
Mixing Confidential Transactions:
Comprehensive Transaction Privacy for Bitcoin

Tim Ruffing1 and Pedro Moreno-Sanchez2

1Saarland University
tim.ruffing@mmci.uni-saarland.de

2Purdue University
pmorenos@purdue.edu

Abstract. The public nature of the blockchain has been shown to be
a severe threat for the privacy of Bitcoin users. Even worse, since funds
can be tracked and tainted, no two coins are equal, and fungibility,
a fundamental property required in every currency, is at risk. With
these threats in mind, several privacy-enhancing technologies have been
proposed to improve transaction privacy in Bitcoin. However, they either
require a deep redesign of the currency, breaking many currently deployed
features, or they address only specific privacy issues and consequently
provide only very limited guarantees when deployed separately.
The goal of this work is to overcome this trade-off. Building on CoinJoin,
we design ValueShuffle, the first coin mixing protocol compatible with
Confidential Transactions, a proposed enhancement to the Bitcoin proto-
col to hide payment values in the blockchain. ValueShuffle ensures the
anonymity of mixing participants as well as the confidentiality of their
payment values even against other possibly malicious mixing participants.
By combining CoinJoin with Confidential Transactions and additionally
Stealth Addresses, ValueShuffle provides comprehensive privacy (payer
anonymity, payee anonymity, and payment value privacy) without break-
ing with fundamental design principles or features of the current Bitcoin
system. Assuming that Confidential Transactions will be integrated in the
Bitcoin protocol, ValueShuffle makes it possible to mix funds of different
value as well as to mix and spend funds in the same transaction, which
overcomes the two main limitations of previous coin mixing protocols.

1 Introduction

In Bitcoin’s initial design, privacy plays only a minor role. The initial perception
of Bitcoin providing some built-in anonymity has been refuted by a vast set of
academic works [2,3,19,24,25,32,37] showing many different privacy weaknesses
with the current Bitcoin protocol. This state of affairs has led to a plethora of
privacy-enhancing technologies [3–5,7,16,17,26,34,35,39,42] aiming at overcoming
these shortcomings without breaking with the fundamental design of Bitcoin.

However, all of these approaches offer only partial solutions, focusing typically
on just one aspect of privacy (payer anonymity, payee anonymity or payment
value privacy). For instance, Confidential Transactions (CT) [22], a proposed

enhancement to the Bitcoin protocol, which is currently evaluated and tested
in the Elements Alpha sidechain [12] and could be implemented in Bitcoin as a
soft-fork, defines a transaction format that ensures payment value privacy in the
blockchain. Stealth Addresses (SA) [38] is a mechanism for payers to generate
unique one-time addresses for improved payee anonymity.

For payer anonymity, the most prevalent approach retaining compatibility
with Bitcoin is coin mixing. In a coin mixing protocol, a group of users exchange
their coins with each other, effectively hiding the relations between funds and
owners. Such functionality can be achieved in practice for example by jointly
generating a multi-input multi-output CoinJoin [21] transaction, which enables
the users to atomically transfer their funds from potentially tainted inputs to
fresh untainted output addresses. Since such a transaction must be signed by
each involved user to be valid, theft of funds can easily be avoided. Additionally,
if users exchange their output accounts by means of an anonymous broadcast
protocol [10,33, 34], inputs cannot be linked to outputs even by malicious users
in the mixing, and such malicious users cannot prevent the honest users from
successfully completing the protocol.

To achieve comprehensive privacy, it is necessary to combine all the three
aforementioned partial privacy solutions (CT, SA, and mixing) into one solution,
but this poses a challenge. SA or other means to generate one-time addresses can
be easily combined with coin mixing, but while CT has in fact been designed
with CoinJoin mixing in mind, it is not clear that the trust models of CT and
P2P coin mixing can be made compatible. The design of CT assumes that a
transaction is created by just one user, whereas in P2P coin mixing it is a group
of mutually distrusting users who jointly must create a CoinJoin transaction.
This leads to the following question:

Can we design a P2P coin mixing protocol that enables a group of mutually
distrusting users to create a CoinJoin confidential transaction, without
revealing the relation between inputs and outputs or their payment values
to each other?

1.1 ValueShuffle: Mixing Confidential Transactions

In this work, we answer this question affirmatively. We design ValueShuffle, the
first coin mixing protocol compatible with CT. ValueShuffle is an extension of the
P2P coin mixing protocol CoinShuffle++ [34], which is the result of instantiating
the efficient message mixing protocol DiceMix [34] in the setting of CoinJoin-based
coin mixing. Since ValueShuffle successfully combines coin mixing, SA and the
CT proposal, the resulting currency provides comprehensive privacy, i.e., payer
anonymity, payee anonymity and value privacy. Since it builds upon CoinJoin,
ValueShuffle inherits a variety of features crucial to its practical deployment in
the Bitcoin ecosystem, e.g., compatibility with Bitcoin scripts and compatibility
with blockchain pruning.

Exploiting Synergies. By combining coin mixing with SA and CT, we exploit
important synergies which make P2P coin mixing both more efficient and more
practical, thereby releasing the full potential of coin mixing. We achieve that
goal by overcoming the two main limitations of current coin mixing approaches.

First, all forms of coin mixing have been heavily restricted to mixing funds of
the same value, because otherwise it is trivial for an observer to link inputs and
outputs together just based on their monetary value, independently of how the
mixing is organized. Adding value privacy to coin mixing removes this restriction
entirely but comes with the challenge of proving to the network that no money
is created in the mixing, since payment values are no longer in clear.

Second, current P2P coin mixing protocols [34] suffer from the problem that
users are required to mix their funds (in a CoinJoin transaction) by sending them
to a fresh address of their own first, which removes the trace to the owner. Only
afterwards can users spend the mixed funds to a payee in a second transaction.1

This two-step process renders mixing expensive for users, who pay additional
fees and need to wait longer, and for the entire Bitcoin network, which has to
process essentially twice the amount of transaction data. As a result, privacy
comes at a large expense. This is highly undesirable and creates a conflict between
privacy and efficiency.

In ValueShuffle, instead, we rely on SA and CT to enable users to send their
funds directly to the expected receivers in the CoinJoin transaction, which is
arguably the most desirable mode of use of CoinJoin.

1.2 Features of ValueShuffle

The combination of the three privacy-enhancing technologies ValueShuffle, SA,
and CT achieves the following main features.

Comprehensive Privacy. The combination of technologies provides the pri-
vacy guarantees of interest in Bitcoin. In particular, ValueShuffle ensures that no
attacker observing the blockchain or the network, or even participating in the
protocol, can link inputs and outputs of the CoinJoin transaction created in an
execution of ValueShuffle. That implies that given an output of this transaction,
the payer’s input address cannot be identified among the honest input addresses
in the mixing (payer anonymity). Additionally, SA provides one-time addresses for
receiving payments, preventing linkage to the intended payee (payee anonymity),
and CT provides value privacy.

Single Transaction. ValueShuffle can be used to transfer funds to payees
directly without any form of premixing as required by current P2P coin mixing
solutions, and without requiring interaction with the payee. As a result, private
payments can be performed with just one single transaction on the blockchain.

1 This is due to a fundamental restriction [34] of P2P mixing protocols; they can only
handle freshly generated messages, which can be discarded if the protocol is disrupted,
e.g., Bitcoin addresses of their own generated in the beginning of the protocol. As a
result, paying to a payee directly is not possible, because that would require using a
fixed amount or a fixed address as a message.

DoS Resistance. ValueShuffle succeeds in the presence of denial-of-service
attacks by disruptive users aiming to prevent honest users from completing the
mixing. While disruptive users can delay the protocol, they cannot stop it. Since
ValueShuffle is based on the efficient CoinShuffle++ protocol [34], it terminates
in only 4 + 2f communication rounds in the presence of f disruptive users.

Anonymous Channel Not Strictly Required. For providing unlinkability of in-
puts and outputs in a CoinJoin transaction, ValueShuffle does not rely on any
external anonymous channel such as the Tor network [11]. (However, to avoid
an observer being able to link inputs of the CoinJoin transaction with network-
level identifiers such as IP addresses, using an external means of anonymous
communication is highly recommended.)

Features Inherited from CoinJoin. Since ValueShuffle is based on the Coin-
Join paradigm, it additionally inherits all of its practical advantages.

Theft Resistance. Since honest users will check the final CoinJoin transaction
before signing it, no money can be stolen from them.

Script Compatibility. While ValueShuffle does not keep the scripts confiden-
tial, it is compatible with transaction outputs that use complex scripts, e.g.,
advanced smart contracts, and provides meaningful privacy guarantees for them.

No Overhead for the Network. Unlike ring signatures, as for example de-
ployed in Monero [28], which require a signature of size proportional to the
anonymity set, our approach—while requiring interaction between users—provides
anonymity without putting an additional burden in terms of blockchain space or
verification time on the Bitcoin network.

Reduced Fees and Space Requirements. Taking this one step further, Coin-
Join makes Bitcoin in fact more efficient, assuming the availability of Schnorr
signatures [36], which are planned to be deployed in Bitcoin Core in the future [6].
The introduction of Schnorr signatures will enable aggregate signatures using an
interactive two-round protocol among the users in a CoinJoin [41], reducing the
number of signatures from n to 1, where n is the number of users. This protocol
can easily be integrated in ValueShuffle, and since we can exploit concurrency,
the resulting protocol will have the same number of rounds as the non-interactive
variant (4f + 2). This enhancement greatly reduces the size of transactions,
thereby providing large savings in terms of blockchain space, verification time,
and transaction fees as compared to n individual confidential transactions.

Incentive for Privacy. Due to the reduced fees, users save money by perform-
ing privacy-preserving transactions. This provides an unprecedented incentive for
deployment and use of privacy-enhancing technologies in Bitcoin.

Compatibility with Pruning. Unlike in Zerocash [4] or Monero [28], using
CoinJoin it can be publicly observed which transaction outputs are unspent.
While this releases some information to the public, it allows pruning spent
outputs from the set of (potentially) unspent transaction outputs. Pruning helps
to mitigate the scaling issues of Bitcoin.

Overlay Design. The unlinkability provided by ValueShuffle through the use
of CoinJoin is built as a separate layer on top of Bitcoin, which avoids additional
complexity and risk in the underlying Bitcoin protocol.

2 Related Work

A variety of privacy solutions have been proposed so far in the literature, based
on different paradigms.

Coin Mixing. CoinShuffle [33] and its successor CoinShuffle++ [34] use P2P
mixing to create a CoinJoin [21] transaction. This approach has the advantage that
theft is excluded by the design; however, efforts are required to ensure termination
even with malicious users. ValueShuffle is an extension of CoinShuffle++; both
easily scale up to anonymity sets of moderate size (e.g., 50 users).

Another line of research defines mixing using an intermediary tumbler [7,
16, 17, 39]. Notably, TumbleBit is the first such protocol that does not require
users to trust in the tumbler for privacy or security of funds. An immediate
advantage of mixing with a tumbler is that it scales better to larger anonymity
sets. For instance, TumbleBit has been tested with an anonymity set of 800
users. However, a normal payment using TumbleBit needs at least two sequential
Bitcoin transactions. ValueShuffle instead needs only one transaction to perform
a payment. To enable more efficient mixing, TumbleBit also supports mixing
based on payment channels with the tumbler.

Xim [5] uses announcements on the blockchain to pool users for mixing,
thereby avoiding that a single party such as the bulletin board in P2P mixing or
the tumbler can deny service to honest users and simplify Sybil attacks reducing
the effective anonymity set of other honest users. However, Xim supports only
two-party mixing, and thus many mixing transactions are required to achieve
even an anonymity set of moderate size.

Apart from their differences in terms of requirements (e.g., number of trans-
actions or trust assumptions), all coin mixing protocols proposed thus far are
not compatible with CT and thus share the common drawback inherent to coin
mixing with plain amounts: payments must transfer the same amount of funds,
as otherwise unlinkability of input and output accounts is trivially broken.

CryptoNote. The CryptoNote [35] design is the closest to our work in terms of
provided privacy guarantees. CryptoNote relies on ring signatures to provide
anonymity for the sender of a transaction. An extension of CryptoNote is fully
compatible with CT [27] and has been implemented in the cryptocurrency
Monero [28]. In contrast to ValueShuffle, an online mixing protocol is not required,
and a sufficient anonymity set can be created using funds of users currently offline.

However, CryptoNote’s use of ring signatures comes with two important
drawbacks for scalability. First, CryptoNote essentially performs mixing on the
blockchain and requires each transaction to contain a ring signature of size O(n),
where n is the size of the anonymity set. Storing the ring signatures requires a lot
of precious space in the blockchain, and verifying them puts a large burden on
all nodes in the currency network. In contrast, ValueShuffle performs the actual
mixing off-chain and stores only the result on the blockchain.

Second, CryptoNote is not compatible with pruning, a feature supported, e.g.,
by the Bitcoin Core client [29]. Pruning reduces the storage requirements of nodes

drastically by deleting old blocks and spent transactions once verified. This is
impossible in CryptoNote because its use of ring signatures prevents clients from
determining whether an transaction output has been spent and can be pruned.
A CoinJoin-based approach such as ValueShuffle does not have this problem and
is compatible with pruning.

From a high-level point of view, ValueShuffle moves the overhead of providing
payer anonymity from the blockchain and thus the whole Bitcoin network to only
the users actively involved in a single mixing.

Mimblewimble. Mimblewimble [18, 31] is a design for a cryptocurrency with
confidential transactions that can be aggregated non-interactively and even
across blocks. This has tremendous benefits for the scalability of the underly-
ing blockchain. However, such aggregation alone does not ensure input-output
unlinkability against parties who perform the aggregation, e.g., the miners. Fur-
thermore, Mimblewimble is not compatible with smart contracts due to the
lack of script support. In contrast, ValueShuffle seamlessly supports scripts as
currently implemented in Bitcoin.

Zerocoin and Zerocash. Zerocoin [26] and its follow-up work Zerocash [4], whose
implementation Zcash has recently been deployed, are cryptocurrency protocols
that provide anonymity by design. Although these solutions provide strong
privacy guarantees, it is not clear whether Zcash will see widespread adoption, in
particular given its reliance on a trusted setup and non-falsifiable cryptographic
assumptions [14] due to the use of zkSNARKS. Moreover, since it is not possible
to observe which outputs have been spent already, blockchain pruning is not
possible in Zerocoin and Zerocash.

3 Building Blocks

We describe the three building blocks of ValueShuffle, namely peer-to-peer mixing,
Confidential Transactions, and Stealth Addresses.

3.1 Peer-to-Peer Mixing

A peer-to-peer (P2P) mixing protocol [10,33,34] allows a set of untrusted users to
simultaneously broadcast their messages without requiring any trusted third party.
The protocol ensures sender anonymity, i.e., an attacker controlling the network
and some of the participating users cannot associate a message to its corresponding
honest sender. In this work, we use DiceMix [34] (as in CoinShuffle++), which
relies on Dining Cryptographers networks (DC-nets) [9] to achieve anonymity.
Before the DC-net can be run, DiceMix runs a key exchangeto establish pairwise
symmetric keys.

DoS Resistance. Disruptive users, whose goal is to prevent honest users from
mixing, will be exposed and excluded in DiceMix. To this end, users broadcast
the ephemeral secret key used in the key exchange of a failed protocol run. Then

at least one malicious user is identified by replaying the expected computa-
tions, allowing the honest users to start a new run excluding the malicious user.
Eventually only honest users remain, and the protocol terminates.

Freshness of Messages. A P2P mixing protocol requires mixed messages to
be fresh and to have sufficient entropy [34]. Freshness enables the protocol to
sacrifice anonymity in failed runs in order to identify malicious users. As the
messages will be discarded and no transaction will be performed, this does not
hurt privacy at this point. Freshness is then required to ensure that a message
from a particular user used in a failed run (with sacrificed anonymity) cannot be
linked to a message from the same user used in the final successful run, in which
a transaction will be performed and anonymity must be ensured.

3.2 Confidential Transactions

Confidential Transactions (CT) [15,22] is a cryptographic extension to Bitcoin
that allows a single user to perform a transaction such that none of the mon-
etary values in the inputs or outputs are revealed, thereby guaranteeing value
privacy. Nevertheless, the balance property, i.e., no new coins are generated in
the transaction, remains publicly verifiable.

This is mainly achieved by hiding the values using additively homomorphic
commitments, i.e., Com(x, r)⊕Com(x′, r′) = Com(x+ x′, r+ r′). As an example,
assume a user has an input value x1 and two output values x2 and x3. She can
commit to x1, x2, and x3, as ci ··= Com(xi, ri), where ri is chosen uniformly at
random. Then, she computes r∆ = r1 + r2 − r3 and adds this value in clear to
the transaction. Ignoring fees, a verifier can then verify the balance property by
checking whether c1 ⊕ c2 = c3 ⊕ Com(0,−r∆).

In fact, the current design of CT avoids adding r∆ explicitly by choosing the
randomness values such that always r∆ = 0. Our description of ValueShuffle is not
compatible with this optimization, because it is not clear how to support it without
adding communication rounds to the protocol. In practice, CT uses Pedersen
commitments [30] and range proofs based on borromean ring signatures [23].

To ensure that commitments do not contain negative or too-large values that
could overflow, a non-interactive zero-knowledge range proof is added to every
commitment, proving that the value is in a certain range. (Also other components,
e.g., an ephemeral public key, are added. To simplify presentation, we assume
throughout the paper that these other components are part of the range proof.)

Monetary values are in fact represented not as integers but as floating point
numbers with a public exponent, and only the mantissa is hidden in the commit-
ment; this is to support large values efficiently. However, in this work we assume
ordinary integers, i.e., we assume that the exponent is effectively not used (i.e.,
it is always 0), which will be necessary to ensure anonymity.

3.3 One-time Addresses

Users performing transactions via ValueShuffle require a sufficient supply of fresh
unlinkable addresses of the payee. This will make it possible to discard a recipient

address used in a failed run of DiceMix. In this case, a fresh address can be used
for the following run, satisfying the freshness requirement of messages mixed
using DiceMix. (If there are n users in the mixing, DiceMix will require at most
n − 1 addresses.) Several methods are available. First, the payee can post a
stealth address, which enables any payer to derive fresh addresses. Second, the
payee can send a BIP32 public key [40] to the payer, which enables the payer
to derive fresh addresses. The necessary derivation index can be derived from
public information, e.g., a hash of the value commitment. Third, the payee can
simply send enough fresh addresses to the payer.

The method based on stealth addresses provides the strongest privacy guaran-
tees. A stealth address is a public long-term address of a payee, which enables a
payer to derive an arbitrary number of unlinkable addresses owned by the payee.
A payment using a stealth address does not require any direct communication
between payer and payee, and thus provides strong payer anonymity when used
together with coin mixing: not even the payee can identify the payer, which is a
useful property for anonymous donations, for example.

Nevertheless, ValueShuffle is oblivious of the method to generate fresh ad-
dresses; we only require that the payee has access to some method, and we refer
the reader to the respective descriptions of the individual methods for details.

4 ValueShuffle

In this section, we overview ValueShuffle, the first P2P coin mixing protocol com-
patible with CT. We detail the protocol and the security analysis in Appendix A.

Bootstrapping and Communication Model. A suitable bootstrapping mechanism
is required for finding users. A malicious bootstrapping mechanism can hinder
payer anonymity, as it can prevent honest users from participating in the proto-
col. Although this is a realistic threat, we consider prevention of such attacks
orthogonal to our work.

Since ValueShuffle is an extension of CoinShuffle++, which uses DiceMix to
mix Bitcoin addresses of the users, we rely on the same communication model as
CoinShuffle++ and DiceMix. For completeness, we sketch this model here. We
assume that users communicate with each other via a (broadcast) bulletin board,
e.g., an IRC server echoing messages from one user to the others. Moreover, we
assume the bounded synchronous communication setting, where a message from
a user is available to all others at the end of a round and absence of a message
from a user indicates that the user did not send any message. We stress that
privacy is guaranteed even against a fully malicious bulletin board; the bulletin
board is purely a means of communication.

4.1 Security and Privacy Features

ValueShuffle provides the following security and privacy guarantees.

Unlinkability: Given an output and two inputs belonging to honest users in
the CoinJoin transaction created by the protocol, the attacker is not able to
tell which of the two inputs pays to the output.

CT Compatibility: The protocol generates a CoinJoin transaction without
compromising the individual value privacy of honest users provided by CT.

Theft Resistance: Funds of each honest user are either transferred to the payee
as intended or remain with the honest user.

Termination: The protocol terminates for the honest users.

Threat Model. We consider an attacker that controls f malicious users. We do
not put restrictions on f . However, for unlinkability we need f < n− 1, where n
is the set of unexcluded users, to ensure there is a meaningful anonymity set.

The attacker additionally controls the bulletin board, which enables him to
block messages from honest users. Only for the termination property, we assume
that the bulletin board is honest, because otherwise, all communication could be
blocked by the attacker and termination is impossible to ensure.

4.2 Challenges and Our Solutions

To combine coin mixing with CT and one-time addresses, we need to overcome
the following challenges. For the sake of explanation, we assume that each user
has only one input and one output in the transaction, and that there is no
transaction fee. The full protocol does not have these limitations.

Basic Design. From a high-level point of view, the users in an execution of
ValueShuffle run DiceMix to mix not only their output addresses (as done
in CoinShuffle++) but their output triples, i.e., triples consisting of output
address (or script), CT value commitment, and corresponding range proof. If
DiceMix runs successfully, then it will pass a set of anonymized triples to an
application-defined confirmation mechanism, which confirms the result of the
mixing. As in CoinShuffle++, the confirmation mechanism in ValueShuffle is the
collective signing of the CoinJoin transaction, either by collecting a plain list
of signatures or by performing an interactive protocol to create an aggregate
Schnorr signature [41].

Handling Disruption. If a run of DiceMix fails, it must be possible to identify
at least one disruptive user to be excluded in a subsequent run of the protocol.
This will eventually guarantee termination. Crucially, DiceMix requires the
confirmation mechanism to output at least one such user if confirmation itself is
disrupted. The confirmation mechanism can assume that the result of the mixing
is correct, i.e., it contains the messages of all honest users. Given that assumption,
identifying a disruptive user is straightforward: a user that refuses to sign the final
CoinJoin transaction, or provides wrong signatures (or wrong partial signatures
in the case of Schnorr aggregate signatures) is obviously disruptive.

Freshness of Mixed Output Triples. Recall that DiceMix requires mixed messages
(i.e., the output triples in our case) to be fresh [34] and have sufficient entropy
to ensure anonymity. This is exactly where we are able to exploit one-time
addresses and CT. In particular, the payer is able to create fresh unlinkable
output triples: We assume that the payer has a method to create fresh unlinkable
output addresses all belonging to same payee, so the address component of the
output triple is fresh. Moreover, the payer uses CT and since the commitment
scheme and the range proof are randomized, the payer is able to generate many
fresh unlinkable value commitments and range proofs. So all three components
of the output triple can be freshly generated.

Only by combining one-time addresses and CT, we are able to guarantee
anonymity if users are mixing and performing actual payments in the same
transaction. Previous P2P coin mixing protocols such as CoinShuffle++ [34]
require users to mix funds to a fresh output address of their own, because using
the fixed address of the recipient or even using the plain monetary value in the
mixing is not possible if anonymity and termination are desired [34].

Multiple-payer CT. In the original design of CT, the single payer can easily craft
the randomness for the commitments to input and output values in the transaction
such that anyone can verify its correctness (see Section 3.2). However, in a
mixing transaction with several payers, a naive construction of such a verifiable
transaction would require that users reveal to each other the randomnesses used in
the commitments, thereby compromising the hiding property of the commitments.

To overcome this issue, the users can run a secure sum protocol to jointly
compute the sum r∆ of their random values, i.e., r∆ =

∑
i ri − r′i, where ri

denotes the randomness in the commitment to the input value of user i, and
r′i denotes the randomness in the commitment to the output value of the same
user i. As a sum, r∆ does not reveal which user contributed which summand
to r∆. Now all users can add r∆ as an explicit public randomness value to the
transaction, and the overall transaction is valid again, which can be publicly
verified by checking whether

⊕
ci =

⊕
c′i ⊕ Com(0,−r∆).

The value r∆ can be obtained with a standard secure sum protocol based on
additive secret sharing, where every user i broadcasts her value ri− r′i blinded by
multiple pads, each one shared with one other user. The messages from all users
are then combined so that shared keys cancel out and the sum r∆ is obtained.
This mechanism is in essence equivalent to a DC-net as already used in DiceMix.

Handling Disruption of the Secure Sum Protocol. Malicious users can disrupt not
only the mixing of output triples but also the secure sum protocol by creating an
output value commitment that does not match the value of the input commitment,
which can be detected when creating the CoinJoin transaction.

Similar to sacrificing anonymity in the DC-net used for mixing output triples,
we can sacrifice anonymity in the DC-net used as a secure sum protocol. This
reveals for every user i what she claims is ri − r′i. Using the verification equation
of CT, all honest users can easily check the balance property of every user i
individually, i.e., check whether user i’s output commitments are consistent with

her input commitments. Note that this approach does not reveal the random
values used for the input commitments or the output commitments of user i,
which would also reveal her intended payment value.

Combining P2P Mixing and Secure Sum. Since both DiceMix and the secure
sum protocol are similar in structure (they both rely on DC-nets after all), we
can optimize their combination. First, we can rely on a single key exchange and
derive independent subkeys for the P2P mixing and the secure sum protocol.
This means that if one of the two protocols is aborted, then the other must be
aborted as well, because the same ephemeral secret is used for the key exchange
and must be revealed. This is not a problem because the proper result of one of
the two protocols does not yield a valid mixing transaction, and the users have
to restart from scratch by generating a fresh output triple anyway.

Mixing Long Messages in DiceMix. While DiceMix in its current form is practical
for small messages m (e.g., |m| = 160 bits as used by CoinShuffle++), it is
prohibitively slow for messages of the size we require; we need |m| ≈ 20 000 bits to
mix the quite large range proofs necessary in CT. The most expensive computation
step is a polynomial factorization and requires each message to be an element of
a finite field and consequently the finite field must have a size of about 2|m|.

To overcome this issue, we split m into several chunks, i.e., m = m1 ‖ · · · ‖m`

and mix those chunks in different parallel runs of the essential mixing step in
DiceMix. The challenge that arises is to recombine the messages again, because
the mixing ensures that it is not possible to know which chunks belong together
(i.e., to the same user). Our solution is to prefix every mi for 1 < i ≤ ` with
F(m1), where F is a collision-resistant hash function, so that every user mixes:
m′

1 = m1 and m′
i = F(m1) ‖mi for 1 < i ≤ `. This arrangement allows for a

trade-off between computation and communication required for mixing: bigger
chunks reduce the number of parallel mixing instances required but demand
higher computation costs for the polynomial factorization.

Supporting Arbitrary Scripts. So far we have discussed only output addresses,
which are essentially hashes, but not about their type. While mixing works fine
with ordinary pay-to-pubkey-hash (P2PKH) hashes, we require pay-to-script-hash
(P2SH) hashes [1]2 to support arbitrary scripts. However, it is not possible to mix
P2PKH and P2SH hashes in the same mixing, because this would require adding
the address type explicitly to the mixing message, which breaks anonymity: in
case of a disruption, it becomes clear which inputs go a P2PKH address and
which inputs go to a P2SH address. To support P2PKH and P2SH together, we
can instead perform P2PKH transactions nested in P2SH.3 For simplicity, we
will ignore this issue and assume addresses in the remainder of the paper.
2 In P2PKH, funds are sent to a public key specified by its hash, and the user who
wants to spend the resulting output is responsible for showing the public key. P2SH
is a generalization: In P2SH, funds are sent to a script specified by its hash, and the
user who wants to spend the resulting output is responsible for providing the script.

3 Such nesting has also been proposed in the context of Segregated Witness [20].

4.3 Overview of ValueShuffle

We assume that every user i is represented by a triple ini = (ci = Com(xi, ri), πi,
vk i), where ci denotes the commitment to the input value xi using randomness
ri, πi denotes a range proof for ci, and vk i denotes a Bitcoin address owned by
the user i. For ease of explanation, we assume here that every user has only one
input triple and that there are no fees in place.

From a high-level perspective, an execution of ValueShuffle consists of runs,
and each run of ValueShuffle consists of four phases as follows.

1. Output Generation. Every user i locally generates her output triple out i =
(c′i = Com(x′i, r

′
i), π

′
i, addr

′
i), where c′i is a CT-style commitment, π′

i is the corre-
sponding range proof, and addr ′i is a fresh one-time address of the receiver. Note
that users can have several output triples (including change outputs), but for
simplicity we restrict our attention to only one output here.

2. Mixing and Secure Sum. Users run in parallel a P2P mixing protocol to
mix their output triples out i and a secure sum protocol to privately compute
the sum r∆ =

∑
i r

′
i − ri. Finally, input and output messages can be combined

to deterministically form a (still unsigned) CoinJoin transaction by adding the
explicit random value r∆.

3. Check. Users check validity of the resulting CoinJoin transaction, i.e., they
check whether all range proofs π′

i verify with respect to commitments c′i, and
check whether the overall balance of the intended transaction is correct, i.e.,
whether

⊕
i ci =

⊕
i c

′
i + Com(0,−r∆). Also, every user verifies that her output

triple is part of the mixing result, i.e., no coins are stolen by the transaction.
4a. Confirm. If all checks pass, the transaction is valid and users are required

to sign it. While every user checked only that her output is present, DiceMix
guarantees that this suffices to ensure that the outputs of all users are present.
Thus if some honest user reached this point, she can be sure that users refusing
to sign the transaction are disruptive. If this happens, they will be excluded and
a new run of the protocol is started.

4b. Blame. If any of the aforementioned checks fail, a blame phase is per-
formed to detect at least one malicious user. Every user i broadcasts the secrets
she used for the mixing and secure sum protocols, thereby revealing the value
ri − r′i, which suffices to check that user i committed the same value in the input
and output addresses (and therefore no coins were created). Now every other user
j can recompute the mixing and secure sum steps of user i and detect whether
she faithfully followed the protocol specification. The thereby exposed malicious
user is then excluded from the protocol and a new run is started.

4.4 Performance

To reduce the number of necessary communication rounds, DiceMix is able to
start a subsequent run even if the current run has not yet failed, and thus even
if it is not yet clear who will be the disruptor to be excluded in the subsequent
run [34]. ValueShuffle is able to exploit this mechanism as well and as a result,
ValueShuffle terminates in 4 + 2f rounds in the presence of f disrupting users
(instead of 4 + 4f rounds without this feature).

Acknowledgements. We thank Pieter Wiulle for insightful discussions and in
particular for pointing out a mistake in a preliminary version of this work, and
we thank the anonymous reviewers for their very helpful comments. This work
was supported by the German Ministry for Education and Research (BMBF)
through funding for the German Universities Excellence Initiative.

A ValueShuffle: Full Protocol Description

In this section we specify ValueShuffle fully. We start by describing the building
blocks that the protocol relies on.

Digital Signatures. We require a digital signature scheme (KeyGen, Sign, Verify)
unforgeable under chosen-message attacks (UF-CMA). The algorithm KeyGen
returns a private signing key sk and the corresponding public verification key
vk . On input message m, Sign(sk ,m) returns σ, a signature on message m using
signing key sk . The verification algorithm Verify(pk , σ,m) outputs true iff σ is a
valid signature for m under the verification key vk .

Non-Interactive Key Exchange. We require a non-interactive key exchange (NIKE)
mechanism (NIKE.KeyGen,NIKE.SharedKey) secure in the CKS model [8,13]. The
algorithm NIKE.KeyGen(id) outputs a public key npk and a secret key nsk for
a given party identifier id . NIKE.SharedKey(id1, id2,nsk1,npk2, sid) outputs a
shared key for the two parties and session identifier sid . NIKE.SharedKey must
fulfill the standard correctness requirement that for all session identifiers sid , all
parties id1, id2, and all corresponding key pairs (npk1,nsk1) and (npk2,nsk2), it
holds that NIKE.SharedKey(id1, id2,nsk1,npk2, sid) = NIKE.SharedKey(id2, id1,
nsk2,npk1, sid). Additionally, we require an algorithm NIKE.ValidatePK(npk),
which outputs true iff npk is a public key in the output space of NIKE.KeyGen,
and we require an algorithm NIKE.ValidateKeys(npk ,nsk) which outputs true iff
nsk is a secret key for the public key npk .

Static Diffie-Hellman key exchange satifies these requirements [8], given
a suitable key derivation algorithm such as NIKE.SharedKey(id1, id2, x, g

y) ··=
K((gxy, {id1, id2}, sid)) for a hash function K modeled as a random oracle.

Hash Functions. We require three hash functions H, G, and F modeled as random
oracles.

Confidential Transactions. Confidential Transactions (CT) relies on a non-
interactive commitment scheme (Com,Open), which uses public parameters we
keep implicit, and a range proof (RPCreate,RPVerify). Algorithm c ··= Com(m, r)
uses the randomness r ∈ R to output a commitment c of message m. Algorithm
b ··= Open(param, c,m, r) returns true iff c is a valid commitment of message m
with randomness r. Informally, a commitment scheme is hiding, i.e., the com-
mitment c reveals nothing about m; and binding, i.e., no attacker can produce
a commitment that it can open to two different messages m′ 6= m. CT requires

an additively homomorphic commitment scheme. A commitment scheme is ad-
ditively homomorphic if there is an efficient operation ⊕ on commitments such
that Com(m1, r1)⊕ Com(m2, r2) = Com(m1 +m2, r1 + r2). In practice, CT uses
Pedersen commitments [30] as the instantiation of such a commitment scheme.

In a range proof scheme, the algorithm π ··= RPCreate(m, r) creates a proof π
that c = Com(m, r) is a commitment of a value in a valid range. The algorithm
b ··= RPVerify(π, c) returns true iff π is a valid range proof for c. We refer the
reader to the CT draft [15,22] for details.

Confirmation. The confirmation subprotocol ConfirmTx() uses CoinJoin to
perform the actual mixing. The algorithm CoinJoinTx() creates a CoinJoin trans-
action, and the algorithm Submit(tx , σ[]) submits transaction tx including the
corresponding signatures σ[] to the Bitcoin network.

Our implementation of ConfirmTx() produces a CoinJoin transaction with
one signature from each user. As noted above, alternative schemes are possible,
e.g., the two-round aggregate Schnorr signature protocol [41] can be used to sign
the transaction if Schnorr signatures will available in Bitcoin. In that case, it
is possible to pre-perform the first round of the two-round protocol (in parallel
to the main part of ValueShuffle), because this round does not depend on the
output of the mixing, such that ConfirmTx() effectively still takes only one
round, and the full protocol still takes only 4 + 2f rounds.

Conventions and Notation for Pseudocode. We use arrays written as Arr[i],
where i is the index. We denote the full array (all its elements) as Arr[].

Message x is broadcast using “broadcast x”. The command “receive X[p]
from all p ∈ P where X(X[p]) missing C(Poff)” attempts to receive a message
from all users p ∈ P . The first message X[p] from user p that fulfills predicate
X(X[p]) is accepted and stored as X[p]; all further messages from p are ignored.
When a timeout is reached, the command C is executed, which has access to a
set Poff ⊆ P of users that did not send a (valid) message.

Regarding concurrency, a thread that runs a procedure P(args) is started
using “t ··= fork P(args)”, where t is a handle for the thread. A thread t can
either be joined using “r ··= join t”, where r is its return value, or it can be
aborted using “abort t”. A thread can wait for a notification and receive a value
from another thread using “wait”. The notifying thread uses “notify t of v” to
notify thread t of some value v.

Setup. We assume that funds that should be used as input in ValueShuffle can
only be spent by providing signatures, i.e., they are associated with a verification
key that can also be used in ValueShuffle. Furthermore, for ease of explanation
we assume here that every user has only one input. However, ValueShuffle can
easily be adapted to overcome this restriction: If a user has more than one
input, she can simply sign her messages using all signing keys corresponding to
all verification keys, and the code for checking the balance can be adapted to
consider the homomorphic combination of several input commitments.

As a result of these assumptions, every user in the beginning knows an
unspent transaction output UTXO[p], its corresponding CT commitment C[p]
and verification key VK[p] for every other user p.

Furthermore, every user has her corresponding secrets, i.e., the value x and
randomness r such that c = Com(x, r), the secret key sk corresponding to vk ,
and every user has a set Payments with recipients and corresponding amounts
(including a change address if necessary), describing the payments she wants
to perform. We assume that every user wants to perform the same number of
payments and that the transaction fee fee is evenly split among the users.

Full Pseudocode. Here we describe the full protocol in pseudocode. We assume
that the reader is familiar with the details of DiceMix and CoinShuffle++ [34] to
understand the code. For better readability, our essential changes to CoinShuf-
fle++, which result in ValueShuffle, are printed in blue.

1: procedure ValueShuffle(P,my ,VK[], sk ,UTXO[],C[], r,Payments, sid)
2: sid ··= (sid , P,VK[])
3: if my ∈ P then
4: fail “cannot run protocol with myself”
5: return Run(P,my ,VK[], sk , sid , 0)

6: procedure Run(P,my ,VK[], sk , sid , run)
7: if P = ∅ then
8: fail “no honest users”

9: . Exchange pairwise keys
10: (NPK[my],NSK[my]) ··= NIKE.KeyGen(my)
11: sidPre ··= H((sidPre, sid , run))
12: broadcast (KE,NPK[my], Sign(sk , (NPK[my], sidPre)))
13: receive (KE,NPK[p], σ[p]) from all p ∈ P
14: where NIKE.ValidatePK(NPK[p])

∧ Verify(VK[p], σ[p], (NPK[p], sidPre))
15: missing Poff do
16: P ··= P \ Poff . Exclude offline users
17: sid ′ ··= H((sid′, sid , P ∪ {my},NPK[], run))
18: K[] ··= DC-Keys(P,NPK[],my ,NSK[my], sid ′))

19: . Generate fresh outputs to mix
20: (myOut ,myr) ··= GenOutputs(Payments)
21: DC[my][][][] ··= DC-Mix(P,my ,K[],myOut)
22: SumDC[my] ··= myr + DC-Slot-Pad(P,my ,K[], sum)
23: Pex ··= ∅ . Malicious (or offline) users for later exclusion
24: . Commit to DC-net vector
25: Com[my] ··= H((CM,DC[my][][][],SumDC[my]))
26: broadcast (CM,Com[my],Sign(sk , (Com[my], sid ′)))
27: receive (CM,Com[p], σ[p]) from all p ∈ P
28: where Verify(VK[p], σ[p], (Com[p], sid ′))
29: missing Poff do . Store offline users for exclusion
30: Pex ··= Pex ∪ Poff

31: if run > 0 then

32: . Wait for prev. run to notify us of malicious users
33: PexPrev ··= wait
34: Pex ··= Pex ∪ PexPrev

35: . Collect shared keys with excluded users
36: for all p ∈ Pex do
37: Kex [my][p] ··= K[p]
38: . Start next run (in case this one fails)
39: P ··= P \ Pex

40: next ··= fork Run(P,my ,VK[], sk , sid , run + 1)

41: . Open commitments and keys with excluded users
42: broadcast (DC,DC[my][][][],SumDC[my],Kex [my][], Sign(sk ,Kex [my][]))
43: receive (DC,DC[p][][][],SumDC[p],Kex [p][], σ[p]) from all p ∈ P
44: where H((CM,DC[p][][][],SumDC[p])) = Com[p]

∧ {p′ : Kex [p][p
′] 6= ⊥} = Pex

∧ Verify(VK[p],Kex [p][], σ[p])
45: missing Poff do . Abort and rely on next run
46: return Result-Of-Next-Run(Poff ,next)
47: Out ··= DC-Mix-Res(P ∪ {my},DC[][][][], Pex ,Kex [][])
48: r∆ ··= DC-Slot-Open(P ∪ {my},SumDC[], sum, Pex ,Kex [][])

49: . Check if our output is contained in the result
50: (balanced ,Outmal) ··= VerifyResult(i, P,Out ,C[], r∆)
51: if myOut ⊆ Out ∧ balanced ∧Outmal = ∅ then
52: Pmal ··= ConfirmTx(i, P,Out ,my ,VK[], sk ,UTXO[], sid)
53: if Pmal = ∅ then . Success?
54: abort next
55: return m
56: else
57: broadcast (SK,NSK[my]) . Reveal secret key
58: receive (SK,NSK[p]) from all p ∈ P
59: where NIKE.ValidateKeys(NPK[p],NSK[p])
60: missing Poff do . Abort and rely on next run
61: return Result-Of-Next-Run(Poff ,next)
62: . Determine malicious users using the secret keys
63: Pmal ··= Blm(P,NPK[],my ,NSK[],DC[][][][], sid ′, Pex ,Kex [][],Outmal ,C[])
64: return Result-Of-Next-Run(Pmal ,next)

65: procedure DC-Mix(P,my ,K[],myM)
66: o ··= 1
67: for all m ∈ myM do
68: . Split message into chunks and prefix those
69: C[1] ‖ rem ··= m . C[1] must be long enough to be unpredictable
70: C[2] ‖ . . . ‖ C[n] ··= rem . ∀j ∈ {2, . . . , n}. |C[j]| = |C[1]| − |F(C[1])|
71: for j ··= 2, . . . , n do
72: C[j] ··= F(C[1]) ‖ C[j]

73: . Create power sums in individual slots
74: for j ··= 1, . . . , n do

75: for i ··= 1, . . . , |P |+ 1 do4

76: DCMy[o][j][i] ··= C[j]i + DC-Slot-Pad(P,my ,K[], (o, j, i))
77: o ··= o+ 1
78: return DCMy[][][]

79: procedure DC-Mix-Res(Pall ,DCMix[][][], Pex ,Kex [][])
80: n ··= |DCMix[1]|
81: for j ··= 1, . . . , n do
82: for s ··= 1, . . . , |Pall | do
83: M∗[s] ··= DC-Slot-Open(Pall ,DCMix[][j][], s, Pex ,Kex [][])
84: . Solve equation system for array M[] of messages
85: M[j][] ··= Solve(∀s ∈ {1, . . . , |Pall |}. M∗[s] =

∑|Pall |
i=1 M[i]s)

86: . Recombine messages
87: M ··= ∅
88: for i ··= 1, . . . , |Pall | do
89: m ··= M[1][i]
90: for j ··= 2, . . . , n do
91: S ··= {(i,m∗) : h ‖m∗ = M[j][i] ∧ h = F(M[1][i])}
92: . Unique match?
93: if ∃i,m∗. S = {(i,m∗)} then
94: m ··= m ‖m∗
95: else
96: continue (outer loop) . Invalid encoding, ignore message
97: M ··=M ∪ {m}
98: return M

99: procedure DC-Slot-Pad(P,my ,K[], s)
100: return

∑
p∈P sgn(my − p) · G((K[p], s)) . in F

101: procedure DC-Slot-Open(Pall ,DC[][], s, Pex ,Kex [][])
102: . Pads cancel out for honest users
103: m∗ ··=

∑
p∈Pall

DC[p][s] . in F
104: . Remove pads for excluded users
105: m∗ ··= m∗ −

∑
p∈Pall

DC-Slot-Pad(Pex , p,Kex [p][], s)
106: return m∗

107: procedure DC-Keys(P,NPK[],my ,nsk , sid ′)
108: for all p ∈ P do
109: K[p] ··= NIKE.SharedKey(my , p,nsk ,NPK[p], sid ′)
110: return K[]

111: procedure Blm(P,NPK[],my ,NSK[],DC[][][][], sid ′, Pex ,Kex [][],Outmal ,C[])
112: Pmal ··= ∅
113: for all p ∈ P do
114: P ′ ··= (P ∪ {my} ∪ Pex) \ {p}
115: K′[] ··= DC-Keys(P ′,NPK[], p,NSK[p], sid ′)

116: . Reconstruct purported message m′ of p
117: for o ··= 1, . . . , |DC[my]| do

4 If run > 0, it suffices to loop up to |P |, because at least one user will have been
excluded when the DC-net is opened.

118: m′ ··= DC[p][o][1][1]−DC-Slot-Pad(P ′, p,K′[], (o, 1, 1))
119: for j ··= 2, . . . , |(DC[p][o]| do
120: m∗ ‖ h ··= DC[p][o][j][1]−DC-Slot-Pad(P ′, p,K′[], (o, j, 1))
121: m′ ··= m′ ‖m∗
122: Out ′ ··= Out ′ ∪ {m′}
123: . Replay DC-net messages of p
124: DC′[][][] ··= DC-Mix(P ′, p,K′[],Out ′)
125: if DC′[][][] 6= DC[p][][][] then . Exclude inconsistent p
126: Pmal ··= Pmal ∪ {p}
127: . Verify that p has sent valid range proofs
128: if Out ′ ∩Outmal 6= ∅ then
129: Pmal ··= Pmal ∪ {p}
130: . Reconstruct randomness r′ of p
131: r′ ··= SumDC[p]−DC-Slot-Pad(P ′, p,K′[], sum)
132: . Verify that the balance of p is correct
133: if C[p] =

(⊕
(c,π,addr)∈Out′ c

)
⊕ Com(fee/|P |,−r′) then

134: Pmal ··= Pmal ∪ {p}
135: . Verify that p has published correct symmetric keys
136: for all pex ∈ Pex do
137: if Kex [p][pex] 6= K′[pex] then
138: Pmal ··= Pmal ∪ {p}
139: return Pmal

140: procedure Result-Of-Next-Run(PexNext ,next)
141: . Hand over to next run and notify of users to exclude
142: notify next of PexNext

143: . Return result of next run
144: result ··= join next
145: return result

146: procedure VerifyResult(i, P,Out ,C[], r∆)
147: Outmal ··= ∅
148: . Verify range proofs
149: for all out ∈ Out do
150: (c, π, addr) ··= out
151: if RPVerify(π, c) then
152: Outmal ··= Outmal ∪ {out}
153: . Check balance
154: balanced ··=

(⊕
p∈P C[p] =

(⊕
(c,π,addr)∈Out c

)
⊕ Com(fee,−r∆)

)
155: return (balanced ,Outmal)

156: procedure GenOutputs(Payments)
157: myr ··= 0
158: myOut ··= ∅
159: for all (recipient , amount) ∈ Payments do
160: r

$←− R . Fresh random value; implicitly stored in wallet
161: c ··= Com(amount , r)
162: π ··= RPCreate(amount , r)

163: myr ··= myr + r
164: addr ··= FreshRecipientAddress(recipient)
165: myOut ··= myOut ∪ {(c, π, addr)}
166: return (myr,myOut)

167: procedure ConfirmTx(i, P,my ,VK[], sk ,UTXO[],Out , sid)
168: tx ··= CoinJoinTx(UTXO[],Out)
169: σ[my] ··= Sign(sk , tx)
170: broadcast σ[my]
171: receive σ[] from all p ∈ P
172: where Verify(VK[p], σ[p], tx)
173: missing Poff do . Users refusing to sign are malicious
174: return Poff

175: Submit(tx , σ[])
176: return ∅ . Success!

A.1 Security Analysis

We argue briefly why ValueShuffle achieves the desired security and privacy
properties.

Unlinkability. Unlinkability follows from sender anonymity in DiceMix [34]:
Whenever some honest user i signs the CoinJoin transaction, the confirmation
phase has been reached. In this case, because output triples are freshly generated
for each run, DiceMix guarantees that the honest users form a proper DC-net.
This in turn ensures that the attacker cannot distinguish whether an output
triple of user i belongs to i or some other honest user j. Note that the relation
between user and output triple can be revealed in the blame phase, but then a
CoinJoin transaction with the current output triple will never be signed, so it
is safe to reveal the relation. Instead, the output triple will be discarded and a
further run will be started, using a fresh output triple, which is unlinkable to
the discarded output triples. We refer the reader to DiceMix [34] for a detailed
discussion. The only difference from DiceMix is that ValueShuffle runs two proper
DC-nets in parallel.

CT Compatibility. ValueShuffle should not impair the privacy guarantees provided
by CT. The only secrets of CT belonging to user i that ValueShuffle uses (and
actually reveals in the blame phase) is her value r −

∑
k r

′
k, where k ranges over

her output triples. However, since r and all r′k are random, this sum does not
reveal anything about the individual r and r′k values and thus does not affect
the hiding property of the input commitment or any of the individual output
commitments.

Termination. DiceMix itself provides termination, and we have to argue that our
extensions do not affect this property. This mainly boils down to ensuring that a
malicious user can be detected in each protocol run.

If one of the DC-nets for mixing the output triples is disrupted, then a
malicious user will be identified. This follows from the termination of DiceMix
and the observation that each message chunk is unpredictable. If the DC-net for
computing r∆ is disrupted, then the blame phase will sacrifice anonymity for
this run (discarding the output triples), and the malicious user will be identified
by checking her individual balance property, i.e., whether just her set of inputs
and outputs are balanced, as done in the blame phase. If a wrong range proof is
provided, then the blame phase will sacrifice anonymity for this run (discarding
the output triples), and the malicious user can be identified by checking who
provided the wrong range proof. In all other cases, the transaction will be valid
by construction, so users refusing to sign it are malicious (or offline) and thus
can be excluded from further runs.

By construction, and if the bulletin board is honest (which we assume for
termination, as otherwise it is impossible to achieve), all honest users agree on the
set of users to exclude and thus on the set of remaining users in the subsequential
run of the protocol. We refer the reader to DiceMix [34] for details of termination.

Theft Resistance. The protocol must ensure that no honest user incurs money
loss (ignoring transaction fees). ValueShuffle ensures theft resistance since the
mixing of output triples and randomness does not involve the transfer of funds.
Before the CoinJoin transaction is formed, every honest user checks that her
output address and the corresponding committed value is included and only
then signs the transaction. As a CoinJoin transaction becomes valid only when
every user has signed the transaction (and thus confirmed that her funds are not
stolen), ValueShuffle provides theft resistance.

References

[1] Andresen, G.: Pay to script hash, BIP 16. https://github.com/bitcoin/bips/
blob/master/bip-0016.mediawiki

[2] Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in Bitcoin. In: FC’13

[3] Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better. how to make Bitcoin a
better currency. In: FC’12

[4] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from Bitcoin. In: S&P’14

[5] Bissias, G., Ozisik, A.P., Levine, B.N., Liberatore, M.: Sybil-resistant mixing for
Bitcoin. In: WPES’14

[6] Bitcoin Core: Segregated witness: the next steps, https://bitcoincore.org/en/
2016/06/24/segwit-next-steps/#schnorr-signatures

[7] Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J., Felten, E.: Mixcoin:
Anonymity for Bitcoin with accountable mixes. In: FC’14

[8] Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
J. Cryptol. 22(4) (2009)

[9] Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient
untraceability. J. Cryptol. 1(1) (1988)

https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://bitcoincore.org/en/2016/06/24/segwit-next-steps/#schnorr-signatures
https://bitcoincore.org/en/2016/06/24/segwit-next-steps/#schnorr-signatures

[10] Corrigan-Gibbs, H., Ford, B.: Dissent: Accountable anonymous group messaging.
In: CCS’10

[11] Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: USENIX Security’04

[12] Elements Project: Alpha sidechain, https://www.elementsproject.org/
sidechains/alpha/

[13] Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange.
In: PKC’13

[14] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all
falsifiable assumptions. In: STOC’11

[15] Gibson, A.: An investigation into Confidential Transactions (2016),
http://diyhpl.us/~bryan/papers2/bitcoin/An%20investigation%20into%
20Confidential%20Transactions%20-%20Adam%20Gibson%20-%202016.pdf

[16] Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit:
An untrusted Bitcoin-compatible anonymous payment hub. In: NDSS’17

[17] Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: Anonymous
on-blockchain and off-blockchain Bitcoin transactions. In: BITCOIN’16

[18] Jedusor, T.E.: Mimblewimble, https://scalingbitcoin.org/papers/
mimblewimble.txt

[19] Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in Bitcoin using
P2P network traffic. In: FC’14 (2014)

[20] Lombrozo, E., Lau, J., Wuille, P.: Segregated witness (consensus
layer), BIP 141. https://github.com/bitcoin/bips/blob/master/bip-
0141.mediawiki#p2wpkh-nested-in-bip16-p2sh

[21] Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. Post on Bitcoin Forum
(2013), https://bitcointalk.org/index.php?topic=279249

[22] Maxwell, G.: Confidential transactions (2015), https://people.xiph.org/~greg/
confidential_values.txt

[23] Maxwell, G., Poelstra, A.: Borromean ring signatures (2015), https:
//github.com/Blockstream/borromean_paper/raw/master/borromean_draft_
0.01_9ade1e49.pdf

[24] Meiklejohn, S., Orlandi, C.: Privacy-enhancing overlays in Bitcoin. In: BITCOIN’15
[25] Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,

G.M., Savage, S.: A fistful of bitcoins: Characterizing payments among men with
no names. In: IMC’13

[26] Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from Bitcoin. In: S&P’13

[27] Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger (2016)
[28] Noether, S.: Review of CryptoNote white paper, https://downloads.getmonero.

org/whitepaper_review.pdf
[29] OmegaStarScream: Bitcoin Core & pruning mode. Bitcoin Forum, https://

bitcointalk.org/index.php?topic=1599458.0
[30] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: CRYPTO’91
[31] Poelstra, A.: Mimblewimble, http://diyhpl.us/~bryan/papers2/bitcoin/

mimblewimble-andytoshi-INCOMPLETE-DRAFT-2016-10-06-001.pdf
[32] Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In:

SXSW’13
[33] Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: Practical decentralized

coin mixing for Bitcoin. In: ESORICS’14

https://www.elementsproject.org/sidechains/alpha/
https://www.elementsproject.org/sidechains/alpha/
http://diyhpl.us/~bryan/papers2/bitcoin/An%20investigation%20into%20Confidential%20Transactions%20-%20Adam%20Gibson%20-%202016.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/An%20investigation%20into%20Confidential%20Transactions%20-%20Adam%20Gibson%20-%202016.pdf
https://scalingbitcoin.org/papers/mimblewimble.txt
https://scalingbitcoin.org/papers/mimblewimble.txt
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#p2wpkh-nested-in-bip16-p2sh
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#p2wpkh-nested-in-bip16-p2sh
https://bitcointalk.org/index.php?topic=279249
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://github.com/Blockstream/borromean_paper/raw/master/borromean_draft_0.01_9ade1e49.pdf
https://github.com/Blockstream/borromean_paper/raw/master/borromean_draft_0.01_9ade1e49.pdf
https://github.com/Blockstream/borromean_paper/raw/master/borromean_draft_0.01_9ade1e49.pdf
https://downloads.getmonero.org/whitepaper_review.pdf
https://downloads.getmonero.org/whitepaper_review.pdf
https://bitcointalk.org/index.php?topic=1599458.0
https://bitcointalk.org/index.php?topic=1599458.0
http://diyhpl.us/~bryan/papers2/bitcoin/mimblewimble-andytoshi-INCOMPLETE-DRAFT-2016-10-06-001.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/mimblewimble-andytoshi-INCOMPLETE-DRAFT-2016-10-06-001.pdf

[34] Ruffing, T., Moreno-Sanchez, P., Kate, A.: P2P mixing and unlinkable Bitcoin
transactions. In: NDSS’17

[35] van Saberhagen, N.: CryptoNote (2013), https://cryptonote.org/whitepaper.
pdf

[36] Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3) (1991)
[37] Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: Extracting intelligence from the

Bitcoin network. In: FC’14
[38] Todd, P.: Stealth addresses. Post on Bitcoin development mailing list,

https://www.mail-archive.com/bitcoin-development@lists.sourceforge.
net/msg03613.html

[39] Valenta, L., Rowan, B.: Blindcoin: Blinded, accountable mixes for Bitcoin. In:
BITCOIN’15

[40] Wuille, P.: Hierarchical deterministic wallets, BIP 32. https://github.com/
bitcoin/bips/blob/master/bip-0032.mediawiki

[41] Wuille, P.: Schnorr-SHA256 module in libsecp256k1, https://github.com/sipa/
secp256k1/blob/968e2f415a5e764d159ee03e95815ea11460854e/src/modules/
schnorr/schnorr.md

[42] Ziegeldorf, J.H., Grossmann, F., Henze, M., Inden, N., Wehrle, K.: CoinParty:
Secure multi-party mixing of bitcoins. In: CODASPY’15

https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/sipa/secp256k1/blob/968e2f415a5e764d159ee03e95815ea11460854e/src/modules/schnorr/schnorr.md
https://github.com/sipa/secp256k1/blob/968e2f415a5e764d159ee03e95815ea11460854e/src/modules/schnorr/schnorr.md
https://github.com/sipa/secp256k1/blob/968e2f415a5e764d159ee03e95815ea11460854e/src/modules/schnorr/schnorr.md

	Mixing Confidential Transactions: Comprehensive Transaction Privacy for Bitcoin
	Introduction
	ValueShuffle: Mixing Confidential Transactions
	Features of ValueShuffle

	Related Work
	Building Blocks
	Peer-to-Peer Mixing
	Confidential Transactions
	One-time Addresses

	ValueShuffle
	Security and Privacy Features
	Challenges and Our Solutions
	Overview of ValueShuffle
	Performance

	ValueShuffle: Full Protocol Description
	Security Analysis

