluding
with t parties can only compute the values of the function when the inputs
of the non-colluding parties is fixed (see [4] for a formal definition of NIMPC
protocols). We show that the existence of NIMPC protocols is equivalent to the
existence of (k, t)-secure ad hoc PSM protocols.

In the information-theoretic setting, these results should be interpreted as
negative results, maybe implying that efficient protocols do not exists in both
models. In the computaional setting, this results imply an efficient construction
of computational ad hoc PSM protocols.

7.1 Ad hoc PSM ⇒ NIMPC

Given an n-out-of-2n ad hoc PSM protocol for a boolean function f , we construct
an n-party robust NIMPC protocol for f with the same complexity.

Lemma 7.1. If there exists an (n, t)-secure n-out-of-2n ad hoc PSM protocol
for a boolean function f : {0, 1}n → {0, 1}, then there exists an n-party (t− n)-
robust NIMPC protocol for f with the same communication complexity.

Proof. Let Π∗ be the guaranteed ad hoc PSM protocol. Consider the following
NIMPC protocol Π.

Randomness generation:

– Let r1, . . . , r2n ← GenΠ∗().

– Choose at random n random bits b1, . . . , bn.

– For i ∈ [n] let

• Mi,0 ← (2i− bi,EncΠ∗,2i−bi(r2i−bi , 0)).

• Mi,1 ← (2i− 1 + bi,EncΠ∗,2i−1+bi(r2i−1+bi , 1)).

– The randomness of Pi is Mi,0,Mi,1.

Message generation for every Pi ∈ S:

– Pi on input xi ∈ {0, 1} sends Mi,xi .

Function reconstruction by the referee:

– The referee gets n messages, where for each i it gets from Pi either the
messages of P2i or P2i−1. It uses the decryption of Π∗ to compute f .

We next argue that Π is robust. Let A be a set of parties in Π of size τ ≤ t−n.
The randomness of A and the messages of all other parties in Π are messages of
distinct n+τ ≤ t parties in Π∗. By the (n, t)-security of Π∗, from these messages
the referee in Π∗ can only compute the output of f on any subset of size n of
these parties in Π∗, i.e., the inputs of the parties in Π that are not in A are fixed.
Thus, in Π, the referee and the set A can only compute the residential function.
Thus, the (n, t)-security of Π∗ implies the (t− n)-robustness of Π. Notice that
the referee knows the identity of the party in Π∗ for which the messages was
generated; however, by choosing random bi’s, it does not know if this message
is for an input 0 or 1. ut

7.2 NIMPC ⇒ Ad Hoc PSM

Our goal is to construct a (k, t)-secure ad hoc PSM protocol for a boolean func-
tion f from an NIMPC protocol Π computing a related function. We would
like to use ideas similar to the construction in Section 4. Recall that, given
a k-argument function f : Xk → Y , we defined an n-argument function g :
(X ∪ {⊥})n → Y ∪ {⊥}, where if there are exactly n− k inputs that are ⊥ then
the output of g is the output of f on the k non-⊥ inputs, and it is ⊥ otherwise.6

We constructed a k-secure ad hoc PSM protocol for f by first generating the
randomness using the PSM for g, and sharing the messages of each party with
input ⊥. We would like to start from an NIMPC protocol for g and get a (k, t)-
secure ad hoc PSM protocol for f . There is a problem with this solution – in
the resulting ad hoc PSM protocol the referee will get for each active party mes-
sages for some input xi and for the input ⊥. The definition of the robustness of
NIMPC protocols guarantees that if it gets one message from a party, then the
referee can only evaluate the function on points where the input of this party
is fixed to some (unknown) value. The definition does not guarantee that if a
referee gets two messages from one party then it can only evaluate the output
on points where the input of this party is fixed to one of these two (unknown)
values.

To overcome this problem we define a new function g′′ : {0, 1}3n → Y with
3n variables x1,0, x1,1, x2,0, x2,1, . . . , xn,0, xn,1, y1, . . . , yn, where given an assign-
ment a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1, c1, . . . , cn of g′′, we define an assignment
a1, a2, . . . , an of g as follows:

ai =

⊥ if ai,0 = ai,1,
ci if ai,0 = 1, ai,1 = 0,
1− ci if ai,0 = 0, ai,1 = 1

and g′′(a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1, c1, . . . , cn) = g(a1, a2, . . . , an).

Theorem 7.2. If there is a 3n-party 2n-robust NIMPC protocol Πg′′ for g′′ with
randomness complexity Rand(Πg′′) and communication complexity Comm(Πg′′)

6 In Section 4, if there were less than n− k inputs that are ⊥, then the function was
undefined; here we need to define the output as ⊥.

then there exists a (k, n)-secure ad hoc PSM protocol for f with randomness
complexity O(Rand(Πg′′)+n·Comm(Πg′′)) and communication complexity O(n·
Comm(Πg′′)).

Proof. Denote the parties of the NIMPC Πg′′ by P1,0, P1,1, . . . , Pn,0, Pn,1, Q1,
. . . , Qn. We next describe an ad hoc PSM protocol Πf for f .

Randomness generation:
– Generate the randomness of Πg′′ for g′′; let r1,0, r1,1, . . . , rn,0, rn,1, q1,
. . . , qn be the generated randomness of P1,0, P1,1, . . . , Pn,0, Pn,1, Q1, . . . , Qn
respectively.

– For every 1 ≤ j ≤ n:

• Choose ci ∈ {0, 1} at random and let mi be the message that Qi sends
in Πg′′ with randomness qi and input ci.

• For every b ∈ {0, 1}, let mj,b be the message that Pj,b sends in Πg′′ with
randomness rj,b and input 0.

– The randomness of Pi in the ad hoc PSM protocol is

ri,0, ri,1, ci, (mi)1≤i≤n, (mj,b)1≤i≤n,b∈{0,1}.

Message generation for every Pi ∈ S:
– Let ui be the message that Pi,ci⊕xi sends in Πg′′ with input 1 and random-
ness ri,ci⊕xi .

– Pi sends (ci ⊕ xi), ui and, in addition, (mi)1≤i≤n, (mj,b)j 6=i,b∈{0,1}.

Assume that a set S ∈
(

[n]
k

)
sends messages. To compute the value of f on

the inputs of S, the referee applies the decoding procedure of Πg′′ , where for
every i ∈ [n],

– If i ∈ S, then the message of Pi,ci⊕xi is ui (i.e., an encoding of 1); otherwise
it is mi,ci⊕xi (i.e., an encoding of 0),

– the message of Pi,1−(ci⊕xi) is mi,1−(ci⊕xi) (i.e., an encoding of 0), and
– the message of Qi is mi (i.e., an encoding of ci).

The correctness follows as these messages correspond to the input

(zi,b)i∈[n],b∈{0,1}, (ci)i∈[n]

where:

– If i /∈ S, then zi,0 = zi,1 = 0, that is, it correspond to the input ai = ⊥ of g.
– If i ∈ S, then zi,ci⊕xi = 1 and z1−(i,ci⊕xi) = 0,

• If xi = ci, then zi,0 = 1 and zi,0 = 0, that is, it correspond to the input
ai = ci = xi of g,

• If xi 6= ci, then zi,0 = 0 and zi,0 = 1, that is, it correspond to the input
ai = 1− ci = xi of g.

That is, if i ∈ S, then it correspond to the input ai = xi of g.

To conclude, the referee reconstructs

g′′((zi,b)i∈[n],b∈{0,1}, (ci)i∈[n]) = g((xi)i∈S , (⊥)i/∈S) = f((xi)i∈S).

For the (k, t)-security, note that if a set T of size t′ sends messages in the
ad hoc PSM protocol for f , then the referee gets two messages for Pi,ci⊕xi for
every i ∈ S and one message for every other party. Thus, by the robustness of
the NIMPC protocol Πg′′ , the referee can only compute outputs of g, where the
input of every i /∈ S is fixed to ⊥ and the input of every i ∈ S is either xi or
⊥. Since g is defined to be ⊥ if the number of non-bottom inputs is not k, the
referee can only compute the values of f on subsets of size k of T . ut

The transformation of Theorem 7.2 also applies if the NIMPC protocol is
computationally-secure. Specifically, in [4] it is shown that if iO and one-way
functions exist, then there is a computational indistinguishably-secure NIMPC
protocol for every function. This implies that if iO and one-way functions ex-
ist then there is a computational (k, n)-indistinguishably-secure ad hoc PSM
protocol for every function f .

8 Ad Hoc Protocols for And and Threshold Imply
Nontrivial Obfuscation

Computational ad hoc PSM protocols for general functions imply obfuscation.
This follows from Lemma 7.1, showing that ad hoc PSM protocols imply NIMPC
protocols, and by results of [4], showing that NIMPC protocols imply obfusca-
tion. To prove this result, ad hoc PSM protocols for fairly complex functions,
i.e., universal functions, are used. In this section, we show that ad hoc PSM pro-
tocols for simple functions already imply obfuscation for interesting functions.
Specifically, computational ad hoc PSM protocols for AND with VBB security
imply point function obfuscation and ad hoc PSM protocols for threshold func-
tions with VBB security imply fuzzy point function obfuscation [7]. There are
several definitions of point function obfuscation in the literature (see [6]). In this
paper, we consider the strong virtual black-box notion of obfuscation of Barak
et al. [3] for point function and fuzzy point function obfuscation. This notion
was considered for point function obfuscation in, e.g., [19]. As the only known
constructions for fuzzy point function obfuscation are based on strong assump-
tions (e.g., iO), these results imply that even ad hoc PSM protocols with VBB
security for the threshold function may require strong assumptions.

Notation 8.1. For every x ∈ {0, 1}n, define the point function Ix : {0, 1}n →
{0, 1} where Ix(y) = 1 if x = y and Ix(y) = 0 otherwise. For every x ∈ {0, 1}n
and 0 < δ < 1, define the fuzzy point function F δx : {0, 1}n → {0, 1} where
F δx (y) = 1 if dist(x, y) ≤ δn and F δx (y) = 0 otherwise, where dist(x, y) is the
Hamming distance. We will also denote by Ix and Fx the canonical circuits that
compute these functions.

Lemma 8.2. If there exists an (n, 2n)-VBB-secure ad hoc PSM protocol for
AND, then there is a point function obfuscation, i.e., an obfuscation for {Ix}x∈{0,1}n .

Proof. The obfuscation algorithm of a point function Ix uses the computational
ad hoc PSM protocol ΠAND = (GenAND,EncAND,DecAND) for AND. We de-
note the 2n parties in ΠAND by {Pi,b}i∈[n],b∈{0,1}. Algorithm Obf(1n, x) is as
follows:

– Let (ri,b)i∈[n],b∈{0,1} ← GenAND(1n).
– For every i ∈ [n] let zi,xi ← 1 and zi,xi ← 0.
– For every i ∈ [n] and b ∈ {0, 1} let mi,b ← EncAND(zi,b, ri,b).
– Return a circuit C that on input y ∈ {0, 1}n computes

DecAND({(i, yi)}i∈[n], (mi,yi)i∈[n]).

Correctness: The circuit C returns the output of the decoding algorithm
Dec on the messages (mi,yi)i∈[n], which encode the inputs (zi,yi)i∈[n]. Hence, C
returns AND((zi,yi)i∈[n]). If y = x, then for every i ∈ [n], yi = xi and zi,yi = 1,
thus C returns 1. If y 6= x, then yi = xi for at least one i ∈ [n], thus zi,yi = 0
and C returns 0.

Security: Let A be an adversary attacking the obfuscation in the real world,
that is, the adversary gets the above circuit C. We construct a simulator Sim,
with an oracle access to Ix, such that there exists a negligible function negl() for
which, for every x ∈ {0, 1}n,

|Pr[A(1n, C) = 1]− Pr[SimIx(1n) = 1]| ≤ negl(n), (2)

where the first probability is taken over the randomness of A and the randomness
of Obf(1n, x) and the second probability is taken over the randomness of Sim.

We first define an attacker AAND against the ad hoc PSM protocol ΠAND:
AAND gets as an input 2nmessages and generates a circuit C from these messages
as Obf does, and executes A on C. By the VBB-security of ΠAND, there exists
a simulator Sim

AND
for the adversary AAND; this simulator SimAND should have

an oracle access to the function AND on any n of the 2n inputs (zi,b)i∈[n],b∈{0,1}.
The simulator Sim for the obfuscation, with oracle access to Ix, emulates

SimAND, where the queries to AND are answered as follows: if a query contains
two variables zi,0 and zi,1, for some i ∈ [n], then the answer is 0 (as the value
of one of them is zero). Otherwise, for every i there is exactly one yi such
that zi,yi is in the query; in this case zi,yi = 1 if and only if yi = xi, i.e.,
AND((zi,yi)i∈[n],b∈{0,1}) = 1 iff x = (y1, . . . , yn) iff Ix((y1, . . . , yn)) = 1. In this
case, Sim answers the query by invoking its oracle Ix. The VBB-security of ΠAND

implies that (2) holds. ut

For δ < 0.5, let Thδ : {0, 1}n → {0, 1} be the following function:

Thδ(x1, . . . , xn) = 1 iff

n∑
i=1

xi ≥ (1− δ)n.

We next construct fuzzy point function obfuscation from an ad hoc PSM protocol
for Thδ with VBB security. The construction and its proof of correctness are
similar to those in Lemma 8.2; however, the proof of security is more involved.
For this proof, we need the following claim.

Claim 8.3. Let δ < 0.5. There is an efficient algorithm that, given a point w
such that F δx (w) = 1 and an oracle access to F δx , can find x.

Proof. Let w = (w1, . . . , wn) and w = (w1, . . . , wn). Since dist(x,w) ≤ δn <
0.5n, it must be that dist(x,w) > 0.5n > δn, i.e., F δx (w) = 0 . There must be a j
such that F δx (w1, . . . , wj , wj+1, . . . , wn) = 1 and F δx (w1, . . . , wj−1, wj , . . . , wn) =
0. Furthermore, such j can be found by n − 1 queries to the oracle F δx . Let
v = (w1, . . . , wj , wj+1, . . . , wn); it must be that dist(x, v) = bδnc. If vi = xi,
for some i, and we flip the ith bit in v (i.e., consider v ⊕ ei), then the distance
between the resulting sting and x will be larger than δn. On the other hand,
if vi 6= xi, then dist(x, v ⊕ ei) < dist(x, v) ≤ δn. Thus, the following procedure
recovers x:

– For i = 1 to n: if F δx (x, v ⊕ ei) = 0 then xi = vi, otherwise xi = vi.
ut

Lemma 8.4. Let δ < 0.5. If there is an (n, 2n)-VBB-secure ad hoc PSM proto-
col for Thδ, then there is a fuzzy point function obfuscation, i.e., an obfuscation
for {F δx}x∈{0,1}` .

Proof. The obfuscation algorithm Obffuzzy of a fuzzy point function F δx uses the
computational n-out-of-2n ad hoc PSM protocolΠTh = (GenTh,EncTh,DecTh)
for Thδ. We denote the parties inΠTh by {Pi,b}i∈[n],b∈{0,1}. Algorithm Obf(1n, x)
is as follows:

– Let (ri,b)i∈[n],b∈{0,1} ← GenTh(1n).
– For every i ∈ [n] let zi,xi ← 1 and zi,xi ← 0.
– For every i ∈ [n] and b ∈ {0, 1} let mi,b ← EncTh(zi,b, ri,b).
– Return a circuit C that on input y ∈ {0, 1}n computes

DecTh({(i, yi)}i∈[n], (mi,yi)i∈[n]).

Correctness: The circuit C returns the output of the decoding algorithm
Dec on the messages ((mi,yi)i∈[n]), which encode the inputs (zi,yi)i∈[n]. Hence,
C returns Thδ((zi,yi)i∈[n]). If dist(x, y) ≤ δn, then yi = xi for at least (1 − δ)n
values of i, and zi,yi = 1 for at least (1 − δ)n values of i, thus, C returns 1. If
dist(x, y) > δn, then yi = xi for more than (1 − δ)n values of i, thus, zi,yi = 1
for less than (1− δ)n values of i and C returns 0.

Security: Let A be an adversary attacking the obfuscation in the real world.
We construct a simulator Simfuzzy, with an oracle access to F δx , such that there
exists a negligible function negl() for which for every x ∈ {0, 1}n

|Pr[A(1n, C) = 1]− Pr[Sim
F δx
fuzzy(1n) = 1]| ≤ negl(n), (3)

where the first probability is taken over the randomness of A and the randomness
of Obffuzzy(1n, x) and the second probability is taken over the randomness of
Simfuzzy.

We first define an attacker ATh against the ad hoc PSM protocol ΠTh: ATh

gets as an input 2n messages and generates a circuit C from these messages as
Obffuzzy does, and executes A on C. By the VBB-security of ΠTh, there exists
a simulator SimTh for the adversary ATh; this simulator SimTh should have an
oracle access to the function Thδ of any n of the inputs (zi,b)i∈[n],b∈{0,1}.

The simulator Simfuzzy for the obfuscation, with oracle access to F δx , em-
ulates SimTh, where the queries to Thδ are answered as follows: If for every
i there is exactly one yi such that zi,yi is in the query, then zi,yi = 1 if and
only if yi = xi, i.e., Thδ((zi,yi)i∈[n],b∈{0,1}) = 1 iff dist(x, (y1, . . . , yn)) ≤ δn iff

F δx ((y1, . . . , yn)) = 1. Thus, in this case, Simfuzzy answers the query by invoking
its oracle F δx .

The challenging case is when a query contains two variables zi,0 and zi,1 for
some i ∈ [n]; we call such queries “illegal”. In this case, we do not know how to
answer the query directly (e.g., as we did in Lemma 8.2). The idea of answering
the query is that if Thk returns 1 on the query, then the simulator can find a
point w such that F δx (w) = 1 (as explained below), from such point it finds x
(using Claim 8.3), computes (zi,b)i∈[n],b∈{0,1} as Obffuzzy does, and answers the
current and future queries using these values. If the simulator does not find such
point w, then it returns 0.

Consider a query to Thδ that contains exactly α pairs zi,0 and zi,1 for some
α > 0 and assume that the answer to the query is 1. Without loss of generality,
the query is

(zi,yi)1≤i≤n−2α, zn−2α+1,0, zn−2α+1,1, . . . , zn−α,0, zn−α,1

for some y1, . . . , yn−2α. The value of exactly α of the variables

zn−2α+1,0, zn−2α+1,1, . . . , zn−α,0, zn−α,1

is 1, thus,
∑n−2α
i=1 zi,yi + α ≥ (1− δ)n. Furthermore,

n∑
i=n−2α+1

zi,0 +

n∑
i=n−2α+1

zi,1 = 2α,

i.e., at least one of the sums is at least α. This implies that if the answer to the
query is 1, then Thδx(y1, . . . , yn−2α, 0, . . . , 0) = 1 or Thδx(y1, . . . , yn−2α, 1, . . . , 1) =
1. Therefore, for each “illegal” query, the simulator asks two queries to the oracle
Thδx; if the answers to both of them are zero, the simulator answers 0 to the query.
Otherwise, the simulator uses Claim 8.3 to find x, computes (zi,b)i∈[n],b∈{0,1} as
Obffuzzy does, and answers all further queries of SimTh using these values. The
VBB security of ΠTh implies thet (3) holds. ut

Acknowledgments. We thank David Cash and David Wu for helpful discussions
about Order Revealing Encryption.

The first author was supported by ISF grant 544/13 and by a grant from
the BGU Cyber Security Research Center. The second and third authors were
partially supported by ISF grant 1709/14, BSF grant 2012378, and NSF-BSF
grant 2015782. Research of the second author was additionally supported from
a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants
1619348, 1228984, 1136174, and 1065276, a Xerox Faculty Research Award, a
Google Faculty Research Award, an equipment grant from Intel, and an Okawa
Foundation Research Grant. This material is based upon work supported by the
Defense Advanced Research Projects Agency through the ARL under Contract
W911NF-15-C-0205. The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense, the National
Science Foundation, or the U.S. Government.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD international conference
on Management of data. pp. 563–574 (2004)

2. Applebaum, B., Raykov, P.: From private simultaneous messages to zero-
information arthur-merlin protocols and back. In: Kushilevitz, E., Malkin, T. (eds.)
Proc. of the Thirteenth Theory of Cryptography Conference – TCC 2016. Lecture
Notes in Computer Science, vol. 9563, pp. 65–82. Springer-Verlag (2016)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. of the ACM 59(2), 6
(2012)

4. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E.: Distribution design. In: Sudan,
M. (ed.) Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science. pp. 81–92. ACM (2016)

5. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) Advances in Cryptology – CRYPTO 2014. Lecture Notes in
Computer Science, vol. 8617, pp. 387–404. Springer-Verlag (2014)

6. Bellare, M., Stepanovs, I.: Point-function obfuscation: A framework and generic
constructions. In: Kushilevitz, E., Malkin, T. (eds.) Proc. of the Thirteenth Theory
of Cryptography Conference – TCC 2016. Lecture Notes in Computer Science, vol.
9563, pp. 565–594. Springer-Verlag (2016)

7. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology
– CRYPTO 2014. Lecture Notes in Computer Science, vol. 8617, pp. 108–125.
Springer-Verlag (2014)

8. Boldyreva, A., Chenette, N., Lee, Y., O’neill, A.: Order-preserving symmetric en-
cryption. In: Joux, A. (ed.) Advances in Cryptology – EUROCRYPT 2009. Lecture
Notes in Computer Science, vol. 5479, pp. 224–241. Springer-Verlag (2009)

9. Boldyreva, A., Chenette, N., Lee, Y., O’neill, A.: Order-preserving symmetric en-
cryption. Tech. Rep. 2012/624, IACR Cryptology ePrint Archive (2012), http:

//eprint.iacr.org/2012/624

10. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited:
Improved security analysis and alternative solutions. In: Rogaway, P. (ed.) Ad-

vances in Cryptology – CRYPTO 2011. Lecture Notes in Computer Science, vol.
6841, pp. 578–595. Springer-Verlag (2011)

11. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited:
Improved security analysis and alternative solutions. Tech. Rep. 2012/625, IACR
Cryptology ePrint Archive (2012), http://eprint.iacr.org/2012/625

12. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Se-
mantically secure order-revealing encryption: Multi-input functional encryption
without obfuscation. In: Oswald, E., , Fischlin, M. (eds.) Advances in Cryptology
– EUROCRYPT 2015. Lecture Notes in Computer Science, vol. 9057, pp. 563–594.
Springer-Verlag (2015)

13. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: Stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016. vol. 9666, pp.
852–880. Springer-Verlag (2016)

14. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: Proc.
of the 26th ACM Symp. on the Theory of Computing. pp. 554–563 (1994)

15. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F., Sahai, A.,
Shi, E., Zhou, H.: Multi-input functional encryption. In: Advances in Cryptology –
EUROCRYPT 2014. Lecture Notes in Computer Science, vol. 8441, pp. 578–602.
Springer-Verlag (2014)

16. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S. (ed.)
Proc. of the Fourth Theory of Cryptography Conference – TCC 2007. Lecture Notes
in Computer Science, vol. 4392, pp. 194–213. Springer-Verlag (2007)

17. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: 5th Israel Symp. on Theory of Computing and Systems. pp. 174–183
(1997)

18. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) Advances in Cryptology – CRYPTO 2010. Lecture
Notes in Computer Science, vol. 6223, pp. 577–594. Springer-Verlag (2010)

19. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology – EUROCRYPT
2004. Lecture Notes in Computer Science, vol. 3027, pp. 20–39. Springer-Verlag
(2004)

20. Yao, A.C.: How to generate and exchange secrets. In: Proc. of the 27th IEEE Symp.
on Foundations of Computer Science. pp. 162–167 (1986)

