
New and Old Limits for
AES Known-Key Distinguishers

Lorenzo Grassi1 and Christian Rechberger1,2

1 IAIK, Graz University of Technology, Austria
2 DTU Compute, DTU, Denmark

firstname.lastname@iaik.tugraz.at

Abstract. Known-key distinguishers have been introduced by Knudsen and Rijmen
in 2007 to better understand the security of block ciphers in situations where the key
can not be considered to be secret, i.e. the “thing between secret-key model and hash
function use-cases”.
AES is often considered as a target of such analyses, simply because AES or its
building blocks are used in many settings that go beyond classical encryption. The
most recent approach of Gilbert (proposed at Asiacrypt 2014) considers 8 core rounds,
and extends it by one round in each direction. The resulting approach on 10-round
has a time complexity of 264, and the best generic approach was shown to beat the
proposed method with probably < 2−16.5 and is hence referred to as a “distinguisher”.
Interestingly, Gilbert’s work also for the first time showed that the known-key model
may not be weaker than the chosen-key model, as the best chosen-key attacks on
AES only cover 9 rounds so far. This current state of affairs is unsatisfying as it
contradicts the original intent of the known-key model.
In this paper we pick up the work of Gilbert, further exploring the limits of the
known-key model with a focus on the AES, and eventually propose a way to remedy
the situation. In that work, arguments are put forward suggesting that a total of
two extension rounds seem to be the limit in the known-key model, and that likely
only a distinguisher that exploits the uniform distribution property can be extended
in such way. We disprove both conjectures and arrive at the following results: We
firstly show that the technique proposed by Gilbert can also be used to extend a
known-key distinguisher based on truncated differential trails. This allows us to
present improved known-key distinguishers for AES from 7 to 10 rounds of AES.
In particular, we are able to set up a 9-round known-key distinguisher for AES
with a time complexity of 223 and a 10-round known-key distinguisher with a time
complexity of 250. Secondly we are also able to show that more than two extension
rounds are possible. As a result of this, we describe the first known-key distinguishers
on 12 rounds of AES, by extending Gilbert’s 8-round known-key distinguisher by two
rounds in each direction. The time complexity is 266, and for this result we do have
supporting formal arguments, similar to Gilbert, that the best generic approach to
beat the proposed method has probably < 2−25.
This also shows that the counter-intuitive gap between the known-key and the chosen-
key model may be wider than initially thought. To remedy the situation, we propose
a refinement of the known-key model which restores its original intent.
Keywords: Block cipher · Permutation · AES · Known-Key Distinguisher

mailto:firstname.lastname@iaik.tugraz.at

2 New and Old Limits for AES Known-Key Distinguishers

Contents
1 Introduction 3

1.1 Known-Key Distinguishers for AES: the State of the Art 3
1.2 Our contributions . 5

2 Preliminary - Description of AES 6

3 Subspace trails 7
3.1 Subspace trails of AES . 7

4 Known-Key Distinguishers for AES 8
4.1 Definition of Known-Key Distinguisher . 8
4.2 7- and 8-Round Known-Key Distinguisher 11
4.3 Multiple Limited-Birthday 8-Round Known-Key Distinguisher 12

5 Gilbert’s Known-Key Distinguisher for 10-round AES 12
5.1 Uniform Distribution 8-round Known-Key Distinguisher 12
5.2 Extension to 10 Rounds of AES . 15

5.2.1 Generic Considerations . 17
5.3 Another Strategy for the Verifier . 17

6 Key-Recovery Extensions using Truncated Differentials 20
6.1 Attack for the Case of 1-Round Extension 20
6.2 Attack for the Case of 2-Round Extension 21

7 9-Round Known-Key Distinguisher for AES 22

8 10-Round Distinguisher of AES - Full AES-128 25
8.1 Independent Subkeys: No Key Schedule 26
8.2 The Key Schedule Case . 27

8.2.1 Number n of Tuples: Oracle-Queries. 28
8.2.2 Number n of Tuples: Oracle-Queries and Cost of Generic Player. . 29

9 12-Round Distinguisher of AES 29

10 Gilbert’s Distinguisher for 12-round AES 31
10.0.1 The Verification Process . 32
10.0.2 On the Meaningfulness of this Distinguisher 34

11 Infeasibility of a 14-round Known-Key Distinguisher 35

12 Discussion of Results and Proposal for a New Model 36

A A possible Variant of Gilbert’s Distinguisher - Details 39

B The Rebound Attack - Details 40

C Known-Key Distinguishers for 7- and 8-round AES based on Uniform
Distribution and Balance Property 41
C.1 Known-Key Distinguisher based on Balance Property 41
C.2 Known-Key Distinguisher based on Uniform Distribution 42
C.3 Zero-Sum Distinguisher - Scenario of Sect. 4 44

2 New and Old Limits for AES Known-Key Distinguishers

D Details of Known-Key Distinguisher when the Computational Cost of
the Generic Player is Considered 46
D.1 Known-Key Distinguisher on 9-Round AES 47
D.2 Known-Key Distinguisher on 10-Round AES with Key Schedule 48

E New 7-, 8- and 9-round AES Known-Key Distinguishers 48
E.1 7-Round Known-Key Distinguisher . 49
E.2 8-Round Known-Key Distinguisher . 49
E.3 9-Round Known-Key Distinguisher . 50

E.3.1 Independent Subkeys: No Key Schedule. 51
E.3.2 The Key Schedule Case. 51

E.4 Considerations and Comparison with Gilbert’s Distinguisher 51

F Proof of Proposition 2 - Sect. 8.2 52

G The Herds Attack 52

Lorenzo Grassi1 and Christian Rechberger1,2 3

1 Introduction
Block ciphers play an important role in symmetric cryptography providing the basic tool for
encryption. They are the oldest and most scrutinized cryptographic tools. Consequently,
they are the most trusted cryptographic algorithms that are often used as the underlying
tool to construct other cryptographic algorithms, whose proofs of security are performed
under the assumption that the underlying block cipher is ideal.

The concept of known-key distinguishers was introduced by Knudsen and Rijmen in
[KR07]. In the classical single secret-key setting, the attacker does not know the randomly
generated key and aims to recover it or builds a (secret-key) distinguisher that allows
to distinguish the cipher from a random permutation. The security model in known-key
attacks is quite different though: the attacker knows the randomly drawn key the block
cipher operates with and aims to find a structural property for the cipher under the known
key - a property which an ideal cipher (a permutation drawn at random) would not have.
Only for completeness, a more relaxed version - called chosen-key distinguisher - can be
considered, where the adversary is assumed to have a full control over the key. This
model was introduced in [BKN09], and has been extended to a related-key attack on the
full-round AES-256, while the best chosen-key distinguisher for AES-128 [FJP13] currently
present in literature covers 9-round out of 10. In this paper however we focus on the
known-key model and do not allow or assume related keys.

Since their introductions, known-key attacks have been a major research topic in the
symmetric-key community. Indeed, if known-key distinguishers could be considered less
relevant than secret-key ones, they anyway allow to learn something about the security
margin of a cipher. For example, if it is not possible to find distinguishers for a block
cipher when the key is given, then one cannot find a distinguisher when the key is secret.
Secondly and more important, block ciphers and hash functions are very close cryptographic
primitives, as the latter can be built from the former and vice versa. For example, the
Davies-Meyer construction or the Miyaguchi-Preneel construction can transform a secure
block cipher into a secure compression function. In a hash setting, block cipher security
models such as the known-key model (or the chosen-key model) make sense since in practice
the attacker has full access and control over the internal computations. Moreover, an
attack in these models depicts a structural flaw of the cipher, while it should be desired
to work with a primitive that doesn’t have any flaw, even in the most generous security
model for the attacker. A classical example is the devastating effect on the compression
function security of weak keys for a block cipher [WPS+12], which are usually considered
as a minor flaw for a block cipher if the set of these weak-keys is small. Therefore, the
security notions to consider for a block cipher will vary depending if this block cipher will
be used in a hash function setting or not.

The known-key model received scrutiny from a more theoretical side too. In [ABM13]
a model derived form the indifferentiability framework is used to formalize the known-key
security of block ciphers based on the underlying building blocks, while in [MP15] the
impact of attacks in the known-key model on hash functions is studied.

Citing Knudsen and Rijmen [KR07], “imagine a block cipher” for which a known-key
distinguisher exists, “but where no efficient attacks are known in the traditional black-box
model. Should we recommend the use of such a cipher? We don’t think so!”

1.1 Known-Key Distinguishers for AES: the State of the Art
In the known-key model, a full access to an instance of the encryption function associated
with a known random key and its inverse is given. The purpose is to simultaneously control
the inputs and the outputs of the primitive, i.e. to achieve input-output correlations that
one could not efficiently achieve with inputs and outputs of a perfect random permutation
to which would have an oracle access. A formal definition of a known-key distinguisher

4 New and Old Limits for AES Known-Key Distinguishers

Table 1: AES known-key distinguishers. The computation cost is the sum of the compu-
tational cost to generate N -tuples of plaintexts/ciphertexts and of the verification cost.
The word “Extended” refers to a distinguisher which exploits the technique introduced
by Gilbert [Gil14] (in this case we also highlight which distinguisher is extended), while
“MultDT” refers to Multiple Differential Trail. A detailed table with all the distinguishers
presented in this paper is given in Sect. 4.

Rounds Computations Memory Property Reference
7 256 256 Zero-Sum [KR07]
7 224 216 Differential Trail [MPRS09]
7 220 216 Multiple Diff. Trail App. E.1
8 264 264 Uniform Distribution [Gil14] - App. C
8 248 232 Differential Trail [GP10]
8 244 232 Multiple Diff. Trail [JNPP14]
8 223 216 Extended 7-Round MultDT App. E.2
9 250 232 Extended 8-Round MultDT Sect. 7
9 223 216 Extended 7-Round MultDT App. E.3
10 264 264 Extended 8-Round Unif. Dist. [Gil14]
10 250 232 Extended 8-Round MultDT Sect. 8.1
12 282 232 Extended 8-Round MultDT Sect. 9
12 266 264 Extended 8-Round Unif. Dist. Sect. 10

is provided in Sect. 4, where we propose and describe in details a generic scenario for
known-key distinguisher. We emphasize that all the known-key distinguishers currently
present in the literature - including the one presented in this paper - implicitly exploit (and
can be described in) the scenario proposed in Sect. 4.

AES and related constructions served as a benchmark for cryptanalytic techniques
since the very introduction of this model by Knudsen and Rijmen [KR07] with a 7-round
result. Subsequently, 8-round results were obtained using truncated differentials [GP10],
which were later on improved in [JNPP14]. Currently, this last one - which exploits the
rebound technique [LMS+15] and the so called “multiple limited-birthday problem” - is the
best 8-round known-key distinguisher in literature. Recently, Gilbert [Gil14] found a way
to extend an 8-round known-key distinguisher (using a novel representation of AES) into
a more intricate 10-round distinguisher and hence presented for the first time a known-key
distinguisher for full AES-128.

All the known-key distinguishers on AES currently present in the literature are briefly
recalled in Sect. 4 using the “subspace trail notation”1, recently introduced at FSE 2017.
In Table 1 we list the known-key distinguishers for AES, including our main results (we
refer to Table 2 in Sect. 4 for more details about the AES known-key distinguishers
obtained by extending distinguishers based on Multiple Differential Trails).

On Gilbert’s Approach

As we will describe in more detail in Sect. 4.1, the approach of [Gil14] makes use of
a freedom in the know-key model that was actually always there but never spelled out
explicitly. In more detail, there is always the role of a “verifier”, in addition to a “shortcut-
player” and a “generic player”. In [Gil14] the verifier has perhaps for the first time some

1Our choice to use the subspace trail notation is due to the fact that it allows in some cases an easier
and more formal description than the original notation.

Lorenzo Grassi1 and Christian Rechberger1,2 5

non-negligible computations to do. The details of the definitions are such that it is still
not possible to simply “peel-off” an arbitrary number of rounds, on the contrary it seemed
that only the detection of a very specific property (the “uniform distribution property”)
could take advantage of computations of the verifier.

1.2 Our contributions
We have two types of contributions in this paper. The first type is a progress in cryptanalysis,
improving in various ways distinguishers (or conjectures thereof in case we can not prove
that no generic attack is better) on AES in the model of [Gil14]. Even though this leads
to statements on more rounds of AES than ever before (without related keys) that seem
meaningful, it is not clear if such statements can become useful in the sense to e.g. have
an impact of hash function use-cases of block ciphers. For the sake of completeness, it
should be indeed mentioned that even if the strategy proposed by Gilbert allows to set up
efficient known-key distinguishers, its “impact on the security of [...] AES when used as a
known key primitive, e.g. in a hash function construction, is questionable” (see abstract of
[Gil14]).

The second type of contribution is the high level insight that the details of the known-
key model need to be changed if we want to restore the original intent of the known-key
model. The reason is that with our new result the difference between the chosen-key
model and what is currently thought of as the known-key model is counter-intuitive: As
we show it is now possible to have cryptanalytic results on many more rounds of AES in
the known-key model than in the chosen-key model and this is true for more than a single
property. Hence we propose a simple restriction of the verifier in the known-key model to
remedy the situation.

In the following we summarize two aspects of our cryptanalytic results first. In the
conclusion of his paper, Gilbert claims that it seems technically difficult to use a stronger
property than the uniform distribution one to extend an 8-round known-key distinguisher
to a 10-round one. In particular, he left “the investigation of improved 10-round known-key
distinguishers and associated proofs - or even plausible heuristic arguments if rigorous
proofs turn out to be too difficult to obtain - as an open issue.”

In this paper, we pick up this challenge, and using a strategy similar to the one
proposed by Gilbert in [Gil14], we show how to construct more efficient 8-, 9- and 10-
round distinguishers. To achieve this result, we exploit known-key distinguishers based on
truncated differential trails. In particular, we use as starting point the 8-round known-key
distinguisher presented in [JNPP14], and we extend it at the end or/and at the beginning
using the same strategy proposed by Gilbert. This allows to set up a 9-round known-key
distinguisher (see Sect. 7) and a 10-round known-key distinguisher for AES (see Sect. 8.1)
with time complexity approximately of 250. Moreover, starting from the 7-round known-key
distinguisher presented in [MPRS09] - improved in App. E.1 using the “multiple limited-
birthday problem” proposed in [JNPP14] - and using exactly the same technique presented
for the previous cited distinguishers, we are able to set up 8- and 9-round known-key
distinguisher for AES (see App. E.2 and E.3), both with complexity approximately of 223.

As a main cryptanalytic result, in Sect. 9 we show that it is possible to extend our
10-round distinguisher up to 12 rounds Moreover, in Sect. 10 we show that the same
strategy can be used to extend Gilbert’s 10-round distinguisher based on the uniform
distribution property up to 12 rounds. These are the first known-key distinguisher for full
AES-192, and they also provide counter-examples of the claim made in [Gil14] about the
(im)possibility to use Gilbert’s technique to extend a 8-round distinguisher more than 2
rounds: “The reader might wonder whether the technique we used to derive a known-key
distinguisher for the 10-round AES from a known-key distinguisher for the 8-round AES
does not allow to extend this 8-round known distinguisher by an arbitrary number of rounds.
It is easy however to see that the argument showing that 10-round relation R is efficiently

6 New and Old Limits for AES Known-Key Distinguishers

checkable does not transpose for showing that the relations over r > 10 rounds one could
derive from the 8-round relation by expressing that the r-round inputs and outputs are
related by r − 8 > 2 outer rounds to intermediate blocks that satisfy the 8-round relation
are efficiently checkable.”

Finally, we discuss why our results no longer exclude known-key distinguishers up to
14 rounds, but at the same time why this seems currently not feasible. Using our results
presented in the paper as starting point, we show that one of the main problem (but not
the only one) about the possibility to extend a known-key distinguisher exploiting the
strategy initially proposed by Gilbert is related to the existence of key-recovery attack on
AES with more than a single extension at the end and a computational complexity lower
than 2128 computations2. We refer to Sect. 11 for a complete discussion. We conclude in
Sect. 12, with a discussion of the results and a proposal of a refinement of the known-key
model which restores its original intent (in which the role of the verifier gets back to being
marginal).

2 Preliminary - Description of AES
The Advanced Encryption Standard [DR02] is a Substitution-Permutation network that
supports key sizes of 128, 192 and 256 bits. The 128-bit plaintext initializes the internal
state as a 4 × 4 matrix of bytes as values in the finite fields F256, defined using the
irreducible polynomial x8 + x4 + x3 + x+ 1. Depending on the version of AES, Nr round
are applied to the state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14 for
AES-256. An AES round applies four operations to the state matrix:

• SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times in
parallel on each byte of the state (it provides non-linearity in the cipher);

• ShiftRows (SR) - cyclic shift of each row to the left;

• MixColumns (MC) - multiplication of each column by a constant 4× 4 invertible
matrix MMC (MC and SR provide diffusion in the cipher3);

• AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In the first
round an additional AddRoundKey operation (using a whitening key) is applied, and in
the last round the MixColumns operation is omitted.

Finally, as we don’t use the details of the AES key schedule in this paper, we refer to
[DR02] for a complete description.

The Notation Used in the Paper. Let x denote a plaintext, a ciphertext, an
intermediate state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte in the row i
and in the column j. We denote by kr the key of the r-th round, where k0 is the secret
key. If only the key of the final round is used, then we denote it by k to simplify the
notation. Finally, we denote by R one round of AES, while we denote r rounds of AES by
Rr. We sometimes use the notation RK instead of R to highlight the round key K. As
last thing, in the paper we often use the term “partial collision” (or “collision”) when two
texts belong to the same coset of a given subspace X.

2Note that given an attack on r rounds with a complexity lower than 2128, one can attack r + 1 rounds
of AES-256 by guessing the entire first/last secret subkey.

3SR makes sure column values are spread, MC makes sure each column is mixed.

Lorenzo Grassi1 and Christian Rechberger1,2 7

3 Subspace trails
Invariant subspace cryptanalysis can be a powerful cryptanalytic tool, and subspace trails
[GRR17] - introduced at FSE 2017 - are a recent generalization of it.

Let F denote a round function in a iterative block cipher and let V ⊕ a denote a coset
of a vector space V . Then if F (V ⊕ a) = V ⊕ a we say that V ⊕ a is an invariant coset of
the subspace V for the function F . This concept can be generalized to trails of subspaces.

Definition 1. Let (V1, V2, ..., Vr+1) denote a set of r + 1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, ..., r and for each ai ∈ V ⊥i , there exist (unique) ai+1 ∈ V ⊥i+1
such that F (Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1, then (V1, V2, ..., Vr+1) is subspace trail of length r
for the function F . If all the previous relations hold with equality, the trail is called a
constant-dimensional subspace trail.

This means that if F t denotes the application of t rounds with fixed keys, then
F t(V1 ⊕ a1) = Vt+1 ⊕ at+1. We refer to [GRR17] for more details about the concept of
subspace trails. Our treatment here is however meant to be self-contained.

3.1 Subspace trails of AES
In this section, we recall the subspace trails of AES presented in [GRR17]. For the following,
we only work with vectors and vector spaces over F4×4

28 , and we denote by {e0,0, ..., e3,3}
the unit vectors of F4×4

28 (e.g. ei,j has a single 1 in row i and column j). We also recall
that given a subspace X, the cosets X ⊕ a and X ⊕ b (where a 6= b) are equivalent (that is
X ⊕ a ∼ X ⊕ b) if and only if a⊕ b ∈ X.

Definition 2. The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For instance, C0 corresponds to the symbolic matrix

C0 =
{

x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
≡


x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 .
Definition 3. The diagonal spaces Di and the inverse-diagonal spaces IDi are respec-
tively defined as Di = SR−1(Ci) ≡ 〈e0,i, e1,i+1, e2,i+2, e3,i+3〉 and IDi = SR(Ci) ≡
〈e0,i, e1,i−1, e2,i−2, e3,i−3〉, where the indexes are taken modulo 4.

For instance, D0 and ID0 correspond to symbolic matrix

D0 ≡


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 , ID0 ≡


x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0

 .
Definition 4. The i-th mixed spaces Mi are defined asMi = MC(IDi).

For instance,M0 corresponds to symbolic matrix

M0 ≡


0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2
x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2

 .
Definition 5. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI andMI defined as

CI =
⊕
i∈I

Ci, DI =
⊕
i∈I

Di, IDI =
⊕
i∈I

IDi, MI =
⊕
i∈I

Mi.

8 New and Old Limits for AES Known-Key Distinguishers

As shown in detail in [GRR17]:

• for any coset DI ⊕ a there exists unique b ∈ C⊥I such that R(DI ⊕ a) = CI ⊕ b;

• for any coset CI ⊕ a there exists unique b ∈M⊥I such that R(CI ⊕ a) =MI ⊕ b.

This simply states that a coset of a sum of diagonal spaces DI encrypts to a coset of a
corresponding sum of column spaces. Similarly, a coset of a sum of column spaces CI

encrypts to a coset of the corresponding sum of mixed spaces.

Theorem 1. For each I and for each a ∈ D⊥I , there exists one and only one b ∈ M⊥I
such that

R2(DI ⊕ a) =MI ⊕ b. (1)

We refer to [GRR17] for a complete proof of this theorem. Observe that b depends on
a and on the secret key k, and that this theorem doesn’t depend on the particular choice
of the S-Box (i.e. it is independent of the details of the S-Box).

Observe that if X is a generic subspace, X ⊕ a is a coset of X and x and y are two
elements of the (same) coset X ⊕ a, then x⊕ y ∈ X. It follows that:

Lemma 1. For all x, y and for all I ⊆ {0, 1, 2, 3}:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1. (2)

As demonstrated in [GRR17], we finally recall that for each I, J ⊆ {0, 1, 2, 3}:

MI ∩ DJ = {0} if and only if |I|+ |J | ≤ 4, (3)

Theorem 2. Let I, J ⊆ {0, 1, 2, 3} such that |I|+ |J | ≤ 4. For all x 6= y:

Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ) = 0. (4)

For completeness, we briefly describe the subspace trail notation using a more “classical"
one. If two texts t1 and t2 are equal expect for the bytes in the i-th diagonal4 for each
i ∈ I, then they belong in the same coset of DI . Two texts t1 and t2 belong in the same
coset of MI if the bytes of their difference MC−1(t1 ⊕ t2) in the i-th anti-diagonal for
each i /∈ I are equal to zero. Similar considerations hold for the column space CI and the
inverse-diagonal space IDI .

4 Known-Key Distinguishers for AES
Before we present our new known-key distinguishers for AES, we review the most relevant
ones to our work. First, we give a formal definition of the known-key distinguisher scenario,
using the one proposed in [Gil14] by Gilbert as starting point.

4.1 Definition of Known-Key Distinguisher
Informally, a known-key distinguisher exploits the fact that it is in general harder for an
adversary who doesn’t know the key to derive an N -tuple of input blocks of the considered
block cipher E that is “abnormally correlated” with the corresponding N -tuple of output
blocks than for one who knows the secret key. This difficulty is well expressed by the
T -intractable definition, first proposed in [CGH04] and [ABM14], and then re-expressed
by Gilbert as follows:

4The i-th diagonal of a 4× 4 matrix A is defined as the elements that lie on row r and column c such
that r − c = i mod 4. The i-th anti-diagonal of a 4× 4 matrix A is defined as the elements that lie on row
r and column c such that r + c = i mod 4.

Lorenzo Grassi1 and Christian Rechberger1,2 9

Figure 1: A Known-Key Distinguisher Scenario. Step (0): a relationship R is chosen.
Step (1): the secret key is given to the Oracle Π/Π−1 and to the Shortcut Player A. Step
(2): the Shortcut Player A and the Generic Player A′ generate the N -tuples that satisfy
the required relationship R. Step (3): the Verifier receives the N -tuple and checks if R is
satisfied or not. The faster player to generate the N -tuple wins the “game”.

Definition 6. Let E : (K,X) ∈ {0, 1}k × {0, 1}n → EK(X) ∈ {0, 1}n denote a block
cipher of block size n bits. Let N ≥ 1 and R denote an integer and any relation over the
set S of N -tuples of n-bit blocks. R is said to be T -intractable relatively to E if, given any
algorithm A′ that is given an oracle access to a perfect random permutation Π of {0, 1}n

and its inverse, it is impossible for A′ to construct in time T ′ ≤ T two N -tuples X ′ = (X ′i)
and Y ′ = (Y ′i) such that Y ′i = Π(X ′i), i = 1, ..., N and X ′RY ′ with a success probability
p′ ≥ 1/2 over Π and the random choices of A′. The computing time T ′ of A′ is measured
as an equivalent number of computations of E, with the convention that the time needed
for one oracle query to Π or Π−1 is equal to 1. Thus if q′ denotes the number of queries
of A′ to Π or Π−1, then q′ ≤ T ′.

Definition 7. Let E : (K,X) ∈ {0, 1}k × {0, 1}n → EK(X) ∈ {0, 1}n denote a block
cipher of block size n bits. A known-key distinguisher (R,A) of order N ≥1 consists of (1)
a relation R over the N -tuples of n-bit blocks (2) an algorithm A that on input a k-bit key
K produces in time TA, i.e. in time equivalent with TA computations of E, an N-tuple
X = (Xi) i = 1, ..., N of plaintext blocks and an N -tuple Y = (Yi) i = 1, ..., N of ciphertext
blocks related by Yi = EK(Xi) and by X RY. The two following conditions must be met:

• The relation R must be TA-intractable relatively to E;

• The validity of R must be efficiently checkable: we formalize this requirement by
incorporating the time for checking whether two N-tuples are related by R in the
computing time TA of algorithm A.

We emphasize that while the algorithm A takes a random key K as input, the relation
R satisfied by the N -tuples of input and output blocks constructed by A or A′ is the same
for all values of K (in other words, it is independent of K) and must be efficiently checkable
without knowing K.

The Known-Key Distinguisher Scenario

To better understand these definitions, we propose and describe in more details a generic
scenario for a known-key distinguisher, which is depicted in Fig. 1. This scenario is
composed of five characters, which are a key generator, an oracle, two players and a verifier.
First of all - step (0), we assume that a relation R defined as in Def. 6 is chosen. At step
(1), the key generator generates a key, which is given to the oracle and to one of the two

10 New and Old Limits for AES Known-Key Distinguishers

Table 2: Details of AES known-key distinguishers presented in this paper, obtained by
extending distinguishers based on Multiple Differential Trails. “Rounds” denotes the number
of rounds of the basic distinguisher + the number of rounds of the extensions (if even,
the number of extension rounds is equal at the end and at the beginning). “Cost Case
1” denotes the cost of the shortcut player when the total cost of the generic player is
approximated by the number of oracle-queries, while “Cost Case 2” refers to the case
in which the total cost of the generic player is the sum of number of queries and of its
computational cost. “Cost Verifier” denotes the cost of the verifier. A check-mark 3 in
the “KS” column denotes the case in which the key schedule holds, 7 denotes the case in
which the sub-keys are independent, while white-space/no-mark denotes the case in which
the two previous cases are equivalent (for the distinguisher purposes).

Rounds KS Cost Case 1 Cost Case 2 Cost Verifier Memory Reference
7 + 1 223 221 211.8 216 App. E.2
8 + 1 250 245.6 211.6 232 Sect. 7 - App. D.1
7 + 2 7 223 221 212.6 216 App. E.3
7 + 2 3 221 221 212.6 216 App. E.3
8 + 2 7 250 245.6 212.5 232 Sect. 8.1
8 + 2 3 246 245 212.5 232 Sect. 8.2 - App. D.2
8 + 4 282 282 271.1 232 Sect. 9

player. For the following, we call “shortcut player” the player that knows the key and
“generic player” the player that doesn’t know it. Referring to the previous definitions by
Gilbert, the generic player can be identified with the algorithm A′, while the shortcut
player can be identified with the algorithm A. At step (2), the two players generate
the N -tuple of (plaintexts, ciphertexts) which satisfy the required relation R. Since the
generic player doesn’t know the key, he must ask the oracle (identified with Π and/or Π−1

in the previous definitions) for the encryption (resp. decryption) of random plaintexts
(resp. ciphertexts). In the more general case, the oracle can generate the ciphertexts (resp.
the plaintexts) using a random permutation instead of the encryption (resp. decryption)
process. We stress that this step doesn’t consist only on the generation of (plaintext,
ciphertext) pairs, but also includes any computational cost that the player must do in
order to find the N -tuple with the required property. When a player finds the N -tuple
which satisfies the required relation R, he sends it to the verifier - step (3). The verifier
finally checks if the N -tuple satisfied the relation R (remember that the verifier doesn’t
know the key). The first/fastest player who sends the N -tuple with the required property
wins the “game”.

Before going on, we emphasize that the role of the verifier is only to prevent one or
both of the two players from cheating. In other words, in the case of honest players, the
verifier can be omitted, and the winner of the game is simply the first/fastest player that
claims to have found the N -tuple of (plaintexts, ciphertexts) which satisfy the required
relation R. We highlight that such a verifier is implicitly present in all the distinguishers
currently present in literature.

A distinguisher is meaningful if the cost of the generic player - we assume that the cost
of one oracle-query is equal to the cost of one encryption - to generate the N -tuple is higher
than the cost of the shortcut player, when the probability of success is equal for the two
players. Equivalently, a distinguisher is meaningful if the probability of the generic player
to win the game is higher than the probability of the shortcut player, when the number of
tuples of (plaintexts, ciphertexts) that the two players can generate is fixed and equal for
both players. In other words, in the first case one considers the computational costs of the

Lorenzo Grassi1 and Christian Rechberger1,2 11

Figure 2: 7- and 8-round differential paths for AES-128.

two players to generate the N -tuples with a fixed probability of success (equal for both the
players). In the second case, the computational cost (equivalent to the number of oracle
queries for the generic player and the number of N -tuple generated by the shortcut one) is
fixed and one considers the probabilities of success of the two players to win the game.

Both for the distinguisher that we are going to present and for the Gilbert’s one, the
computational cost of the verification step is not negligible. Thus, in order to compare our
distinguishers to the others present in literature, we define the cost of the distinguisher as
the sum of the cost of the verification step (i.e. the cost of the verifier) and of the cost to
construct the set of plaintexts/ciphertexts with the required property (that is, the cost of
the shortcut player - the cost of the other player is higher). For this reason, we assume for
the following that a relationship R is efficiently checkable if and only if the computational
cost of the verifier is negligible with respect to the player ones. This implies that the cost of
the distinguisher can be approximated with the computational cost of the shortcut player
(the cost of the other player is always higher). Moreover, this assumption prevents the
construction of meaningless known-key distinguishers, as discussed in Sect. 11.

Table 2 summarizes the main details of all the known-key distinguishers based on
Multiple Differential Trails presented in this paper with respect to the above scenario. To
better understand this table, some considerations must be done. Since the generic player
depends by the oracle to generate the N -tuple (i.e. he cannot work alone to generate it),
two possible settings can be analyzed. In the first one, only the number of oracle queries
is considered to determine the computational cost of this player, that is the number of
encryptions/decryptions required by the generic player to the oracle - this case is denoted
by “Case 1” in Table 2. In the second one, both the number of oracle queries and any other
computational cost of the generic player (which is in general not negligible) are considered
- this case is denoted by “Case 2” in Table 2. Intuitively this second setting is weaker than
the first one, in the sense that a known-key distinguisher in the first setting works also
in the second one but not viceversa. In other words, one can expect that the required
number Nof tuples is higher in the first setting than in the second one (or equal in the best
case). If the total cost of the generic player is well approximated by the number of queries,
these two settings are completely equivalent. In the following, we recall the known-key
distinguishers present in literature in the above scenario.

4.2 7- and 8-Round Known-Key Distinguisher
In the 7- and 8-round known-key distinguishers proposed in [MPRS09] and [GP10], the
goal of the two players is to find two pairs of (plaintexts, ciphertexts) - i.e. (p1, c1) and
(p2, c2) - with the following properties: the two plaintexts belong to the same coset of
Di - i.e. p1 ⊕ p2 ∈ Di - and the two ciphertexts belong to the same coset of Mi - i.e.
c1 ⊕ c2 ∈Mi - for a fixed i ∈ {0, 1, 2, 3}.

In the above known-key distinguisher setting, the best technique that the shortcut
player (i.e. the player who knows the key) can use to win the game is the Rebound Attack.
The rebound attack is a differential attack and it was proposed in [MRST09] for the
cryptanalysis of AES-based hash functions. Since it is a differential attack, one needs a
“good” (truncated) differential trail in order to exploit it. Examples of truncated differential

12 New and Old Limits for AES Known-Key Distinguishers

Figure 3: 8-round differential characteristic for known-key distinguisher of AES-128.

trails used for 7- and 8-round AES are depicted in Fig. 2. The rebound attack consists of
two phases, called inbound and outbound phase. In the first one, the attacker uses the
knowledge of the key to find pairs of texts that satisfy the middle rounds of the truncated
differential trail. In the second one, he propagates the solutions found in the first phase in
the forward and in the backward directions, and checks if at least one of them satisfies the
entire differential trail. A complete description of the rebound attack is given in App. B,
with particular attention to the AES case.

As proved in [GP10], in the case of a perfect random permutation 264 operations are
required to find (plaintexts, ciphertexts) pairs (p1, c1) and (p2, c2) that have the required
properties with good probability. Instead, for the AES case and using the rebound attack,
248 computations are sufficient to find them with the same probability (besides a memory
cost of 16× 232 = 236 bytes).

4.3 Multiple Limited-Birthday 8-Round Known-Key Distinguisher
An improvement of the previous known-key distinguisher on 8-round of AES was proposed
in [JNPP14]. Using the subspace trail notation, in this modified version of the 8-round
known-key distinguisher, the goal of the two players is to find two pairs of (plaintexts,
ciphertexts) such that the two plaintexts belong to the same coset of Di for an arbitrary i
and the two ciphertexts belong to the same coset ofMj for an arbitrary j, where i and
j are not fixed in advance and it is not required that they are equal (i.e. no condition
is imposed on i and j) - an example is given in Fig. 3. For arbitrary initial and final
subspaces, the computational cost is reduced from 248 to 244 (note that there are 4 initial
and final different subspaces Di and Mj , for a total of 42 = 24 possibilities) while the
required memory is still 232, as shown in detail in [JNPP14]. In App. E.1 we show that
the same technique can be used to improve the 7-round known-key distinguisher of AES
presented in [MPRS09].

5 Gilbert’s Known-Key Distinguisher for 10-round AES
5.1 Uniform Distribution 8-round Known-Key Distinguisher
Another 8-round known-key distinguisher for AES is based on the uniform distribution
property and it was proposed by Gilbert in [Gil14]. In this case, the goal of the two players
is to find a set of 264 (plaintext, ciphertext) pairs - that is (pi, ci) for i = 0, ..., 264 − 1 -
with the following properties:

• for each K ⊆ {0, 1, 2, 3} with |K| = 3 the plaintexts are uniform distributed in
cosets of the diagonal space DK - equivalently, for each K with |K| = 3 and for each
a ∈ D⊥K there are 232 plaintexts pj for j ∈ J ⊆ {0, ..., 264 − 1} with |J | = 232 such
that pj ∈ DK ⊕ a for all j ∈ J ;

Lorenzo Grassi1 and Christian Rechberger1,2 13

• for each K ⊆ {0, 1, 2, 3} with |K| = 3 the ciphertexts are uniform distributed in
cosets of the mixed spaceMK - equivalently, for each K with |K| = 3 and for each
a ∈M⊥K there are 232 ciphertexts cj for j ∈ J ⊆ {0, ..., 264 − 1} with |J | = 232 such
that cj ∈MK ⊕ a for all j ∈ J .

If the final MixColumns is omitted, an equivalent condition holds on the ciphertexts by
replaying the mixed spaceMK with the inverse-diagonal one IDK .

In the case in which the final MixColumns operation is omitted, it is possible to re-
formulate the goal of the two players as following: find a set of 264 (plaintext, ciphertext)
pairs - that is (pi, ci) for i = 0, ..., 264 − 1 - such that the bytes of the plaintexts and the
ciphertexts are uniform distributed, that is:

• for each j, k = 0, 1, 2, 3 and for each x ∈ F28 , there are 256 plaintexts pi for i ∈ I ⊆
{0, ..., 264 − 1} with |I| = 256 that satisfy pi

j,k = x for all i ∈ I;

• for each j, k = 0, 1, 2, 3 and for each x ∈ F28 , there are 256 ciphertexts ci for
i ∈ I ⊆ {0, ..., 264 − 1} with |I| = 256 that satisfy ci

j,k = x for all i ∈ I.

We prove that these two properties are equivalent for the ciphertexts (the same argu-
mentation applies on the plaintexts as well). First of all, if the bytes of the ciphertexts
are uniform distributed, then the ciphertexts are uniform distributed in cosets of the
inverse-diagonal space IDK for each K with |K| = 3 by definition of IDK . Viceversa,
consider the case in which the ciphertexts are uniform distributed in cosets of IDK for each
K with |K| = 3. By definition, there are 232 ciphertexts ĉi with i ∈ I ⊆ {0, ..., 264−1} and
|I| = 232 that belong to the same coset of ID0,1,2 ⊕ a for a certain a ∈ ID⊥0,1,2 (equivalent
for the other spaces IDK with |K| = 3). By definition, a ∈ ID⊥0,1,2 if and only if ak,j = 0
for (k, j) 6= (0, 3), (1, 2), (2, 1), (3, 0), i.e. for each k+j 6= 3. In other words, ĉi ∈ ID0,1,2⊕a
for each i ∈ I if and only if ĉi

k,j = ak,j for each i ∈ I and for each k + j = 3. Working
independently on each byte, it follows that the bytes of ci are uniform distributed (for
example, working on the first byte and considering all a ∈ ID⊥0,1,2 with a0,3 fixed, it follows
that there are 224 · 232 = 256 ciphertexts ci s.t. ci

0,3 = a0,3).
For completeness, note that the property of uniform distribution doesn’t survive the

final MixColumns matrix5. If the final MixColumns is not omitted, the goal of the two
players becomes to find a set of 264 (plaintext, ciphertext) pairs - that is (pi, ci) for
i = 0, ..., 264 − 1 - such that the bytes of the pi and of MC−1(ci) are uniform distributed.
On the other hand, we highlight that the uniform distribution implies the balance/zero-sum
property both on the plaintexts and on the ciphertexts, and that the balance property is
not destroyed by the (final) MixColumns operation (since this operation is linear). For
completeness, we remember that texts {ti}i∈I have the balance property if

⊕
i∈I t

i = 0.

The Strategy of the Shortcut Player. Here, we briefly recall the best strategy
that the shortcut player can use to win the game using the subspace trails notation instead
of the Super-SB notation (Super-SB(·) ≡ S-Box ◦ARK ◦MC◦ S-Box(·)) - we refer to
App. C for all the details. The idea is to start in the middle with a set S of texts defined

5We highlight that distinguisher proposed by Gilbert is in the case in which the final MixColumns
is omitted. Indeed, in [Gil14] - Sect. 2: [...] to refer to the variant of AESr where the MixColumns
transformation is kept in the last round: we will denote this variant by AESr+ [...]. The distinguishjer
proposed in [Gil14] are for AES8 and AES10 and not AES8+ and AES10+ . Moreover, consider the
following fact. In the untwisted representation proposed by Gilbert, AES2r+ is equivalent to AES2r+ ≡
F P ◦ (R ◦S)r ◦ IP ◦AK while AES2r ≡ AK ◦SR ◦P ◦S ◦ (R ◦S)r−1 ◦ IP ◦AK, where S, R, ... are defined
in [Gil14]. In Property 1 of Sect. 4 of [Gil14], it is proved that the bytes of the encryption of each coset
of Ci under S ◦ R ◦ S are uniform distributed. Due to the previous representation, this is equivalent to
consider 4 rounds of AES without the final MixColumns.

14 New and Old Limits for AES Known-Key Distinguishers

as S := Di ⊕Mj ⊕ c for a constant c, where |S| = 264. Observe that

Di ⊕Mj ⊕ c ≡
⋃

b∈Di⊕c

Mj ⊕ b =
⋃

a∈Mj⊕c

Di ⊕ a,

i.e. the set S can be re-written as union of cosets of the space Di or as union of cosets
of the space Mj . The ciphertexts are given by the 4-round encryption of S, while the
plaintexts by the 4-round decryption of S.

After encrypting S for 4 rounds, the texts are uniform distributed in each coset of
MI of dimension 12 (i.e. |I| = 3). That is, after 4 rounds, each coset ofMI for |I| = 3
contains exactly 232 elements. Indeed, by Theorem 2 note that given two elements in the
same coset of DI , they can not belong to the same coset of MJ for |I| + |J | ≤ 4 after
4-round. Thus, given a coset of Di with |i| = 1, after 4 rounds each element is distributed
in a different cosets ofMJ for |J | = 3. Since a coset of Di contains 232 elements and since
there are exactly 232 cosets ofMJ , the elements of Di ⊕Mj are uniformly distributed
in each coset of MI . The same happens if one decrypts S for 4 rounds. In this case,
after decrypting S for 4 rounds, the texts are uniform distributed in each coset of DI of
dimension 12 (i.e. |I| = 3), that is each coset of DI for |I| = 3 contains exactly 232 elements.

On the Meaningfulness of this Distinguisher. For the following, we briefly recall
the argumentation given by Gilbert about the meaningfulness of such distinguisher.

First of all, 264 texts satisfy the uniform distribution on each byte with probability

p =
(255∏

i=0

(
264 − i · 256

256

)
·
(
2−8)264

)16

.

Indeed, consider the following problem. Given N texts and 2 sets, assume that each text
belongs to one of the two sets with probability 2−1. It follows that the N texts are uniform
distributed among the two sets with prob.

(
N

N/2
)
· 2−N . In a similar way, given d ≥ 2 sets,

they are uniform distributed with probability6
(∏d−1

i=0
(

N−i·N/d
N/d

)
· d−N

)
.

Using Stirling’s formula n! ' nn ·e−n ·
√

2π · n, the previous probability is well approximated
by

p =
(

264!
(256!)256 ·

(
2−8)264

)16

'
(

1
249 · π

)128
· (256!)−1/2 ' 2−7328.1 ≡ 2−212.84

. (5)

In other words, given 264 plaintexts whose bytes are uniform distributed, this represents
the probability that the bytes of the corresponding ciphertexts are uniform distributed.
For comparison, given 264 plaintexts whose sum is zero, then the sum of the corresponding
ciphertexts is equal to zero with probability 2−128.

What is the minimum number N ≡ 264 +M > 264 of - random - (plaintext, ciphertext)
pairs such that there is a subset of 264 pairs whose bytes are uniform distributed both on
the plaintexts and on the ciphertexts with non-negligible property? Given 264 +M texts, it
is possible to construct (

264 +M

264

)
' 1√

2π ·M
·
(

264 +M

M

)M

6Consider the case N = 264 and d = 256. The product of the binomial coefficients is explained as
follows. For each one of the 16 bytes, there must exist 264/256 = 256 texts for each one of the 256 possible
values. Thus, there are

(264

256

)
possible sets of 256 texts for each the byte as value 0,

(264−256

256

)
possible

sets of 256 texts for each the byte as value 1 and so on.

Lorenzo Grassi1 and Christian Rechberger1,2 15

different sets of 264 texts (where the approximation is given using the Stirling’s formula and
by the assumption M � 264). This number is always higher than p−2 ≡ 2213.84 for each
M ≥ 212. In other words, given 264 + 212 random pairs, there is a good probability to find
264 (plaintext, ciphertext) pairs such that the bytes of the plaintexts and of the ciphertexts
are uniform distributed. It follows that if the cost of the generic player is approximated by
the number of oracle queries, then his cost is approximately of 264 + 212 ' 264 encryptions
vs 264 encryption of the shortcut player.

So, why is this distinguisher meaningful? Instead to focus on the cost of the players,
Gilbert shows that the probability of the generic player to win the game given 264 texts
is negligible. To do this, Gilbert claims that this probability is upper bounded by the
probability of the following game: given 264 − 1 (plaintext, ciphertext) pairs whose bytes
are “almost uniform” - see the definition in the following, find a text for which the bytes
of the corresponding 264 texts are uniform distributed. Since this probability is upper
bounded by 2−127 - see proof of Prop. 4 of [Gil14] - and since this second game is (strong)
“related” to the original one7, the conclusion follows immediately.

For completeness, we formal define what “almost uniform” means. Consider 264 − 1
texts ti ∈ F4×4

28 for i = 0, ..., N − 2. We say that the bytes of 264 − 1 texts ti are “almost
uniform” if for each row and column j, k = 0, 1, 2, 3 (1) there exists x ∈ F28 s.t. there are
256 − 1 texts that satisfy tij,k = x and (2) for each y ∈ F28 \ x, there are 256 texts that
satisfy tij,k = y. More generally:

Definition 8. Consider 2N − d texts ti ∈ F4×4
28 for i = 0, ..., N − d − 1 for d ≥ 1. We

say that the bytes of 2N − 1 texts td are “almost uniform” if for each row and column
j, k = 0, 1, 2, 3:

• there exists a set X ≡ {x1, ..., xs ∈ F28} with cardinality s ≤ d such that for each
xl ∈ X with 1 ≤ l ≤ s there are 2N−8−d ≤ ŝl ≤ 2N−8− s texts that satisfy tij,k = xl

where
∑s

l=1 ŝl = d;

• for each y ∈ F28 \X, there are 2N−8 texts that satisfy tij,k = y.

Proposition 1. Consider a set of 2N texts whose bytes are uniform distributed. The
bytes of each subset of 2N − d texts are “almost uniform” distributed w.r.t. the previous
definition.

5.2 Extension to 10 Rounds of AES
This distinguisher is the starting point used by Gilbert in order to set up the first 10-round
known-key distinguisher for AES. The basic idea is to extend this 8-round distinguisher
based on the uniform distribution property adding one round at the end and one at the
beginning. Assume for simplicity that the final MixColumns is omitted. In the known-key
distinguisher scenario presented above, the players have to send to the verifier 264 (plaintext,
ciphertext) pairs, that is (pi, ci) for i = 0, ..., 264 − 1, with the following properties8:

1. there exists a key k0 s.t. the bytes of {Rk0(pi)}i are uniform distributed, or equiva-
lently that the texts {Rk0(pi)}i are uniform distributed among the cosets of DI for
each I with |I| = 3;

7For completeness, we mention that no formal proof is provided in [Gil14] in order to support this
claim. In other words, it is not proved that the fact that this second game is “hard” implies the hardness
of the original game, and/or viceversa.

8For this and the following distinguishers, we abuse the notation kr to denote a key of a certain round
r. We emphasize that kr is not necessarily equal to the secret key, that is kr can be different from the
r-th subkey. Remember that it is only required that such a key exists, and not that it is equal to the real
secret key.

16 New and Old Limits for AES Known-Key Distinguishers

2. there exists a key k10 s.t. the bytes of {MC−1 ◦R−1
k10(ci)}i are uniform distributed,

or equivalently that the texts {R−1
k10(ci)}i are uniform distributed among the cosets

ofMJ for each J with |J | = 3;

where MC−1 denotes the inverse MixColumns operation. In this game, the subkeys k0

and k10 are assumed to be independent (argumentations are given by Gilbert to show that
the same distinguisher is applicable also to the case in which the key-schedule holds - we
discuss this topic in details in the following).

Since uniform distribution implies balance property - viceversa is not true in general, if
the previous properties are satisfied then for the key k0 the sum of the plaintexts after
one round is equal to zero, i.e.

⊕264−1
i=0 Rk0(pi) = 0, and for the key k10 the sum of the

ciphertexts one round before is equal to zero, i.e.
⊕264−1

i=0 R−1
k10(ci) = 0.

We emphasize that even if this is a known-key distinguisher, the verifier must be
able to check the previous properties without the knowledge of the key or the subkeys.
Since the verifier has no information of the key, one must show that the above conditions
are efficiently checkable. The only way to verify these requirements is to find these two
subkeys in an efficient way, which is not possible using a brute force attack (k0 and k10

have 128 bits). Instead to check all the 2 · 2128 = 2129 possible values of k0 and k10, the
idea proposed by Gilbert is to check uniform distribution working on single columns of
SR(ci) and of SR−1(pi) (the strategy proposed by Gilbert9 is similar to the one proposed
in Algorithm 1). In this way, the verifier must guess only 32 bits instead of 128, and she
has to repeat this operation 4 times (one for each anti-diagonal/diagonal) for each key.
In the following, we discuss a way to improve this procedure working independently on
each byte of k0 and k10 instead of entire anti-diagonal/diagonal. The idea is simply to use
integral attack [DKR97]-[KW02] to filter wrong keys.

In conclusion, the shortcut player (i.e. the one who knows the key) can construct
these 264 (plaintext, ciphertext) pairs using the same strategy proposed for the 8 rounds
distinguisher (note that in this case the keys k0 and k10 correspond to the secret sub-keys).
Instead, as proved by Gilbert in Prop. 6 of [Gil14], the probability that the generic player
(i.e. the one who doesn’t know the secret key) successfully outputs (input, output) pairs
that satisfy the previous properties (both in the input and in the output) is upper bounded
by 2−16.5. Finally, the verifier can find the keys k0 and k10 that satisfy the required
property (if exist) with a computational cost which is smaller than the cost of the two
players.

On the Meaningfulness of this Distinguisher. For the following, we briefly recall
the argumentation given by Gilbert about the meaningfulness of this distinguisher.

First of all, what is the probability that given a set of 264 texts there exists a key k̂
such that the bytes of 1-round encryption (resp. decryption) of such texts are uniform
distributed? Using the previous calculation and since there are 2128 different keys, this
probability is equal to 2128 · p ' 2128 · 2−7328.1 = 2−7200.1 ≡ 2−212.81 where p is defined
in (5). Similar to the 8-round case, it follows that 264 + 212 ' 264 (plaintext, ciphertext)
pairs are sufficient to have good probability to win the game.

So, as before, why is this distinguisher meaningful? As for the 8-round case, instead to
focus on the cost of the players, Gilbert shows that the probability of the generic player to
win the game given 264 texts is negligible. To do this, Gilbert claims that this probability
is upper bounded by the probability of the following game. Consider 264 − d (plaintext,

9Algorithm 1 is presented in order to propose a 12-round distinguisher based on the uniform distribution
property as extension of 10-round Gilbert’s distinguisher. The difference between this algorithm and
the one proposed by Gilbert is the fact that in our case some wrong-key candidates can be eliminated
using the zero-sum property. In other words, in order to turn our algorithm in the one proposed by
Gilbert, it is sufficient to check all the keys k ≡ (k0,0, k1,3, k2,2, k3,1) from (0x00, 0x00, 0x00, 0x00) to
(0xff, 0xff, 0xff, 0xff), and not only the ones found by Algorithm 2.

Lorenzo Grassi1 and Christian Rechberger1,2 17

ciphertext) pairs for d ≥ 5, that is (pi, ci) for each i = 0, ..., 264 − d− 1, with the property
that there exist a set of keys k0 and k10 - this set can correspond to the entire set of keys -
for which the bytes of Rk0(pi) and of MC−1 ◦R−1

k10(ci) (that is 1-round encryption of pi

and the 1-round decryption of the ciphertexts) are “almost uniform” distributed. The goal
of the player is to find the remaining d texts for which the bytes of the corresponding 264

texts after 1-round encryption/decryption are uniform distributed. Since this probability
is upper bounded by (2128)2 ·

(
516

2128−264+1

)3
' 2−16.5 - see proof of Prop. 6 of [Gil14] - and

since this second game is “related” to the original one, the conclusion follows immediately.

5.2.1 Generic Considerations

The previous 10-round distinguisher proposed by Gilbert is different from all the previous
distinguishers up to 8 rounds present in literature. For all distinguishers up to 8-round, the
relation R that the N -tuple of (plaintexts, ciphertexts) must satisfy doesn’t involve any
operation of the block cipher E. As a consequence, it allows the verifier to check whether
the N -tuple of (plaintexts, ciphertexts) satisfy the required relation R without knowing
anything of the key. When R doesn’t re-use operations of E, this provides some heuristic
evidence that this distinguisher can be considered meaningful.

On the other hand, the previous 10-round distinguisher and the ones that we are going
to propose don’t satisfy this requirement, i.e. in these cases the relation R involves and
re-uses some operations of E. The novelty of Gilbert’s work is not just the possibility to
extend the distinguisher up to 10-round AES, but rather the introduction of a new distin-
guisher model. Requiring the existence of round keys for which the 1-round encryption of
the plaintexts (respectively, 1-round decryption of the ciphertexts) satisfy the relation R,
or in other words considering relations R that depend on some operations of E, allows to
set up new distinguishers that penetrate more round of the block cipher. For a detailed
discussion on the reasons why such known-key distinguishers should not be systematically
ruled out as if they were artificial we refer to Sect. 3 of [Gil14]. We emphasize that the
goal of this paper is not to disprove or to give more argumentations about the validity
of such model. Rather, under the assumption of validity of such model, the contributions
of our paper are to show the possibility to set up distinguishers based on the truncated
differential property instead of the uniform distribution one in the Gilbert’s framework,
and the possibility to extend such distinguishers for up to 12-round AES, that is two more
beyond the claimed given by Gilbert in [Gil14].

A Variant of Gilbert’s Distinguisher. Before we go on, we highlight a variant of
the Gilbert’s distinguisher - that also applies to all our proposed distinguishers present
in the paper - which allows to better understand it. Consider the case in which the two
players have to send to the verifier the N -tuple that verify the required relation R together
with the subkeys for which such relation is satisfied. As an example, in the 10-round
distinguisher just presented, the players have to send 264 (plaintexts, ciphertexts) pairs
(pi, ci) and the two subkeys k0 and k10 such that the bytes of Rk0(pi) and MC−1 ◦R−1

k10(ci)
are uniform distributed. Thus, since the task of the verifier is to check that the relation
R is satisfied only for the keys she received, it follows that her computational cost is
negligible. On the other hand, we show in details in App. A that such variant of the
distinguisher is meaningless, since it can be set up for any number of rounds of AES.

5.3 Another Strategy for the Verifier
In order to extend the Gilbert’s distinguisher on 12-round AES by exploiting the uniform
distribution property, we present another strategy that the verifier can use in order to
check the existence of keys k0 and k10 for which the required property R is verified. The

18 New and Old Limits for AES Known-Key Distinguishers

Data: 264 texts ti for i = 0, ..., 264 − 1
Result: One anti-diagonal of k - e.g. (k0,0, k1,3, k2,2, k3,1) - s.t. each byte of

MC−1 ◦Rk(ti) is uniform distributed
Let A[0, ..., 232 − 1] and B1[0, ..., 255], B2[0, ..., 255], B3[0, ..., 255], B4[0, ..., 255] five
arrays initialized to zero;
for i from 0 to 264 − 1 do

x← ti0,0 + 28 · ti3,1 + 216 · ti2,2 + 224 · ti3,1;
A[x]← A[x] + 1;

end
Use Algorithm 2 to find k0,0, k1,3, k2,2, k3,1 - i.e. to filter wrong candidates;
for each k ≡ (k0,0, k1,3, k2,2, k3,1) found using Algorithm 2 do

for s from (0x00, 0x00, 0x00, 0x00) to (0xff, 0xff, 0xff, 0xff) do
Let s ≡ (s0, s1, s2, s3) ∈ F4

28 be a column of 4 bytes;
Compute x ≡MC−1 ◦Rk(s) ; // partial decryption of s w.r.t. to
k - note: x ≡ (x1, x2, x3, x4) ∈ F4

28 is a column of 4 bytes
Increment B1, B2, B3, B4[x]: Bj [xj]← Bj [xj] +A[x] for each j = 1, 2, 3, 4;

end
if uniform distribution - i.e. Bj [x] = 256 for each x = 0, ..., 255 and for each
j = 1, 2, 3, 4 then

identify k as possible candidate;
end

end
return candidates for (k0,0, k1,3, k2,2, k3,1).

Algorithm 1: Verifier Strategy: find one anti-diagonal (e.g. the first one) of the last
round-key k - equivalent for the other anti-diagonals and for the first round key - s.t.
the bytes of MC−1 ◦R−1

k (ti) are uniform distributed. For simplicity, we omit the final
MixColumns - if it is not omitted, it is sufficient to swap it with the final AddRoundKey
operation.

goal of the following strategy is not to improve the computational cost of the verifier, but
to show the possibility to check the existence of such keys working independently on each
byte of the key instead of combinations of 4 bytes. The idea is simply to filter wrong key
candidates using the integral attack [DKR97]-[KW02].

As we have just seen, the two players have to find 264 (plaintext, ciphertext) pairs,
i.e. (pi, ci) for i = 0, ..., 264 − 1, s.t. there exist keys k0 and k10 for which bytes of Rk0(pi)
and MC−1 ◦ R−1

k10(ci) are uniform distributed. When the verifier receives the set of 264

(plaintext, ciphertext) pairs from the players, she checks if the required properties are
satisfied or not by finding the two keys. Under Gilbert’s assumption - no key-schedule holds,
the verifier can work independently on k0 and k10. Both for k0 and k10, Gilbert proposes
to work on 4 bytes of the key at the same time, that is to work on entire antidiagonal in
the case of k10 (for simplicity the last MixColumns operation is omitted) and to work on
entire diagonal in the case of k0. Here we show that a different strategy can be used to
verify the existence of these two keys.

As we are going to show, it is not necessary to work on 4 bytes of the subkeys k0

and k10 simultaneously, but it is possible to find k0 and k10 working on single bytes
(independently of the others). The idea is to exploit the fact that uniform distribution
implies zero-sum property. Thus, the verifier first looks for subkeys k0 and k10 that satisfy⊕264−1

i=0 Rk0(pi) = 0 and
⊕264−1

i=0 R−1
k10(ci) = 0 working independently on each byte. Only

for keys that satisfy zero-sum, she then checks if the uniform property is verified, working
simultaneously on 4 bytes of the subkeys. We emphasize that if zero-sum is not satisfied,
then also uniform distribution is not satisfied. Moreover, we highlight that the number of

Lorenzo Grassi1 and Christian Rechberger1,2 19

Data: 264 texts ti for i = 0, ..., 264 − 1
Result: One byte of k - e.g. k0,0 - s.t.

⊕
i S-Box−1(pi

0,0 ⊕ k0,0) = 0
Let A[0, ..., 28 − 1] an array initialized to zero;
for i from 0 to 264 − 1 do

A[ti0,0]← (A[ti0,0] + 1) mod 2; // A[x] denotes the value stored in the
x-th address of the array A

end
for k from 0x00 to 0xff do

x← 0;
for i from 0 to 255 do

x← x⊕A[i]· S-Box−1(i⊕ k); // A[i] can only be 0 or 1
end
if x = 0 then

identify k as candidate for k0,0;
end

end
return candidates for k0,0.

Algorithm 2: First Part of Verifier Strategy: working on each byte of the key indepen-
dently of the others, filter wrong key candidates using zero-sum property.

subkeys that satisfy zero-sum is very small compared to the number of all possible keys.
Indeed, note that that since zero-sum is satisfied with prob. 2−128 and since there are only
2128 keys, on average only one key passes the first step. It follows that the second step of
this strategy - i.e. checking uniform distribution when zero-sum is satisfied - has negligible
cost compared to the total cost. For completeness, note that the only case in which no key
is filtered occurs when all the values of the vector A defined in Algorithm 2 are even. Since
the probability that at least one value of vector A defined in Algorithm 2 is odd is given
by 1− (2−1)256 = 1− 2−256 ' 1, this implies that only few candidates survive Algorithm
2 - i.e. only few candidates are tested in Algorithm 1 - with very high probability.

In more details, if the bytes ofMC−1◦R−1
k10(ci) are uniform distributed then

⊕
i MC−1◦

R−1
k10(ci) =

⊕
i R
−1
k10(ci) = 0. The subkeys k10 that satisfy this requirement can be found

using a classical square attack - see Algorithm 2. For completeness, if the final MixColumns
operation is not omitted, then one simply changes the positions of the final MixColumns
operation and of the final AddRoundKey operation, using the fact that the MixColumns
is linear. Exactly in the same way, if the bytes of Rk0(pi) are uniform distributed
then

⊕
i Rk0(pi) = 0. Since a set of balanced texts {ti}i∈I is mapped into a set of

balanced texts by the MixColumns operation (indeed, since MC is linear, it follows
that

⊕
i∈I MC(ti) = MC(

⊕
i∈I(ti)) = 0), the verifier can simply check if the condition⊕264−1

i=0 S-Box(pi
j,l ⊕ k0

j,l) = 0 holds for each byte (i.e. ∀j, l = 0, ..., 3) in order to verify
that

⊕264−1
i=0 Rk0(pi) = 0. It follows that the verifier can work on single bytes of k0 and

k10 to filter wrong key candidates.
Using this proposed strategy, the verification cost is a little lower than the one given

in the original strategy of Gilbert (approximately10 2 · 264 vs 10 · 264 look-ups table, that
257.36 vs 259.7 ten-round encryptions assuming 1 S-Box look-up ≈ 1 table look-up). In
particular, observe that all the arrays A defined in Algorithms 1 and 2 can be computed
simultaneously and stored, and that we expect that only few (on average only one) keys
pass Algorithms 2 - that is, the cost of the verification step is well approximated by the

10Note that both Algorithm 1 and 2 can be optimized such that it is possible to compute the array A
simultaneously for each row and column of the text ti, for a total cost of 264 table look-ups. It follows
that the cost of our strategy corresponds to the cost to prepare the array A for the two algorithm, that it
265 table look-ups.

20 New and Old Limits for AES Known-Key Distinguishers

cost to compute the array A. On the other hand, we emphasize that the goal of this
strategy is to show the possibility to work on single byte of the key independently of the
others, and not to improve the verification cost in a significant way.

6 Key-Recovery Extensions using Truncated Differentials
Our known-key distinguishers exploit the same idea proposed for the first time by Gilbert.
In particular, our idea is to extend the 8-round distinguishers recalled in Sect. 4.3 at the
end or/and at the beginning, in the same way used by Gilbert to extend the 8-round
distinguisher based on the uniform distribution property.

Since we are going to extend known-key distinguishers based on truncated differential
properties, we need an efficient key-recovery attack that allows the verifier to check the
required property on the N -tuple of (plaintexts, ciphertexts) that she receives by the
players. For this reason, we re-propose the low-data complexity truncated differential
attacks11 on 3- and 4-round AES-128 presented in [GRR17]. The attacks that we present
here are a little modified with respect to those presented in [GRR17] due to different scope
of this work. In particular, the attack on 3 rounds of [GRR17] is described here as an
attack on a single round, while the attack on 4 rounds is described here as an attack on 2
rounds (besides other changes for this second case, which are described in the following).

6.1 Attack for the Case of 1-Round Extension
Consider three plaintexts in the same coset of Mi for |i| = 1 and the corresponding
ciphertexts after one round12, that is (pj , cj) for j = 1, 2, 3. The goal of the attack is to
find the key k such that the ciphertexts belong to the same coset ofMi one round before,
that is k has to satisfy the following condition13:

R−1
k (c1)⊕R−1

k (c2) ∈Mi and R−1
k (c1)⊕R−1

k (c3) ∈Mi.

For simplicity, we assume that the final MixColumns operation is omitted (otherwise one
simply switches the final MixColumns and the final AddRoundKey operation, as usual
in literature). Since each column ofMi depends on different and independent variables,
the idea of the attack is to work independently on each column ofMi or equivalently of
SR−1(k), and to exploit the relationships that hold among the bytes that lie in the same
column ofMi.

Without loss of generality, we assume I = {0} and we present the attack only for the
first column of SR−1(k) (analogous for the others). The conditions that the bytes of the
first column of SR−1(k) must satisfy are:

sh
0,0 = 0x02 · sh

1,3, sh
2,2 = sh

1,3, sh
3,1 = 0x03 · sh

1,3, (6)

where sh
i,j = S-Box−1(c1

i,j ⊕ ki,j)⊕ S-Box−1(ch
i,j ⊕ ki,j) for h = 2, 3. For each value of k1,3

(28 possible values in total), the idea is to find the values of k0,0, k2,2 and k3,1 that satisfy
the previous relationships. On average, using a single pair of ciphertexts and working in
this way, it is possible to find 28 combinations of these four bytes (i.e. one for each possible
value of k1,3). The idea is to test them using the second pair of ciphertexts: on average,
only the right combination passes the test. The same procedure is used for the others
columns.

11We emphasize that both these attacks have been practical verified (see [GRR17] for details).
12More generally, consider two couples of (plaintexts, ciphertexts) pairs, that is {(pj

0, cj
0), (pj

1, cj
1)} for

j = 1, 2 such that pj
0 ⊕ pj

1 ∈Mi.
13Note that if R−1

k
(c1)⊕R−1

k
(c2) ∈ Mi and R−1

k
(c1)⊕R−1

k
(c3) ∈Mi, it follows that also R−1

k
(c2)⊕

R−1
k

(c3) ∈Mi sinceMi is a subspace.

Lorenzo Grassi1 and Christian Rechberger1,2 21

Data: 2 ciphertexts pairs (c1, c2) and (c1, c3), whose corresponding plaintexts
belong in the same coset of D0.

Result: First diagonal of the secret key k (i.e. ki,i for each i = 0, ..., 3).
(Note: the same procedure with the same ciphertexts can be used to recover the
other diagonals of the key.)
for all values of k1,3 do

for all values of k0,0 do
check if sh

0,0 = 0x02 · sh
1,3 is satisfied for both pairs of ciphertexts, where

sh
i,j = S-Box−1(c1

i,j ⊕ ki,j)⊕ S-Box−1(ch
i,j ⊕ ki,j) for h = 2, 3

if satisfied then
identify candidates for k1,3 and k0,0;
repeat the same procedure for k2,2 and k3,1, that is check if the
equivalence sh

2,2 = sh
1,3 and sh

3,1 = 0x03 · sh
1,3 are satisfied;

end
end

end
return candidate of the first diagonal of k

Algorithm 3: Key-recovery Attack - Pseudo Code. For simplicity, in this pseudo-code,
we show how to find only the first diagonal of the secret key that verify relationship R.
To recover the entire key, it is sufficient to repeat the same attack for the other diagonals
using the same pairs of ciphertexts. For more details, see Algorithm 5 of [GRR17].

The total computational cost of the attack is well approximated by the cost of the first
phase, that is by the cost to find (on average) the 28 combinations of k0,0, ..., k3,1 that
satisfy (6) for the first column and similar for the others (the cost to check them with
the second pair of texts is negligible). In particular, the computational cost of this attack
using 3 chosen plaintexts can be approximated by 217.1 S-Box look-ups (and negligible
memory cost), or approximately 211.6 table look-ups and a memory cost of 16× 212 = 216

using a precomputation phase. We refer to [GRR17] for all the details.
For the following, we emphasize that the same attack works exactly in the same way

also in the decryption direction (chosen ciphertexts attack) with the same complexity. In
this case the idea is to consider three ciphertexts in the same coset of Di, and to look for a
key such that the corresponding plaintexts belong to the same coset of Di after one round
(see [GRR17] for details).

6.2 Attack for the Case of 2-Round Extension
To set up the first 12-round known-key distinguisher of AES-128, we also need to recall (a
modified version of) the low-data complexity truncated differential attack on 4-round of
AES-128, which is obtained by extending the previous attack on 3 rounds at the end. We
refer to [GRR17] for a complete description of the attack - see Algorithm 6 for a complete
pseudo-code, and for simplicity we assume that the final MixColumns is omitted.

Consider plaintexts in the same coset ofMi for |i| = 1 and the corresponding ciphertexts
after two rounds. The goal of the attack is to find the key such that the ciphertexts
belong to the same coset ofMi two rounds before. The idea of the attack is to guess two
columns of SR−1(k2), where k2 is the final key. Given 5 plaintexts and the corresponding
ciphertexts (pj , cj) for j = 1, ..., 5, for each one of the 264 possible values of these two
columns of SR−1(k2), the idea is to partially decrypt these 5 ciphertexts one round, that
is to compute the eight bytes sj := R−1

k2 (cj) for each i = 1, ..., 5. Due to the ShiftRows
operation, these 8 bytes are distributed in two columns. Thus, the idea is to simply to
repeat the previous attack on 3 rounds. However, due to the ShiftRows operation, the

22 New and Old Limits for AES Known-Key Distinguishers

eight bytes of si are uniform distributed in the four columns, i.e. two byte for each column,
that is for each column one can only exploit the relationship that holds among these two
bytes (see [GRR17] for details).

Using two pairs of ciphertexts (e.g. (c1, c2) and (c1, c3)), it is possible to find (on
average) at most one combination of eight bytes of k2 for each possible guess of the eight
bytes of k2, for a total of 264 possibilities. The idea is to test these found values against
other pairs of ciphertexts, that is to check if the relationships among the bytes of the keys
hold also for these other pairs of ciphertexts14. Since each relationship is satisfied with
probability 2−32 (there are four relationships, each one satisfied with probability 2−8), it is
sufficient to test the found values of k1 and k2 against only other two pairs of ciphertexts,
in order to eliminate all the wrong candidates with high probability. Thus, using 5 chosen
plaintexts (i.e. 4 pairs with a common plaintext15), it is possible to recover 8 bytes of
k1 and of k2. To discover the complete key, the idea is essentially to repeat the same
procedure on the last two columns of k2 (we refer to [GRR17] for details).

As shown in [GRR17], the computational cost of this attack is well approximated by 281

S-Box look-ups (with negligible cost of memory) or 276 table look-ups and a memory cost
of 16 · 212 = 216 bytes. Moreover, the same attack works also in the decryption direction,
with the same complexity. In particular, given ciphertexts in the same coset of Di for
|i| = 1 and the corresponding plaintexts two rounds before, the idea is to look for the keys
such that the plaintexts belong to the same coset of Di after two rounds.

7 9-Round Known-Key Distinguisher for AES
Exploiting the same idea proposed by Gilbert, we set up our known-key distinguisher for 9
rounds of AES by extending the 8-round distinguisher presented in [JNPP14] (and recalled
in Sect. 4.3) at the end (or at the beginning).

In the above defined known-key scenario, the players have to send to the verifier n
different tuples of (plaintext, ciphertext) pairs, that is {(p1

i , c
1
i), (p2

i , c
2
i)} for i = 0, ..., n− 1,

with the following properties16:

1. for each tuple, there exists j s.t. the two plaintexts belong to the same coset of Dj ,
that is

∀i = 0, ..., n− 1, ∃j ∈ {0, ..., 3} s.t. p1
i ⊕ p2

i ∈ Dj ;

2. there exists a key k s.t. for each tuple there exists l for which the two ciphertexts
belong to the same coset ofMl one round before, that is

∃ k s.t. ∀i = 0, ..., n− 1, ∃l ∈ {0, ..., 3} s.t. R−1
k (c1

i)⊕R−1
k (c2

i) ∈Ml.

The fastest player to construct these n-tuples wins the game.
We stress that the key k must be equal for all the tuples. In other words, if there

exist two different tuples (c0, c1) and (c2, c3) such that R−1
k (c0) ⊕ R−1

k (c1) ∈ Ml and
R−1

k̃
(c2)⊕R−1

k̃
(c3) ∈Ml̃ for two different keys k 6= k̃, then the above defined relationship

R is not satisfied. Note that without this request on the secret key k, it is extremely easy
to construct tuples such that the two ciphertexts belong to the same coset ofMl one round

14This step is different from the one proposed in [GRR17]. In that case, the idea is to find the right key
by a brute force attack in order to keep the data complexity as low as possible. For our distinguisher, we
propose to test the found key against other pairs of plaintexts and ciphertexts, since it is not possible to
use a brute force attack.

15Note that 4 different pairs can be obtained by 3 chosen plaintexts. However, such pairs are not useful
for the attack, essentially for the same reason given in footnote 13. We refer to [GRR17] for a complete
and detailed explanation.

16We say that the tuples are different if p1
i 6= p2

i for each i and if (p1
i , p2

i) 6= (p1
j , p2

j) and (p1
i , p2

i) 6= (p2
j , p1

j)
for each i 6= j.

Lorenzo Grassi1 and Christian Rechberger1,2 23

before. Indeed, as we have seen for the attack of Sect. 6, given two ciphertexts c1 and
c2, on average there exist 4 · (28)4 = 234 different keys such that R−1(c1)⊕R−1(c2) ∈Ml

for a certain l. Thus, it is straightforward to construct n different tuples with the above
defined relationship R but without any condition on the key17 k.

Before we go on, it is also important to emphasize that no condition on the key k is
imposed, except that it exists and it is equal for all the tuples. That is, it is not required
that this key is equal to the real secret subkey. The same consideration holds also for the
next distinguishers presented in this paper, and for the 10-round distinguisher presented
by Gilbert in [Gil14].

In the following, we present the distinguisher in details. To obtain a suitable value for
n, we consider the best strategy that the generic player can adopt to win the game. A
value of n is suitable when the computational cost of the generic player using this best
strategy is worse than the one of the other player.

As we show in details in the following, to do this one has to consider the numbers
of oracle-queries done by the two player and any further cost of the generic player. In
particular, if only the number of oracle-queries is taken in account, then n must be equal or
greater than 8, which implies that the computational cost for the shortcut player is of 247

and for the generic player is of 248.9. In order to make the advantage of the shortcut player
more significant, we have chosen an (arbitrary) value of n = 64, which implies a cost for
the shortcut player of 250 computations and of 265.6 computations for the generic player.
Instead, if all the costs are considered (number of oracle-queries + cost of the generic
player), then a suitable value of n is 3, the computational cost for the shortcut player is
245.6 and for the generic player is approximately 2109.5. In both cases, the computational
cost of the verifier is well approximated by 211.6.

The Verifier. Given n tuples, for each one of them the verifier can easily check if the
two plaintexts belong (or not) to the same cosets of Dj for a certain j, by computing their
XOR sum and checking that three diagonals are equal to zero.

More complicated is to check if there exists a (unique) key k for which the requirement
on the ciphertexts is fulfilled. The idea is to find such key (if exists), using the attack
described in Sect. 6.1. First of all, given a single tuple, there exist on average 4 · (28)4 = 234

keys of the final round such that the two ciphertexts belong to the same coset ofMl one
round before for a certain l. Given two tuples, the probability that such key exists is only
(234)2 · 2−128 = 2−60, while more generally, given n tuples, the probability that at least
one key exists (for which the previous requirements are satisfied) is given by:

234n · 2−128(n−1) = 2−94·n+128.

This is due to the fact that for each tuple there are one average 234 different keys and that
the probability that two keys are equal is 2−128. By this preliminary analysis, it is already
possible to deduce that the number of tuples should be at least 2 (i.e. n ≥ 2). Indeed, for
n = 1 such a key always exists (which implies that using a random tuple it is possible to
win the game), while for n = 2 the probability that such key exists for two random tuples
is only 2−60.

Thus, assume that the verifier receives n ≥ 2 tuples. The idea is to use two tuples and
the attack described in Sect. 4.3 to recover (if exists) the key that satisfies the required
property. If n > 2, the verifier simply checks if the relation R is satisfied by the found key
for the other n− 2 tuples.
In more details, working independently on each column, the attacker uses the first tuple to

17We observe that the claim “the transposition of our technique to the 8-round distinguisher of [GP10]
does not allow to derive a valid 10-round distinguisher” made in [Gil14] is justified only when no assumption
on the key k is done. In other words, the above defined relationship R together with the requirement of
uniqueness of the key k allows to extend the 8-round distinguisher of [GP10] as in [Gil14].

24 New and Old Limits for AES Known-Key Distinguishers

find 28 combinations for each column of SR−1(k) and checks immediately them with the
second tuple. Since she repeats this attack for each possibleMi (i.e. 4 times), the cost of
this step is of 4 · 217.1 = 219.1 S-Box look-ups. In this way, the verifier finds on average
only one key (if exists). If at least one possible key is found using two tuples, she simply
checks if the other n− 2 tuples satisfy the relation R for this found key (more generally,
she repeats this step for all the keys found using the first two tuples). The cost of this
operation is well approximated by 2 · 16 = 25 S-Box look-ups for each tuple (note that she
must decrypt one round two ciphertexts).

In conclusion, given n ≥ 2 tuples, the cost of the verifier is well approximated by
219.1 + (n − 2) · 25 S-Box look-ups, that is approximately 211.6 9-round encryptions if
n� 214.

The Shortcut Player. The shortcut player can simply use the same strategy de-
scribed in [JNPP14] and in Sect. 4.3 for the known-key distinguisher on 8 rounds to find
the n tuples that satisfy the above defined relation R. Indeed, it is straightforward to
prove that all the properties are satisfied, since for each tuple the two plaintexts belong to
the same coset of Di (for a certain i) and the two ciphertexts belong to the same coset of
Mj (for a certain j) one round before with respect to the known key - by construction.
Since the computational cost to build one tuple is of 244 encryptions, the cost to construct
n tuples is well approximated18 by n · 244.

The Generic Player. Here we analyze and present the (intuitively) best strategy
that the generic player can use to find n tuples with the required properties, and the
corresponding computational cost. Intuitively, the best strategy for this player is to choose
tuples such that for each one of them the two plaintexts belong to the same coset of Dj for
a certain j. In this way, the required condition on the plaintexts is (obviously) satisfied.
Then, the player asks the oracle for the corresponding ciphertexts. The idea is to check if
there exists a key k and n tuples such that the two ciphertexts of each of these n tuples
belong to the same coset ofMl one round before. We remember that it is not necessary
that the key for which this condition is satisfied is the real one.

As we have already seen, given a single tuple there exist on average 234 keys such
that the two ciphertexts belong to the same coset ofMj one round before. To set up a
meaningful distinguisher, a value of n is suitable if the number of oracle-queries of the
generic player is higher than the cost of the shortcut player. By previous observations,
given a set of n tuples, the probability that at least one common key exists for which the
property on the ciphertexts is satisfied is 2−94n+128. Thus, the idea is to estimate the
number of (plaintext, ciphertext) pairs that this player has to generate in order to win the
game (that is, in order to find with high probability n tuples with the required property).
If this number is higher than 244 · n for a fixed n, then the other player wins the game.

Since each coset of Dj contains 232 different plaintexts, it is possible to construct
approximately 263 different couples {(p1, c1), (p2, c2)}. Given t different cosets of Dj , it
is possible to construct s = 263 · t different couples. It follows that one can construct
approximately (

s

n

)
≈ sn

n!

different sets of n different tuples (i.e. n different couples {(p1, c1), (p2, c2)}), where the
approximation holds for n � s. Since the probability that a set of n tuples satisfy the
above defined relation R is 2−94n+128, the generic player must consider at least s different

18We don’t exclude the possibility of some trade-offs that could allow to reduce the computational cost
to construct n tuples, i.e. such that the total computational which increases less than linear. However, for
our results, the “roughly” linear approximation is sufficient.

Lorenzo Grassi1 and Christian Rechberger1,2 25

couples such that sn/n! ' 294n−128 or equivalently

s ' 294− 128
n · (n!) 1

n . (7)

By this formula, for n = 8 this player has to consider approximately 279.9 different tuples,
or equivalently 248.9 (plaintext, ciphertext) pairs (that is, 216.9 initial different cosets of Dj).
Indeed, given 216.9 initial different cosets of Dj , it is possible to construct approximately
216.9 · 263 = 279.9 different couples, that is approximately 2624 different sets of 8 tuples.
Since each of these sets satisfies the required properties with probability 2−94·8+128 = 2−624,
he has a good probability to find 8 different tuples with the required property. The cost
to generate these 248.9 (plaintexts, ciphertexts) pairs is of 248.9 oracle-queries (with the
assumption 1 oracle-query ' 1 encryption). On the other hand, the cost to generate these
8 tuples for the shortcut player is of 8 · 244 = 247 (which is smaller). We emphasize that
the cost of the generic player is higher than the cost of the shortcut player is satisfied for
any value n with n ≥ 8.

Finally, the same strategy can be used to extend the 7-round known-key distinguisher
of App. E.1 in order to set up a 8-round known-key distinguisher with a time complexity
of 221.6. All the details are given in App. E.2.

The Computational Cost of Generic Player is Not Negligible!

Until now, we haven’t considered the (further) cost of the generic player to identify the
n tuples with the required relationship R that he must send to the verifier. That is, we
have only considered the cost (as number of oracle-queries) to generate a sufficient number
of (plaintexts, ciphertexts) pairs to guarantee that n tuples with the required properties
exist with a good probability. However, note that the player has to identify the n tuples
with the required properties before to send them to the verifier. As we show in App. D.1,
the computational cost of this step is not negligible. In particular, we propose a modified
version of the attack presented in Sect. 6.1 that allows to find the required n-tuples and
to minimize the total computational cost. As a final result, it follows that if the cost of
this step is taken into account, then n = 3 tuples are sufficient to set up our distinguisher
on 9 rounds of AES. We refer to App. D.1 for all the details.

8 10-Round Distinguisher of AES - Full AES-128
Using the same strategy proposed by Gilbert in [Gil14], we set up our 10-round distinguisher
by extending the 8-round one presented in [JNPP14] and in Sect. 4.3 both at the beginning
and at the end, or equivalently by extending our 9-round distinguisher presented in the
previous section at the beginning.

In the above defined known-key distinguisher scenario, the players have to send to
the verifier n different tuples of (plaintext, ciphertext) pairs, that is {(p1

i , c
1
i), (p2

i , c
2
i)} for

i = 0, ..., n− 1, with the following properties:

1. there exists a key k0 s.t. for each tuple there exists j for which the two plaintexts
belong to the same coset of Dj after one round, that is

∃ k0 s.t. ∀i = 0, ..., n− 1, ∃j ∈ {0, ..., 3} s.t. Rk0(p1
i)⊕Rk0(p2

i) ∈ Dj ;

2. there exists a key k10 s.t. for each tuple there exists l for which the two ciphertexts
belong to the same coset ofMl one round before, that is

∃ k10 s.t. ∀i = 0, ..., n− 1, ∃l ∈ {0, ..., 3} s.t. R−1
k10(c1

i)⊕R−1
k10(c2

i) ∈Ml.

26 New and Old Limits for AES Known-Key Distinguishers

We stress that the keys k0 and k10 must be equal for all the tuples, otherwise it is
straightforwards to generate tuples with the required properties (same argumentation of
the 9-round case). However, a difference with the previous 9-round distinguisher arises.
In the previous case, the verifier must verify the existence of a single key (by finding it,
if exists), since the property on the plaintexts can be verified directly on them without
guessing any secret-key material. For the 10-round case instead, the verifier has to check
the existence of both k0 and k10. Thus, two possible scenarios can be considered and
studied:

1. no key-schedule holds - k0 and k10 are independent;

2. AES key-schedule among k0 and k10.

Intuitively, the second case (i.e. with key schedule) is harder than the first one (i.e. without
key schedule) for the generic player, since a further property must be verified. In other
words, the time required by this player to generate the tuples for the second scenario is
not lower than for the first one, or in other words the probability of success in the second
scenario is not higher than in the first one.

Before we present this distinguisher in detail, we highlight that the same strategy can
be used to extend the 7-round known-key distinguisher of App. E.1 both at the beginning
and at the end in order to set up the best 9-round known-key distinguisher from the
computational point of view - its time complexity is approximately of 223 computations.
All the details are given in App. E.3.

The Shortcut Player. First of all, we study the computational cost of the player
who knows the key. For this player, the two scenarios (with/without key schedule) are
completely identical. Indeed, using the 8-round distinguisher described in [JNPP14] and
in Sect. 4.3, he is able to generate n tuples that satisfy all the conditions (included the
key schedule without any additional cost). The computational cost of this player is well
approximated by n · 244 computations.

8.1 Independent Subkeys: No Key Schedule
The strategies used by the verifier and by the generic player depend on which scenario one
considers, that is depend on the fact that the two keys k0 and k10 are independent or that
a key schedule holds. Following the same strategy adopted by Gilbert in [Gil14], as first
case we assume that these two keys are independent.

The Generic Player. For the 9-round distinguisher, the best strategy that the generic
player could adopt was to choose plaintexts in the same coset of Dj , in order to fulfill the
requested property on the plaintexts. The idea is simply to adapt this strategy for this
case, that is the idea is to choose plaintexts such that the condition on the plaintexts is
fulfilled with probability 1.

To do this, the generic player must fix a random key k̂, and computes for a certain
j ∈ {0, ..., 3} and for a random a ∈ D⊥j the following set:

Da := R−1
k̂

(Dj ⊕ a). (8)

The idea is choose/use plaintexts in this set Da just defined. In other words, the player
works in the same way described for the 9-round distinguisher but using Da defined
above instead of a coset of Dj . The corresponding ciphertexts are simply got by oracle-
queries. Since the cardinality of a coset of Dj is 232, the computation of a set Da requires
232+4 = 236 S-Box look-ups for each coset Dj ⊕ a. Note that if the player needs more than
232 (plaintext, ciphertext) pairs, he simply chooses another a′ ∈ D⊥j (or/and another j)

Lorenzo Grassi1 and Christian Rechberger1,2 27

and, using the same key k̂, he computes the corresponding set Da′ defined as before. We
emphasize that the player must use always the same key k̂ to compute these sets, in order
to fulfill the property on the plaintexts.

Given the set Da, the idea is to use the same strategy presented for the 9-round
distinguisher in the previous section in order to find the n tuples with the required
properties. Since the procedure to choose tuples such that the requirement on the
ciphertexts is fulfilled is identical to the one presented for the 9-round distinguisher, we
refer to that section for more details. We stress that given plaintexts in the same set Da,
the requirement on the plaintexts is always fulfilled since by construction there exists a
key (which is k̂) such that the plaintexts of each tuple belong to the same coset of Dj after
one round.

As a result, the strategy and the computational cost used to find these n tuples are
(approximately) identical to the one presented in the previous section - note that the cost
to compute the set Da is negligible compared to the total cost. It follows that n ≥ 8 tuples
are sufficient for the case in which the cost of the generic player is approximated by the
number of oracle-queries, while n ≥ 3 tuples are sufficient for the case in which all the
costs (oracle-queries + cost of the player) are considered. As before, we choose an (arbi-
trary) value of n = 64 in order to make the advantage of the shortcut player more significant.

The Verifier. Given n tuples, the verifier has to check the existence of keys k0 and
k10 as defined previously. Since no key schedule is considered, the idea is simply to work
independently on the plaintexts (in order to find k0) and on the ciphertexts (in order to
find k10). Since the verifier performs two independent attacks (as described in Sect. 6.1)
on the plaintexts and on the ciphertexts, the cost doubles with respect to the 9-round case.
As for the previous case, note that the verification cost is much lower than the players
costs.

8.2 The Key Schedule Case
The scenario in which a key schedule holds is more complicated to analyze. Before we
present our strategy, we recall the one adopted by Gilbert to set up his 10-round dis-
tinguisher. First he considers the case of AES with independent subkeys - denoted by
AES?

10, and he presents a 10-round known-key distinguisher for AES?. Then, he simply
observes that this known-key distinguisher on AES∗10 “is obviously applicable without any
modification to AES10, i.e. the full AES-128” (see Sect. 4.2 - page 221 of [Gil14]). Using
the same argumentation, we can easily conclude that also our distinguisher can be applied
to real AES, i.e. to the case in which the key schedule holds. Indeed, as we have already
pointed out, note that nothing changes for the shortcut player, while this scenario is more
complicated for the generic player who doesn’t know the key, since a further condition on
k0 and k10 (the key schedule) is imposed. Even if it is possible to refer to previous results,
here we show that a less number of tuples can be sufficient to set up this distinguisher in
the case in which the key schedule holds.

The Verifier. Given n tuples, the verifier has to check the existence of k0 and k10

that satisfy the AES key schedule and for which the properties on the plaintexts and on
the ciphertexts are fulfilled. Working as before, the verifier can use several (equivalent)
strategies, and here we focus on two of them.

In the first case, the idea is to work again independently on the plaintexts and on the
ciphertexts, and find independently the two keys. Only as final step, she checks if there
exist keys k0 and k10 (among the ones found previously) that satisfy the key schedule.
In the second case, the idea is to work only on the plaintexts and to find k0 such that
the property on the plaintexts is satisfied. When a candidate for k0 is found using the n

28 New and Old Limits for AES Known-Key Distinguishers

tuples, the verifier finds k10 using the key schedule and checks if the requirement on the
ciphertexts is satisfied.

For both these two cases, since on average only one key k0 and one key k10 is found if
the number of tuples n is greater or equal than 2, the computational cost for the verifier is
comparable and well approximated by the cost of the (previous) case in which the subkeys
are independent.

The Generic Player. When the key schedule holds, the strategy presented before
for the generic player must be modified since it is no more the best one. Indeed, suppose
this player fixes a key k0 = k̂ as before. It follows that the probability that k̂ (fixed) and a
suitable k10 satisfy the key schedule is only 2−128, which implies that the probability of
success is very low.

For this reason, we present a modified strategy that he can use in this scenario. The
idea is to look for plaintexts that maximize the number of keys k0 and k10 for which the
requirements are satisfied (included the key-schedule). If we consider two random pairs of
texts (p1, c1) and (p2, c2), there are on average 234 keys k0 such that Rk0(p1)⊕Rk0(p2) ∈ Dj

and 234 keys k10 such that R−1
k10(c1)⊕R−1

k10(c2) ∈Ml for certain j and l. Thus, an initial key
and a final one that satisfy the key schedule exist only with probability (234)2 ·2−128 = 2−60.
Consider instead two plaintexts that belong to the same coset of Dj . Since a coset of Dj is
mapped into a coset of Cj (see Sect. 3.1), after one round the two texts belong to the same
coset of Cj for all the possible keys with probability 1. At the same time, it is possible to
prove that there exist 2106 keys for which the two plaintexts belong to the same coset of
Cj ∩ Dl ⊆ Dl after one round.

Proposition 2. Let p1 and p2 two plaintexts that belong to the same coset of Dj for
a certain j, that is p1 ⊕ p2 ∈ Dj. Moreover, assume that p1 ⊕ p2 /∈ Dj ∩ CL for each
L ⊆ {0, 1, 2, 3} with |L| ≤ 3. Then there exist on average 2106 different keys k such that
Rk(p1)⊕Rk(p2) ∈ Dl for a certain l ∈ {0, 1, 2, 3}.

The proof is given in App. F. Thus, if one considers two couples (p1, c1) and (p2, c2)
that satisfy the hypothesis of the previous proposition (in particular, p1 ⊕ p2 ∈ Dl for a
certain l), then there are on average 2106 keys k0 such that Rk0(p1)⊕Rk0(p2) ∈ Di and
234 keys k10 such that R−1

k10(c1)⊕ R−1
k10(c2) ∈ Mj . It follows that there exist on average

2106 · 234 · 2−128 = 212 combinations of initial and final subkeys k0 and k10 that satisfy
the key schedule. Even if we don’t exclude better strategies, we conjecture that this is
one of the best strategy that this player can use in order to maximize the number of keys
(k0, k10) that satisfy the key schedule and the other required properties.

8.2.1 Number n of Tuples: Oracle-Queries.

Starting by these considerations, we show that n = 4 tuples are sufficient to set up the
distinguisher when a key-schedule holds and when only the number of oracle-queries is
considered (remember that for independent subkeys n must be equal or greater than 8).
First of all, working as in Sect. 7, note that given n tuples (where the plaintexts are chosen
as described previously), the probability that there exist keys (k0, k10) that satisfy the
key schedule and for which the properties on the plaintexts/ciphertexts are satisfied is
212·n · 2−128·(n−1) = 2−116·n+128 instead of 2−94·n+128 (see Eq. (7)), since for each couple
there are only 212 possible combinations19 of keys (k0, k10) instead of 234. Thus, using
similar argumentation as before, in order to win the game the generic player must consider
s different couples, where s is given by

s ' 2116− 128
n · (n!) 1

n . (9)
19If two combinations (k̃0, k̃10) and (k̂0, k̂10) satisfy the key schedule, then they are equal with prob.

2−128 (e.g. if k̃0 = k̂0 then k̃10 = k̂10 due to the key schedule).

Lorenzo Grassi1 and Christian Rechberger1,2 29

In particular, he has to consider at least 285.14 different couples in order to find n = 4
tuples that satisfy the requirements. Since each coset of Dj contains 232 different plaintexts
(or approximately 263 different couples), in order to generate n couples that satisfy R the
generic player must do approximately

2116− 128
n · (n!) 1

n · 232−63 ≈ 284− 128
n · n · (2π · n) 1

2n

e

oracle-queries, where the last approximation is given by Stirling formula n! ≈ nn · e−n ·√
2π · n. Thus, for n = 4 he must consider approximately 222.14 different cosets of Dj

defined as in (8), for a total of 254.14 (plaintexts, ciphertexts) pairs. Thus, in the case in
which the cost of the generic player is approximated by the number of oracle-queries, his
cost is of approximately 254.2 oracle-queries. On the other hand, the cost for the shortcut
player to generate the same number of different tuples with the required properties is
approximately of 4 · 244 = 246 computations, which is lower.

8.2.2 Number n of Tuples: Oracle-Queries and Cost of Generic Player.

As for the 9-round case, if one considers all the costs (that is the number of oracle-queries
and the computational cost of the generic player) and if the key-schedule holds, it turns
that a lower number of tuples (precisely n = 2) is sufficient. We refer to App. D.2 for
details.

9 12-Round Distinguisher of AES
As one of the major contributions of this paper, in this section we present the first known-
key distinguisher for 12 rounds of AES. This distinguisher is obtained by extending the
previous 10-round distinguisher both at the end and at the beginning, or equivalently by
extending two times at the end and at the beginning the 8-round known-key distinguisher
presented in [JNPP14] and in Sect. 4.3. We highlight that this is the first known-key
distinguisher for full AES-192 (and on 12 rounds of AES-128, i.e. full AES-128 with two
more rounds) and it also provides a counterexample to the claims made in [Gil14].

In the know-key distinguisher scenario, the players have to send to the verifier n
different tuples of (plaintext, ciphertext) pairs, that is {(p1

i , c
1
i), (p2

i , c
2
i)} for i = 0, ..., n− 1,

with the following properties:

1. there exist keys k0, k1 s.t. for each tuple there exists j for which the two plaintexts
belong to the same coset of Dj after two rounds, that is

∃ k0, k1 s.t. ∀i = 0, ..., n− 1 ∃j ∈ {0, ..., 3} s.t. R2
k0,k1(p1

i)⊕R2
k0,k1(p2

i) ∈ Dj ;

2. there exist keys k11, k12 s.t. for each tuple there exists l for which the two ciphertexts
belong to the same coset ofMl two rounds before, that is

∃k11, k12 s.t. ∀i = 0, ..., n− 1 ∃l ∈ {0, ..., 3} s.t. R−2
k11,k12(c1

i)⊕R−2
k11,k12(c2

i) ∈Ml;

where R2
k0,k1(·) ≡ Rk1(Rk0(·)) and R−2

k11,k12(·) ≡ R−1
k11(R−1

k12(·)).
As for the known-key distinguisher for 10-round AES, two scenarios can be considered,

that is the case of independent subkeys and the case in which the key schedule holds. For
the following, we consider only the first scenario, that is we limit ourselves to present a
known-key distinguisher for 12-round of AES with independent subkeys. However, using
similar argumentation as before, we claim that the same distinguisher can be applied to the
case in which the key schedule holds. In particular, we remember that nothing change for

30 New and Old Limits for AES Known-Key Distinguishers

the shortcut player (who knows the key) in this second case, while the challenge becomes
much harder for the other player.

The strategy used by the players and by the verifier is very similar to the one presented
for the 10-round distinguisher in the case of no key-schedule. Thus, we refer to the previous
section for all the details, and we limit here to highlight the idea and the major differences.

The Two Players. Exactly as before, the shortcut player can generate n tuples with
the required properties for a cost of n · 244 computations.

The generic player exploits the same strategy proposed for the 10-round distinguisher
with no key-schedule. First he fixes random keys k̂0, k̂1 and k̂12, and using the keys k̂0 and
k̂1, he computes the set Da = R−1

k̂0 (R−1
k̂1 (Dj ⊕ a)). Similar to the previous case, the idea is

to work with plaintexts in the same set Da. He then gets the corresponding ciphertexts
by oracle-queries, and the idea is simply to decrypt them using the key k̂12. As a result,
using the same strategy proposed for the 9- and 10-round distinguisher, he can construct
n tuples that satisfy the relation R, that is he is able to find n tuples for which a common
key k11 exists such that the requirement on the ciphertexts is satisfied.

By analogous calculation as before, at least n ≥ 8 tuples are sufficient to set up the
distinguisher when only the number of the oracle-queries is considered.

The Verifier. When the verifier receives the n tuples, she can use the following
strategy to check if the required properties are satisfied or not. First of all, since there is no
key schedule, the verifier can work independently on k0, k1 (that is on the plaintexts) and
on k11, k12 (that is on the ciphertexts). Similarly to the previous cases where the verifier
uses the key-recovery attack of Sect. 6.1 to find the keys, for this 12-round distinguisher
the idea is to exploit the key-recovery attack presented in Sect. 6.2 to find (if exist) the
four keys k0, k1 and k11, k12.

We present in details the verification procedure for the ciphertexts case (analogous for
the plaintexts). Given the first tuple and using the strategy described in Sect. 6.2, the
verifier guesses eight bytes of the final subkey k12 (two diagonals), decrypts partially, and
finds 234 values for eight bytes of k11 working as in Sect. 6.1, for a total of 234 · 264 = 298

candidates. Then, she eliminates wrong candidates by testing them using the other tuples
- to reduce the computational cost, she can work independently on each column of k11.
Note that the probability that found subkeys k11 and k12 satisfy the required property for
another tuple is 4 · 2−32 = 2−30. Thus, using other four tuples, with high probability the
verifier finds approximately only on pair of subkeys k11 and k12 for which the property on
the ciphertexts is satisfied (note 298 · (2−30)4 = 2−22). The cost of this step is of 276 table
look-ups (using the pre-computation phase), as shown in Sect. 6.2 or in [GRR17] in more
details. The remaining eight bytes of k11 and of k12 and the subkeys k0 and k1 can be
found in a similar way.

As a result, given 5 different tuples, the total cost for this attack is approximately of
4 ·276 = 278 table look-ups (using the pre-computation phase). When the verifier has found
possible candidates for the four keys, she checks that also the other n− 5 tuples satisfy
the relation R for the found keys. In conclusion, given n ≥ 5 tuples, the total cost for the
verifier can be approximated at 2 · (278 + 26 · (n− 5)) table look-ups. If n� 272, then the
computational cost of the verifier is approximately 271.1 twelve-round encryptions.

Number n of Tuples.

As we have just seen, it is possible to set up the distinguisher for n equal or greater than
8. However, if n = 8 then the cost of the shortcut player (247 computations) is much lower
than the cost of the verifier (271.1 computations), which is not consistent with the given
definition of known-key distinguisher (see Sect. 4.1). Indeed, by definition the verification
cost must be less than the cost of the shortcut players (and so the cost of the generic

Lorenzo Grassi1 and Christian Rechberger1,2 31

player), that is the entire cost of the distinguisher (computational cost of the shortcut
player + verification cost) must be well approximated by the cost of the shortcut player.
In order to fulfill this condition, it is sufficient to choose a number of tuple n that satisfy
the condition n · 244 � 271.1 (and n� 272). It follows that a good (arbitrary) choice for
this distinguisher20 could be n ≥ 238.

In conclusion, to win the game, the two players have to send 238 tuples of (plaintext,
ciphertext) pairs with the required properties. The cost for the shortcut player is of
282 computations, while the verification cost is of 271.1 computations. Note that even
if this result is obtained considering only the number of the oracle-queries and the case
of independent subkeys, it holds also for the cases in which all the costs are considered
and/or the key schedule holds. Indeed, it is simple to observe that also in these cases (1)
the choice of a suitable number n is more influenced by the request that the verification
cost is lower than the cost to generate the n tuples and (2) the game becomes harder for
the generic player, while nothing changes for the shortcut one.

10 Gilbert’s Distinguisher for 12-round AES
In this section, we show that the Gilbert’s 10-round distinguisher can be extended to 12-
round still exploiting the uniform distribution property. In [Gil14], the main argumentation
about the impossibility of such extension regards the impossibility to efficiently check the
relationship R when more than a single round is add a the beginning (resp. at the end)
of the 8-round distinguisher21. In Sect. 5.3 we have proposed another strategy that the
verifier can used in order to check the property on 10-round of the Gilbert’s 10-round
distinguisher. In particular, we have showed that the verifier can filter (almost all) wrong
key candidates working independently on each byte of the key. This is the starting point in
order to extend the distinguisher based on the uniform distribution property on 12 rounds.
In the following, we first formal define the 12-round distinguisher based on the uniform
distribution property, and - after showing that R is efficiently checkable - we prove that
this new 12-round distinguisher is meaningful using the same argumentations given by
Gilbert in [Gil14] for the 10-round case.

12-round Gilbert’s Distinguisher based on Uniform Distribution
Using the Gilbert’s 10-round distinguisher as starting point, a formal definition of the
12-round known-key distinguisher based on the uniform distribution property is given
in the following. In the known-key distinguisher scenario, the players have to send to
the verifier n ≥ 1 different sets of 264 (plaintext, ciphertext) pairs, that is (pj

i , c
j
i) for

i = 0, ..., 264 − 1 and j = 0, ..., n− 1, with the following properties:

1. there exist keys k0, k1 such that for all j = 0, ..., n− 1 the texts {Rk1(Rk0(pj
i))}i are

uniform distributed among the cosets of DI for each I ⊆ {0, 1, 2, 3} with |I| = 3, or
equivalently such that for all j = 0, ..., n− 1 the bytes of the texts {Rk1(Rk0(pj

i))}i

are uniform distributed;

2. there exist keys k11, k12 such that for all j = 0, ..., n− 1 the texts {R−1
k11(R−1

k12(cj
i))}i

are uniform distributed among the cosets of MJ for each J ⊆ {0, 1, 2, 3} with
|J | = 3, or equivalently such that for all j = 0, ..., n − 1 the bytes of the texts
{MC−1 ◦R−1

k11(R−1
k12(cj

i))}i are uniform distributed.
20By previous analysis, we remember that the cost of the shortcut player is always lower than the cost

of the generic player for each value of n that satisfies n ≥ 8.
21Observe that in [Gil14] the verifier works simultaneously on 4 bytes of the key. If one adds another

round, it follows that the only way to decrypt two rounds to check a particular property is to guess one
full subkey. This implies that the cost of the verifier is higher than 2128, that is higher than the costs of
the two players.

32 New and Old Limits for AES Known-Key Distinguishers

As for Gilbert’s distinguisher, we assume that all the subkeys are independent, that is
no key-schedule holds. However, the same distinguisher distinguisher works exactly in
the same way also in the case in which a key-schedule holds. Indeed, as we have just
seen, in the case in which the key-schedule holds the game becomes harder for the generic
player (since more conditions on the keys are imposed), while there is no difference for the
shortcut player. We emphasize that the keys k0, k1, k11 and k12 for which the previous
properties are satisfied must be the same for all the sets of 264 texts. In other words, given
n sets such that the first set satisfies the property of uniform distribution for keys k0, k1,
the second for keys k̂0, k̂1 and so on, then the required properties can not be considered
fulfilled.

In the following, we show that such distinguisher is meaningful if n ≥ 2. In particular,
using the same argumentation proposed by Gilbert for the 8- and 10-round cases, we have
chosen to set up a distinguisher on 12 rounds for n ≥ 4 - even if the distinguisher can
be set up also for n = 2, our choice of n = 4 is due in order to make the advantage of
the shortcut player more significant. Using the same strategy proposed for the 8-round
distinguisher and for the 10-round one (note that the keys k0, k1 and k11, k12 correspond
to the secret sub-keys), the cost of the shortcut player to construct the n = 4 sets of 264

(plaintext, ciphertext) pairs with the required properties is of 266 encryptions. In the
following, we show that (1) the verification cost is lower than 266 encryptions and that (2)
the probability of victory of the shortcut player using 266 oracle queries is negligible.

10.0.1 The Verification Process

In order to prove that such distinguisher is meaningful if n ≥ 2, we study the verifier role.
As before, the idea is to set up the verification process by filtering wrong keys by checking
zero-sum property, and then to check if the uniform distribution property is satisfied only
for those keys for which the balance property holds.

Consider the case in which the final MixColumns operation is omitted - if it is not
omitted, it is sufficient to swap the final MixColumns and the final AddRoundKey - and the
case in which the attacker looks for keys k11, k12 (analogous for k0, k1). Using a classical
square attack with the extension at the end - see [DR02] for all the details - the verifier
guesses 5 bytes of the keys, that is 4 bytes (i.e. one anti-diagonal) of the last subkey k12

and 1 byte of the subkey k11. She first uses the 4 bytes of the last key to partially decrypt
one round, and then working on each byte independently of the others she simply checks
that the zero-sum property holds 2-round before. The complete pseudo-code is given in
Algorithm 4, where the verifier looks for 4 bytes of the last subkey k12 and (simultaneously)
for 4 of the subkey k11.

Working on 4 bytes, the zero-sum property is satisfied with prob. 2−32. Since the
verifier tests 232 values of 4 bytes of k12 and 232 of 4 bytes of k11, we expect that using
a single set (i.e. n = 1) of 264 texts, then 264 · 2−32 = 232 combinations of these 8 bytes
pass this first test (analogous for the other 4 combinations of 8 bytes). The idea is to test
these 232 combinations using the second set of texts (thus, n ≥). It follows that on average
only 1 combination of these 8 bytes of the keys passes the test. Using the same procedure,
the verifier is able to find keys k12 and k11 for which the zero-sum property is satisfied.
The idea is finally to use Algorithm 1 to check if also the uniform distribution property
is satisfied, as for the 10-round case. Observe that choosing n > 2, the probability that
wrong-guessed keys pass the zero-sum property becomes lower.

What is the computational cost of the verifier? First of all, given 2 sets of 264 texts the
verifier must compute the array A as defined in Algorithm 4 and Algorithm 1. The cost of
this step is given by 2 · 264 look-ups table (note that all these arrays can be computed and
stored at the same time).

Focusing on Algorithm 4, in order to compute the arrays B, the verifier must compute
232 · 232 · 4 = 266 S-Box and 232 · 232 · 2 = 265 look-ups table. Given the arrays B, the

Lorenzo Grassi1 and Christian Rechberger1,2 33

Data: 2 sets of 264 texts ti and t̂i for i = 0, ..., 264 − 1
Result: One anti-diagonal of k12 - e.g. (k12

0,0, k
12
1,3, k

12
2,2, k

12
3,1) - and one column of k11

- (k11
0,0, k

11
1,0, k

11
2,0, k

11
3,0) - s.t.

⊕
i R
−1
k11 ◦R−1

k12(pi)j,k = 0 for each j = k
Let Aj [0, ..., 232 − 1] and B0

j [0, ..., 255], B1
j [0, ..., 255], B2

j [0, ..., 255], B3
j [0, ..., 255] ten

arrays initialized to zero for j = 0, 1;
for i from 0 to 264 − 1 do

x← ti0,0 + 28 · ti1,3 + 216 · ti2,2 + 224 · ti3,1;
A0[x]← (A0[x] + 1) mod 2; // A[x] denotes the value stored in the
x-th address of the array A x̂← t̂i0,0 + 28 · t̂i1,3 + 216 · t̂i2,2 + 224 · t̂i3,1;
A1[x̂]← (A1[x] + 1) mod 2;

end
for k12 from (0x00, 0x00, 0x00, 0x00) to (0xff, 0xff, 0xff, 0xff) do

for s from (0x00, 0x00, 0x00, 0x00) to (0xff, 0xff, 0xff, 0xff) do
Let s ≡ (s0, s1, s2, s3) ∈ F4

28 is a column of 4 bytes;
Compute x ≡MC−1 ◦Rk12(s) ; // partial decryption of s w.r.t.
to k - note: x ≡ (x1, x2, x3, x4) ∈ F4

28 is a column of 4 bytes
Bk

j [xk]← (Bk
j [xk] +Aj [i]) mod 2 for each j = 0, 1 and k = 0, 1, 2, 3;

end
for k11

0,0 from 0x00 to 0xff do
x←

⊕256
i=0 B

0
0 [i]· S-Box−1(i⊕ k11

0,0); // B[i] can only be 0 or 1
x̂←

⊕256
i=0 B

0
1 [i]· S-Box−1(i⊕ k11

0,0);
if x = x̂ = 0 then

Find k11
1,0, k11

2,0 and k11
3,0 by repeating the last step;

if zero-sum satisfied then
Identify one anti-diagonal of k12 and one column of k11 as possible
key;

end
end

end
end
return candidates for k12 and k11.

Algorithm 4: First Part of Verifier Strategy: filter wrong key candidates using zero-sum
property.

cost to find the candidates for 4 bytes of the key k12 and 4 bytes of key k11 is given by
232 (≡ k12) ·(4 · 28) (≡ k11) ·28 · 2 = 251 S-Box and 251 table look-ups. Assuming that the
cost of 1 S-Box look-up is equivalent to the cost of 1 table look-up22, the total cost of the
verifier to compute Algorithm 4 and to find the entire keys (i.e. k0, k1 and k11, k12) is
given by 2 · 4 · (266 + 265 + 2 · 251) ' 269.6 table look-ups, or equivalently 261.8 12-round
encryptions.

For the (few) candidates of the key that satisfy zero-sum, the verifier tests the uniform
distribution property. Given n sets of texts and using Algorithm 1 only for the keys found
by Algorithm 4, the total cost is well approximated by 269.6 + n · 264 table look-ups (note
that the cost of the 2-round decryption/encryption is approximately n · 16 · 4 · 232 ' n · 238

S-Box look-ups, so it is negligible), that is 261.8 + n · 256.1 12-round encryptions. It follows
that the cost of the verifier is lower than the costs of the two players (which is higher than
n · 264 encryptions).

22We highlight that even if this approximation is not formally correct - the size of the table of an
S-Box look-up is lower than the size of the table used for our proposed distinguisher, it allows to give
a comparison between our proposed distinguisher and the others currently present in literature. At the
same time, we note that the same approximation is largely used in literature, as for example in [Gil14].

34 New and Old Limits for AES Known-Key Distinguishers

Only for completeness, we highlight that the verifier can use the “Partial-Sum” key-
recovery attack [FKL+01] - [Tun12] in order to find the required keys faster.

10.0.2 On the Meaningfulness of this Distinguisher

First of all, what is the probability that given a set of 264 texts there exist keys k̂1 and k̂2

such that the bytes of 2-round encryptions (resp. decryptions) of such texts are uniform
distributed? Using the previous calculation and since there are (2128)2 = 2256 different
keys, this probability is equal to 2256 · p ' 2256 · 2−7328.1 = 2−7072.1 ≡ 2−212.78 where p is
defined in (5). In other words, this is the probability that, given 264 (plaintext, ciphertext)
pairs such that the bytes of the plaintexts are uniform distributed after 2-round, there
exist keys k11, k12 for which the bytes of the ciphertexts are uniform distributed 2-round
before.

More generally, given 264 random pairs of texts, the probability that exist keys k0, k1

and k11, k12 for which the bytes of the plaintexts/ciphertexts are uniform distributed
after 2-round encryption/decryption is 2512 · 2−7328.1 = 2−6816.1 ≡ 2−212.73 . Thus, similar
to the 8-round case, it follows that 264 + 212 ' 264 - random - (plaintext, ciphertext)
pairs are sufficient to have good probability to win the game. In other words, the generic
player can find n sets of 264 texts with the required property by doing approximately
n · (264 + 212) ' n · 264 oracle queries - with random plaintexts/ciphertets (as before this
number doesn’t take into account the cost to find the required pairs of texts). Before we
go on, we emphasize that if the keys schedule holds (i.e. the subkeys are not independent),
then the number of different subkeys is 2128 and not 2512.

As before, a natural question arises: why is this distinguisher meaningful? As for the
8- and the 10-round cases, instead to focus on the cost of the players and using similar
argumentation to the ones proposed by Gilbert, we show that the probability of the generic
player to win the game given n ≥ 2 sets of 264 texts is negligible. To do this, we claim
that this probability is upper bounded by the probability of the following “related” game.
Assume n = 2 and consider 2 sets of 264 − d (plaintext, ciphertext) pairs for d ≥ 5, that is
(pi, ci) for each i = 0, ..., 264 − d − 1, with the following property: there is a set of keys
k0, k1 and k11, k12 - which can correspond to the set of the entire keys - such that for
each one of the two sets, the bytes of Rk1 ◦Rk0(pi) and of MC−1 ◦R−1

k11 ◦R−1
k12(ci) (that

is 2-round encryption of pi and the 2-round decryption of the ciphertexts) are “almost
uniform” w.r.t. the definition given before. The goal of the player is to find 2 · d texts such
that - for each one of the two sets - the bytes of the 264 texts of each set after 2-round
encryption/decryption are uniform distributed. Since this probability is upper bounded by
2−25 - as we are going to show - and since this second game is “related” to the original
one, the conclusion follows immediately.

More formally, using the same argumentation proposed by Gilbert, we prove the
following statement.

Proposition 3. For any oracle algorithm A that makes ≤ N = 2 ·264 = 265 oracle queries
to a perfect random permutation Π or Π−1 of {0, 1}128, the probability that A outputs
n ≥ 2 sets of 264-tuple (Xi, Yi) for i = 0, ..., 264− 1 of Π that satisfies Yi = Π(Xi) and also
satisfies R defined previously is upper bounded by

(10
5
)
× 2512 ×

(
516

2128−(264−5)

)6
≈ 2−25.

Proof. If at least one of the N pairs (Xi, Yi) output by A does not result from a query
Xi to Π or a query Yi to Π−1, then the probability that for this pair Yi = Π(Xi) and
consequently the success probability of A is upper bounded by 1

2n−(N−1) . So from now on
we only consider the opposite case, i.e. all the (Xi, Yi) result from queries to Π or Π−1.

As we have already said, a set of N texts is uniform distributed if any subset is “almost”
uniform distributed w.r.t. the definition given before. Following the same argumentation
provided by Gilbert for the 10-round case, we consider 2 sets of 264−5 (plaintext, ciphertext)

Lorenzo Grassi1 and Christian Rechberger1,2 35

pairs which are “almost” uniform distributed for a set of keys k0, k1 and k11, k12 after
2-rounds decryption/encryption, and we study the probability of the generic player to
find the remaining 2 · 5 = 10 pairs such that there exist keys k0, k1 and k11, k12 for
which the bytes of the 2 corresponding sets of 264 are uniform distributed after 2-round
encryption/decryption. As shown by Gilbert - see proof of Prop. 6 in [Gil14], for each
one of the two sets the probability that 5 pairs satisfy this condition is upper bounded
by
(

516

2128−(264−5)

)3
. Moreover, observe that the player does 10 oracle queries, which can

be divided in
(10

5
)

= 252 different sets of 5 elements. Since the 2512 four subkeys are
considered to be independent and must be equal for the two sets, one gets the claimed
upper bound about the total probability of

(10
5
)
× 2512 ×

(
516

2128−(264−5)

)6
≈ 2−25.

The same strategy applies for any n ≥ 2. In particular, if n = 4 the probability becomes(20
5
)
×
(15

5
)
×
(10

5
)
× 2512 ×

(
516

2128−(264−5)

)12
≈ 2−544.7.

11 Infeasibility of a 14-round Known-Key Distinguisher
In this paper, we have shown that Gilbert’s known-key distinguisher model can lead to
results on more rounds than previous expected. Even though the core distinguisher remains
at 8 rounds, 12 instead of 10 rounds are achieved. This may raise the question: How
meaningful is this distinguisher model? We claim that it appears meaningful in the sense
that it does not seem to allow results on an arbitrary number of rounds.

We analyze this claim in more details, assuming by contradiction the existence of a
meaningful known-key distinguisher on 14 rounds of AES (to be meaningful, we assume
that the probability of the shortcut player to win the game is higher than the one of the
generic player). The main criticism in order to extend a known-key distinguisher both
at the end and at the beginning as in the Gilbert model regards the computational cost
to verify the existence of keys such that the n tuples of (plaintexts, ciphertexts) pairs
satisfy the relation R. We stress that the verification cost must be lower than the players
costs. Thus, consider the known-key distinguishers that exploit the uniform distribution
property - where zero-sum property is used to filter wrong keys - or a truncated differential
trail. In order to extend 1 round at the beginning and at the end, a classical key recovery
attack - as the integral attack [DKR97] and the truncated differential attack [GRR17] -
is sufficient for this task. In order to extend 2 rounds as for the distinguishers presented
in this paper, the idea is to use a key recovery attack with an extension at the end, e.g.
the integral attack with an extension at the end [DKR97] and the truncated differential
attack of Sect. 6.2. In a similar way, in order to extend for r ≥ 3 rounds, one needs a
key-recovery attack with two extensions at the end, that is more than a single one23. Since
balance and/or truncated differential attacks with this property don’t exist in literature
for AES-12824 and since it seems very unlikely to set up them without guessing an entire
subkey (which leads to a brute force attack), we claim that it is not possible to extend the
8-round distinguishers currently present in the literature for more than 4 rounds, that is
2 rounds at the end and 2 at the beginning. We leave the open problem to confute our
claims for future investigations.

23In App. G we show why attacks with both an extension at the end and at the beginning are completely
useless for this scope, taking as example the partial-sum attack on 7 rounds of AES-128 presented in
[FKL+01] - also known as herds attack.

24Note that for AES-256 it is possible to set up such attacks by simply guessing an entire subkey.
However, since the complexity of such attacks is higher than 2128 (an entire subkey is guessed), the
verification cost is higher than the costs of the players.

36 New and Old Limits for AES Known-Key Distinguishers

12 Discussion of Results and Proposal for a New Model
In this paper, we improve all the known-key distinguishers (or present conjectures for such
known-key distinguishers) currently present in the literature for AES from 7 up to 10
rounds of AES and we set up the first known-key distinguishers on 12 rounds of AES, by
extending distinguishers based on truncated differential trails and uniform distribution
property using the technique proposed by Gilbert in [Gil14].

In order to extend Gilbert’s distinguisher up to 12-round AES based on the uniform
distribution property, we propose a different strategy that can be used by the verifier
and we present a formal proof which is based on the same argumentation proposed by
Gilbert in order to justify the 8- and the 10-round distinguisher presented in [Gil14]. For
our new distinguishers using truncated-differential properties the situation is different:
The problem to formally prove that no generic attack is better than those conjectured
distinguishers remains open.

Taking a step back from the concrete results, what we also showed is that the gap
between the known-key model and the chosen-key model may be even larger. Among the
possibilities to remedy this counter-intuitive situation, we propose to define a new model
that better capture the desire to have something “in-between” the chosen-key and the
known-key model. Our proposal is to distinguish “classical” Known-Key distinguisher
- where the verifier can directly verify the relation R on the plaintexts and ciphertexts
without guessing any key material - and the “Gilbert” Known-Key distinguisher. To
achieve this result, we simply have to adapt Def. 7 for the first case

Definition 9. Let E : (K,X) ∈ {0, 1}k × {0, 1}n → EK(X) ∈ {0, 1}n denote a block
cipher of block size n bits. A “classical” known-key distinguisher (R,A) of order N ≥1
consists of (1) a relation R over the N -tuples of n-bit blocks (2) an algorithm A that on
input a k-bit key K produces in time TA, i.e. in time equivalent with TA computations
of E, an N -tuple X = (Xi) i = 1, ..., N of plaintext blocks and an N -tuple Y = (Yi)
i = 1, ..., N of ciphertext blocks related by Yi = EK(Xi) and by

LX (X) R LY(Y)

where LX (·) and LY(·) are linear operations that operates respectively on X and on Y, that
is LX (X) = {LX (x) | ∀x ∈ X} and LX (·) is linear (analogous for LY(·)). The following
conditions must be met:

• The relation R doesn’t have to involve any operation that defined E (with the only
exception of a group addition, usually XOR);

• The relation R must be TA-intractable relatively to E;

• The validity of R must be efficiently checkable: we formalize this requirement by
incorporating the time for checking whether two N -tuples are related by R in the
computing time TA of algorithm A.

We emphasize that all the “classical” known-key distinguishers present in literature
satisfy this definition, but not the “extended Gilbert distinguishers”25. In particular, while
this is simple to verify for zero-sum distinguishers and the ones based on the truncated
differential trails where LX (·) and LY(·) are the identity function, we focus on the 8-round
Gilbert’s distinguisher based on the uniform distribution property in order to clarify
the relation LX (X)RLY(Y) instead of X RY. The distribution property holds on the
ciphertexts if and only if the final MixColumns operation is omitted (see Sect. 5 for more
details). However, since R must hold between LX (X) and LY(Y) - by definition, if the

25Observe that the AddRoundKey operation is an affine operation, but not a linear one. Indeed,
ARK(x⊕ y) = x⊕ y ⊕ k 6= x⊕ y = x⊕ k ⊕ y ⊕ k = ARK(x)⊕ARK(y).

Lorenzo Grassi1 and Christian Rechberger1,2 37

final MixColumns operation is not omitted, the distinguisher still holds since one can still
compute the inverse MixColumns operation on the ciphertexts.

Acknowledgments. The work in this paper has been partially supported by the
Austrian Science Fund (project P26494-N15).

References
[ABM13] Elena Andreeva, Andrey Bogdanov, and Bart Mennink. Towards understanding

the known-key security of block ciphers. In Shiho Moriai, editor, Fast Software
Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-13,
2013. Revised Selected Papers, volume 8424 of Lecture Notes in Computer
Science, pages 348–366. Springer, 2013.

[ABM14] Elena Andreeva, Andrey Bogdanov, and Bart Mennink. Towards Understanding
the Known-Key Security of Block Ciphers. In FSE 2013, volume 8424 of LNCS,
pages 348–366, 2014.

[AM] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced
Keccak-f and for the core functions of Luffa and Hamsi. Presented at the
Rump Session of Cryptographic Hardware and Embedded Systems - CHES
2009, https://131002.net/data/papers/AM09.pdf.

[BC10] Christina Boura and Anne Canteaut. A zero-sum property for the KECCAK-f
permutation with 18 rounds. In IEEE International Symposium on Information
Theory 2010, pages 2488–2492, 2010.

[BCD11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-Order
Differential Properties of Keccak and Luffa. In FSE 2011, volume 6733 of
LNCS, pages 252–269, 2011.

[BDPV] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Note on zero-sum distinguishers of Keccak-f. http://keccak.noekeon.org/
NoteZeroSum.pdf.

[Bel97] Bellare, Mihir and Micciancio, Daniele. A New Paradigm for Collision-Free
Hashing: Incrementality at Reduced Cost. In EUROCRYPT 1997, volume
1233 of LNCS, pages 163–192, 1997.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and
Related-Key Attack on the Full AES-256. In CRYPTO 2009, volume 5677 of
LNCS, pages 231–249, 2009.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Method-
ology, Revisited. Journal ACM, 51(4):557–594, 2004.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square.
In FSE 1997, volume 1267 of LNCS, pages 149–165, 1997.

[DL12] Ming Duan and XueJia Lai. Improved zero-sum distinguisher for full round
Keccak-f permutation. Chinese Science Bulletin, 57(6):694–697, 2012.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

https://131002.net/data/papers/AM09.pdf
http://keccak.noekeon.org/NoteZeroSum.pdf
http://keccak.noekeon.org/NoteZeroSum.pdf

38 New and Old Limits for AES Known-Key Distinguishers

[FJP13] Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. Structural Evaluation
of AES and Chosen-Key Distinguisher of 9-Round AES-128. In CRYPTO 2013,
volume 8042 of LNCS, pages 183–203, 2013.

[FKL+01] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Mike Stay, David
Wagner, and Doug Whiting. Improved Cryptanalysis of Rijndael. In FSE 2000,
volume 1978 of LNCS, pages 213–230, 2001.

[Gil14] Henri Gilbert. A Simplified Representation of AES. In ASIACRYPT 2014,
volume 8873 of LNCS, pages 200–222, 2014.

[GP10] Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved
Attacks for AES-Like Permutations. In FSE 2010, volume 6147 of LNCS, pages
365–383, 2010.

[GRR17] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. Subspace Trail
Cryptanalysis and its Applications to AES. IACR Transactions on Symmetric
Cryptology, 2016(2):192–225, 2017.

[JNPP14] Jérémy Jean, María Naya-Plasencia, and Thomas Peyrin. Multiple limited-
birthday distinguishers and applications. In SAC 2013, volume 8282 of LNCS,
pages 533–550, 2014.

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some
Block Ciphers. In ASIACRYPT 2007, volume 4833 of LNCS, pages 315–324,
2007.

[KW02] Lars Knudsen and David Wagner. Integral Cryptanalysis. In FSE 2002, volume
2365 of LNCS, pages 112–127, 2002.

[LMS+15] Mario Lamberger, Florian Mendel, Martin Schläffer, Christian Rechberger,
and Vincent Rijmen. The Rebound Attack and Subspace Distinguishers:
Application to Whirlpool. J. Cryptology, 28(2):257–296, 2015.

[MP15] Bart Mennink and Bart Preneel. On the impact of known-key attacks on hash
functions. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptol-
ogy - ASIACRYPT 2015 - 21st International Conference on the Theory and
Application of Cryptology and Information Security, Auckland, New Zealand,
November 29 - December 3, 2015, Proceedings, Part II, volume 9453 of Lecture
Notes in Computer Science, pages 59–84. Springer, 2015.

[MPRS09] Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schläffer.
Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO
Permutation and AES Block Cipher. In SAC 2009, volume 5867 of LNCS,
pages 16–35, 2009.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In FSE
2009, volume 5665 of LNCS, pages 260–276, 2009.

[MS12] Lorenz Minder and Alistair Sinclair. The extended k-tree algorithm. Journal
of Cryptology, 25(2):349–382, 2012.

[Tun12] Michael Tunstall. Improved "Partial Sums"-based Square Attack on AES. In
SECRYPT 2012, pages 25–34, 2012.

[Wag02] David Wagner. A Generalized Birthday Problem. In CRYPTO 2002, volume
2442 of LNCS, pages 288–303, 2002.

Lorenzo Grassi1 and Christian Rechberger1,2 39

[WPS+12] Lei Wei, Thomas Peyrin, Przemysław Sokołowski, San Ling, Josef Pieprzyk,
and Huaxiong Wang. On the (In)Security of IDEA in Various Hashing Modes.
In FSE 2012, volume 7549 of LNCS, pages 163–179, 2012.

A A possible Variant of Gilbert’s Distinguisher - Details
In Sect. 5, we proposed a possible variant of the Gilbert’s distinguisher - that also applies
to all our proposed distinguishers present in the paper - which allows to better understand
it. Consider the case in which the two players have to send to the verifier the N -tuple that
verify the required relation R together with the subkeys for which such relation is satisfied.

In more details, assume that the relationship R depends on the existence of subkey(s)
such that the required property is not directly verified on the plaintexts or/and on the
ciphertexts but one (or more) round(s) before/after. As an example, consider the 10-round
known-key distinguisher proposed by Gilbert and based on the balance propoerty. In
this case, the two players have to send 264 (plaintexts, ciphertexts) pairs, i.e. (pi, ci) for
i = 0, ..., 264 − 1 and the two subkeys k0 and k10 such that the plaintexts are uniformly
distributed after one round in the cosets of DI and the ciphertexts are uniformly distributed
one round before in the cosets ofMJ .

In this case, the task of the verifier is to check if the relation R is satisfied (or not)
only for the subkeys she received by the players. It follows that her computational cost
is negligible, in the sense that it is comparable to the computational cost of the 8-round
integral distinguisher presented in [Gil14] where the required property R can be directly
verified on the plaintexts/ciphertexts (or equivalently comparable to the computational
costs of the other known-key distinguishers present in literature up to 8 rounds). Here we
show in details why such distinguisher is meaningless.

The main problem of such a distinguisher regards the fact that it can be set up for
any number of rounds. To explain this problem, consider our known-key distinguisher
on r = 8 + 2 · r′ rounds of AES, for r′ ≥ 1 (the same considerations apply e.g. to the
Gilbert integral distinguisher). The players have to send to the verifier n different tuples of
(plaintext, ciphertext) pairs, that is {(p1

i , c
1
i), (p2

i , c
2
i)} for i = 0, ..., n− 1, and 2 · r′ subkeys

k0, ..., kr′−1 and kr, ..., kr−r′+1 such that

1. for each tuple there exists ∈ {0, ..., 3}j for which the two plaintexts belong to the
same coset of Dj after r′ rounds, that is

∀i = 0, ..., n− 1∃j ∈ {0, ..., 3} s.t. Rk0,...,kr′−1(p1
i)⊕Rk0,...,kr′−1(p2

i) ∈ Dj ;

2. for each tuple there exists l ∈ {0, ..., 3} for which the two ciphertexts belong to the
same coset ofMl r

′ rounds before, that is

∀i = 0, ..., n− 1 ∃l ∈ {0, ..., 3} s.t. R−1
kr,...,kr−r′+1(c1

i)⊕R−1
kr,...,kr−r′+1(c2

i) ∈Ml,

where Rk0,...,kr′−1(·) ≡ Rkr′−1 ◦ ... ◦Rk0(·) and R−1
kr,...,kr−r′+1(·) ≡ R−1

kr−r′+1 ◦ ... ◦R−1
kr (·).

Consider now the costs of the verifier and of the two players. As we have already said,
the cost of the verifier is negligible, since she has to check if the relation R is satisfied
only for the received subkeys. The cost of the shortcut player is approximately of n · 244

computations for n tuples, since he can use the rebound attack - as showed in Sect. 4.2
- to find them. The generic player instead can use the strategy proposed in details Sect.
8 for the 10 rounds case and in Sect. 9 for the 12 rounds one in order to win the game.
Such strategy allows the player to find plaintexts (or ciphertexts) that satisfy the required
condition with negligible computational cost. However, the only way to satisfy both the
conditions (i.e. the relation R) is to test the texts found in the first step by brute force. It

40 New and Old Limits for AES Known-Key Distinguishers

follows that when the number n of required tuples increases (and the number of rounds
r′), the computational cost of the generic player grows faster than the cost of the shortcut
player. In other words, even if we don’t exclude that a better strategy exists, it seems
hard that the cost of the generic player can be lower than the cost of the shortcut one. By
definition of known-key distinguisher given in Sect. 4.1, it follows that such a distinguisher
can be set up for any number of rounds (of AES), which is meaningless according to our
argumentations/discussions given in Sect. 11.

B The Rebound Attack - Details
In the 7- and 8-round known-key distinguishers proposed in [MPRS09] and [GP10], the
goal of the two players is to find two pairs of (plaintexts, ciphertexts) - i.e. (p1, c1) and
(p2, c2) - with the following property: the two plaintexts belong to the same coset of Di - i.e.
p1 ⊕ p2 ∈ Di - and the two ciphertexts belong to the same coset ofMi - i.e. c1 ⊕ c2 ∈Mi

- for a fixed index i.
Consider the known-key distinguisher setting of the two players proposed in Sect. 4.1.

In order to win the proposed game, the technique that the shortcut player (i.e. the player
that knows the key) should use is the Rebound Attack.

The rebound attack was proposed in [MRST09] for the cryptanalysis of AES-based
hash functions. The rebound attack consists of two phases, called inbound and outbound
phase. According to these phases, the internal permutation of the hash function is split
into three sub-parts. Let f be the permutation, then we get f = ffw ◦ fin ◦ fbw. The part
of the inbound phase is placed in the middle of the permutation and the two parts of
the outbound phase are placed next to the inbound part. In the outbound phase, two
high-probability (truncated) differential trails are constructed, which are then connected
in the inbound phase.

Since the rebound attack is a differential attack, as first thing an attacker needs to
construct a “good” (truncated) differential trail. A good trail used for a rebound attack
should have a high probability in the outbound phases and can have a rather low probability
in the inbound phase. In particular, two properties are important: first, the system of
equations that determine whether a pair follows the differential trail in the inbound phase
should be under-determined. This contributes to the fact that many solutions (starting
points for the outbound phase) can be found efficiently by using guess-and-determine
strategies. Second, the outbound phases need to have high probability in the outward
direction.

When searching for solutions of the inbound part, the attacker first guesses some
variables such that the remaining system is easier to solve. Hence, the inbound phase of
the attack is similar to message modification in an attack on hash functions. The available
freedom in terms of the actual values of the internal variables is used to find a solution
deterministically or with a very high probability.

In the outbound phase, the attacker verifies whether the solutions of the inbound
phase also follow the differential trail in the outbound parts. Note that in the outbound
phase, there are usually only a few or no free variables left. Hence, a solution of the
inbound phase will lead to a solution of the outbound phase with a low probability. There-
fore, the attacker aims for narrow (truncated) differential trails in the outbound parts,
which can be fulfilled with a probability as high as possible (in the outward directions).
The advantage of using an inbound phase in the middle and two outbound phases at
the beginning and end is that one can construct differential trails with a higher proba-
bility in the outbound phase and at the same time cover a relatively high number of rounds.

The AES Case. Here we consider in details the strategy of the shortcut player for 7-
and 8-round of AES. The truncated differential trails used for 7- and 8-round AES are

Lorenzo Grassi1 and Christian Rechberger1,2 41

Figure 4: 7- and 8-round differential paths for AES-128.

Figure 5: A detail of the inbound phase (rounds 2 - 4) of the 8-round differential.

depicted in Fig. 4. Referring to the 8-round trail (the 7-round case is analogous), the
inbound phase is composed of the states from S2 to S5, which are highlight in Fig. 5. The
player chooses differences in 8 bytes, that is 4 bytes in S′start (i.e. S2 after the S-Box) and
the 4 output bytes in Send (i.e. S5 before the S-Box). Since ShiftRows and MixColumns
are linear operations, the player can propagate these difference through these operations
in order to compute Sin and Sout. We define the operations between these two states as
Super-SB:

Super-SB(·) := S-Box ◦ARK ◦MC ◦ S-Box(·), (10)

where note that the key is known. The player has to look for two states Sin and Sout such
that the differential trail is satisfied though this Super-SB operation. When the player
finds these two states, he can easily compute the corresponding states S2 and S5.

In the outbound phase, the player simply propagates the results found in the previous
step in the backward and in the forward directions, and checks if they satisfy the entire
differential trail.

As proved in [GP10], in the case of a perfect random permutation on average 264

operations are required to find two (plaintexts, ciphertexts) pairs that satisfy the 8-round
differential trail. Instead, in the AES case and when the initial and the final subspaces are
fixed, it requires 248 computations and 232 memory.

C Known-Key Distinguishers for 7- and 8-round AES based
on Uniform Distribution and Balance Property

C.1 Known-Key Distinguisher based on Balance Property
The 7- and the 8-round known-key distinguisher based on the balance property are a direct
application of the 3- and 4-round secret-key distinguishers based on the square property
and used in an inside-out fashion.

First of all, we re-call some definitions. Given a set of texts, we say that a byte X
could be:

• Active (A): Every value in F28 appears the same number of times in X;

• Balance (B): The XOR of all values in X is 0;

• Constant (C): The value is fixed to a constant for all texts in X.

First, we formally define the 7- and the 8-round known-key distinguisher based on the
balance property. Assume there are two players - one knows the key and the other not,

42 New and Old Limits for AES Known-Key Distinguishers

and the verifier. To win the game, the players have to send to the verifier 2n (plaintext,
ciphertext) pairs, that is (pi, ci) for i = 0, ..., 2n − 1, such that the balance property holds
both on the plaintexts and on the ciphertexts:

2n−1⊕
i=0

pi =
2n−1⊕
i=0

ci = 0.

A suitable value of n is 56 for 7 rounds of AES and 64 for 8 rounds case.
What is the best strategy that the shortcut player can use to win the game? Consider

232 plaintexts with one active diagonal (i.e. 4 bytes), and all the others 12 bytes constants.
It is a well-known fact that the sum of 232 corresponding ciphertexts after four rounds is
equal to zero. A similar property holds in the decryption direction, that is the following
integral properties hold:
B B B B
B B B B
B B B B
B B B B

 R(-3)

←−−−


A C C C
A C C C
A C C C
A C C C

 and


A C C C
C A C C
C C A C
C C C A

 R(4)

−−−→


B B B B
B B B B
B B B B
B B B B


where R(4) denotes 4 consecutive AES encryption rounds and R(−3) denotes 3 full AES
decryption rounds.

Equivalent, this means that if one takes a coset of Di for a certain i, then the sum of
the corresponding ciphertexts after 4 rounds is equal to zero. Again, if one takes a coset
of Cj for a certain j as the set of ciphertexts, the sum of the corresponding plaintexts 3
rounds before is equal to 0. Thus, starting in the middle with a coset of Di ⊕ Cj for a
certain i and j, then the sum of the corresponding plaintexts 3 rounds before and the
ciphertexts after 4 rounds is equal to 0:

B B B B
B B B B
B B B B
B B B B

 R−3

←−−−


A C C C
A A C C
A C A C
A C C A

 R4

−−→


B B B B
B B B B
B B B B
B B B B

 .
This distinguisher on 7 rounds AES was proposed for the first time by Knudsen and Rijmen
in [KR07], and it has a complexity of 256. In particular, in this case it is possible to prove
that the probability of success of the player who doesn’t know the key is strictly less than 1.
In other words, the other player needs more computations to generate a set of (plaintexts,
ciphertexts) pairs with the required properties.

Since a coset of Cj is mapped into a coset ofMj after one round with prob. 1, then
given a coset ofMj for a certain j as the set of ciphertexts, the sum of the corresponding
plaintexts 4 rounds before is equal to 0. Equivalently, starting in the middle with a coset
of Di ⊕Mj for a certain i and j, then the sum of the corresponding plaintexts 4 rounds
before and of the ciphertexts after 4 rounds is equal to 0:

B B B B
B B B B
B B B B
B B B B

 R−4

←−−− Di ⊕Mj ⊕ a
R4

−−→


B B B B
B B B B
B B B B
B B B B


for a constant a. A similar distinguisher was proposed for the first time by Gilbert in
[Gil14], and it has a complexity of 264.

C.2 Known-Key Distinguisher based on Uniform Distribution
To set up a known-key distinguisher on 8 rounds, the idea is simply to connect two
4-round trails in the middle and to choose a middle space Di ⊕Mj for i and j fixed (with

Lorenzo Grassi1 and Christian Rechberger1,2 43

|i| = |j| = 1). In the middle, the set Di ⊕Mj can be re-written as⋃
b∈Di

Mj ⊕ b =
⋃

a∈Mj

Di ⊕ a,

that is as union of cosets of the space Di or as union of cosets of the spaceMj .

Forward Direction. If one encrypts Di ⊕ a for four rounds (a ∈ Mj), then the set
R(4)(Di⊕ a) is a set of (28)4 = 232 ciphertexts where each ciphertext belongs to a different
coset of a mixed spaceMI of dimension 12. Thus if one encrypts all 232 cosets of Di, we
get all the 232 cosets ofMI , where each coset contains exactly 232 ciphertexts. Only for
completeness, if the final MixColumns operation is omitted, then the encryption of all
232 cosets of Di results in all the 232 cosets of IDI , where each coset contains exactly 232

ciphertexts.
Indeed, note that by Theorem 2 two elements that belong to the same coset of DI can

not belong to the same coset ofMJ for |I|+ |J | ≤ 4. Thus, given a coset of Di with |i| = 1,
after 4 rounds each element is distributed in a different coset ofMJ for |J | = 3. Note that
Di ⊕Mj =

⋃
a∈Mj

Di ⊕ a. Thus, since the coset of Di contains 232 elements and since
there are exactly 232 cosets ofMJ , the elements of Di ⊕Mj are uniformly distributed in
each coset ofMI .

Backward Direction. If one decryptsMj ⊕ b for four rounds (b ∈ Di), then - due to
Theorem 2 - the set R(−4)(Mj ⊕ b) is a set of 232 plaintexts where each plaintext belongs
to a different coset of a diagonal space DJ of dimension 12. If one decrypts all 232 cosets
ofMj , one gets all the 232 cosets of DJ , where each coset contains exactly 232 plaintexts.

A Distinguisher with complexity 264: Uniform Distribution

Suppose to start in the middle with 264 texts in the same coset of Di ⊕Mj , and let J and
I fixed such that |I| = |J | = 3. As we have seen, the ciphertexts are uniform distributed
in all the cosets ofMI , that is each coset contains exactly 232 ciphertexts. In the same
way, the plaintexts are uniform distributed in all the cosets of DJ , that is each coset
contains exactly 232 plaintexts. Thus, one needs only to count the number of elements in
the ciphertexts and plaintexts that belongs to each coset to distinguish an 8-round AES
permutation from a random one.

Description as Zero-Sum Distinguisher. An even simpler approach is possible:
the simplest method is to XOR the 264 plaintexts and ciphertexts and verify that the
result is zero. The complexity is 264. This is the distinguisher which exploits the integral
property proposed by Gilbert in [Gil14].

Even if we’ve already presented it, we recall it using the subspace trail notation, which
allows an easier explanation than using the Super-SB operation

Super-SB(·) := S-Box ◦ARK ◦MC ◦ S-Box(·) (11)

introduced by Gilbert. To do this, we recall the 7-round AES distinguisher proposed by
Knudsen and Rijmen in [KR07], which has a complexity of 256 and which exploits the
following integral property:

Zero-Sum R−3

←−−− D0 ⊕ C0 ⊕ a
R4

−−→ Zero-Sum,

where a ∈ (D0 ⊕ C0)⊥. Equivalently, this means that if one starts from a (collection of)
coset(s) of D0 then after four rounds (without the final MixColumns operation) the integral

44 New and Old Limits for AES Known-Key Distinguishers

property holds. In a similar way, if one starts from a (collection of) coset(s) of C0, then
the integral property holds three rounds before.

As shown in detail in [GRR17] and in Sect. 3, for each a ∈ C⊥0 there exists unique
b ∈M⊥0 such that R−1(M0⊕b) = C0⊕a. This means that if one starts from a coset ofM0,
then the integral property holds four rounds before. Indeed, this coset ofM0 is mapped
into a coset of C0, and then the integral property holds. Thus if one takes a collection
of cosets of M0, then the integral property holds four rounds before. In conclusion, if
one starts in the middle with a coset of D0 ⊕M0 instead of a coset of D0 ⊕ C0, then the
integral property holds both after four rounds and four rounds before:

Zero-Sum R−4

←−−− D0 ⊕M0 ⊕ a′
R4

−−→ Zero-Sum

where a′ ∈ (D0 ⊕M0)⊥. The complexity is 264 since |D0 ⊕M0 ⊕ a′| = 264.

C.3 Zero-Sum Distinguisher - Scenario of Sect. 4
To better formalize this scenario, we describe the zero-sum distinguisher in the scenario
of the two players and of the verifierier described in Sect. 4. As we have already said,
the goal of the two players is to find an N -tuple of (plaintexts, ciphertexts) (pi, ci) for
i = 0, ..., N − 1 = 2n − 1 such that the sums of the plaintexts and of the ciphertexts are
equal to zero, i.e.

N−1⊕
i=0

pi =
N−1⊕
i=0

ci = 0.

We analyze the scenario for the two players and of the verifier. We remember that a
distinguisher is meaningful if (1) the cost of the generic player - we assume that the
cost of 1 oracle-query is equal to the cost of 1 encryption - to generate the N -tuple is
higher than the cost of the shortcut player when both the players have the same probability
of success, and if (2) the cost to verify R - given plaintexts and the corresponding ci-
phertexts - is (much) lower than the costs of the two players to generate the required N -tuple.

Shortcut Player. Assume that the shortcut player knows a set of texts X = {xi}i and
a set of texts Y = {yi}i with the following properties:

⊕
i R

s(xi) = 0 and
⊕

i R
s−r(yi) = 0.

for 0 < s < r and such that dim(X ⊕ Y) = n. Rs means s-round encryptions and
Rs−r means (r − s)-round deccryptions in this paper. For the following, note that
X ⊕ Y =

⋃
y∈Y X ⊕ y =

⋃
x∈X Y ⊕ x. Since he can work with the intermediate states,

he simply chooses texts in X ⊕ Y and simply defines the plaintexts as the r − s rounds
decryption of X ⊕ Y and the corresponding ciphertexts as the s rounds encryptions of
X ⊕ Y .

We emphasize that the players must send only a set of N plaintexts s.t. the sum of
the plaintexts and the sum of the ciphertexts is equal to zero. It follows that starting in
the middle, the shortcut player has to compute only s/r ·N computations/encryptions.
Thus, the cost for such a player is of s/r · N computations/encryptions - we assume 1
round encryption has the same cost of 1 round decryption. Consider for example the case
r = 2 · s. It follows that to generate such set N/2 encryptions are sufficient.

Such a strategy is well accepted in literature. To provide examples to this claim, con-
sider the zero-sum distinguishers of Keccak-f [AM] - [BCD11] - [DL12] recently published
in literature. In all these works, the computational complexity difference between the
inside-out approach and the generic method is usually very small (a factor 2). Even if a
distinguisher can be considered meaningful only if this difference is significant, the Keccak
Team published a note “Note on zero-sum distinguishers of Keccak-f” [BDPV] where
they confirmed the validity of such distinguishers: “[...] the zero-sum distinguishers of

Lorenzo Grassi1 and Christian Rechberger1,2 45

[AM, BC10]are valid, albeit with a very small advantage”.

Generic Player. One possible strategy that the generic player can use is the one
proposed by Wagner in [Wag02] in order to solve the k-sum problem. Given a function f
on n bits, the k-sum problem is to find x1, . . . , xk such that

∑k
i=1 f(xi) = 0. A solution to

this problem is given in [Wag02] with a running time of O(N · 2k/(1+log2 N)). This strategy
has used by Knudsen and Rijmen in [KR07] - the first authors that propose zero-sum
distinguisher - in order to estimate the computational cost of the Generic Player. In
particular, using the solution provided in [Wag02], they conjecture that the complexity
of the Generic Player to find an N -tuple for which the sum in k bits is approximated by
O(N · 2k/(1+log2 N)). encryptions. The approach to estimate the complexity comes close
to an answer to this is the one to solve the k-sum problem [Wag02]. Given a function f
on n bits, the k-sum problem is to find x1, . . . , xk such that

∑k
i=1 f(xi) = 0. A solution

to this problem is given in [Wag02] with a running time of (N · 2k/(1+log2 N)). Before we
go on, we remember that the same authors highlight that “[...] this is a very inaccurate
estimation of the complexity we are looking for: the complexity estimate above is in the big
O notation, thus ignoring smaller constants26, the approach requires memory (more than
for the AES distinguisher), but much more important, the k-sum problem does not give us
the structure that we get for reduced AES, merely a collection of texts whose sum through
the function f is zero with no conditions of balance on the values of xi

27. [...]”.
Another possible strategy that can be used is inspired by the attack against XHASH

in [Bel97] (brought to attention of Keccak Team [BDPV] by Jean-Philippe Aumasson).
The strategy is the following. Assume we are looking for a set Z = {zi} of N elements in
F2n such that ⊕

i

zi =
⊕

i

f(zi) = 0.

As first step, one consider N random value xi ∈ F2n and compute X = {xi||f(xi)}i where
xi||f(xi) ∈ F22n . Let S0 =

⊕
X xi||f(xi) ≡

⊕
X xi||

⊕
X f(xi). If S0 is equal to zero

(prob. 2−2n), then the problem is solved. Assume S0 6= 0. The idea is to consider other
M random elements - for a certain M - yi ∈ F2n and compute {yi||f(yi)}i. Then, one
computes binary coefficients {ai}i=0,...,M that satisfy the following inequality:

M⊕
i=0

ai · (xi||f(xi)⊕ yi||f(yi)) = A. (12)

Observe that such condition is satisfied with non-negligible property if M > 2n - in
particular, it is satisfied with probability higher than 99.99% if M = 2n + 10. For the
following, we assume M = 2n + ε, where ε ≥ 0. As we are going to show, the value of
ε determines the priori probability that the system of equations (12) has a solution: by
increasing ε the probability that it has no solution decreases exponentially. Assume that a
solution of the previous equality is found. The set Z = {zi} is defined as

zi ≡
{
ai · yi ⊕ (1⊕ ai) · xi if i ≤M

xi if i > M

26A detailed study of this problem can be found in [MS12], where authors give an estimate of the
probability of success/failure of Wagner Algorithm. It follows that the constant should be higher than 1.

27For completeness, we show that this problem has a simple solution. Considering the AES-case, we
can assume xi ∈ F4×4

28 and that f is the 7-round AES encryption function. Under this assumption, one
obtains a set of plaintexts, which XOR-sum is equal to zero after 7 rounds. To fix the problem, one can
consider elements xi as in F4×8

28 , defined as xi ≡ pi||Enc7(pi) where Enc7(pi) denotes the corresponding
ciphertext of pi after 7 round. In this case, the function f is simply the identity function. It follows
that

⊕
xi ≡

⊕
pi||Enc7(pi) = 0 implies

⊕
pi = 0 and

⊕
Enc7(pi) = 0, i.e. zero-sum both on the

plaintexts and on the ciphertexts. Moreover, it follows that the complexity of such a problem becomes of
O(N · 22·k/(1+log2 N)), since we are working on F4×8

28 instead of F4×4
28 .

46 New and Old Limits for AES Known-Key Distinguishers

Note that ai · yi ⊕ (1 ⊕ ai) · xi is equal to yi for ai = 1 and equal to xi otherwise. It is
simple to observe that⊕

i

zi||f(zi) =
⊕
i≤M

(ai · yi||f(yi)⊕ (1⊕ ai) · xi||f(xi))⊕
⊕
i>M

xi||f(xi) =

=
⊕
i≤M

(ai · (yi||f(yi)⊕ xi||f(xi))⊕
⊕
i≤M

xi||f(xi) = 0.

It follows that the computational cost is well approximated by:

• N + 2n+ ε encryptions;

• solve a linear system of 2n+ ε equations28.

If N � 2n+ ε, such a cost is well approximated by N computations/encryptions, that is it
is “always” larger than the cost of the shortcut player of a factor 2. For completeness, such
strategy can be used also in the case of Partial Balance.E.g. let φ : F2n → F2n defined as
φ(x) = x∧Φ where Φ ∈ F2n is fixed and ∧ is the AND logic. The algorithm works as well,
where the set Z = {zi} must satisfy

⊕
i φ(zi) =

⊕
i f(zi) = 0.

Come back to problem of ε. Given a fixed set {ai}i, they satisfy (12) with probability
2−2n. It follows that given 2n+ ε sets, at least one of them satisfy (12) with probability

1− (1− 2−2n)2n+ε ≈ 1− eε.

assuming 2n � 1. For a probability of success higher than 99.99% (remember that the
probability of success of shortcut player is 1), it follows ε ≥ 10.

As last things, note that such an algorithm is faster than Wagner’s one if

N + 2n+ 10 ≤ N · 22n/(1+log N),

which is always satisfied e.g. if 1 + logN ≤ 2n � N (that is, N + 2n + 10 ≈ N and
1 < 22n/(1+log N)).

Verifier. Given the (plaintext, ciphertext) pairs, it’s simple to note that the cost of
the verifier is of 2n · 2 = 2 ·N XOR-sum operations, which is much smaller than the costs
of the two players. We emphasize that the cost of the verifier must be smaller than the cost
of the players when the plaintexts and the corresponding ciphertexts are given. In other
words, even if the verifier receives from the shortcut player only the plaintexts that satisfy
R, the verification cost doesn’t include the cost to compute the corresponding ciphertexts
(remember that the advantage of the shortcut player w.r.t. the generic player is the fact
that he doesn’t need to work both on the plaintexts and on the ciphertexts).

D Details of Known-Key Distinguisher when the Compu-
tational Cost of the Generic Player is Considered

Referring to the known-key distinguisher scenario described in Sect. 4.1, the generic player
depends by the oracle to generate the N -tuple (i.e. he cannot work alone to generate it).
As a consequence, note that two possible settings can be analyzed. In the first one, only
the number of oracle queries is considered to determine the computational cost of this
player, that is the number of encryptions/decryptions required by the generic player to the
oracle. In the second one, both the number of oracle queries and any further computational

28The computational cost for a m×m matrix is O(m3). Since 2n + ε� N , we emphasize that the cost
of this step is negligible with the cost of the first step.

Lorenzo Grassi1 and Christian Rechberger1,2 47

cost of the generic player (which is in general not negligible) are considered. As we have
already said, we expect that a known-key distinguisher in the first setting works also in the
second one but not viceversa. If the total cost of the generic player is well approximated
by the number of queries (assuming 1 oracle-query ≈ 1 computation/encryption), these
two settings are completely equivalent.

In the main text, we have focused only on the first case, that is we have approximated
the cost of the generic player by the number of oracle-queries necessary to generate a
sufficient number of (plaintexts, ciphertexts) pairs such that n tuples with the required
properties exist with a good probability. However, note that the player has also to identify
the n tuples with the required properties before sending them to the verifier. As we are
going to show, this computational cost is not negligible. In this section, we present the
details of this case both for the 9-round distinguisher presented in Sect. 7 and for the
10-round one with key schedule presented in Sect. 8.2.

D.1 Known-Key Distinguisher on 9-Round AES
For a complete description of the 9-round known-key distinguisher for AES, we refer to
Sect. 7. Here we limit to consider the cost of the generic player to find the n tuples with
the required properties. In particular, we are going to show that if this cost is taken into
account, then n = 3 tuples are sufficient for our distinguisher on 9 rounds of AES.

By formula (7), if n = 3 then 252.2 different couples, or approximately 226.6 plain-
texts/ciphertexts pairs are sufficient to find the 3-tuples with the required properties
(where the plaintexts belong to the same coset of Di). Indeed, note that with 252.2 different
couples it is possible to construct approximately 2154 different sets of 3 tuples. Since the
probability that a set satisfies the required properties is 2−154, there is at least one set
that satisfies the property with non-negligible property. Thus, the cost to generate them is
of 226.6 oracle-queries.

Given these 226.6 (plaintexts, ciphertexts) pairs, the generic player must work on the
ciphertexts (note that the property on the plaintexts is already satisfied) in order to find
the 3-tuples with the required properties. For each couple {(p1, c1), (p2, c2)}, a possible
strategy is to find the key k such that R−1

k (c1)⊕R−1
k (c2) ∈Mi, using the attack of Sect.

6.1, and then to find 3 couples with a common key k. In the following, we present a
modified strategy that allows to reduce the computational cost.

A possible way to reduce the total computational cost is to work first on only two
couples (instead of three), that is to find two couples with the same key for which the
required property is satisfied. Since there are 252.2 couples, the player can construct
approximately 2103.4 2-tuples (i.e. different sets of two different couples). Approximately,
there are 2103.4 · (4 · 232)2 · 2−128 = 243.4 different sets with on average one key in common
for the two couples. For this step and using the attack of Sect. 6.1, the cost can be
approximated at 2103.4 · 4 · 211.6 = 2117 table look-ups. Then, given two couples with
a common key k, the attacker looks for a third couple for which the required property
is satisfied by the found key k. Note that for a given key, the probability that a pair
of ciphertexts belong to the same coset of Ml one round before for that key is only
234−128 = 2−94. It follows that the player has to consider all the 243.4 possible sets of
two couples just found and all the possible 252.4 couples (for a total of approximately
243.4 · 252.2 = 295.6 possibilities) in order to find the three tuples. Thus, given two couples
with a common key, the idea is simply to test this found key on all the other couples, until
one couple that satisfies the required property is found. To do this, the player computes
243.4 · 252.2 · 2 · 24 = 2100.6 S-Box look-ups tables. It follows that the attacker is able to
find the three desired couples, with a cost of approximately 2117 table look-ups or 2109.5

nine-round encryptions, besides the (non-negligible) memory cost to store the couples
found at the first step with the corresponding key.

48 New and Old Limits for AES Known-Key Distinguishers

The cost of the shortcut player can instead be approximated by 3 · 244 = 245.6 nine-
round encryptions. Thus, n = 3 tuples are sufficient to set up the 9-round known-key
distinguisher when all the costs (oracle queries + computational cost of generic player).
Even if we don’t exclude that the generic player can use better strategies to find these
three couples, it seems improbable that the generic player is able to find the 3-tuples faster
than the shortcut player when all the costs are considered. It follows that if the two players
have to send 3 different tuples with the desired properties, then the game is win (with
very high probability) by the player who knows the key. We leave as an open problem the
research of a better strategy that the generic player can use to find these n tuples. For
completeness, using the above strategy it is possible to prove that n = 2 tuples are not
sufficient to set up this distinguisher29.

D.2 Known-Key Distinguisher on 10-Round AES with Key Schedule
For a complete description of the 10-round known-key distinguisher for AES with key
schedule, we refer to Sect. 8.2. Here we limit to consider the cost of the generic player to
find the n tuples with the required properties. In this case, it turns that n = 2 tuples are
sufficient.

Indeed, in this case the cost for the shortcut player is of 245 computations. Instead, if
n = 2 and using formula (9), the other player must consider at least s = 252.5 different
couples, that is approximately 226.75 different (plaintext, ciphertext) pairs (with a cost of
226.75 oracle-queries), where all the plaintexts belong to the same coset of Dj . The player
can construct approximately 2104 2-tuples. First of all, for each one the player look for a
final key k10 (if exists). Since the probability that such key exists for a given 2-tuple is
only 2−60, only 244 2-tuples survive this step. The cost of this step is well approximated
by 2104 · 4 · 211.6 = 2117.6 table look-ups, using the attack described in Sect. 6.1.

Given these 244 2-tuples just found with the corresponding key k10, for each key k10

the player can simply find the j-th column of the first key k0 (note that three columns of
k0 can take any possible values), and checks if the property on the plaintexts is satisfied.
Since this happens with probability30 2−44, such key usually exists. The cost of this step
is well approximated by 244 · 234 · 40 = 283.1 S-Box look-ups to check the key schedule,
that is approximately 275.5 ten-round encryptions, besides the (not-negligible) memory
cost. It follows that the computational cost for this player is much higher than the one
of the shortcut player. However, since we don’t exclude that the generic player can use
a better strategy to win the game, we leave the open problem to improve the strategy
that we have just presented here. On the other hand, even if a better strategy is found,
it seems improbable that the generic player is able to find the 2-tuples faster than the
shortcut player when all the costs are considered.

E New 7-, 8- and 9-round AES Known-Key Distinguishers
In this section, we propose new 8- and 9-round known-key distinguisher for AES, which are
obtained extending at the end or/and at the beginning a 7-round known-key distinguisher
for AES. The strategy to set up them is the same used in Sect. 7 and 8. For this reason,
we refer to those sections for all the details. We highlight that the 9-round known-key

29In this case, 230.5 different couples instead of 252.2 are sufficient, that is 216.75 different (plaintexts,
ciphertexts) pairs, for a cost of 216.75 oracle-queries. In order to find the key, the total cost can be
approximated at 242.1 table look-ups, or 234.6 nine-round encryptions. The cost for the player who knows
the key is of 245 nine-round encryptions. It follows that n = 2 tuples are not sufficient.

30Remember that we’re working with plaintexts in the same coset of Dj . After one round, they are
mapped into the same coset of Cj . Thus, two texts belong to the same coset of Cj ∩ Di for a certain i, if
three bytes of the j-th column are equal to zero. This happens with probability 4 · 2−24 = 2−22.

Lorenzo Grassi1 and Christian Rechberger1,2 49

Figure 6: 7-round differential characteristic for known-key distinguisher of AES-128.

distinguisher proposed in this section is the best one both for the computational and data
cost among those currently present in the literature.

E.1 7-Round Known-Key Distinguisher
For the following, we briefly recall the currently best known distinguisher on 8 rounds
of AES (proposed in [JNPP14] and already presented in Sect. 4.3). This distinguisher is
obtained starting from the 8-round distinguisher presented in [GP10], and depicted in Fig.
4. Using the subspace trail notation and the known-key distinguisher scenario, the goal
of the two players in this distinguisher is to find a pair of (plaintexts, ciphertexts) - i.e.
(p1, c1) and (p2, c2) - with the following properties: the two plaintexts belong to the same
coset of Di - i.e. p1 ⊕ p2 ∈ Di - and the two ciphertexts belong to the same coset ofMi -
i.e. c1 ⊕ c2 ∈Mi, where the index i is fixed. The idea proposed in [JNPP14] to improve
this distinguisher is simply to not fix the initial subspace Di and the final oneMj , that is
to leave i and j completely arbitrary (i.e. they can take any possible values). It follows
that the probability that a solution of the inbound phase of the rebound attack satisfies
the outbound phase is higher, which implies that a complexity of 244 is sufficient (instead
of 248) for the shortcut player.

The same strategy can be applied to the 7 rounds distinguisher presented in [MPRS09]
and recalled in Sect. 4.2. In particular, using the same argumentation of [JNPP14], the
computational cost of the distinguisher illustrated in Fig. 6 is 220 instead of 224. Indeed,
note that for free Di andMj , the probability that a solution of the inbound phase satisfies
the outbound phase increases of a factor 42 = 24.

E.2 8-Round Known-Key Distinguisher
A possible 8-round known-key distinguisher can be set up starting from the 7-round
distinguisher just presented and extending it at the end (or at the beginning) using a
similar technique presented in Sect. 7 for the 9-round distinguisher. We refer to Sect. 7 for
a complete discussion of this technique and we limit here to give a formal definition of the
distinguisher and to do some considerations about the data and the computational cost.

In the known-key distinguisher scenario, the two players have to send to the verifier n
different tuples of (plaintext, ciphertext) pairs, that is {(p1

i , c
1
i), (p2

i , c
2
i)} for i = 0, ..., n− 1,

with the following properties:

1. for each tuple, there exists j s.t. the two plaintexts belong to the same coset of Dj ,
that is

∀i = 0, ..., n− 1, ∃j ∈ {0, ..., 3} s.t. p1
i ⊕ p2

i ∈ Dj ;

2. there exists a key k s.t. for each tuple there exists l for which the two ciphertexts

50 New and Old Limits for AES Known-Key Distinguishers

belong to the same coset ofMl one round before, that is

∃! k s.t. ∀i = 0, ..., n− 1, ∃l ∈ {0, ..., 3} s.t. R−1
k (c1

i)⊕R−1
k (c2

i) ∈Ml.

If only the number of oracle-queries is considered, it is possible to prove that n ≥ 3
tuples are sufficient to set up this distinguisher. Indeed, using the same argumentation
of Sect. 7, the generic player has to consider approximately 252.18 different couples (see
(7)), that is approximately 226.59 different (plaintexts, ciphertexts) pairs, for a cost of 226.6

oracle-queries, in order to have good probability to construct 3 tuples with the required
properties. On the other hand, the cost for the shortcut player is only of 3 · 220 = 221.6

computations. In order to make the advantage of the shortcut player more significant, we
choose an (arbitrary) value of n = 8, which implies a cost for the shortcut player of 223

computations and of 248.9 computations for the generic player.
In a similar way, it is possible to prove that n = 2 tuples are sufficient to set up this

8-round distinguisher when all the costs (number of oracle-queries + cost of generic player)
are taken into account. Indeed, in this case and in order to construct 2 tuples that satisfy
the required property for the same key, the second player has to consider approximately
230.4 different tuples, that is 215.74 different (plaintexts, ciphertexts) pairs. Using the same
analysis proposed in App. D.1, the cost to find the 2-tuples that satisfy the relation R
can be approximated at 230.4 · 211.6 = 242 table look-ups, that is 234.68 eight-round AES
encryptions. On the other hand, the cost of the player that knows the key is of 2 · 220 = 221

computations, which is (much) lower than 235.68.
For both cases, the verifier uses the same strategy presented in Sect. 7, and her cost is

well approximated by 211.6 eight-round encryptions.

E.3 9-Round Known-Key Distinguisher
An efficient 9-round known-key distinguisher can be set up by extending the previous
8-round distinguisher at the beginning, or equivalent by extending the 7-round known-key
distinguisher both at the beginning and at the end. Such a distinguisher is the best one
both for the computational and data cost among those presented in literature.

In order to set up this distinguisher on 9 rounds, we exploit the same strategy proposed
for 10-round one. For this reason, we refer to Sect. 8 for a complete discussion. In the
known-key distinguisher scenario, the two players have to send to the verifier n different
tuples of (plaintext, ciphertext) pairs, that is {(p1

i , c
1
i), (p2

i , c
2
i)} for i = 0, ..., n− 1, with

the following properties:

1. there exists a key k0 s.t. for each tuple there exists j for which the two plaintexts
belong to the same coset of Dj after one round, that is

∃! k0 s.t. ∀i = 0, ..., n− 1, ∃j ∈ {0, ..., 3} s.t. Rk0(p1
i)⊕Rk0(p2

i) ∈ Dj ;

2. there exists a key k9 s.t. for each tuple there exists l for which the two ciphertexts
belong to the same coset ofMl one round before, that is

∃! k9 s.t. ∀i = 0, ..., n− 1, ∃l ∈ {0, ..., 3} s.t. R−1
k9 (c1

i)⊕R−1
k9 (c2

i) ∈Ml.

We discuss here the two scenarios in which (1) the subkeys are independent and in which
(2) a key schedule holds. Since the strategies used by the players are equivalent of the ones
proposed in Sect. 8, we refer to that section for all the details and we limit here to do
some considerations about the computational and data cost.

Lorenzo Grassi1 and Christian Rechberger1,2 51

E.3.1 Independent Subkeys: No Key Schedule.

As for the 10-round known-key distinguisher, we first consider the case in which there
is no key schedule. The idea for the generic player is to choose an initial key k̂ and to
choose the plaintexts in the set Da = R−1

k̂
(Di ⊕ a). If this player needs more plaintexts,

the idea is to compute other Da′ sets for another a′ ∈ D⊥i using the same key k̂, as for the
10-round distinguisher case.

In a similar way as before, n ≥ 3 tuples are sufficient for the case in which only the
number of oracle-queries is considered, while n ≥ 2 tuples are sufficient to set up the
distinguisher for the case in which all the cost are considered. As before, we choose an
(arbitrary) value of n = 8 to make the advantage of the shortcut player more significant.
The costs of the two players are well approximated by the costs given for the previous
8-round distinguisher (note that the cost to compute R−1

k̂
(Di ⊕ a) is negligible compared

to the total cost). Finally, the cost of the verifier is double with respect the previous case
(since she has to check the existence of two keys).

E.3.2 The Key Schedule Case.

Similar to what done in Sect. 8, the idea for the generic player is to choose the plaintexts
in the same coset of Di in order to maximize the possible number of key k0 and k10 for
which the required properties are satisfied - we refer to Sect. 8 - Prop. 2 for all the
details. By analogous calculation of Sect. 8, if n = 2 then this player needs approximately
252.48 different couples in order to have a good probability of success, that is he must
do approximately 226.74 oracle-queries. On the other hand, the computational cost for
the shortcut player is of 221. Thus, n = 2 tuple is sufficient for this setting. Since n
must be at least equal to 2, note that the same result holds also for the case in which we
consider the total computational cost (oracle cost + player cost). The verification cost is
(approximately) equivalent to the one given for the case of independent subkeys, due to
the (same) argumentations given in Sect. 8.

E.4 Considerations and Comparison with Gilbert’s Distinguisher
Using the technique described in Sect. 9, one can theoretically extend again the previous
9-round known-key distinguisher at the end or/and at the beginning, obtaining a 10-
or/and 11-round known-key distinguisher. Even if this is possible, we show that this
distinguisher is (much) less competitive than the one described in Sect. 8 - obtained by a
single extension at the end and at the beginning of a 8-round distinguisher - and the one
proposed by Gilbert in [Gil14]. The main problem of a 10-round distinguisher obtained
extending a 7-round distinguisher two times at the end and one at the beginning (or
viceversa) regards the computational cost of the verifier. Indeed, it is possible to show
that this cost is much higher than 264, using similar argumentations proposed in Sect. 9
and due to the complexity of the key-recovery attack described in Sect. 6.2. Thus, since
by definition the computational cost of verifier must be smaller than the costs of the two
players, it follows that the overall computational cost of such a distinguisher is much higher
than 264, that is it is much higher than the computational cost of our 10-round known-key
distinguisher proposed in Sect. 8 and the one proposed by Gilbert in [Gil14].

A final observation regards the possibility to set up a 8- and 9-round known-key
distinguisher by extending at the beginning or/and at the end the 7-round known-key
distinguisher based on the uniform distribution property (in a similar way of what Gilbert
did to set up his distinguisher on 10-round). Note that the 7-round distinguisher based
on this property has a complexity of 256). Thus, the 8-round known-key distinguisher
obtained by extending the 7-round distinguisher at the end (or at the beginning) has
at least a complexity of 256, which is higher than the 8-round known-key distinguisher

52 New and Old Limits for AES Known-Key Distinguishers

proposed in [JNPP14] (complexity of 244) and our one proposed in App. E.2 (complexity
of 223). Similar argumentation holds for the 9-round distinguisher (obtained by extending
at the beginning and at the end the cited 7-round distinguisher). It follows that such
distinguishers are not competitive with respect to the others currently present in literature.

F Proof of Proposition 2 - Sect. 8.2
Proposition 4. Let p1 and p2 two plaintexts that belong to the same coset of Dj for
a certain j, that is p1 ⊕ p2 ∈ Dj. Moreover, assume that p1 ⊕ p2 /∈ Dj ∩ CL for each
L ⊆ {0, 1, 2, 3} with |L| ≤ 3. Then there exist on average 2106 different keys k such that
Rk(p1)⊕Rk(p2) ∈ Dl for a certain l ∈ {0, 1, 2, 3}.

Proof. First of all, suppose by contradiction that p1 ⊕ p2 ∈ Dj ∩ CL for a certain L ⊆
{0, 1, 2, 3} with |L| ≤ 3. Since Dj∩CL ⊆ CL, it follows that R(p1)⊕R(p2) ∈ Cj∩ML ⊆ML

for |L| ≤ 3. By (3), it follows that if R(p1)⊕R(p2) ∈ML for |L| ≤ 3, then R(p1)⊕R(p2) /∈
Dj for |j| = 1.

Now, without loss of generality assume j = 0 (the proof can be easily generalized for
each j). The idea is to look for the number of keys such that Rk(p1)⊕Rk(p2) ∈ Cj∩Dl ⊆ Dl

for a certain l ∈ {0, 1, 2, 3}.
By definition, p1

i,l = p2
i,l for each i 6= l. Thus, it is easy to note that for each value of

ki,l for i 6= l (that is 12 bytes) then R(p1)i,l = R(p2)i,l for each i and for each l = 1, 2, 3
(i.e. the second, the third and the fourth columns of R(p1) and R(p1) are equal), for a
total of 296 possibilities.

Consider now the bytes on the first diagonal, that is in positions i = l. In this case, one
has to guarantee that after one round three bytes of the two texts are equal, in order to
have Rk(p1)⊕Rk(p2) ∈ Cj ∩Dl. As shown in the attack on 3 rounds of Sect. 6.1, for each
l on average there are 28 possible combinations of these four bytes such that this condition
is satisfied. Since there are four different possible values of l, the number of possible keys
for this second point are on average 4 · 28 = 210.

In conclusion, the number of keys such that Rk(p1)⊕Rk(p2) ∈ Cj ∩ Dl for a certain l
are (28)12 · 210 = 2106.

Let p1 and p2 in the same coset of Dj (that is p1⊕p2 ∈ Dj), and without loss of generality
assume j = {0}. We do a consideration about the hypothesis that p1 ⊕ p2 /∈ D0 ∩ CL

for each L ⊆ {0, 1, 2, 3} with |L| ≤ 3. If p1 ⊕ p2 ∈ D0, then p1 ⊕ p2 /∈ D0 ∩ CL for each
L ⊆ {0, 1, 2, 3} with |L| ≤ 3 if and only if p1

i,i 6= p2
i,i for each i = 0, ..., 3. By simple

calculation, this happens with probability (255/256)4 ' 2−0.0225.
Thus, given a coset of D0, it is possible to construct approximately 231 · (232 −

1) = 262.9999... ' 263 different couples. If one eliminates all the pairs (p1, p2) for which
there exists at least one i such that p1

i,i = p2
i,i, then the number of survived pairs is

262.9999... · (255/256)4 = 262.9775..., which is still well approximated by 263 for our scope.
The cases for the other subspaces Dj are similar.

G The Herds Attack
N. Ferguson et al. [FKL+01] presented the first (and unique) integral attack on 7 rounds
of AES-128. The attack is obtained by extending at the beginning the integral attack on 6
rounds of AES-128 [DKR97]-[KW02]. This attack requires 2128 − 2119 chosen plaintexts,
which are distributed in 296 − 287 different cosets of Di for a certain i ⊆ {0, 1, 2, 3} with
|i| = 1, it has a computational complexity of 2120 seven-round AES-encryptions and a
memory cost of 264 bits of memory.

Lorenzo Grassi1 and Christian Rechberger1,2 53

Here we show why this attack can not be used to set up a 14-round known-key
distinguisher for AES, based on the balanced property. Moreover, the same argumentation
can also be used to justify why key-recovery attacks with both an extension at the end and
at the beginning can not be used to set up known-key distinguisher in the Gilbert model.

We briefly recall the idea used in [FKL+01] to set up the attack on 7 rounds of AES. As
we have already seen, given 232 plaintexts in the same coset of a diagonal space Di, their
sum after 4 rounds is equal to zero for each key. Thus, it is possible to set up an integral
attack on 5 rounds of AES (working independently on each byte of the final subkey),
and on 6 rounds. In this second case, assuming that the final MixColumns is omitted
(otherwise the idea is simply to exchange the final MixColumns operation and the final
AddRoundKey operation - they are linear), the idea is to guess one column of SR(k) -
where k is the final round, decrypt one round and repeat the attack on 5 rounds. We refer
to [DKR97] for more details.

In order to attack 7 rounds, a first possibility is to extend the previous attack at the
end, by guessing the entire final subkey, decrypting one round and repeating the attack on
6 rounds. However, while for AES-192 and AES-256 this attack is better than a brute force
one, this is not true for AES-128. The idea of Ferguson et al. is the following. Consider
the entire codebook, that is 2128 plaintexts (which can be seen as the union of 296 different
cosets of a diagonal space Di). Their sum after 5 rounds is equal to zero for each key.
Similar to the previous attack on 6 rounds, the idea is to guess 4 byte of the final key (i.e.
one column of SR(k)), decrypt one round and do a classical integral attack (as the one
already described for 5-round). However, as the authors observe, the sum is zero also for
wrong keys and not only for the right one, since the full codebook is used.

To solve the problem, the idea is not to consider the sum of all the ciphertexts, but
only of part of them. In particular, given a byte x ∈ F28 fixed, one guesses four byte of
the initial key and computes one-round encryption of each plaintext. The idea is to select
the plaintexts such that after one round the byte in the j-th row and l-th column of the
corresponding text is equal to x, for a total of 2120 plaintexts. Then, the idea is to consider
only the sum of the ciphertexts of these 2120 plaintexts, which is equal to zero only for the
right key. Thus, by guessing 4 bytes of the final key and working independently on each
byte of the second to last key, one checks if the sum is equal to zero.

Finally the authors show how to improve this technique in order to use only 2128 −
2119 chosen plaintexts instead of the full codebook, besides other improvements on the
computational cost. We refer to [FKL+01] for a complete description of the attack, and
we limit ourselves to explain why it can not be used for a known-key distinguisher.

Given the details of the herds attack, we now focus on the 14-round known-key
distinguisher. Suppose by contradiction that such distinguisher can be set up. Without
being too formal, we first give a more precise idea of this distinguisher. In the known-key
distinguisher scenario, the players have to send to the verifier 2n (plaintext, ciphertext)
pairs, that is (pi, ci) for i = 0, ..., 2n − 1 where n ≥ 64, with the following properties:

1. there exist keys k0, k1, k2 such that the texts {Rk2(Rk1(Rk0(pi)))}i are uniform
distributed among the cosets of DI for each I ⊆ {0, 1, 2, 3} with |I| = 3;

2. there exist keys k12, k13, k14 such that the texts {R−1
k12(R−1

k13(R−1
k14(ci))))}i are uniform

distributed among the cosets ofMJ for each J ⊆ {0, 1, 2, 3} with |J | = 3.

First of all, note 2n must be greater or equal than 2128 − 2119, that is 2n ≥ 2128 − 2119.
Indeed, this is the minimum number of texts for which the attacker is able to use the herds
attack (i.e. the computational cost is lower than a brute force one). Assuming that this
distinguisher is meaningful, we analyze the strategies of the players and of the verifier.

First consider the shortcut player, i.e. the player who knows the key. As for the 8-round
known-key distinguisher based on the integral property (see App. C for details), in order
to guarantee the balanced property holds both on the plaintexts and on the ciphertexts,

54 New and Old Limits for AES Known-Key Distinguishers

the best strategy for this player is to consider the union of at least 264 − 255 different
cosets of Di ∩Mj , that is

264−255−1⋃
k=0

(Di ⊕Mj ⊕ ak)

for 264 − 255 different ak ∈ (Di ⊕Mj)⊥ (where |(Di ⊕Mj)⊥| = 264). Note that the
previous union of cosets can be rewritten in the following way:

264−255−1⋃
k=0

(Di ⊕Mj ⊕ ak) =
264−255−1⋃

k=0
(
⋃

b∈Mj

Di ⊕ (b⊕ ak)) =
296−287−1⋃

k=0
Di ⊕ âk,

that is the player is considering in the middle a union of cosets of Di (analogous forMj).
In particular, the computational cost of this player is at least 2128 − 2119.

Consider now the verification strategy. As before, the idea is to filter wrong keys by
checking zero sum, that is to look for subkeys k0, k1, k2 and k12, k13, k14 such that

2n−1⊕
i=0

Rk2(Rk1(Rk0(pi))) = 0 and
264⊕
i=1

R−1
k12(R−1

k13(R−1
k14(ci))) = 0.

The idea is to use the herds attack to find the subkeys and so to prove their existences.
However, as we are going to show, a problem arises for the verifier, since when she receives
the plaintexts and the ciphertexts by the player, the only way in which she can check the
existence of the six subkeys is using a brute force attack. In other words, the verifier can
not use in any way the herds attack presented before. Indeed, to do this, she has to know
the “intermediate” texts, which corresponds to the 7-round encryption of the plaintexts or
to the 7-round decryption of the ciphertexts. Since she doesn’t know them, she can not
divide the texts in set of 2120 elements. In other words, the extension at the beginning of
the herds attack creates a problem for the verifier, since she doesn’t have any access to the
intermediate values of the plaintexts/ciphertexts. This justifies why this attack can not be
used in order to set up a 14-round known-key distinguisher, and more generally why an
attack with both the extension at the end and the beginning can not be used to set up a
known-key distinguisher in the Gilbert model.

	Introduction
	Known-Key Distinguishers for AES: the State of the Art
	Our contributions

	Preliminary - Description of AES
	Subspace trails
	Subspace trails of AES

	Known-Key Distinguishers for AES
	Definition of Known-Key Distinguisher
	7- and 8-Round Known-Key Distinguisher
	Multiple Limited-Birthday 8-Round Known-Key Distinguisher

	Gilbert's Known-Key Distinguisher for 10-round AES
	Uniform Distribution 8-round Known-Key Distinguisher
	Extension to 10 Rounds of AES
	Generic Considerations

	Another Strategy for the Verifier

	Key-Recovery Extensions using Truncated Differentials
	Attack for the Case of 1-Round Extension
	Attack for the Case of 2-Round Extension

	9-Round Known-Key Distinguisher for AES
	10-Round Distinguisher of AES - Full AES-128
	Independent Subkeys: No Key Schedule
	The Key Schedule Case
	Number n of Tuples: Oracle-Queries.
	Number n of Tuples: Oracle-Queries and Cost of Generic Player.

	12-Round Distinguisher of AES
	Gilbert's Distinguisher for 12-round AES
	The Verification Process
	On the Meaningfulness of this Distinguisher

	Infeasibility of a 14-round Known-Key Distinguisher
	Discussion of Results and Proposal for a New Model
	A possible Variant of Gilbert's Distinguisher - Details
	The Rebound Attack - Details
	Known-Key Distinguishers for 7- and 8-round AES based on Uniform Distribution and Balance Property
	Known-Key Distinguisher based on Balance Property
	Known-Key Distinguisher based on Uniform Distribution
	Zero-Sum Distinguisher - Scenario of Sect. 4

	Details of Known-Key Distinguisher when the Computational Cost of the Generic Player is Considered
	Known-Key Distinguisher on 9-Round AES
	Known-Key Distinguisher on 10-Round AES with Key Schedule

	New 7-, 8- and 9-round AES Known-Key Distinguishers
	7-Round Known-Key Distinguisher
	8-Round Known-Key Distinguisher
	9-Round Known-Key Distinguisher
	Independent Subkeys: No Key Schedule.
	The Key Schedule Case.

	Considerations and Comparison with Gilbert's Distinguisher

	Proof of Proposition 2 - Sect. 8.2
	The Herds Attack

