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Abstract

We present a construction of bent function fa,S with n = 2m variables for any nonzero vector

a ∈ Fm
2 and subset S of Fm

2 satisfying a + S = S. We give the simple expression of the dual bent

function of fa,S . We prove that fa,S has optimal algebraic degree m if and only if |S| ≡ 2(mod4).

This construction provides series of bent functions with optimal algebraic degree and large symmetric

group if a and S are chosen properly.
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1 Introduction

Let Bn = {f = f(x1, · · · , xn) : Fn
2 → F2} be the ring of Boolean functions with n variables. For each

f ∈ Bn, the Walsh transformation of f is Wf : Fn
2 → Z defined by

Wf (y) =
∑
x∈Fn

2

(−1)f(x)+x·y, (y = (y1, · · · , yn) ∈ Fn
2 ),

where x · y = x1y1 + · · ·+ xnyn ∈ F2. f is called bent function if for all y ∈ Fn
2 ,

Wf (y) = ±2
n
2 = 2

n
2 (−1)f̂(y).

Where f̂ ∈ Bn and called the dual of f . If f is a bent function then n is even and f̂ is also a bent

function. Bent functions were introduced by Rothaus [1] in 1976 and already studied by Dillon [2] in

1974 with their equivalent combinatorial objects: Hadamard difference sets in elementary 2-groups. Since

then, bent functions have been extensively developed for their important applications in many aspects as

cryptography(design of stream ciphers), coding theory, sequences with good correlation properties and

graph theory.

Many constructions, primary and secondary, of bent functions has been found in past forty years (See

book [3]). In the application on cryptography, we hope the bent function having large algebraic degree

deg(f). It is known that for any bent function f with n = 2m variables, deg(f) ≤ m. If deg(f) = m, f
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is called a bent function with optimal algebraic degree. We also hope f having large symmetric group in

order to store the values of f with less space and allow faster computation of the Walsh transform. In

this paper, a symmetry of f means a permutation σ of variables such that f(x) = f(σ(x)). More exactly

speaking, we have the following definition.

Definition 1 Let Σn be the group of all permutations on {1, 2, · · · , n}. For σ ∈ Σn, x = (x1, x2, · · · , xn) ∈
Fn
2 , we define

σ(x) = (xσ(1)
, · · · , xσ(n)

) ∈ Fn
2 ,

and for f(x) ∈ Bn, we define σf ∈ Bn by (σf)(x) = f(σ(x)). It is known that if f is bent, then σf is

bent. The symmetric group of a ∈ Fn
2 is defined by

Sym(a) = {σ ∈ Σn : σ(a) = a}

The symmetric group of a Boolean function f ∈ Bn is defined by

Sym(f) = {σ ∈ Σn : σf = f}.

We also call any subgroup of Sym(f) as a symmetric group of f .

Let σ =

(
1, 2, 3, · · · , n− 1, n

2, 3, 4, · · · , n , 1

)
∈ Σn. A Boolean function f ∈ Bn is called rotation symmetric if

σf = f , namely f(x2, · · · , xn, x1) = f(x1, · · · , xn). Therefore, any rotation symmetric Boolean function

f ∈ Bn have a symmetric group < σ >, a cyclic subgroup of Σn with size n. More general, for any

d ≥ 1, f is called d-rotation symmetric if σd(f) = f . 1-rotation symmetric is just rotation symmetric.

If n = 2m(m ≥ 1), Fn
2 can be viewed as Fm

2 ×Fm
2 and any Boolean function f ∈ Bn can be expressed

by f(x, y) : Fm
2 × Fm

2 → F2, where x, y ∈ Fm
2 . For a permutation σ ∈ Σm, we define σf by

(σf)(x, y) = f(σ(x), σ(y)). (1)

Let n = 2m(m ≥ 1). It is known that the function f(x) ∈ Bn defined by

f = f(x, y) : Fm
2 × Fm

2 → F2, f(x, y) = x · y =
m∑
i=1

xiyi, (x, y ∈ Fm
2 )

is a bent function, and f̂ = f(self − dual). It is rotation symmetric since for

σ =

(
1 2 3 · · · n− 1 n

2 3 4 · · · n 1

)
∈ Σn

(σf)(x, y) = (σf)(x1, · · · , xm, y1, · · · , ym) = f(x2, · · · , xm, y1, y2, · · · , ym, x1)

= x2y2 + · · ·+ xmym + y1x1 = x · y = f(x, y).

Moreover, each τ ∈ Σm is also a symmety of f since

(τf)(x, y) = f(τ(x), τ(y)) = τ(x) · τ(y) = x · y = f(x, y).

Therefore f has a big symmetric group generated by Σm and σ. On the other hand, the algebraic degree

deg(f) = 2 is too small.

Many rotation symmetric bent functions with deg(f) = 2 have been found and it is stated in [12]

that“ any theoretic construction of rotation symmetric bent functions with algebraic degree larger than 2

is an interesting problem”. Such bent functions f with deg(f) = 3 and 4 have been presented in [4, 5] and
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[6] respectively. Recently, rotation symmetric and 2-rotation symmetric bent functions with any deg(f)

from 3 to n
2 have been constructed in [7, 8].

In this paper, we present a simple construction of bent function fa,S in Bn(n = 2m,m ≥ 2), where

a is any nonzero vector in Fm
2 , S is any subset of Fm

2 satisfying a + S = S (Theorem 1). We show that

the dual bent function f̂a,S has a simple expression. We give a simple criterion on fa,S having optimal

algebraic degree deg(fa,S) = m (Theorem 3). We show that Sym(a) ∩ Sym(S) is a symmetric group of

fa,S(Theorem 4) which implies that fa,S has a large symmetric group if we choose suitable nonzero vector

a and subset S of Fm
2 , such that Sym(a) = {σ ∈ Σm : σ(a) = a} and Sym(S) = {σ ∈ Σm : σ(S) = S}

have a large intersection. We also construct a large class of 2l-rotation symmetric bent function for all

l(Theorem 5).

This paper is organized as following. We present the construction of bent function fa,S , determine

the dual bent function and show some relationship between our construction and some previous ones

in section 2. We show a criterion for deg(fa,S) = m in section 3. Finally, in section 4 we show that

Sym(a) ∩ Sym(S) is a symmetric group of fa,S and give several examples of bent functions fa,S with

optimal algebraic degree and large symmetric group, some of them are d-rotation symmetric for any even

d. Section 5 is the conclusion.

2 Construction of Bent Function of fa,S

In this section we fix the following notations:

n = 2m (m ≥ 2);

a : a nonzero vector in Fm
2 ;

H = Ha = {0, a}⊥ = {v ∈ Fm
2 , : v · a = 0}, a hyperplane in Fm

2 ;

S: a subset of Fm
2 satisfying a+ S = S. Thus S is a disjoint union of t cosets of {0, a} in (Fm

2 ,+),

|S| = 2t, t ≥ 1.

Ω = Ωa,S = {(x, y) ∈ Fm
2 × Fm

2 : x ∈ H,x+ y ∈ S}.

IU : the indicator function of a subset U in Fn
2 defined by, for x ∈ Fn

2 , I(x) =

{
1, if x ∈ U

0, otherwise
.

Theorem 1 The Boolean function fa,S ∈ Bn defined by

fa,S(x, y) : Fm
2 × Fm

2 → F2

fa,S(x, y) = x · y + IΩ =

{
x · y + 1, if (x, y) ∈ Ω

x · y, otherwise
.

is a bent function and f̂a,S(x, y) = fa,Ŝ(y, x), where Ŝ = S + 1m and 1m = (1, 1, · · · , 1) ∈ Fm
2 .

Proof. For x, y ∈ Fm
2 , the Walsh transformation of f = fa,S is,

Wf (x, y) =
∑

u,v∈Fm
2

(−1)f(u,v)+u·x+v·y

= −
∑

(u,v)∈Ω

(−1)u·v+u·x+v·y +
∑

(u,v)/∈Ω

(−1)u·v+u·x+v·y

=
∑

u,v∈Fm
2

(−1)u·v+u·x+v·y − 2
∑

(u,v)∈Ω

(−1)u·v+u·x+v·y.

The first summation is 2m(−1)x·y, the Walsh transformation of g(u, v) = u · v. Therefore

Wf (x, y) = 2m(−1)x·y − 2N,
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where

N =
∑

(u,v)∈Ω

(−1)u·v+u·x+v·y =
∑

u∈H,z∈S

(−1)(u+y)·(z+u)+u·x (z = u+ v)

=
∑

u∈H,z∈S

(−1)u·(z+y+x+u)+y·z =
∑
z∈S

(−1)y·z
∑
u∈H

(−1)u· (z+x+y+1m) (since u · u = u · 1m)

= 2m−1
∑

z+x+y+1m∈H⊥={0,a},z∈S

(−1)y·z (2m−1 = |H|)

= 2m−1
∑

z∈S,z∈{x+y+1m,x+y+1m+a}
(−1)y·z

If x+y+1m /∈ S, then {x+y+1m, x+y+1m+a}∩S = ϕ andN=0. Otherwise, {x+y+1m, x+y+1m+a} ⊆
S and

N = 2m−1((−1)y·(x+y+1m) + (−1)y·(x+y+1m+a))

= 2m−1((−1)y·x + (−1)y·(x+a)) (since y · (y + 1m) = 0).

Therefore, if x+ y /∈ Ŝ(= S + 1m), then

Wf (x, y) = 2m(−1)x·y − 2N = 2m(−1)x·y.

If x+ y ∈ Ŝ, then

Wf (x, y) = 2m(−1)x·y − 2m((−1)x·y + (−1)y·x+y·a)

= 2m(−1)y·x+y·a+1

=

{
2m(−1)y·x+1, if y · a = 0 which means that y ∈ H

2m(−1)y·x, otherwise.

Therefore f is a bent function and

f̂(x, y) =

{
y · x+ 1, if y ∈ H and y + x ∈ Ŝ

y · x, otherwise.

Namely, f̂(x, y) = fa,Ŝ(y, x) where Ŝ = S + 1m (remark that a + S = S implies a + Ŝ = Ŝ). This

completes the proof.

Now we show some relationship between some previous constructions and the construction given by

Theorem 1. Our construction of fa,S belongs to the secondary construction where from Rothaus’s bent

function f(x, y) = x · y, we give new bent function fa,S with the same number of variables as f . The

vector a and the subset S of Fm
2 can be chosen in much flexible way (just need a ̸= 0 and a + S = S).

One of secondary construction was given by Carlet[9] as following.

Lemma 1 ([9], also see [3] Theorem 6.0.1) Let E be a subspace of Fn
2 , b ∈ Fn

2 , f ∈ Bn be a bent function.

Then f∗ = f + Ib+E is bent if and only if the following condition (*) holds.

(*) For any v ∈ Fn
2 \ E, f(x) + f(x+ v) is balanced on b+ E.

For the construction in Theorem 1, f(x, y) = x · y, (x, y ∈ Fm
2 , n = 2m), f∗ = f + IΩ, where

Ω = {(x, y) : x ∈ H, , x + y ∈ S}. If Ω is a flat b + E in Fn
2 , then for any v ∈ Fn

2 \ E, v = (v1, v2) is a

nonzero vector and the affine function

f(x, y) + f(x+ v1, y + v2) = x · y + (x+ v1) · (y + v2) = v2 · x+ v1 · y + v2 · v1

is balanced on flat Ω = b+E. Thus the condition (*) holds and the bentness of fa,S is derived by Lemma

1. But for many S, Ω is not a flat of Fn
2 . So Theorem 1 can provide some new bent functions.
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Another interesting secondary construction was given by Carlet [10] and S. Mesnager [11] which shows

that if f1, f2, f3 are bent functions in Bn satisfying certain conditions, then f1f2 + f2f3 + f3f1 is also

bent. We will show that our bent functions fi = fa,Si(i = 1, 2, 3) fit in this secondary construction:

f1f2 + f2f3 + f3f1 is also bent without any extra conditions on a and Si(1 ≤ i ≤ 3). In fact, we have the

following more general result. For Boolean functions f1, · · · , fN in Bn, 1 ≤ t ≤ N , we denote the t−th

elementary symmetric function of f1, · · · , fN by

σt(f1, · · · , fN ) =
∑

A⊆{1,··· ,N}
|A|=t

∏
i∈A

fi.

Theorem 2 let n = 2m(m ≥ 3), a be a fixed nonzero vector in Fm
2 , Si be the subsets of Fm

2 such that

a + Si = Si, fi = fa,Si , 1 ≤ i ≤ N be the bent functions in Bn given in Theorem 1. Let 1 ≤ t ≤ N . If(
N

N−t

)
is odd and

(
N−j
N−t

)
, 1 ≤ j ≤ t − 1, are even, then σt(f1, · · · , fN ) ∈ Bn is bent. Particularly (N=3

and t = 2), f1f2 + f2f3 + f3f1 is bent.

Proof. Let Ωi = {(x, y) : x · a = 0, x + y ∈ Si}, 1 ≤ i ≤ N . Then fi(x, y) = x · y + Ii(x, y), where

Ii(x, y) = IΩi(x, y) is the indicator function of Ωi. For a subset A of {1, 2, · · · , N}, |A| = t,∏
i∈A

fi(x, y) =
∏
i∈A

(x · y + Ii(x, y))

= (x · y)[1 + σ1(Ii(x, y) : i ∈ A) + · · ·+ σt−1(Ii(x, y) : i ∈ A)] +
∏
i∈A

Ii(x, y).

Therefore

σt(f1, · · · , fN ) =
∑

A⊆{1,··· ,N}
|A|=t

∏
i∈A

fi

= (x · y)[
(
N

t

)
+

(
N − 1

t− 1

)
σ1(I1, · · · , IN ) +

(
N − 2

t− 2

)
σ2(I1, · · · , IN ) + · · ·

+

(
N − (t− 1)

t− (t− 1)

)
σt−1(I1, · · · , IN )] + σt(I1, · · · , IN ).

Since for each j, 1 ≤ j ≤ t− 1, the number of subset A(|A| = t) of {1, 2, · · · , N} containing a fixed subset

of size j is
(
N−j
t−j

)
. By assumption,(

N

t

)
=

(
N

N − t

)
≡ 1(mod2),

(
N − j

t− j

)
=

(
N − j

N − t

)
≡ 0(mod2), 1 ≤ j ≤ t− 1.

We get

σt(f1, · · · , fN ) = x · y + σt(I1, · · · , IN ).

For A ⊆ {1, 2, · · · , N}, |A| = t, it is easy to see that∏
i∈A

Ii =
∏
i∈A

IΩSi
(x, y) = IΩS(A)

(x, y),

where S(A) =
∩
i∈A

Si. Remark that from a+ Si = Si we know that a+ S(A) = S(A). Then we have

σt(I1, · · · , IN ) =
∑

A⊆{1,··· ,N}
|A|=t

∏
i∈A

Ii =
∑

A⊆{1,··· ,N}
|A|=t

IΩS(A)
(x, y) = IΩS(t)

(x, y),
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where S(t) is the “Symmetric difference” of {S(A) : |A| = t} defined by

S(t) = {v ∈ Fm
2 : the number of A,A ⊆ {1, · · · , N}, |A| = t such that v ∈ S(A) is odd }.

From a+ S(A) = S(A) for each A ⊆ {1, · · · , N}, |A| = t we know that a+ S(t) = S(t). By Theorem

1,

σt(f1, · · · , fN ) = x · y + σt(I1, · · · , IN ) = x · y + IΩS(t)
(x, y)

is bent. This completes the proof of Theorem 2.

Remark By the Lucas formula, it is not difficult to see that for 1 ≤ t ≤ N , the conditions 2 -
(

N
N−t

)
and 2|

(
N−j
N−t

)
for 1 ≤ j ≤ t − 1 hold if and only if t = 2m and N = 2m+2s + 2m+1 − 1 where s ≥ 0 and

m ≥ 1.

At last, we find that the second construction given by Su and Tang [7] is very closed to our construction.

Let n = 2m ≥ 4,Γ be any non-empty subset of Fm
2 ,Ω′ = {(x, y) : x ∈ Fm

2 , x+y ∈ Γ} and f : Fm
2 ×Fm

2 → F2

be the function defined by

f(x, y) =

{
x · y + 1, if (x, y) ∈ Ω′

x · y, otherwise.

Su and Tang proved that f(x, y) is a bent function ([7], Lemma 3). This construction is different from

our construction in Theorem 1 since for (x, y) ∈ Ω′, x can be any vector in Fm
2 , but for (x, y) ∈ Ω in our

construction, x is taken from a hyperplane of Fm
2 .

3 The Optimality of Algebraic Degree deg(fa,S)

In this section we present a simple criterion on the bent function fa,S ∈ Bn having optimal algebraic

degree n
2 .

Theorem 3 Let n = 2m,m ≥ 3, fa,S be the bent function given in Theorem 1 and |S| = 2t(t ≥ 1). Then

deg(fa,S) = m if and only if t is odd.

Proof. Firstly we need to get the polynomial expression of fa,S(x, y) = fa,S(x1, · · · , xm, y1, · · · , ym)

in F2[x1, · · · , xm, y1, · · · , ym]/(x2
i −xi, y

2
i −yi(1 ≤ i ≤ m)). It is easy to see that for x = (x1, · · · , xm), y =

(y1, · · · , ym), a = (a1, · · · , am) ∈ Fm
2 ,

x ∈ H ⇔ x · a = 0 ⇔ a1x1 + · · ·+ amxm + 1 = 1.

x+ y = v = (v1, · · · , vm) ⇔ (x1 + y1 + v1 + 1) · · · (xm + ym + vm + 1) = 1

Therefore fa,S(x, y) = x · y + g(x, y), where

g(x, y) =

{
1, if x ∈ H and x+ y ∈ S

0, otherwise.

= (a1x1 + · · ·+ amxm + 1)
∑

v=(v1,··· ,vm)∈S

(x1 + y1 + v1 + 1) · · · (xm + ym + vm + 1)

=
∑
v∈S

hv(x, y), (2)

where

hv(x, y) = (a1x1 + · · ·+ amxm + 1)(x1 + y1 + v1 + 1) · · · (xm + ym + vm + 1), v ∈ S. (3)
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From assumption m ≥ 3 we know that deg(fa,S) = m if and only if deg(g) = m. Since deg(f) ≤ m for

any bent function f ∈ Bn, we know that deg(g) = deg(fa,S) ≤ m. The monomials of degree m are

xIyI =
∏
i∈I

xi

∏
j∈Ī

yj (I ⊆ {1, · · · ,m}, Ī = {1, · · · ,m} \ I).

Let cI ∈ F2 be the coefficient of xIyI in the polynomial expression of hv(x, y) given by the right-hand

side of (3). Then

cI = the coefficient of xI in (1 +
∑
j∈I

ajxj)
∏
i∈I

(xi + vi + 1)

= 1 +the coefficient of xI in (
∑
j∈I

ajxj)
∏
i∈I

(xi + vi + 1).

But

(
∑
j∈I

ajxj)
∏
i∈I

(xi + vi + 1) =
∑
j∈I

aj(1 + vj + 1)xj

∏
i∈I
i ̸=j

(xi + vi + 1)

=
∑
j∈I

ajvjxj

∏
i∈I
i ̸=j

(xi + vi + 1).

Therefore

cI =
∑
j∈I

ajvj + 1

and the coefficient of xIyĪ in (the polynomial expression of ) hv+a(x, y) is
∑
j∈I

aj(vj +aj)+1. For one pair

{v, v+ a} in S, the coefficient of xIyĪ in hv(x, y)+hv+a(x, y) is
∑
j∈I

[(ajvj +1)+ (ajvj + aj +1)] =
∑
j∈I

aj ,

which is independent from v. There are t pairs of {v, v + a} in S. Therefore the coefficient of xIyĪ in

g(x, y) =
∑
v∈S

hv(x, y) is t
∑
j∈I

aj . If t is even, then all coefficients of monomials xIyĪ with degree m in

g(x, y) are zero, which implies both deg(fa,S) and deg(g) are less than m. On the other hand, suppose

that t is odd, from 0 ̸= a = (a1, · · · , am) ∈ Fm
2 we know that there exits i such that ai = 1. Choosing

I = {i}, then the coefficient of xIyĪ in g(x, y) is tai = 1 ∈ F2. Hence deg(fa,S) = deg(g) = m. This

completes the proof of Theorem 3.

4 The Symmetric Group of fa,S and Some Examples

Let Σm be the group of permutations on {1, 2, · · · ,m},m ≥ 2, σ ∈ Σm. For a = (a1, · · · , am) ∈ Fm
2 ,

S ⊆ Fm
2 , we define

σ(a) = (aσ(1), · · · , aσ(n)), σ(S) = {σ(v) : v ∈ S}.

The symmetric group of a and S are defined by

Sym(a) = {σ ∈ Σm : σ(a) = a}, Sym(S) = {σ ∈ Σm : σ(S) = S}.

Let n = 2m. For σ ∈ Σm and a Boolean function f = f(x, y) ∈ Bn(x, y ∈ Fm
2 ), we define σf ∈ Bn by

(σf)(x, y) = f(σ(x), σ(y)).

Then {σ ∈ Σm : σf = f} is a symmetric group of f .

Theorem 4 Let n = 2m(m ≥ 2), fa,S(x, y) be the bent function in Bn defined in Theorem 1. Then

Sym(a) ∩ Sym(S) is a symmetric group of fa,S and f̂a,S.
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Proof. Suppose that σ ∈ G = Sym(a) ∩ Sym(S). From H = {0, a}⊥ we get Sym(H) = Sym(a).

By the definition, fa,S(x, y) = x · y or x · y + 1, (σfa,S)(x, y) = fa,S(σ(x), σ(y)) = σ(x) · σ(y) = x · y or

x · y + 1. But

fa,S(x, y) = x · y + 1 ⇔ x ∈ H and x+ y ∈ S

⇔ σ(x) ∈ H and σ(x) + σ(y) = σ(x+ y) ∈ S (since σ ∈ Sym(H) ∩ Sym(S))

⇔ fa,S(σ(x), σ(y)) = σ(x) · σ(y) + 1 = x · y + 1.

Therefore, σ(fa,S) = fa,S and then, Sym(a) ∩ Sym(S) is a symmetric group of fa,S .

Finally, f̂a,S(x, y) = fa,Ŝ(y, x) where Ŝ = S+1m. It is easy to see that Sym(S) = Sym(Ŝ). Therefore

Sym(a) ∩ Sym(S) = Sym(a) ∩ Sym(Ŝ) is also a symmetric group of f̂a,S . This completes the proof of

Theorem 4.

The following results show that our construction (Theorem 1) can produce several d-rotation sym-

metric bent functions for all even d.

Theorem 5 Let n = 2m ≥ 4, fa,S(x, y) be the bent function in Bn constructed in Theorem 1, and

ga,S(z) ∈ Bn is defined by

ga,S(z) = ga,S(z1, z2, · · · , zn) = fa,S(z1, z3, · · · , z2m−1, z2, z4, · · · , z2m).

Let σ =

(
1 2 3 · · · m− 1 m

2 3 4 · · · m 1

)
∈ Σm, and 1 ≤ l ≤ m

2 − 1. If σl(a) = a and σl(S) = S, then

ga,S(z) is a 2l-rotation symmetric bent function.

Proof. Suppose that σl(a) = a and σl(S) = S . By Theorem 4 we know that (σlfa,S)(x, y) = fa,S(x, y).

Then we get

ga,S(z2l+1, z2l+2, · · · , z2l) = fa,S(z2l+1, z2l+3, · · · , z2l−1, z2l+2, z2l+4, · · · , z2l)

= fa,S(σ
l(x), σl(y)) (x = (z1, z3, · · · , z2m−1), y = (z2, z4, · · · , z2m))

= (σlfa,S)(x, y) = fa,S(x, y) = ga,S(z1, z2, · · · , zm),

which means that ga,S(z) is 2l-rotation symmetric.

At the end of this section, we show some examples of bent functions fa,S and their dual bent function

f̂a,S with optimal algebraic degree and large symmetric group by choosing a and S properly.

Example 1 Let a be any nonzero vector in Fm
2 (m ≥ 3), S = {0, a}. Then

fa,S(x, y) =

{
x · y + 1, if x · a = 0 and y = x or x+ a

x · y, otherwise.

f̂a,S(x, y) = fa,S+1m
(y, x) =

{
x · y + 1, if y · a = 0 and x = y + 1m or y + a+ 1m

x · y, otherwise.

By Theorem 1, 3, 4, we know that fa,S and f̂a,S are bent functions in Bn, n = 2m with optimal algebraic

degree and Sym(a) is a symmetric group for both of them. Particularly, if a = 1m, then f1m,S and f̂1m,S

have a large symmetric group Sym(1m) = Σm.

Example 2 Let a = 1m ∈ Fm
2 ,m ≥ 3, Sj = {v ∈ Fm

2 : wtH(v) = i}, 0 ≤ i ≤ m, where wtH(v) is the

Hamming weight of v. It is easy to see that 1m + S = Sm−i. Let I be the subset of {0, 1, · · · , [m−1
2 ]} and

SI =
∪
i∈I

(Si ∪ Sm−i).
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Then 1m + SI = SI and |SI | =
∑
i∈I

(
(
m
i

)
+
(

m
m−i

)
) = 2

∑
i∈I

(
(
m
i

)
). From Sym(Si) = Σm we get Sym(SI) =

Σm = Sym(1m). Therefore if
∑
i∈I

(
m
i

)
is odd, then f1m,SI

is bent function in Bn, n = 2m with optimal

algebraic degree and have Σm as a symmetric group. Taking I = {0} and S = SI = {0, 1m}, we get the

bent function f1m,S in example 1.

The following example shows that our construction can provide many self-dual bent functions under

some conditions on N and t.

Example 3 Let n = 2m,m ≥ 3, a be any nonzero vector in Fm
2 with even wtH(a), H = {v ∈ Fm

2 : v ·a =

0}. Then a ∈ H and 1m ∈ H since a · a = 1m · a = wtH(a). Let S be an union of several cosets of

{0, a, 1m, 1m + a} in H (if a = 1m, then {0, a, 1m, 1m + a} = {0, 1m}). Then a + S = 1m + S = S. By

Theorem 1, fa,S is a bent function in Bn and

f̂a,S(x, y) = fa,S+1m(y, x) = fa,S(y, x).

Moreover, for x, y ∈ Fm
2 , from S ⊆ H we know that x ∈ H and x+ y ∈ S ⇔ y ∈ H and x+ y ∈ S.

Therefore f̂a,S(x, y) = fa,S(y, x) = fa,S(x, y) which means that fa,S is self-dual. If a = 1m ∈ Fm
2 ,m is

even and S is an union of odd number of cosets of {0, 1m} in H, then fa,S has optimal algebraic degree.

The last example shows that our construction can provide d- rotation symmetric bent functions for

each even d ≥ 2.

Example 4 Let n = 2m,m = ls. For a vector v = (v1, v2, · · · , vl) ∈ Fl
2, let τ(v) = (v2, v3, · · · , vl, v1).

The period of v is the least positive integer p such that τp(v) = v. Let c, cλ(1 ≤ λ ≤ t) be nonzero vectors

in Fl
2 such that the period of cλ is l, and

t∪
λ=1

l−1∪
i=0

τ i(cλ)A is a disjoint union of tl cosets of A = {0, c} in

Fl
2. (For example, we take c = (1, · · · , 1) ∈ Fl

2, (l ≥ 3), c1 = (1, 0 · · · , 0), t = 1 ). Let a = (c, c, · · · , c)︸ ︷︷ ︸
s

∈

Fm
2 , aλ = (cλ, cλ, · · · , cλ)︸ ︷︷ ︸

s

∈ Fm
2 . Then for σ =

(
1 2 3 · · · m− 1 m

2 3 4 · · · m 1

)
∈ Σm, S =

t∪
λ=1

l−1∪
i=0

σi(aλ)B

is a disjoint union of tl cosets of B = {0, a}, | S |= 2tl. It is easy to see that σl(a) = a and σl(S) = S. By

Theorem 5, ga,S(x, y) is a 2l-rotation symmetric bent function. Moreover, if tl is odd, then deg(ga,S) = m.

5 Conclusions

In this paper, a large number of bent Functions with optimal algebraic degree and large symmetric group

are given. We present a new construction of bent function fa,S in Bn(n = 2m,m ≥ 2) by flipping the

famous bent function f(x, y) = x · y on the direct product of H = {0, a}⊥ and S ⊆ Fm
2 , a+ S = S. The

vector a and set S can be chosen in much flexible way. And the dual bent function f̂a,S has a simple

expression. Most surprisingly, elementary symmetric functions σt(f1, · · · , fN ) based on fi = fa,Si are also

bent functions. We propose a simple criterion on fa,S having optimal algebraic degree deg(fa,S) = m

and show that Sym(a) ∩ Sym(S) is a symmetric group of fa,S . Furthermore, our construction can

produce several d-rotation symmetric bent functions for all even d. Besides the strict demonstration of

the correctness of our construction, we also give some examples of that bent functions fa,S and their dual

bent functions.

9



References

[1] O. S. Rothaus. On bent Functions. Journal of Combinatorial Theory, Series A vol.20(3): 300-

305,1976.

[2] Dillon, J.F. Elementary hadamard difference sets. Ph.D. Thesis, University of Maryland, College

Park, 1974.

[3] S. Mesnager. Bent functions. Springer International Publishing Switzeland, 2016.

[4] C. Carlet, G. Gao, andW. Liu, A secondary construction and a transformation on rotation symmetric

functions, and their action on bent and semi-bent functions. Journal of Combinatorial Theory, Series

A, vol.127(1): 161-175, 2014.

[5] G. Gao, X. Zhang, W. Liu, and C. Carlet, Constructions of quadratic and cubic rotation symmetric

bent functions. IEEE Transactions on Information Theory, vol.58(7):4908-4913, 2012.

[6] C. Carlet, G. Gao, and W. Liu, Results on constructions of rotation symmetric bent and semi-bent

functions. In SETA 2014, Springer International Publishing Switzerland, 2014, Lecture Notes in

Computer Science, vol.8865: pp. 21-33, 2014

[7] S. Su and X. Tang. Systematic Constructions of Rotation Symmetric Bent Functions, 2-Rotation

Symmetric Bent Functions, and Bent Idempotent Functions. To appear in IEEE Transactions on

Information Theory 2017. DOI 10.1109/TIT.2016.2621751.

[8] C. Tang, Y. Qi, Z. Zhou, C. Fan. Two infinite classes of rotation symmetric bent functions with

simple representation. arXiv preprint arXiv:1508.05674, 2015.

[9] C. Carlet. Two New Classes of Bent Functions. EUROCRYPT 1993 Lecture Notes in Computer

Science, vol.765: pp.77-101, 1994.

[10] C. Carlet. On Bent and Highly Nonlinear Balanced/Resilient Functions and Their Algebraic Immu-

nities. In AAECC 2006, Lecture Notes in Computer Science, vol.3857: pp.1-28, 2006.

[11] S. Mesnager. Several New Infinite Families of Bent Functions and Their Duals. IEEE Transactions

on Information Theory, 60(7):4397-4407, 2014.

[12] D. K. Dalai, S. Maitra, S.Sarkar. Results on rotation symmetric bent functions. Discrete Math.

vol.309: pp.2398-2409, 2009.

10


