
On The Exact Security of Message
Authentication Using Pseudorandom Functions

Ashwin Jha1, Avradip Mandal2 and Mridul Nandi1

1 Indian Statistical Institute, Kolkata, India, {ashwin.jha1991,mridul.nandi}@gmail.com
2 Fujitsu Laboratories Of America, Sunnyvale, USA, avradip@gmail.com

Abstract. Traditionally, modes of Message Authentication Codes(MAC) such as
Cipher Block Chaining (CBC) are instantiated using block ciphers or keyed Pseudo
Random Permutations(PRP). However, one can also use domain preserving keyed
Pseudo Random Functions(PRF) to instantiate MAC modes. The very first security
proof of CBC-MAC [BKR00], essentially modeled the PRP as a PRF. Until now
very little work has been done to investigate the difference between PRP vs PRF
instantiations. Only known result is the rather loose folklore PRP-PRF transition of
any PRP based security proof, which looses a factor of O(σ

2

2n) (domain of PRF/PRP is
{0, 1}n and adversary makes σ many PRP/PRF calls in total). This loss is significant,
considering the fact tight Θ(q

2

2n) security bounds have been known for PRP based
EMAC and ECBC constructions (where q is the total number of adversary queries). In
this work, we show for many variations of encrypted CBC MACs (i.e. EMAC, ECBC,
FCBC, XCBC and TCBC), random function based instantiation has a security bound
O(qσ2n). This is a significant improvement over the folklore PRP/PRF transition.
We also show this bound is optimal by providing an attack against the underlying
PRF based CBC construction. This shows for EMAC, ECBC and FCBC, PRP
instantiations are substantially more secure than PRF instantiations. Where as, for
XCBC and TMAC, PRP instantiations are at least as secure as PRF instantiations.
Keywords: MAC · CBC · EMAC · XCBC · FCBC · TMAC · domain preserving PRF
· PRP

1 Introduction
Message Authentication Codes or MACs are indispensable symmetric key cryptographic
primitives for providing communication integrity. Cipher Block Chaining MAC or CBC-
MAC is a popular mode of operation for constructing a MAC from a block cipher. The
CBC mode of operation was part of ISO standard [ISO11].

In prior works, the security of CBC-MAC has been extensively studied [BKR00, BPR05].
However, one drawback of CBC-MAC is all the messages must come from a prefix-free
family. To circumvent this issue EMAC or Encrypted MAC was developed as part of
RACE project [BdBB+95] and later it was proven secure by Petrank and Rackoff [PR00].
Afterwards, in [Pie06, JN16] the security bounds was improved and it was shown to be
optimal. However, still EMAC is only able to handle messages that are exact multiple
of the block length (input size of the underlying block cipher). Certainly, one can use
10∗ padding to convert the input message length to multiple of block size. This padded
EMAC is known as EMAC∗, which suffers from the drawback - even when the message is
exact multiple of block length one extra block cipher call is required. In [BR00, BR05],
Black and Rogaway proposed three refinements to EMAC called ECBC, FCBC and XCBC
that can handle arbitrary length messages without the extra block cipher call for messages
which are exact multiples of block length. Black and Rogaway’s proposals (as well as

mailto:ashwin.jha1991@gmail.com, mridul.nandi@gmail.com
mailto:avradip@gmail.com

2 On The Exact Security of MACs Using PRFs

EMAC) use multiple keys. In [KI03, KI04] and [IK03a] Iwata and Kurosawa modified the
XCBC construction and called it TMAC and OMAC, such that it can be instantiated with
only two or one key respectively, where as retaining all its previous benefits. Later, its
security bound was improved in [IK03b, Nan09, MM07].

In all these previous works the underlying primitive was assumed to be a block cipher
or a keyed family of random permutations. However, the CBC mode of operation can
also be used to construct a MAC when the underlying primitive is a domain preserving
pseudo random function (PRF) or a keyed family of domain preserving random functions.
In fact, the very first security proof of CBC-MAC in [BKR00] essentially models the block
cipher as a PRF. We believe, when it comes to CBC-MAC the choice of block ciphers or
pseudo random permutations (PRPs) over PRFs as the underlying primitive is primarily
for historical reasons, i.e. fast, secure, standardized block cipher implementations are
readily available compared to pseudo random functions. In fact, there has been little study
about the security of CBC-MACs instantiated by PRFs. Note, any PRP based MAC
security bound can be transformed to PRF based MAC security bound with a loss of
O(σ2/2n) security, where σ is the total number PRP/PRF calls in all queries with n-bits
block length. However this generic transformation is rather loose, and may not necessarily
capture the exact security of PRF based instantiations.

We only came across three prior works. First work is a study of iterated MAC
constructions by Preneel and van Oorschot [PvO99], which claims tight bounds for PRF-
based iterated MACs. But, we observe that the proof of the concerned result [PvO99,
Lemma 2] has a flaw (see Section 3.2.1). In particular, their argument only works when the
inputs to the underlying PRF are distinct at each message block index. This is certainly
not true for CBC-MACs as it is possible that two internal inputs collide for a given message.
Second one is the Diploma Thesis of Robert Berke [Ber03] where he showed, for prefix free
messages CBC-MAC can be attacked with advantage Ω(`

2q2

2n) (here the adversary makes q
many MAC queries of length at most ` blocks and block length is n-bits). This is in fact a
non trivial result which shows the gap between PRP vs PRF instantiation, because for
PRP instantiation of CBC-MACs such attacks are ruled out by Bellare et al. [BPR05]
which shows the upper bound is actually O(`q

2

2n). The third work is Guo et al’s [GJMN15]
recent Collision Distinguisher for an Iterated Random Function with advantage Ω(`q

2

2n).
As it turns out this attack can be easily translated to attack against PRF based EMAC,
ECBC, FCBC, XCBC and TMAC.

Given a lack of understanding of exact security of PRF based CBC-MAC constructions,
the primary goal of this work is to understand the gap between PRP vs PRF instantiation
of CBC-MAC and its derivative constructions. In Table 1, we provide best known (prior
to this work) security bounds for PRP and PRF based CBC-MAC, EMAC constructions.
Note, the best known attack (lower bound) for all PRP based constructions is the trivial
birthday attack. We provide our improved bounds covered in this work in Table 2.

1.1 Our Contribution
Theorem 4 summarizes the main technical contribution of this work. We show PRF based
EMAC constructions (EMAC, ECBC, FCBC, XCBC, TMAC) has an optimal security
bound Θ(qσ2n). The previously known best upper bound was O(σ

2

2n) (a straight forward
extension of PRP based bounds from [BPR05, Pie06, JN16, IK03b], by bounding PRP-
PRF advantage). Note, for the PRP based EMAC and ECBC the upper bound is known
to be optimal O(q

2

2n). In fact we show our bound is optimal by demonstrating an attack
against underlying PRF based CBC-MAC construction with advantage Ω(`q

2

2n), which
becomes Ω(qσ2n) for ` = σ/q (Theorem 3).

As we discussed before, Guo et al’s recent work [GJMN15] also shows a Ω(`q
2

2n) attack

Ashwin Jha, Avradip Mandal and Mridul Nandi 3

Table 1: Previously known security bounds of CBC-MACs
Random Permutation Random Function

Lower Bound Upper Bound Lower Bound Upper Bound
CBC-MAC
(Equal Length)

Ω(q
2

2n) O(`q
2

2n)
[BPR05]

Ω(q
2

2n) O(`q
2+σ2

2n) a

CBC-MAC
(Prefix Free)

Ω(q
2

2n) O(`q
2

2n)
[BPR05]

Ω(`
2q2

2n)
[Ber03]

O(`q
2+σ2

2n) a

EMAC,
ECBC,FCBC

Ω(q
2

2n) O(q
2

2n) [Pie06,
JN16]

Ω(`q
2

2n)
[GJMN15]b

O(σ
2

2n) a

XCBC, TMAC Ω(q
2

2n) O(σ
2

2n) [IK03b],
O(`q

2

2n)
[MM07]c

Ω(`q
2

2n)
[GJMN15]b

O(σ
2

2n) a

aTrivial extension of Permutation based bound. All together there are σ many random function calls.
bSubsection 1.1 talks about the limitation of this bound.
cIf the attacker makes q queries of block length `1, · · · , `q, then σ =

∑q

i=1 `i. If one query is
substantially longer than other queries then σ � `q and σ2 < `q2. So σ2 and `q2 are incomparable.

Table 2: New security bounds for CBC-MACs proved in this paper.
Random Function

Lower Bound Upper Bound
CBC-MAC (Equal Length) Ω(qσ2n) -
EMAC, ECBC Ω(qσ2n) a O(qσ2n)
FCBC Ω(qσ2n) a O(qσ2n)
XCBC, TMAC Ω(qσ2n) a O(qσ2n)

aSee Subsection 1.1, why our bound is a substantial improvement over [GJMN15]

against PRF based CBC-MAC construction. However, [GJMN15] can only achieve the
bound when q2 ≤ 2n

`2 . Subject to this condition, Ω(`q
2

2n) can be some constant only when q
is Ω(2n/2). This lower bound on q is actually no better than the trivial birthday attack
with advantage Ω(q

2

2n). Compared to that in Theorem 3 we show our lower bound holds
as long as ` < min(2n

5184 ,
2
n
2

4
√

3 ,
2
n
3

3√36). In fact, we can choose `, q ∈ Θ(2n/3) to achieve a
constant advantage.

Moreover, our attack against PRF based EMAC in Section 6, actually induces a collision
event against PRF based CBC-MAC construction. In our attack all the messages are of
equal length. Previously, the best known lower bound against PRF based CBC-MAC for
equal length messages was actually the trivial birthday attack. Whether this is a tight
bound for Equal length PRF based CBC-MACs or not, is still an open problem. Note, for
Prefix Free PRF based-MAC construction, Berke [Ber03] showed Ω(`

2q2

2n) attack matching
the known upper bound. But that attack can not be extended to Equal Length message
case.

2 Basic Definitions and Notations
2.1 Basic Notation
We use lowercase letters such as i, j for indices and integers, and f, g, h as functions.
In particular, we fix a positive integer n. For notational simplicity we denote 2n by N .
For any two integers a ≤ b, we write [a..b] (or simply [b] when a = 1) to denote the set
{a, a+ 1, . . . , b}. We use uppercase letters X,Y for variables, and calligraphic uppercase

4 On The Exact Security of MACs Using PRFs

letters S, T for sets. Let
∑

:= {0, 1}, and B :=
∑n, where the elements of

∑
and B are

called bits and blocks respectively. Let φ be a property defined for the elements of S
then S[φ] denotes the subset

{X ∈ S | X satisfies φ}.

For any set S, let S≤` := ∪`i=1Si, S+ := ∪∞i=1Si, and S∗ := ∪∞i=0Si, where S0 = ∅, the
empty set.

For a finite set S, X $← S denotes the uniform random sampling of X from S. For any
function f : B → B, f (0)(X) = X and f (i)(X) = f ◦ f (i−1)(X) for i ≥ 1. Let Func be the
set of all functions from B to B. We define set Func⊥ as

Func⊥ := {f | f : B ∪ {⊥} → B ∧ f(⊥) = 0n}.

Note that the uniform distribution over Func⊥ has the same probability mass function
(p.m.f) as Func, i.e., a constant function taking up the value N−N .

2.2 Collision Probability
We denote the probability of having a collision on k elements chosen uniformly and
independently from B as cpk. It is well known that,

1− exp
−k(k−1)

2N ≤ cpk ≤
k(k − 1)

2N [BG08]. (1)

2.3 Notation on Sequences and Strings
Let I and S be two sets. An S sequence X over the index set I is denoted as (Xα)α∈I
where Xα ∈ S for all α ∈ I. In this paper we mostly consider block sequences, i.e. S = B
and bit sequences, i.e. S =

∑
. Length of the sequence, denoted by |X||S| (or simply |X|

when S =
∑

) is |I|, the size of the index set. When the index set is [a..b], we also write
the sequence as a tuple or vector X[a..b] := (Xa, . . . , Xb) (X[b] when a = 1). Sometimes,
by abusing notation, X also represents the set {Xα : α ∈ I}. Similarly X[a..b] represents
{Xα : α ∈ [a..b]}. Note that, we can view S≤` as the set of all S sequences of lengths
at most `; S+ as the set of all S sequences of positive lengths; and S∗ as the set of all
S sequences (including zero length sequence). We may also view a sequence as a string.
For a string X = A‖B, A (respective. B) is said to be a prefix (respective. suffix) of
X. We write A <p X if A is a prefix of X and B <s X if B is a suffix of X. For two
strings A and B of lengths a and b respectively, a non-negative integer p := LCP(A;B)
(respective. s := LCS(A;B)) is called the largest common prefix (respective. largest common
suffix), if A[1..p] = B[1..p] and A[p+1] 6= B[p+1] (respective. A[a−s+1..a] = B[b−s+1..b] and
A[a−s] 6= B[b−s]).

Definition 1. Given a sequence X with an index set I, we associate an equivalence
relation ∼X over I as follows: α ∼X β if Xα = Xβ .

Let f : D → R and let X and Y be D and R sequences respectively with same index
set I. We write X f7−→ Y to mean that f(Xα) = Yα for all α ∈ I and we simply say that
f multi-maps X to Y . This is a property of a function. So Func[X 7−→ Y]represents the
set of all functions f multi-mapping X to Y . We say that (X,Y) is function compatible if
there exists a function f such that X f7−→ Y . The following proposition is easily verifiable.

Proposition 1. Let x and y be D and R sequences over an index set I. Then (x, y) is
function compatible if ∼x⊆∼y.1

1Here we view the equivalence relation, ∼x as {(α, β) ∈ I × I : α ∼x β} ⊆ I × I. The equivalence
relation ∼y is viewed similarly.

Ashwin Jha, Avradip Mandal and Mridul Nandi 5

2.4 PRF Security of Keyed Functions
Let D ⊆ B+ be a finite set. Let Func(D,B) be the set of all functions from D to B. A
Random Function from D to B is F(D,B) $← Func(D,B). A Keyed Function Family
FK(D,B) with key K ∈ K is a function from K×D to B. FK := F (K, ·) is called a keyed
function from D to B. When the domain and range sets are understood, we denote
random function as F and keyed function as FK .

Definition 2. Let FK be a keyed function family from D to B. We define the PRF-
advantage (or pseudorandom function advantage) of an adversary A against FK as,

AdvFK(A) :=

∣∣∣∣∣ Pr
K

$←K
[AFK = 1]− Pr

F $←Func
[AF = 1]

∣∣∣∣∣.
The maximum prf-advantage of FK is defined as

AdvFK(q, `, σ) = max
A

AdvFK(A)

where the maximum is taken over all adversaries A making at most q queries, of length
at most `, and the sum of the lengths of all queries is at most σ. Note that this is an
information theoretic definition and we allow an unbounded time adversary. Note that A
is allowed to make adaptive but distinct queries, i.e., for i ∈ [2..q] it can decide Xi after
observing Y1, . . . , Yi−1 but Xi 6= Xj for i 6= j ∈ [q]. Suppose the q queries are represented
by a sequence say X := (X1, . . . , Xq), so for any Y := (Y1, . . . , Yq) ∈ Bq we have,

Pr
F $←Func

[X F7−→ Y] = N−q.

2.5 Patarin’s Coefficient-H Technique
Let A be an adversary which makes q distinct queries (possibly adaptive) to FK . Let
the queries be X1, . . . , Xq and the corresponding FK outputs be Y1, . . . , Yq. We write
view(AFK) to denote the q-tuple of pairs ((X1, Y1), . . . , (Xq, Yq)) where Xi denotes the ith

query and Yi is the corresponding response.
For any q-tuple of pairs τ = ((X1, Y1), . . . , (Xq, Yq)), the following probability

IPFK (τ) := Pr
FK

[(X1, . . . , Xq)
FK7−→ (Y1, . . . , Yq)]

is called the interpolation probability, where the probability is taken under the randomness
of K. Here we assume that FK is stateless and so the above probability is independent of
the order of the pairs.

Theorem 1 (Coefficient-H Technique). Let Tgood be some set of q-tuples of pairs. Suppose
the interpolation probability for a (stateless) oracle O follows the inequality

IPO(τ) ≥ (1− ε) · IPF (τ) = (1− ε)N−q ∀ τ ∈ Tgood.

Then, for any adversary A we have,

AdvFK (A) ≤ ε+ Pr[view(AF) /∈ Tgood].

This technique was first introduced by Patarin in his PhD thesis [Pat91] (as mentioned in
[Vau03]). The proof of this theorem can be found in [Pat08].

6 On The Exact Security of MACs Using PRFs

3 CBC-MAC and Its Variants
CBC Function. The CBC (cipher block chaining) function with an oracle F $← Func,
viewed as the key of the construction, takes as input a message M = (M1, . . . ,Mb) ∈ Bb
with b blocks and outputs CBCF,M := outF,Mb . This is inductively computed as follows:
outF,M0 = 0n, and

outF,Mi = F(inF,Mi), inF,Mi = outF,Mi−1 ⊕Mi, i ∈ [b]. (2)

Throughout this paper, we call

inF,M = (inF,M1 , . . . , inF,Mb) and outF,M = (outF,M1 , . . . , outF,Mb),

the intermediate input and output vectors respectively, associated to an arbitrary
message M and a random function F . We drop the superscripts F and M when they are
obvious.

M1 M2 Mm−1 Mm

CBCF,M

in1 in2 inm−1 inm
out0 = 0n

out1 out2 outm−1 outm
F F F F

Figure 1: CBC function and its intermediate values where f ∈ Func.

EMAC Function. The EMAC [BdBB+95] function (E for encrypted) is derived from
the CBC function by additionally encrypting the output with another function F ′ $← Func
(independent of F). Formally, EMACF,F

′
(M) := F ′(CBCF,M).

Both CBC and EMAC functions work on inputs from B+. Black and Rogaway [BR05]
suggested three-key variants of EMAC, viz., ECBC, FCBC, and XCBC, to extend the
message space to

∑∗. Later Kurosawa and Iwata [KI04] gave a two-key variant for EMAC,
called TMAC. All these schemes encode a bit sequence M ∈

∑∗ into a block sequence
M := pad(M), defined as

M =
{
M‖10i if n - |M |
M otherwise

where i is the smallest non-negative integer such thatM‖10i ∈ B+. Let b = |M |, b′ = |M |n,
F1,F2,F3 be independently and uniformly chosen from Func, and K,K ′ be independently
and uniformly chosen from B.
ECBC Function. The ECBC [BR00] function is formally defined as,

ECBCF1,F2,F3(M) :=
{
F2
(
CBCF1,M

)
, n | b

F3
(
CBCF1,M

)
, n - b

FCBC Function. The FCBC [BR00] function is formally defined as,

FCBCF1,F2,F3(M) :=
{
F2
(
CBCF1,M [b′−1] ⊕M b′

)
, n | b

F3
(
CBCF1,M [b′−1] ⊕M b′

)
, n - b

XCBC Function. The XCBC [BR00] function is formally defined as,

XCBCF,K,K
′
(M) :=

{
F
(
CBCF,M [b′−1] ⊕M b′ ⊕K

)
, n | b

F
(
CBCF,M [b′−1] ⊕M b′ ⊕K ′

)
, n - b

Ashwin Jha, Avradip Mandal and Mridul Nandi 7

TMAC Function. The TMAC [KI04] function is formally defined as,

TMACF,K(M) :=
{
F
(
CBCF,M [b′−1] ⊕M b′ ⊕K

)
, n | b

F
(
CBCF,M [b′−1] ⊕M b′ ⊕ u ·K

)
, n - b

where u ·K represents the field multiplication of an n-bits non-zero non-one constant u
(defined in [KI04]) with K, in a specific representation of F2n (specified in [KI04]).
OMAC Function. The OMAC [IK03a] function is formally defined as,

OMACF (M) :=
{
F
(
CBCF,M [b′−1] ⊕M b′ ⊕F(0)

)
, n | b

F
(
CBCF,M [b′−1] ⊕M b′ ⊕ u · F(0)

)
, n - b.

3.1 PRF Analysis of CBC Variants
In general, the PRF analysis of CBC-MAC variants can be reduced to the analysis of some
collision events on the underlying CBC function. This has been the common technique for
the PRF analysis of PRP instantiated CBC-MAC variants. We will follow same technique
here and establish a relationship between the PRF advantage of CBC-MAC variants and
the collision probability of the CBC function. Basically, we show that the PRF advantage
of MAC ∈ {EMAC,ECBC,FCBC,XCBC,TMAC} is asymptotically tight in the collision
probability of the underlying CBC function. First we develop some new terminologies to
aid our discussions in rest of the paper. Following that we build the core results of this
paper in shape of Lemma 1, 2, Theorem 2, 3 and 4.

LetM1 andM2 be two distinct tuple of blocks with block lengthsm1 andm2 respectively.
Let INcollF (M1;M2) and OUTcollF (M1;M2) denote the events inF,M1

m1
= inF,M2

m2
and

outF,M1
m1

= outF,M2
m2

, respectively. We call INcollF (M1;M2) the input collision and
OUTcollF (M1;M2) the output collision events for a pair of messages M1 and M2. We
similarly define the collision events for a tuple of q ≥ 2 distinct messagesM = (M1, . . . ,Mq)
as

INcollF (M) =
⋃
i 6=j

INcollF (Mi;Mj),

and
OUTcollF (M) =

⋃
i 6=j

OUTcollF (Mi;Mj).

We define input-collision probability as inCP(M) = Pr[INcollF (M)] and output-
collision probability as outCP(M) = Pr[OUTcollF (M)]. It is easy to observe that
outCP(M) can be bounded by inCP(M). When INcoll is true OUTcoll is trivially true.
Otherwise, OUTcoll is true when the underlying random function has a collision at the
last intermediate output block. More specifically we have,

inCP(M) ≤ outCP(M) ≤ inCP(M) + q(q − 1)
2N . (3)

Let
inCPq,`,σ = max

M
inCP(M)

and
outCPq,`,σ = max

M
outCP(M)

where the maximum is taken over all q-tuple of distinct messages M having at most `
blocks each and the total number of blocks in all the queries is at most σ.

Lemma 1 (PRF–CBC Upper Bound). For q, `, σ ≥ 1 we have,

8 On The Exact Security of MACs Using PRFs

1. AdvEMAC(q, `, σ) ≤ inCPq,`,σ + q(q − 1)
2N .

2. AdvECBC(q, `, σ) ≤ inCPq,`,σ + q(q − 1)
2N .

3. AdvFCBC(q, `, σ) ≤ inCPq,`,σ.

4. AdvXCBC(q, `, σ) ≤ inCPq,`,σ + qσ

N
+ q(q − 1)

2N .

5. AdvTMAC(q, `, σ) ≤ inCPq,`,σ + qσ

N
+ q(q − 1)

2N .

3.1.1 Proof of Lemma 1.1, 1.2, and 1.3

Following [BR05, BPR05, Pie06, JN16], we view EMAC, ECBC, and FCBC as instances
of the Carter-Wegman (CW) paradigm [WC79]. We discuss the implication of this for
each of the schemes below:

1. EMAC and ECBC: In case of EMAC and ECBC, we consider the output of the
underlying CBC function as the output of an almost-universal hash function. For
EMAC the final random function F ′ acts on the output of this hash function.

For ECBC the final random function is either F2 or F3 depending upon the padding
result. Also observe that in this case the output collision on the CBC outputs for
two messages, one each from B+ and

∑∗ is of no use for the adversary as the final
outputs are independent due to the independence of F2 and F3. So we assume that
the messages are from B+. Now using CW paradigm we have,

AdvE(q, `, σ) ≤ outCPq,`,σ

for E ∈ {EMAC,ECBC}. The result follows by simple application of Equation 3.

2. FCBC: In case of FCBC, we consider the input to final random function as the
output of an almost-universal hash function. Again using similar arguments as in
the case of ECBC we assume that the messages are from B+. For the ith and jth
messages (Mi,Mj) we have to bound the probability of

CBCF1,Mi,[mi−1] ⊕Mi,mi = CBCF1,Mj,[mj−1] ⊕Mj,mj .

This is nothing but

outMi
mi−1 ⊕Mi,mi = outMj

mj−1 ⊕Mj,mj

inMi
mi = inMj

mj

Here we dropped the superscript F1 as it is obvious. Now using CW paradigm we
have,

AdvFCBC(q, `, σ) ≤ inCPq,`,σ.

Ashwin Jha, Avradip Mandal and Mridul Nandi 9

3.1.2 Proof of Lemma 1.4 and 1.5

We prove the result for XCBC here. The proof for TMAC can be obtained by slight modi-
fication of this proof. Let Tgood := {(M1, T1), . . . , (Mq, Tq)} be the set of all input output
pairs with input messagesM = (M1, . . . ,Mq) ∈ (

∑+)q and outputs T = (T1, . . . , Tq) ∈ Bq
such thatMi’s are distinct and Ti’s are also distinct. Also letM := (M1, . . . ,Mq) ∈ (B+)q
be the padded version ofM, where for all i ∈ [q], |M i| = mi ≤ `, and

∑q
i=1 mi ≤ σ. Triv-

ially, random function F returns a collision pair on any q distinct queries with probability
at most

(
q
2
)
2−n for any adversary A. Thus,

Pr[view(AF) /∈ Tgood] ≤
q(q − 1)

2n+1 .

Using coefficient H-technique, now we only need to bound the relationship between the
interpolation probabilities. We fix τ := (M, T) ∈ Tgood. Let

in =
(
inM1
m1
⊕K1, . . . , inMq

mq ⊕Kq

)
,

where

Ki =
{
K if Mi ∈ B+

K ′ otherwise.
Let Fresh denote the event,

∀ r, r′ ∈ [q] and i ∈ [mr′],
(
inr 6= inMr′

i

)
∧
(
r 6= r′ =⇒ inr 6= inr′

)
.

Clearly the output of XCBC is completely random, when Fresh holds. Now it is easy to
see that,

Pr
F,K,K′

[M XCBC7−→ T | Fresh] = Pr
F,K,K′

[in F7−→ T | Fresh] = 1
Nq

.

So the interpolation probability of XCBC can be written as,

Pr
F,K,K′

[M XCBC7−→ T] = Pr
F,K,K′

[M XCBC7−→ T | Fresh]× Pr
F,K,K′

[Fresh]

= 1− PrF,K,K′ [¬Fresh]
Nq

.

Once we upper bound PrF,K,K′ [¬Fresh], we are done by the application of coefficient-H
technique. Now observe that the event ¬Fresh holds if one of the following three events
occur:

1. B1 := ∃ r, r′ ∈ [q], such that r 6= r′, Mr,Mr′ ∈ B+ (or Mr,Mr′ /∈ B+), and inr = inr′ .

2. B2 := ∃ r, r′ ∈ [q], such that r 6= r′, Mr ∈ B+ and Mr′ /∈ B+, and inr = inr′ .

3. B3 := ∃ r, r′ ∈ [q] and i ∈ [mr′ − 1], such that inr = inMr′
i .

Pr[B1] : Note that for B1 the masking keys do not play any role, and there is actually a
collision on the output of the underlying CBC function. So we can bound Pr[B1] in terms
of inCP, i.e,

Pr[B1] ≤ inCPq,`,σ.

Pr[B2] : For a fix f ∈ Func, the conditional probability of B2 is dependent only on the
randomness of the masking keys. Further the two masking keys K and K ′ are uniformly
and independently distributed over B. Now it is easy to see that

Pr[B2 | F = f] ≤
∑

r<r′∈[q]

Pr
[
K ⊕K ′ = inMr

mr ⊕ inMr′
mr′
| F = f

]
=
(
q
2
)

N
.

10 On The Exact Security of MACs Using PRFs

Summing over all functions f ,

Pr[B2] =
∑
f∈Func PrF,K,K′ [B2 | F = f]× Pr[F = f] ≤

(
q
2
)

N
.

Pr[B3] : For a fix f ∈ Func, the conditional probability of B3 is dependent only on the
randomness of the masking keys (either one of them). Now it is easy to see that

Pr[B3 | F = f] ≤
∑
r∈[q]

∑
r′∈[q]

i∈[mr′−1]

Pr
Kr

[
Kr = inMr

mr ⊕ inMr′
i | F = f

]
≤ qσ

N
.

Summing over all functions f ,

Pr[B3] =
∑
f∈Func PrF,K,K′ [B3 | F = f]× Pr[F = f] ≤ qσ

N
.

So we have,

Pr[¬Fresh] ≤ inCPq,`,σ + qσ

N
+
(
q
2
)

N
.

�

Remark 1. Note that the PRF analysis of OMAC is missing in lemma 1. Our proof
technique cannot be applied directly in case of OMAC. We bound the probability of getting
a collision at the input block of the final function. For CBC-MAC variants (other than
OMAC) this can be argued using the randomness of the independent random functions or
the auxiliary keys. In case of OMAC, F(0) is used to mask the final internal input block.
Whenever the first message block is 0, F(0) is already defined, hence the current proof
technique will not work. Having said that, we believe that identical upper bound should
hold for OMAC also.

Lemma 2 (PRF–CBC Lower Bound). Let q, ` ≥ 1 and M := (M1, . . . ,Mq) be a q-
tuple of distinct messages such that for i ∈ [q], Mi ∈ B × (0n)`−1. Then ∀ MAC ∈
{EMAC,ECBC,FCBC,XCBC,TMAC,OMAC}, we have

AdvMAC(q, `) ≥ inCP(M)
(

1− q(q − 1)
2N

)
.

Proof. To show the lower bound we present an adversary A that attains the claimed
PRF advantage using the given message tuple. Consider the following attack algorithm
for MAC:

1. A queries Mi ∈M and observes the corresponding output Ti.

2. If Ti = Tj for some j < i then A returns 1.

Let pMAC and pF denote Pr[AMAC = 1] and Pr[AF = 1] respectively. Then we know
that,

AdvMAC(q, `, σ) ≥
∣∣pMAC − pF

∣∣.
For MAC ∈ {EMAC,ECBC,FCBC} we have,∣∣pMAC − pF

∣∣
=
∣∣outCP(M) + (1− outCP(M)) · cpq − cpq

∣∣ (4)
=
∣∣outCP(M) · (1− cpq)

∣∣ (5)
≥
∣∣inCP(M) · (1− cpq)

∣∣ (6)

≥ inCP(M) ·
(

1− q(q − 1)
2N

)
(7)

Ashwin Jha, Avradip Mandal and Mridul Nandi 11

Here we use equation (3) from (5) to (6) and equation (1) from (6) to (7). We can have
similar analysis for MAC ∈ {XCBC,TMAC,OMAC} by replacing outCP with inCP in
(4). �

Note that due to the choice of messages (a non-zero block followed by `− 1 zero blocks)
in the attack, the CBC function can be viewed as an iterated random function f (`). In
other words, our attack also applies on the general iterated random function. Lemma 1
and 2 show that the PRF advantages of EMAC, ECBC, FCBC, XCBC, and TMAC are
tight in inCP of CBC function.

3.2 Main Results of This Paper
Now we state the main technical results of this paper. The following theorems quantify
inCPq,`,σ. The proofs are postponed to later sections.

Theorem 2 (Upper Bound Theorem). Let q, `, σ ≥ 1. LetM = (M1, . . . ,Mq) be a q-tuple
of distinct messages such that Mi ∈ Bmi , 1 ≤ mi ≤ ` for all i ∈ [q], and

∑q
i=1 mi ≤ σ.

Then we have,

inCPq,`,σ(M) ≤ qσ

N
+ `σ

N
+ 8q`3σ

N2 .

Theorem 3 (Lower Bound Theorem). Let q, `, σ ≥ 1. LetM = (M1, . . . ,Mq) be a q-tuple
of distinct messages such that Mi ∈ B × (0n)`−1. Then we have,

inCP(M) ≥
(
q

2

)
`− 1
N

exp
(
− 4`2

N

)
− 3
(
q

3

)(
2`2

N2 + 6`6

N3

)

− 1
2

(
q

2

)(
q − 2

2

)(
`2

N2 + 6`3 + 2`5

N3 + 28`8

N4

)

For `, q ≥ 3, q2`
N < 1 and ` < min(N

5184 ,
N

1
2

4
√

3 ,
N

1
3

3√36), the above expression is at least q2`
12N .

Further if we take ` = σ
q , the expression is at least qσ

12N .

Note that in Lemma 2, the advantage can be lower bounded to 1
2 inCP(M) for q <

√
N .

Using Lemma 1, 2, and Theorem 2, 3 we have the exact PRF security bounds.

Theorem 4 (PRF Bound). Let q, `, σ ≥ 3, such that q2`
N < 1, q <

√
N, ` = O(q), and

` < min(N
5184 ,

N
1
2

4
√

3 ,
N

1
3

3√36 , q). Then ∀ MAC ∈ {EMAC,ECBC,FCBC,XCBC,TMAC}, the
PRF advantage of MAC is asymptotically tight in terms of q, ` and σ, i.e.,

AdvMAC(q, `, σ) = Θ
(qσ
N

)
.

From the above discussion it is clear that, we are only left with the analysis of the collision
probability of CBC. More specifically we have to prove Theorem 2 and 3. In [BPR05]
Bellare et al. used graph based counting technique to bound the collision probability.
The general idea is to map the collision events for a given input (or output) vector to
a graph representing the CBC computation. Later this technique was also employed
in [Pie06, JN16]. Following [BPR05, Pie06, JN16] we also use structure graphs to bound
the collision probability.

12 On The Exact Security of MACs Using PRFs

3.2.1 A Note on Preneel and van Oorschot’s Claim

Preneel and van Oorschot [PvO99] gave a result on the input collision probability [PvO99,
Lemma 2] for generic iterated MACs. Informally, they claim:

Let f be a compression function for n+m to n bits. We view the (n+m)-bit input
as (h, x) where |h| = n and |x| = n. If f(·, x) is a uniform random function for all x,
then for 2 ≤ q � 2n distinct inputs which have the last s blocks in common, the collision
probability is approximately 1− exp

(
−q(q−1)s

2n+1

)
.

For a uniform random function F , if we define f(h, x) = F(h ⊕ x), then the resulting
iterated MAC is CBC-MAC. So, it would seem that Theorem 2 and 3 follow from the
above claim (by using s = O(`)).

However, we observe that the proof of [PvO99, Lemma 2] is flawed. In particular,
consider the case, s > 0. An output collision implies collision at any of the last s + 1
iterations. Now, the authors incorrectly argue that (non-)collision event at any of these
indices are independent of others. This argument only works if we can ensure that the
internal inputs are all distinct for any message. Indeed, it is possible that the inputs at the
concerned index collide with some previous inputs, which may lead to a trivial collision at
the concerned index. So, the argument is not correct in general.

Consider the CBC-MAC case. The compression function f is based on a length-
preserving random function F with n-bit input. Here, we map 2n-bit to n-bit, which
clearly means that there is a non-zero probability that two internal inputs collide for a
given message.

Now, suppose f is based on a compressing random function F from n+m to n bits,
where m ≥ n. In this case, Preneel and van Oorschot’s argument works if we domain
separate the input at each index by using counter-based encoding. In fact, the proof is
straightforward in this case.

4 Structure Graph
In this section we introduce and setup a tool from [BPR05, Pie06, JN16], called structure
graph, that will aid our analysis of the CBC collision probability.

4.0.1 A Note on Directed Edge-Labeled Graph

A directed edge-labeled graph is a pair G := (V, E) with E ⊆ V×V×L where V is the set of
vertices, L is the set of edge labels, and E is the set of edges along with their corresponding
labels. In this paper we will consider only those directed edge-labeled graphs where for
every vertices u, v ∈ V there exists at most one label a ∈ L with (u, v, a) ∈ E . We also
write u a−→ v to mean that (u, v, a) ∈ E .
Convention: By abusing notation, E also denotes the set of unlabeled edges and the label
a of the edge e := (u, v) is expressed as LG(e) (this notation makes sense as there is a
unique choice of the label for an edge) or simply L(e) whenever the graph is understood.
For an edge e := (u, v), vertex u (or v) is called a predecessor (or successor) of v (or u
respectively). An edge (u, v) is called a loop if u = v. We define two sets:

1. Predecessor set of a vertex v is nbd(∗ → v) := {u : (u, v) ∈ E}.

2. Similarly we define nbd(v → ∗) := {u : (v, u) ∈ E}, the successor set of v.

Definition 3 (Degree). In-degree degin(v) of a vertex v is defined as the size of |nbd(∗ →
v)|, i.e., degin(v) = |nbd(∗ → v)|. Similarly, out-degree degout(v) is defined as degout(v) =
|nbd(v → ∗)|. Degree deg of v is defined as the sum of degin(v) and degout(v), i.e.,
deg = degin(v) + degout(v).

Ashwin Jha, Avradip Mandal and Mridul Nandi 13

Definition 4 (Walk, Path and Cycle). A walk of length s is defined as a vertex sequence
w := (w0, . . . , ws), such that wi−1 → wi for all i ∈ [s]. We define label of the walk as
L(w) := (a1, . . . , as) where ai = L(wi−1, wi), i ∈ [s]. A subwalk is defined as a consecutive
subsequence w[a..b] of a walk w[0..s] where 0 ≤ a ≤ b ≤ s. A walk sequence w[0..s] is said
to be: a path if it has s+ 1 distinct nodes; a cycle if it has s distinct nodes and ws = w0.
Note that a loop is also a cycle with s = 1.

Definition 5 (t-unicycle). A t-unicycle is a connected directed graph G = (V, E) where
∀ v ∈ V, degout(v) ≤ 1 ∨ degin(v) = 0, and E is a union of cycle C and t distinct paths
P1, · · · , Pt where exactly one endpoint of Pi is a vertex of C and the other endpoint must
have zero in-degree. The paths Pi may not be disjoint.

Definition 6 (Isomorphism). Let G1 = (V1, E1) and G2 = (V∗1 , E2) be two directed
graphs. A function α : V1 → V∗1 is an isomorphism from G1 to G2 if α is a bijection and
(u, v, a) ∈ E1 if and only if (α(u), α(v), a) ∈ E2. In this case, we write G1 ∼= G2.

When α is an injective function we can restrict the range set of α such that the restricted
range set is the image set of α. This makes the function bijective. We call the graph G′2
so obtained as α-transformed G1 and we write G′2 = α(G1).

Definition 7 (Function Graph). A directed edge-labeled graph G = (V, E) is called a
function graph if

∀ u ∈ V, @ v1, v2 ∈ nbd(u→ ∗) such that v1 6= v2 and LG(u, v1) = LG(u, v2).

In other words, for every vertex u and a label a we can find at most one successor v for
which the label of the edge (u, v) is a.
This observation can be extended over walks in a function graph G as follows:

w1,0 = w2,0, L(w1) = L(w2) ⇒ w1 = w2.

So if there is a walk with label M then it must be unique and we call such a walk an
M -walk (Note, here M is a sequence of message blocks).

4.1 Input-Structure Graph
Notations in this section. Let M = (M1, . . . ,Mq) be a q-tuple of distinct messages
such that Mi ∈ Bmi , 1 ≤ mi ≤ ` for all i ∈ [q], and

∑q
i=1 mi ≤ σ.

4.1.1 Intermediate Inputs and Outputs

We extend the definition of the CBC function (equation (2), where F ∈ Func) for any
message Mi ∈M over any f ∈ Func⊥ by setting inf,Mi

0 =⊥, and then following the normal
CBC computation. Recall that this extension does not hamper our analysis, as the uniform
distribution over Func⊥ follows the same p.m.f as Func. This extension may (or may not)
look artificial at the moment, but it will greatly simplify some of the definitions and proofs
that we discuss later. From now onwards, f and F will have their usual meaning, but over
the set Func⊥.
Index Set. We define the index set

I = {(r, i) : r ∈ [q], i ∈ [0..mr]}

and the dictionary order ≺ on it as follows: (r, i) ≺ (r′, i′) if r < r′ or r = r′ and i < i′.
Let X be a sequence over this index set. For any r ∈ [q], we denote the subsequence
(Xr,0, . . . , Xr,mr) by Xr,∗.

14 On The Exact Security of MACs Using PRFs

Sequences for Intermediate Inputs and Outputs. We denote the sequence of in-
termediate outputs and inputs over the index set I as outf,M and inf,M respectively
where

outf,Mr,∗ = outf,Mr , inf,Mr,∗ = inf,Mr , ∀r ∈ [q].
For a tuple of messagesM, a block sequence X is said to be realizable if there exists a

function f ∈ Func⊥, such that X = inf,M. Clearly, for all r ∈ [q], Xr,0 =⊥ for a realizable
X. We denote the set of all realizable block sequences forM by INM. The equivalence
relation ∼X induced by a realizable sequence X is called the collision relation. Later
we try to bound the number of realizable sequences mapping to a collision relation.

4.1.2 (Block-Vertex) Input-Structure Graphs

Definition 8 (Block-Vertex Input-Structure Graph). The block-vertex input-structure
(BINS) graph BINstructf,M for a function f and a message tupleM is defined by the set
of labeled edges

E := ∪qr=1{(inr,i−1, inr,i,Mr,i) : i ∈ [mr]}.

A BINS graph is a graph theoretic representation of the intermediate input vector
inf,M. Clearly, ⊥∈ V has zero in-degree and positive out-degree, and BINstructf,M is a
union of Mi-walks, for i ∈ [q]. Note that as explained below,

u
A−→ v ⇒ f(u)⊕A = v. (8)

So, for every u ∈ V , all outward edges (similarly for inward edges) have distinct edge labels.
Using this property, it is easy to see that the BINS graph is a function graph. So the
walks are unique and we denote them by wMi

or simply wi whenever the message tuple
is understood. See Fig. 2 for a single message (i.e., q = 1) in which the input vector is
stored in a directed graph. We denote the set of all BINS graphs by BINstructM. While

⊥
1

2
1

0

0

Figure 2: Let M1 = (1, 0, 0, 0, 0) and f(1) = 2, f(2) = 1. For any such f , we have outf =
(0, 2, 1, 2, 1, 2) and inf = (⊥, 1, 2, 1, 2, 1). However, the graph consists of three vertices {⊥, 1, 2}
and edge set E = {(⊥, 1, 1), (1, 2, 0), (2, 1, 0)}.

storing the intermediate input sequence as a set of labeled edges, we may loose the order as
well as the repetition of the elements. Interestingly, we see that we can uniquely reconstruct
the intermediate input sequence from such an edge-labeled graph by using uniqueness of
Mi-walks. More precisely, infr,i = wr,i. Further the collision relation induced by the input
sequence can also be rebuilt by using the Mi-walks. The following lemma is a simple yet
important result.

Proposition 2. Let X and Y be two realizable sequences and G and G′ be the associated
BINS graphs. Then,

∼X=∼Y ⇐⇒ G ∼= G′.

Proof. The proof is left as an exercise for the reader. �

Definition 9 (Input-Structure Graph). For every vertex v of a BINS graph G = (V, E), we
define a mapping α : V → I as αv = α(v) = (r, i) where (r, i) is the minimum index such
that wr,i = v. Clearly, it is an injective mapping with an image set say V∗. Input-structure
(INS) graph G∗ = (V∗, E∗) associated to a BINS graph G is the α-transformed G, i.e.,
G∗ = α(G). The INS graph associated with f andM is denoted by INstructf,M.

Ashwin Jha, Avradip Mandal and Mridul Nandi 15

Example 1. Let M1 = (M1,1,M1,2,M1,3,M1,2,M1,4) and M2 = (M2,1) be two messages
such that M1,1,M1,2,M1,3,M1,2,M1,4 and M2,1 are distinct. For f ∈ Func⊥ let inf,M1 =
(Y0 =⊥, Y1, Y2, Y1, Y2, Y3) (Y1, Y2, Y3 are distinct); outf,M1 = (0n, f(Y1), f(Y2), f(Y1),
f(Y2), f(Y3)) and inf,M2 = (⊥, Y3);outf,M2 = (0n, f(Y3)). The corresponding BINS graph
BINstructf is as shown in fig. 3(a) and INS graph INstructf is shown in fig. 3(b).

Y0 =⊥
Y1

Y2Y3

(a)

α−→

(1, 0)
(1, 1)

(1, 2)(1, 5)

(b)

M1,1

M1,2M1,3

M1,4

M2,1

M1,1

M1,2M1,3

M1,4

M2,1

Figure 3: BINS graph BINstructf (a) and the corresponding INS Graph INstructf (b).

Let w∗r denote the Mr-walk in INstructf,M. It is easy to see that an INS graph is
again a union of Mr-walks w∗r starting from (1, 0).2 Further, (1, 0) (i.e. α(⊥)) has zero
in-degree. We denote the set of all INS graphs for M by INstruct(M). This set has a
probability distribution induced due to the uniform distribution on Func⊥. The following
proposition is just an extension of proposition 2.

Proposition 3. Let X and Y be two realizable sequences such that G and G′ are the
associated BINS graph, and G∗ and G∗′ are the associated INS graphs. Then,

∼X=∼Y ⇐⇒ G ∼= G′ ⇐⇒ G∗ = G∗
′
.

For a tuple of message M and a function f , let us try to reconstruct a BINS graph G
(there can be more than one candidates for G) from the corresponding INS graph G∗.
Specifically we have to find a mapping Y : V∗ → B ∪ {⊥} satisfying certain restrictions.
For instance, by definition, Yi := Y (i) should all be distinct as the valid block label is
injective (distinct vertices should get distinct block labels). In addition to this, whenever
e1 := (u, z), e2 := (v, z) ∈ E we must have f(Yu)⊕ L(e1) = f(Yv)⊕ L(e2). A collision of
a graph G∗ is defined by such a triple δ = (u, v; z). The set {u, v} is called the source
of the collision whereas z is called the head of the collision. We also say the edges e1
and e2 colliding edges. Observe that a collision δ = (u, v; z) induces a linear restriction
Eδ : f(Yu) ⊕ f(Yv) = cδ on G, where cδ = L(u, z) ⊕ L(v, z) ∈ B. By definition of INS
graph, this restriction is also preserved in G∗. We denote the set of all collisions of G∗ by
CG∗ , and the set of all linear equations generated by all the collisions by E(G∗), i.e.,

E(G∗) := {Eδ : δ ∈ CG∗}.

Let rank(G∗) denote the rank of the system of linear equations in EG∗ .

Definition 10 (Accident of an INS graph). We define accident of an INS graph S as
Acc(S) := rank(S).

Now we mention some important results on INS graphs which will be useful in our analysis
ahead. These results have already been proved in [BPR05, Pie06, JN16] for the random
permutation case. We prove these results for the random function case in Appendix A.

Lemma 3. For any INS graph S with a accidents,

Pr[INstructF = S] ≤ 1
Na

.

2Note that, as per the convention used here and in the preceding discussion w∗r,i = α(wr,i).

16 On The Exact Security of MACs Using PRFs

Lemma 4. The number of INS graphs with a accidents associated toM = (M1, . . . ,Mt)
is at most

(
m
2
)a, where ∑t

i=1 mi = m.

Corollary 1. Let a ≥ 1 be an integer. Then,

Pr[Acc(INstructF) ≥ a : F $← Func] ≤ m2a

Na
.

5 Proof of Theorem 2 [Upper Bound Theorem]
In this section we upper bound the input-collision probability (and output-collision proba-
bility). Recall that the collision relation induced by a realizable sequence is preserved in
the corresponding structure graph (using Proposition 3). Further observe that INcoll is
an example of a specific type of collision relation. So using Proposition 3 we can redefine
INcoll via structure graphs. For a fixed tuple of messageM, INcoll is said to be true
if there exists some pair of walks wi and wj (corresponding to some Mi,Mj ∈ M) in
INstructf,M which share the same last vertex.

For a fixed tuple of messagesM, let INstructa denote the set of structure graphs with
a accidents. In case of CBC function based on random permutations, different methods
[BPR05, Pie06, JN16] were employed to bound the cardinality of INstruct1[INcoll]3.
Bellare et al. [BPR05] took a straightforward approach of bounding |INstruct1[INcoll]|
for two messages and achieved a bound of d′(`). In an attempt to get a tighter bound
Pietrzak [Pie06] tried to bound the set over groups of messages. Nandi and Jha [JN16]
took a much simpler and slight different approach to get tight bounds. We follow the later
approach while bounding the collision set.
Let us define the event Bad as,

1. for a pair of messages Mi,Mj , Acc(INstructF,(Mi;Mj)) ≥ 2, or

2. for any message Mi, Acc(INstructF,Mi) ≥ 1.

We aim to bound the inCP in terms of Pr[Bad] and Pr[¬Bad]. Specifically we have,

inCPq,`,σ ≤ Pr
F

[INcollF (M) ∩ ¬Bad] + Pr
F

[Bad]

So we just need to upper bound the following:

1. PrF [Bad]. In the first case of Bad, we bound the probability by
∑
i<j∈[q]

(mi+mj)4

N2

(using corollary 1 for all
(
q
2
)
pairs of messages), and in the second case, we bound

the probability by
∑
i∈[q]

m2
i

N (using corollary 1 for all q messages). Finally we have,

Pr
F

[Bad] ≤
∑

i<j∈[q]

(mi +mj)4

N2 +
∑
i∈[q]

m2
i

N

≤
∑

i<j∈[q]

(mi +mj) · 8`3

N2 +
∑
i∈[q]

mi · `
N

= 8m(q − 1)`3

N2 + m`

N

≤ 8q`3σ

N2 + `σ

N
.

3This denotes the set {G ∈ INstruct1 : INcoll is True for G} ⊆ INstruct1

Ashwin Jha, Avradip Mandal and Mridul Nandi 17

2. PrF [INcollF (M) ∩ ¬Bad]. ¬Bad implies that Acc(INstructMi = wi) = 04 for i ∈ [q]
or in other words wi is acyclic. For any pair of messages Mi and Mj , we bound the
set |INstruct[INcoll ∧ ¬Bad]| to at most min (mi,mj) (see the following claim).
Since all such graphs must have at most 1 accident, we bound the probability to at
most min (mi,mj)

N . Hence for q messages we have

Pr
F

[INcollF (M) ∩ ¬Bad] ≤
∑

i<j∈[q]

min (mi,mj)
N

≤ qσ

N
.

Combining 1 and 2, we have the desired result. �

Claim: For any pair of messages M1,M2 ∈M we have,

|INstruct[INcoll ∧ ¬Bad]| ≤ min (m1,m2).

Proof. We prove the claim in two cases:

Case 1: M1 <p M2. In this case M1 must be a strict prefix of M2 as M1 and M2
are distinct. Further w1 is a subwalk of w2 and we have w1,i = w2,i for i ∈ [0..m1].
The INcoll event is equivalent to w1,m1 = w2,m2 , or w2,m2 = w2,m1 . Thus, w2 must
contain a cycle which is not possible. So, |INstruct[INcoll ∧ ¬Bad]| = 0.

Case 2: M1 ≮p M2. WLOG assume that m1 < m2. In this case we must
have p = LCP(M1;M2) < m1 otherwise this leads to a cycle in w2. ¬Bad im-
plies that w1 and w2 are paths and INcoll implies that w1,m1 = w2,m2 . To get
w1,m1 = w2,m2 we must have an accident (w1,i, w2,j ;w1,i+1) for some p + 1 ≤
i ≤ m1 and j = m2 − m1 + i. Therefore, summing over all values of i we have,
|INstruct(M1;M2)[INcoll ∧ ¬Bad]| ≤ m1 ≤ min (m1,m2).

The result follows from case 1 and 2. �

6 Proof of Theorem 3 [Lower Bound Theorem]

In this section we show a lower bound of q
2`
N on inCP. Recall that the attack is also appli-

cable to a general iterated random function. In an independent work Guo et al. [GJMN15]
presented a distinguisher for the iterated random function with advantage Ω(q2`/N). The
attack works for q2`2 < N which makes it ineffective to obtain a significant probability
(say 1/2) for large `. One can repeat the attack to amplify the probability but doing so
will lead to a loss in terms of complexity. In Theorem 3 we show that our attack achieves
the same bound of Ω(q2`/N) for much less restrictions on `.

Remark 2. Bellare et al. [BPR05] proved that the CBC-MAC based on random permutation
is secure and the advantage is bounded by O(q2`/N) provided ` = o(N1/3). Here we show
that there is an attack for CBC based on random function with advantage Ω(q2`/N).
Our idea of the attack algorithm can not be easily extended to CBC based on random
permutation. It seems that CBC based on random permutation is more secure than the
one based on random function.

4 From now onwards we use wi to represent Mi-walk in the INS graph.

18 On The Exact Security of MACs Using PRFs

6.1 Our Attack Algorithm for CBC collision
LetM := (M1, . . . ,Mq) be a q-tuple of messages such that for i, j ∈ [q]Mi = (Xi, 0, · · · , 0) ∈
B` and Xi 6= Xj ∈ B. We want to find a lower bound of collision probability that is,

inCP(M) = Pr
F

[INcollF (M)] = Pr
F

[⋃
1≤i<j≤q

INcollF (Mi;Mj)
]

≥
∑
i<j

Pr
F

[INcollF (Mi;Mj)]

− 3
∑
i<j<k

Pr
F

[INcollF (Mi;Mj) ∧ INcollF (Mj ;Mk)]

− 1
2

∑
i<j,k<m

{i,j}∩{k,m}=∅

Pr
F

[INcollF (Mi;Mj) ∧ INcollF (Mk;Mm)] (9)

where INcollF (Mi;Mj) denotes the event that inF,Mi

` = inF,Mj

` .The last inequality follows
from Principle of Inclusion-Exclusion and Bonferroni inequality. Now, we need to compute
the following bounds,

• Upper bound for PrF [INcollF (Mi;Mj) ∧ INcollF (Mj ;Mk)], where i, j and k are
distinct.

• Upper bound for PrF [INcollF (Mi;Mj) ∧ INcollF (Mk;Mm)], where i, j, k and m
are distinct.

• Lower bound for PrF [INcollF (Mi;Mj)], where i and j are distinct.

We use structure graphs to bound the above mentioned probabilities. Observe that due to
our choice of messages we have the following property on INstructF,M:

∀v ∈ V(INstructF,M) \ {(1, 0)}, degout(v) ≤ 1.

This is obvious as all the edge labels (except those involving (1, 0)) are identical (0n).
Therefore, INstructF,M is either a union of paths or a union of unicycles or both. Note
that in either case the graph has no dependent collisions with distinct heads (as that
requires degout(v) ≥ 2 for some v). Further, for a vertex with in-degree a ≥ 1, we have
a− 1 independent collisions or accidents.
Remark 3. We summarise some useful properties derived from the above discussion:

1. A union of k paths has at most k − 1 collisions. So the number of accidents is k − 1.

2. A k-unicycle has exactly k collisions. So the number of accidents is k.

3. A union of a k1-unicycle and k2 paths has at most k1 + k2 − 1 accidents.

4. A union of a k1-unicycle and a k2-unicycle has exactly k1 + k2 accidents.

5. In general k distinct walks (where each vertex v has degout(v) ≤ 1), can have at
most k accidents.

Example 2. In figure 4,

1. S is a 3-unicycle with Acc(S) = 3.

2. S′ is a union of 3 paths with Acc(S′) = 1.

Ashwin Jha, Avradip Mandal and Mridul Nandi 19

(1, 0)

(1, 1) (1, 2) (1, 3) (1, 4)

(1, 5)

(1, 6)

(1, 7)
(2, 1) (2, 2)

(3, 1) (3, 2) (3, 3)

S

(1, 0)

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2)

(3, 1) (3, 2) (3, 3) (3, 4)

S′

X1

0 0 0

0

00

0

X2

0

0

X3

0 0 0

X1

0 0 0

X2

0

0

X3

0 0 0

Figure 4: Unicycles and union of paths.

Now we bound the above mentioned probabilities in Lemma 5, 6, and 7. We postpone the
proofs of these results to Subsection 6.2.

Lemma 5.
Pr
F

[INcollF (Mi;Mj) ∧ INcollF (Mj ;Mk)] ≤ 2`2

N2 + 6`6

N3 .

Lemma 6.

Pr
F

[INcollF (Mi;Mj) ∧ INcollF (Mk;Mm)] ≤ `2

N2 + 6`3 + 2`5

N3 + 28`8

N4 .

Lemma 7.
Pr
F

[INcollF (Mi;Mj)] ≥
`− 1
N

exp
(
− 4`2

N

)
.

Combining Equation 9 with Lemma 5, 6 and 7 we have,

inCP(M) ≥
(
q

2

)
`− 1
N

exp
(
− 4`2

N

)
− 3
(
q

3

)(
2`2

N2 + 6`6

N3

)

− 1
2

(
q

2

)(
q − 2

2

)(
`2

N2 + 6`3 + 2`5

N3 + 28`8

N4

)

If `, q ≥ 3, q
2`
N < 1 and ` < min(N

5184 ,
N

1
2

4
√

3 ,
N

1
3

3√36), then using the inequality exp(−x) ≥ 1−x
and some algebraic manipulations one can show

inCP(M) ≥ q2`

12N .

Further for ` = σ/q this bound becomes qσ
12N . �

6.2 Proofs Related to the Lower Bound Theorem
Proof of Lemma 5. Let INcolli,j,k denote the event INcollF (Mi;Mj)∧INcollF (Mj ;Mk).
From remark 3 we know that the number of accidents must be ≤ 3.

1. Observe that INcolli,j,k requires at least 2 independent collisions (accidents) (in wi
and wj paths and wk and wi ∪ wj), so

|INstruct1[INcolli,j,k]| = 0.

2. Now, it is easy to see that accident 2 graphs are possible only for union of paths, as
the number of accidents correspond to the collision between the three paths. There
are at most ` many choices for collision between wi and wj paths, and at most 2`
many choices for collision between wk and wi ∪ wj . This bounds

|INstruct2[INcolli,j,k]| ≤ 2`2.

20 On The Exact Security of MACs Using PRFs

3. The graph can have 3 accidents iff it is a 3-unicycle. Suppose the cycle is in wi.
Then wi is determined by the length of cycle and the distance of wi,1 from the cycle
which gives `2 choices for wi. For each such choice we have at most 2`2 many choices
for wi ∪ wj , and at most 3`2 many choices for wi ∪ wj ∪ wk. This bounds

|INstruct3[INcolli,j,k]| ≤ 6`6.

The result follows by direct application of Lemma 3. �

Proof of Lemma 6. Let INcolli,j,k,m denote the event INcollF (Mi;Mj)∧INcollF (Mk;Mm).
From remark 3 we know that the number of accidents must be ≤ 4. We bound the four
sets corresponding to the number of accidents as below:

1. Accident 1 graphs are not possible. Hence,

|INstruct2[INcolli,j,k,m]| = 0.

2. The accident 2 graphs are possible iff (wi ∪ wj) ∩ (wk ∪ wm) = {(1, 0)}, where the
two accidents correspond to the collision between wi and wj , and collision between
wk and wm. Now there are at most ` many choices for collision between wi and wj
paths, and similarly at most ` many choices for collision between wk and wm paths.
This gives

|INstruct2[INcolli,j,k,m]| ≤ `2.

3. Accident 3 graphs are possible iff,

(a) wi, wj , wk, wm paths collide and the graph is a union of paths. In this case we
have at most ` many choices for collision between wi and wj paths. Similarly
we have at most 2` and 3` many choices for collision between wk and wi ∪ wj ,
and wm and wi ∪ wj ∪ wm respectively. This gives

|INstruct3[INcolli,j,k,m]| ≤ 6`3.

(b) (wi ∪ wj) ∩ (wk ∪ wm) = {(1, 0)} and wi ∪ wj is a 2-unicycle and wk ∪ wm is a
union of paths or vice versa. Without loss of generality assume that wi ∪ wj is
a 2-unicycle. Then there exist a cycle in wi ∪ wj . Suppose the cycle is in wi.
Then wi is determined by the length of cycle and the distance of wi,1 from the
cycle which gives `2 choices for wi. For each such choice we have at most 2`2

many choices for wi ∪ wj . And there are at most ` many choices for collision
between wk and wm. This gives,

|INstruct3[INcolli,j,k,m]| ≤ 2`5.

Combining the two subcases we have,

|INstruct3[INcolli,j,k,m]| ≤ 6`3 + 2`5.

4. Accident 4 graphs are possible iff,

(a) wi ∪ wj and wk ∪ wm are distinct 2-unicycles. Using similar arguments as used
in the previous cases we get a bound of 4`8.

(b) wi, wj , wk, wm form a 4-unicycle. This case can be bounded to 24`8, using
similar approach as used in the previous cases.

Combining the two subcases we have,

|INstruct4[INcolli,j,k,m]| ≤ 28`8.

Ashwin Jha, Avradip Mandal and Mridul Nandi 21

The result follows by direct application of Lemma 3. �

Proof of Lemma 7. Let INcolli,j denote the event INcollF (Mi;Mj). We are basically
interested in the probability that INstructF ∈ INstruct(Mi,Mj)[INcoll]. Let Acyclic
denote the property that some graph S ∈ INstruct(Mi,Mj)[INcoll] is acyclic graph, and
INstruct(Mi,Mj)[INcoll ∧ Acyclic] denote the subset of all graphs which satisfy both
INcoll and Acyclic. Thus, we have

Pr[INstructF ∈ INstruct(Mi,Mj)[INcoll]] ≥ Pr[INstructF ∈ INstruct(Mi,Mj)[INcoll∧Acyclic]]

We will lower bound Pr[INstructF ∈ INstruct(Mi,Mj)[INcoll ∧ Acyclic]]. First,
convince yourself that for all S ∈ INstruct(Mi,Mj)[INcoll ∧ Acyclic] we must have
Acc(S) = 1 (as INcoll ∧ Acyclic holds and Mi and Mj share a common suffix of length
`− 1).

This accident can happen at any one of the index 2 ≤ k ≤ `, each contributing exactly
one structure graph. Fix an index 2 ≤ k ≤ ` where the accident occurs and let the
corresponding INS graph be Sk. Then, a simple counting shows that the number of valid
block labeling for Sk is exactly (2n − 2) . . . (2n − 2k + 2). Each such labeling gives a BINS
graph G with exactly 2k − 2 positive out-degree vertices (excluding ⊥ which is trivial)
such that α(G) = S. The probability of getting a BINS graph with 2k − 2 many vertices
having positive out-degree is equal to 22n−2kn (as exactly 2k − 2 outputs of F are fixed).
Thus, we get

Pr[INstructF ∈ INstruct(Mi,Mj)[INcoll ∧ Acyclic]] = 1
2n
∑̀
k=2

(
1− 2

2n

)
· · ·
(

1− 2k − 2
2n

)

≥ `− 1
2n

2`−2∏
k=1

(
1− k

2n

)
≥ `− 1

2n

(
1− 2`2

2n

)
≥ `− 1

2n exp
(
−4`2

2n

)
,

where the last inequality follows from (1 − x) ≥ exp(−2x) for 0 < x < 0.5, and the
assumption that ` < 2n2−1. �

7 Conclusion and Future Work
As summarized in Table 1 and Table 2, in terms of exact security random permutation
vs random function based message authentication codes differ considerably. For EMAC,
ECBC and FCBC constructions the random permutation instantiations have optimal
security bound Θ(q

2

2n). The corresponding random function instantiations are considerably
less secure, with optimal security bound Θ(q

2

2n). For XCBC and TMAC constructions
random permutation instantiations are at least as secure as random function instantiations.
It is an interesting open problem, whether random permutation based upper (or lower)
bounds can be improved for XCBC and TMAC.

The upper bounds obtained in this work are of the form O(qσ2n). In this work we have
not considered OMAC [IK03a]. For random function based OMAC, our lower bound would
hold as it is. It is an open problem whether one can obtain matching upper bound of the
form O(`q

2

2n) or O(qσ2n).

22 On The Exact Security of MACs Using PRFs

References
[BdBB+95] A. Berendschot, B. den Boer, J. Boly, A. Bosselaers, J. Brandt, D. Chaum,

I. Damgård, M. Dichtl, W. Fumy, M. van der Ham, C. Jansen, P. Landrock,
B. Preneel, G. Roelofsen, P. de Rooij, and J Vandewalle. Final Report of
Race Integrity Primitives, volume 1007 of Lecture Notes in Computer Science,
Springer-Verlag, 1995. Springer-Verlag, 1995.

[Ber03] Robert Berke. On the security of iterated macs. Diploma thesis, ETH Zurich,
2003.

[BG08] Mihir Bellare and Shafi Goldwasser. Lecture Notes on Cryptography. Summer
course on Cryptography and Computer Security at MIT (1996–2008), pages
249–250, 2008.

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of The Cipher
Block Chaining Message Authentication Code. J. Comput. Syst. Sci., 61(3):362–
399, 2000.

[BPR05] Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved Security
Analyses for CBC MACs. In Advances in Cryptology - CRYPTO 2005: 25th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings, pages 527–545, 2005.

[BR00] John Black and Phillip Rogaway. CBC macs for arbitrary-length messages:
The three-key constructions. In Advances in Cryptology - CRYPTO 2000,
20th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2000, Proceedings, pages 197–215, 2000.

[BR05] John Black and Phillip Rogaway. CBC MACs for Arbitrary-Length Messages:
The Three-Key Constructions. J. Cryptology, 18(2):111–131, 2005.

[GJMN15] Jian Guo, Jérémy Jean, Nicky Mouha, and Ivica Nikolic. More rounds, less
security? IACR Cryptology ePrint Archive, 2015:484, 2015.

[IK03a] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In Fast
Software Encryption, 10th International Workshop, FSE 2003, Lund, Sweden,
February 24-26, 2003, Revised Papers, pages 129–153, 2003.

[IK03b] Tetsu Iwata and Kaoru Kurosawa. Stronger Security Bounds for OMAC,
TMAC, and XCBC. In Progress in Cryptology - INDOCRYPT 2003, 4th
International Conference on Cryptology in India, New Delhi, India, December
8-10, 2003, Proceedings, pages 402–415, 2003.

[ISO11] ISO/IEC. Information Technology – Security Techniques – Message Au-
thentication Codes (MACs) – Part 1: Mechanisms Using A Block Cipher.
International Standard ISO/IEC 9797-1:2011, International Organization for
Standardization, Geneva, CH, 2011.

[JN16] Ashwin Jha and Mridul Nandi. Revisiting Structure Graphs: Applications to
CBC-MAC and EMAC. J. Mathematical Cryptology, 10(3–4):157–180, 2016.

[KI03] Kaoru Kurosawa and Tetsu Iwata. Tmac: Two-key cbc mac. In Cryptographers’
Track at the RSA Conference, pages 33–49. Springer, 2003.

[KI04] Kaoru Kurosawa and Tetsu Iwata. TMAC: Two-Key CBC MAC. IEICE
Transactions, 87-A(1):46–52, 2004.

Ashwin Jha, Avradip Mandal and Mridul Nandi 23

[MM07] Kazuhiko Minematsu and Toshiyasu Matsushima. New Bounds for PMAC,
TMAC, and XCBC. In Fast Software Encryption, 14th International Workshop,
FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected
Papers, pages 434–451, 2007.

[Nan09] Mridul Nandi. Improved Security Analysis for OMAC as a Pseudorandom
Function. J. Mathematical Cryptology, 3(2):133–148, 2009.

[Pat91] Jacques Patarin. Etude des Générateurs de Permutations Pseudo-aléatoires
Basés sur le Schéma du DES. PhD thesis, Université de Paris, 1991.

[Pat08] Jacques Patarin. The ”Coefficients H“ Technique. In Selected Areas in Cryp-
tography, 15th International Workshop, SAC 2008, Sackville, New Brunswick,
Canada, August 14-15, Revised Selected Papers, pages 328–345, 2008.

[Pie06] Krzysztof Pietrzak. A Tight Bound for EMAC. In Automata, Languages
and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part II, pages 168–179, 2006.

[PR00] Erez Petrank and Charles Rackoff. CBC MAC for Real-Time Data Sources.
J. Cryptology, 13(3):315–338, 2000.

[PvO99] Bart Preneel and Paul C. van Oorschot. On the security of iterated message
authentication codes. IEEE Trans. Information Theory, 45(1):188–199, 1999.

[Vau03] Serge Vaudenay. Decorrelation: A Theory for Block Cipher Security. J.
Cryptology, 16(4):249–286, 2003.

[WC79] Mark N. Wegman and Larry Carter. New Classes and Applications of Hash
Functions. In 20th Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 29-31 October 1979, pages 175–182, 1979.

A Proofs of Results on Structure Graph
Lemma (Lemma 3). For any INS graph S with a accidents,

Pr[INstructF = S] ≤ 1
Na

.

Proof. S is an INS graph with a accidents, i.e., rank(S) = a. We denote the number of
vertices in S, excluding (1, 0), with positive out-degree by s. Using linear algebra, we know
that some s− a choices of f(Yi) values will uniquely determine the rest and so the number
of valid block labellings is at most Ns−a. Any valid choice of Y induces a block-vertex
structure graph G = (V, E) such that G∗ = S. Note that s is the number of vertices v ∈ V
with positive out-degree. So exactly NN−s number of functions can result in BINS graph
G. Therefore,

Pr[BINstructF = G] = NN−s

NN
= 1
Ns

. (10)

Summing over all BINS graphs G such that the INS graph α(G) = S we have,

Pr[INstructF = S] =
∑

G:α(G)=S

Pr[BINstructF = G] ≤ Ns−a

Ns
= 1
Na

.

�
For an INS graph S we define traversal T (S) as the sequence of vertices T (S) :=

(w∗r,i)(r,i)∈I . Note that T (S) implicitly stores the edges: for every α ∈ I such that

24 On The Exact Security of MACs Using PRFs

α 6= (r,mr) we have (w∗α, w∗α+1) ∈ E with label Mα+1. We denote the set of edges in T (S)
by E(T (S)). The sub-sequence Tα(S) := T (S)α of T (S) is called the partial traversal till
α ∈ I. In T (S), an output-collision δ := (u, v; z) can be equivalently written as,

δ = (w∗i = u,w∗j = v;w∗i+1 = w∗j+1 = z), i ≺ j ∈ I,

where i and j are the smallest such indices. Under this equivalent representation we can
define a partial order ≺C on C(S) as follows:
For i, j, i′ , j′ ∈ I and i ≺ j and i′ ≺ j

′ , let δ = (w∗i , w∗j ;w∗i+1) and δ′ = (w∗i′ , w∗j′ ;w∗i′+1).
δ ≺C δ′ if either,

1. j ≺ j′ , or

2. j = j
′ and i ≺ i′ .

Proposition 4. Let S1, S2 ∈ INstructM be two INS graphs and T (S1) and T (S2) be their
associated traversals. Then,

∀α ∈ I Tα(S1) = Tα(S2) ⇐⇒ SEα1 = SEα2

where SEαi is the edge induced subgraph of Si with edge set E(Tα(Si)). Particularly for
α = (q,mq) we have,

T (S1) = T (S2) ⇐⇒ S1 = S2.

Proof. The necessary condition, i.e.,

SEα1 = SEα2 =⇒ Tα(S1) = Tα(S2)

is trivially true (by definition of traversals). So we focus on the sufficient condition, i.e.,

Tα(S1) = Tα(S2) =⇒ SEα1 = SEα2 .

Note that Tα(S1) = Tα(S2) =⇒ E(Tα(S1)) = E(Tα(S2)). As the two edge sets are equal,
the edge induced subgraphs must also be equal. Thus SEα1 = SEα2 ∀α ∈ I. �

Definition 11 (Accident Basis and Dependent Collisions). We define the accident basis
CAcc(S) of the INS graph S as C ⊆ C(S) such that E(C) := {Eδ : δ ∈ C} is the
minimal spanning set of E(S) and the elements of C are smallest with respect to ≺C . Set
D ⊂ C(S) is called a set of dependent collisions if E(D) is linearly dependent. Note that
Acc(S) = |CAcc(S)| as E(CAcc(S)) is a basis of E(S).

It is obvious that CAcc(SEα) the accident basis corresponding to the edge induced
subgraph SEα (equivalently to the partial traversal Tα(S)) is a subset of CAcc(S).

Example 3. Let M1 = (M1,1,M1,2,M1,3,M1,2,M1,4) and M2 = (M2,1) be two messages
such that M1,1 ⊕M1,3 ⊕M1,4 ⊕M2,1 = 0n. For f ∈ Func⊥ let S be the INS graph as
shown in Figure 5. For S we have,

1. T (S) := (w∗1,0, w∗1,1, w∗1,2, w∗1,3, w∗1,4, w∗1,5, w∗2,0, w∗2,1), where w∗1,0 = (1, 0), w∗1,1 =
(1, 1), w∗1,2 = (1, 2), w∗1,3 = w∗1,1, w

∗
1,4 = w∗1,2, w

∗
1,5 = (1, 5), w∗2,0 = w∗1,0, w

∗
2,1 =

w∗1,5.

2. C(S) =
{

((1, 0), (1, 2); (1, 1)), ((1, 2), (1, 0); (1, 5))
}
. The equivalent representation in

T (S) is {
(w∗1,0, w∗1,2;w∗1,1 = w∗1,3),
(w∗1,4, w∗2,0;w∗1,5 = w∗2,1)

}
.

Ashwin Jha, Avradip Mandal and Mridul Nandi 25

3. E(S) =
{
f(Y1,0)⊕ f(Y1,2) = M1,1 ⊕M1,3; f(Y1,0)⊕ f(Y1,2) = M1,4 ⊕M2,1

}
.

4. Clearly, Acc(S) = rank(S) = 1.

5. CAcc(S) =
{

((1, 0), (1, 2); (1, 1))
}
.

.

(1, 0)
(1, 1)

(1, 2)(1, 5)

M1,1

M1,2M1,3

M1,4

M2,1

Figure 5: The INS graph, S.

Lemma (Lemma 4). The number of INS graphs with a accidents associated to M =
(M1, . . . ,M t) is at most

(
m
2
)a, where ∑t

i=1 mi = m.

Proof. The proof becomes trivial once we show that each structure graph has a unique
accident basis and distinct graphs have distinct accident basis. In other words, we need
to show that the mapping from the set of structure graphs to the set of accident basis is
injective. It is easy to see that each structure graph has a unique accident basis (by the
definition of accident basis). We know show that distinct structure graphs have distinct
accident basis.

Claim: Let S1 and S2 be two structure graphs. Then,

CAcc(S1) = CAcc(S2) =⇒ S1 = S2.

Using Proposition 4 it is sufficient to show that

CAcc(S1) = CAcc(S2) =⇒ T (S1) = T (S2).

We prove the claim by induction on the dictionary order over the index set I. Let α ∈ I.
Suppose Tβ(S1) = Tβ(S2) ∀β ≺ α. If α = (r,mr) for some r ∈ [q], then the next vertex on
T (S1) i.e. w∗1α = (1, 0) = w∗2α , the next vertex on T (S2). Thus, Tα(S1) = Tα(S2). Suppose
α = (r, i) for some r ∈ [q] and i ∈ [mr − 1]. We show that the next edge in T (S2), i.e.,
e2 := (w∗2α−1, w

∗2
α) is same as e1 := (w∗1α−1, w

∗1
α), the next edge in T (S1). The next edge

can lead to one of the following cases:

1. Suppose e1 leads to a dependent collision δ in S1. Therefore the corresponding linear
restriction Eδ must be spanned by CAcc(SEα−1

1). Now Tα−1(S1) = Tα−1(S2) =⇒
CAcc(SEα−1

1) = CAcc(SEα−1
2). So Eδ is also spanned by CAcc(SEα−1

2). As the message
label is same, we must have e2 = e1.

2. Suppose e1 leads to a new accident δ in S1. As CAcc(S1) = CAcc(S2), δ ∈ CAcc(S2).
Thus e2 also leads to same accident δ in S2. Thus e1 = e2.

3. Suppose e1 leads to a a new vertex, i.e., w∗1α /∈ Tα−1(S1). As the labels of both e1
and e2 are same, e2 must also lead to a new vertex. Then using the definition of INS
graph we have e1 = e2.

In all three cases we have e1 = e2, i.e., Tα(S1) = Tα(S2). This proves the claim. So
|INstructM)| is at most equal to the number of distinct accident basis of size a. Note that
we can have at most m =

∑
rmr number of vertices in the graph. So the number of

distinct accident basis is at most
(
m
2
)a. The result follows. �

26 On The Exact Security of MACs Using PRFs

Corollary (Corollary 1). Let a ≥ 1 be an integer. Then,

Pr[Acc(INstructF) ≥ a : F $← Func] ≤ m2a

Na
.

Proof. The result can be derived by combining Lemma 3 and 4 followed by some algebraic
simplifications. �

	Introduction
	Our Contribution

	Basic Definitions and Notations
	Basic Notation
	Collision Probability
	Notation on Sequences and Strings
	PRF Security of Keyed Functions
	Patarin's Coefficient-H Technique

	CBC-MAC and Its Variants
	PRF Analysis of CBC Variants
	Main Results of This Paper

	Structure Graph
	Input-Structure Graph

	Proof of Theorem 2 [Upper Bound Theorem]
	Proof of Theorem 3 [Lower Bound Theorem]
	Our Attack Algorithm for CBC collision
	Proofs Related to the Lower Bound Theorem

	Conclusion and Future Work
	Proofs of Results on Structure Graph

