
Revocable Identity-based Encryption with Bounded Decryption

Key Exposure Resistance: Lattice-based Construction and More∗

Atsushi Takayasu † Yohei Watanabe ‡

August 23, 2018

Abstract

In general, identity-based encryption (IBE) does not support an efficient revocation proce-
dure. In ACM CCS’08, Boldyreva et al. proposed revocable identity-based encryption (RIBE),
which enables us to efficiently revoke (malicious) users in IBE. In PKC 2013, Seo and Emura
introduced an additional security notion for RIBE, called decryption key exposure resistance
(DKER). Roughly speaking, RIBE with DKER guarantees that the security is not compro-
mised even if an adversary gets (a number of) short-term decryption keys. Therefore, DKER
captures realistic scenarios and is an important notion.

In this paper, we introduce bounded decryption key exposure resistance (B-DKER), where
an adversary is allowed to get a-priori bounded number of short-term decryption keys in the
security game. B-DKER is a weak version of DKER, but it seems to be sufficient for practical
use. We obtain the following results:

• We propose a lattice-based (anonymous) RIBE scheme with B-DKER, which is the first
lattice-based construction resilient to decryption key exposure. Our lattice-based construc-
tion is secure under the LWE assumption. A previous lattice-based construction satisfies
anonymity but is vulnerable even with a single decryption key exposure.

• We propose the first pairing-based RIBE scheme that simultaneously realizes anonymity
and B-DKER. Our pairing-based construction is secure under the SXDH assumption.

Our two constructions rely on cover free families to satisfy B-DKER, whereas all the existing
works rely on the key re-randomization property to achieve DKER.

∗This paper is the full version of [TW17]. This research was supported by JST CREST Grant Number JP-
MJCR14D6, Japan, JSPS KAKENHI Grant Number JP17K12697.

†The University of Tokyo, Japan, and National Institute of Advanced Industrial Science and Technology (AIST),
Japan. This work was done when the author was JSPS Research Fellow (DC1). e-mail: takayasu@mist.i.u-tokyo.ac.jp

‡The University of Electro-Communications, Japan, and National Institute of Advanced Industrial Science and
Technology (AIST), Japan. The author is JSPS Research Fellow (PD).

1

Contents

1 Introduction 3
1.1 Background . 3
1.2 Our Contributions . 4
1.3 Our Approach . 6
1.4 Roadmap . 9

2 Preliminaries 9
2.1 Lattice Preliminaries . 9
2.2 Pairing Preliminaries . 11
2.3 KUNode Algorithm . 12
2.4 Cover Free Families . 12

3 B-DKER RIBE 13
3.1 Definitions . 13
3.2 Treatment of Binary Trees . 17
3.3 Strategy-Dividing Lemma . 17

4 B-DKER RIBE Scheme from Lattices 18
4.1 Construction . 18
4.2 Security . 21
4.3 Discussion . 27

5 B-DKER RIBE Scheme from Pairings 29
5.1 Construction . 29
5.2 Security . 31

5.2.1 Semi-functional Ciphertexts, Keys, and Key Updates 32
5.2.2 Proof Idea and Game Sequence . 33
5.2.3 Proof of Theorem 2 . 35

6 Concluding Remarks 43

A Missing Proofs of Lemmas 49
A.1 Game 2j−1 → Game 2j with 1 ≤ j ≤ Qsk . 49
A.2 Game 3j−1 → Game 3j with 1 ≤ j ≤ |T | . 54

2

1 Introduction

1.1 Background

Identity-based encryption (IBE) [Sha84], which is one of the central cryptographic primitives,
enables ones to use any strings (e.g., e-mail address) as their public keys. Boneh and Franklin [BF03]
proposed the first practical IBE scheme from bilinear groups, and since then, various pairing-based
IBE constructions have been proposed (e.g., [Wat05, BW06, Wat09, BB11, RS14, JR17]). Recently,
lattice-based schemes [GPV08, ABB10a, Boy10, CHKP12, AFL16, BL16, KY16, Yam16, ZCZ16,
Yam17] have attracted attention over the years since lattice-based schemes are believed to resist
quantum attacks and the average-case security is guaranteed by the worst-case lattice assumptions.

The most practical point of IBE is that it does not need certificates of public keys. However,
since public-key encryption (PKE) provides an efficient revocation procedure by invalidating cer-
tificates, the merit of IBE causes another problem: How do we efficiently revoke (malicious) users
in IBE? Revocation functionality is important to handle users in cryptographic schemes. Boneh
and Franklin [BF03] suggested the following näıve revocation procedure: A key generation center
(KGC) periodically generates secret keys for all non-revoked users and distributes them. However,
this solution is inefficient and not scalable since O(N − r) computation is needed every time the
KGC updates keys, where N and r are the number of all and revoked users, respectively.

Boldyreva et al. [BGK08] proposed the first (pairing-based) IBE scheme that realizes
O(r log(N/r)) computation per update. Such an IBE scheme with a logarithmic revocation proce-
dure is called a revocable IBE (RIBE) scheme. Their scheme is based on fuzzy IBE [SW05] and
a subset cover framework called the complete subtree (CS) method, which was previously used in
the context of broadcast encryption [NNL01]. Specifically, Boldyreva et al. split secret keys into
two types: Long-term secret keys and short-term decryption keys. In every time period, the KGC
generates update information called a key update (with logarithmic computation), and broadcasts
it. If a user is not revoked at the time period, he/she can derive a decryption key for the time period
from his/her secret key and the key update received from the KGC. Otherwise (i.e., if the user is re-
voked), he/she cannot get the decryption key. After Boldyreva et al.’s work, several RIBE schemes
have been proposed. Libert and Vergnaud [LV09] proposed the first adaptively secure scheme. Lee
et al. [LLP17] proposed the RIBE scheme with the subset difference method. These schemes used
pairing. Chen et al. [CLL+12b], Chang et al. [CCKS18], and Hu et al. [HLCL18] proposed the first
lattice-based, code-based, and CDH-based (without pairing) RIBE scheme, respectively.

Seo and Emura [SE14b] introduced an additional security notion, called decryption key exposure
resistance (DKER), and proposed the first RIBE scheme with DKER (DKER RIBE for short) from
bilinear groups. DKER literally guarantees that an RIBE scheme is not compromised even if an
adversary gets (a number of) decryption keys (i.e., even if polynomially many decryption keys
are exposed). Hence, DKER captures a realistic threat, and is an important notion in terms of
practical use. Moreover, Boneh-Franklin’s näıve solution actually satisfies DKER. Looking back,
the motivation of Boldyreva et al. was to make the Boneh-Franklin’s revocation procedure efficient,
and therefore DKER should be a basic security notion. Indeed, DKER has become the standard
security notion of RIBE, and a variety of DKER RIBE schemes [LLP17, ESY16, IWS15, Lee16,
LP16, RLPL15, SE16, WES17] have been proposed.

3

Technically, all the existing DKER RIBE schemes rely on a special property, called a key
re-randomization property, which is a property that decryption keys can be re-randomized by
using only public parameters. Roughly speaking, an adversary cannot derive the long-term secret
key from exposed decryption keys (and key updates) since they are re-randomized. The key re-
randomization property is quite useful and crucial for the security proof, however it also leads to
the following open problems, which were posed by Seo and Emura [SE14b].

1. Lattice-based DKER RIBE schemes. As described above, lattice-based cryptography has
remarkably developed due to its potentiality for expressive functionality and post-quantum
property. However, all previous lattice-based RIBE schemes basically do not have the key
re-randomization property due to the way to generating secret keys. In fact, existing RIBE
schemes [CLL+12b, CZ15, NWZ16] do not satisfy DKER.1 In particular, Chen et al.’s RIBE
scheme [CLL+12b] immediately becomes insecure even with a single decryption key query
(i.e., once any single decryption key is exposed). Hence, the limitation does not stem from
proof techniques.

2. Anonymous DKER RIBE schemes. As discussed in [BBDP01] in the context of PKE,
anonymity (or recipient anonymity) of IBE/hierarchcial IBE (HIBE) is also an important
security notion for practical use. However, as already discussed in the context of IBE/HIBE
in [BW06], the anonymity never seems to be achieved if elements for re-randomization are
distributed as part of the public parameters. Therefore, it seems difficult to simultaneously
realize the key re-randomization property and anonymity. In fact, existing anonymous RIBE
schemes [CLL+12a, XWW+17] do not satisfy DKER, and all the existing pairing-based DKER
RIBE schemes (e.g., [SE14b, LLP17, WES17]) are non-anonymous.

1.2 Our Contributions

As described above, RIBE should have the resilience property against the leakage of decryption keys,
and DKER, i.e., the security of RIBE is nor compromised even if polynomially many decryption keys
are exposed, is an important and useful security notion. However, there seems to be a gap between
DKER and the requirement that we actually need since we can assume that in the real world, the
key leakage rarely happens, not often, though the leakage cannot be completely prevented.

Therefore, in this paper, we newly introduce a security notion for RIBE, called bounded DKER,
to bridge the gap and resolve the above open problems. Bounded DKER is a weak version of DKER.
Specifically, bounded DKER guarantees that the security of RIBE is not compromised even if a-
priori bounded number of decryption keys, which is denoted by Q, are exposed. We believe that
bounded DKER is still useful and practical even though the number of exposed decryption keys
has to be a-priori bounded. Note that most existing RIBE schemes that do not have DKER are
insecure even in the case Q = 1, since an adversary can get a long-term secret key with only a
single decryption key query.

One may think that the notion of B-DKER RIBE is similar to that of bounded-collusion
IBE [GLW12] or k-resilient IBE [HK04]. However, we emphasize that there is a major gap among

1Actually, there are unavoidable bugs in the security proof of Cheng and Zhang’s RIBE scheme [CZ15] (which we
communicated to the authors). See Section 4.3 for the detail.

4

them and bounded DKER from the practical aspect. In the bounded-collusion IBE, the number of
secret key extraction queries is a-priori bounded, whereas our definition allows unbounded collusion,
i.e., an adversary can unboundedly issue secret key extraction queries and decryption key queries
except for the target identity. Practically, in the bounded-collusion IBE scenario, an adversary
might collude with the larger number of users than the a-priori bounded number. The KGC may
be unaware of the behind-the-scenes collusion, and thus the system would not be refreshed before
breaking it. On the one hand, in the B-DKER RIBE scenario, it would appear that decryption
key exposures happen only through human errors or some accident. That is, the leakage cannot
be controlled by adversaries. The KGC may notice the fact of leakage from users who are honest
but leaked their keys, and therefore the KGC can keep the scheme secure by refreshing it at some
point.

Then, we resolve the above open problems of RIBE by not using the key re-randomization
technique, but instead weakening the requirement of DKER. More specifically, we propose the
following two RIBE schemes with bounded DKER (B-DKER RIBE schemes for short).

Lattice-based Anonymous B-DKER RIBE Scheme. We propose a lattice-based construc-
tion with bounded DKER from the learning with errors (LWE) assumption in the selective security
model. Our construction is: (1) the first lattice-based RIBE scheme that has the resilience property
against decryption key exposure; (2) the first anonymous RIBE scheme with (a kind of) DKER;
and (3) can be easily extended to the first lattice-based RIBE scheme in the semi-adaptive security
model, where the adversary issues the challenge identity and the challenge time period just after
receiving a public parameter.

Pairing-based Anonymous B-DKER RIBE Scheme. We propose a pairing-based construc-
tion with bounded DKER from the symmetric external Diffie-Hellman (SXDH) assumption, which
is the first pairing-based construction of an anonymous RIBE scheme that has the resilience prop-
erty against decryption key exposure.

As mentioned above, our two constructions never rely on the key re-randomization, which is the
core technique to achieve DKER in previous work. Namely, no useful information is leaked from
exposed decryption keys since each decryption key is masked with fresh randomness. Instead, we
use cover free families (CFFs) to achieve bounded DKER. In a nutshell, CFFs extract a number of
subsets from a set, and guarantees that any at most Q subsets do not cover any other subset. where
Q is a predetermined parameter. Therefore, we prepare a set of secret keys (for every identity), and
extracts a lot of subsets from it. We use different subsets of secret keys to generate each decryption
key. In other words, each subset depends on each time period. Consequently, at most Q exposed
decryption keys do not reveal any useful information on any other decryption keys due to the
underlying CFFs, though the secret key is relatively longer than existing schemes (see Section 1.3
for details).

Improvements from the proceedings version [TW17]. This version, which is an extended
version of [TW17], includes the following refinements and new results. We newly propose a pairing-
based construction, which did not appear in the conference version in Section 5. Plus, we refine

5

the syntax and security definition of B-DKER RIBE based on [KMT18] (see Section 3), and our
two constructions are proved to be secure in the sense of the rigorous security definition.

1.3 Our Approach

In this section, we show brief overview of our construction; how to achieve B-DKER by using CFFs.

Lattices. At first, we explain our approach to construct lattice-based B-DKER RIBE by modifying
Chen et al.’s RIBE scheme [CLL+12b]. The public parameter of Chen et al.’s RIBE scheme consists
of three matrices A0,A1,A2 and a syndrome vector u along with a gadget matrix2 G that was
introduced in [MP12]. The ciphertext of a plaintextM ∈ {0, 1} for an identity ID and a time period
T is

[A0|A1 +H(ID)G|A2 +H(T)G]⊤ s+ noise and u⊤s+M
⌊q
2

⌋
+ noise,

where s is a random secret vector and H(·) is a public hash function. Each user has a long-term
secret key e′ whereas KGC broadcasts a key update ẽ in each time period such that

[A0|A1 +H(ID)G] e′ = u′ and [A0|A2 +H(T)G] ẽ = ũ (1)

for some random syndrome vectors u′ and ũ. If the user is non-revoked, these two syndrome vectors
satisfy u′ + ũ = u. The short-term decryption key e for (ID,T) is their concatenation e := (e′, ẽ).

As opposed to an ordinary IBE, the RIBE simulator should create a long-term secret key e′ for
the target identity ID∗ and a key update ẽ for the challenge time period T∗. Chen et al. resolved
the problem by utilizing a Gaussian sampling algorithm in a clever way. If we do not care about
DKER, the simulator should create either a secret key e′ for the target identity ID∗ or a key update
ẽ for the target time period T∗. Then, the simulator picks e′ or ẽ in advance and sets u′ or ũ
according to the equation (1). Notice that the simulator can create long-term secret keys and key
updates for all the other ID ̸= ID∗ and T ̸= T∗ since it has a trapdoor.

In short, to obtain DKER, the challenge ciphertext for the target (ID∗,T∗) should not be
decrypted by using a key update for T∗ and short-term decryption keys for (ID∗,T) such that
T ̸= T∗. However, since Chen et al.’s short-term decryption key is a simple concatenation, the
target decryption key for (ID∗,T∗) can be recovered even with a single decryption key for (ID∗,T).
Since there is a concrete attack, the limitation is not due to proof techniques but the construction.
In other words, the simulator should create both short-term decryption keys e′ for (ID∗,T) such
that T ̸= T∗ and key updates ẽ for T∗ during the simulation. However, once the simulator uses
a Gaussian sampling algorithm and sets e′, the corresponding syndrome u′ is fixed. Then, the
simulator cannot create ẽ for ũ such that u′ + ũ = u.

To resolve the problem, we employ a novel RIBE construction. A starting point of our modifi-
cation is that our key update ẽ for a time period T satisfies

[A0|A2 +H(T)G] ẽ = ũT

2Although the gadget matrix was not used by Chen et al. [CLL+12b], it is well known that the parameters can
be reduced by utilizing the matrix.

6

where the corresponding syndrome vector ũT changes in each time period. The property directly
suggests that decryption keys for (ID∗,T) such that T ̸= T∗ are useless to recover a decryption key
for the target (ID∗,T∗). However, a new problem occurs by the construction. Since a secret key
e′ corresponds to a fixed syndrome vector u′, even non-revoked users cannot derive well-formed
decryption keys such that u′ + ũT = u for all time periods with their secret keys and key updates.
To overcome the issue, in our scheme, each user ID has multiple d secret keys e′1, . . . , e

′
d such that

[A0|A1 +H(ID)G] e′1 = u′
1, . . . , [A0|A1 +H(ID)G] e′d = u′

d.

A naive approach for the scheme to work correctly is that we use each e′ℓ in each time period.
However, the modification makes the scheme too inefficient since the number of secret keys d has
to be at least larger than the maximum time period and results in large polynomial. To reduce
the size, we set u− ũT as a subset sum of u′

1, . . . ,u
′
d so that non-revoked users can produce well-

formed decryption keys with smaller d. The resulting decryption key is a concatenation of the
corresponding subset sum of e′1, . . . , e

′
d and the key update ẽ. The simulator utilizes a Gaussian

sampling algorithm to create d−1 secret key elements e′1, . . . , e
′
d except e

′
ℓ∗ for ID∗ and a key update

ẽ for T∗ along with their corresponding syndrome vectors, then answers decryption key queries for
(ID∗,T) such that T ̸= T∗. The remaining syndrome vector u′

ℓ∗ is directly fixed. If e′ℓ∗ is not used
to answer Q decryption key queries, the approach goes well.

For the above construction to become a provably secure practical RIBE scheme whose adversary
is allowed to query Q decryption keys, there are the following three requirements: (1) the number
of secret keys d is at most polynomially bounded, (2) a subset sum of u1, . . . ,ud produces distinct
vectors whose number is larger than the maximum time period, (3) there is at least one secret key
e′ℓ∗ that is not used to answer arbitrary Q decryption key queries. Therefore, we use CFFs so that
the resulting scheme satisfies all the above requirements.

Pairing. As mentioned earlier, several pairing-based RIBE schemes that achieve DKER have been
already proposed. We here aim to realize an anonymous RIBE scheme with (B-)DKER. To obtain
small parameters, we utilize dual system encryption methodology. Specifically, our construction is
based on a two-level anonymous HIBE scheme proposed by Jutla and Roy [JR17, RS14].

We begin with a basic idea to construct an RIBE scheme. An RIBE decryption key for ID at a
time period T is considered as a two-level HIBE secret key for a two-dimension ID vector (ID,T).
Most of existing HIBE schemes realize a two-level secret key for (ID1, ID2) is in the form of

MK · F1(ID1)
r · F2(ID2)

s,

where MK is a master key, Fi(·) for i = 1, 2 is a hash function that takes an identity as input, and
r and s are randomness. Therefore, an RIBE decryption key for ID at T is constructed in the form
of

DKID,T := MK · F1(ID)r · F2(T)s.

Hence, we construct an RIBE secret key SKID and key update KUT by dividing the above DKID,T.
Moreover, we add noise to them so that DKID,T can be obtained only from both of appropriate

7

SKID and KUT. Therefore, DKID,T cannot be delegated from either SKID or KUT but not both due
to the noise. Hence, we construct SKID and KUT in the form of

SKID := P · F1(ID)r, KUT := P ′ ·MK · F2(T)s,

where P and P ′ are noises. If a user ID is not revoked at a time period T, then it holds P ′ = P−1,
and therefore DKID,T can be obtained by computing SKID ·KUT. We use the CS method to efficiently
manage who is revoked and who is not as in the previous schemes.

However, adding the noise is not sufficient to guarantee DKER since an adversary can get SKID

from an exposed decryption key DKID,T and a key update KUT by computing DKID,T/KUT. All
the existing pairing-based schemes (with DKER) rely on the key re-randomization technique to
avoid this problem. Roughly speaking, an adversary cannot derive SKID since every decryption key
DKID,T is re-randomized by a decryption key generation algorithm. However, as mentioned earlier,
the technique essentially requires that elements for re-randomization are included in the public
parameter, and it forces the resulting scheme to be non-anonymous.3

CFFs enable us to get around the obstacle. We use the CFF instead of the key re-randomization
technique, and finally achieve both B-DKER and anonymity. We first explain how we construct
our scheme using the CFF. We prepare a lot of secret keys for ID with different noises,

SKID := {sk(i)ID}
d
i=1 = {Pi · F1(ID)ri}di=1,

where d depends on a parameter of the underlying CFF, P1, . . . , Pd are noises, and r1, . . . , rd are
randomness. On the other hand, a key update at T is constructed as follows:

KUT :=

∏
i∈FT

P ′
i
−1

 ·MK · F2(T)s,

where FT is a subset of {1, . . . , d}, which is determined by the underlying CFF, and {P ′
i}i∈FT

are
noises. If a user ID is not revoked at T, then SKID shares the same noise with KUT (i.e., Pi = P ′

i

for every i ∈ {1, . . . , d}), and hence the user obtains a decryption key for ID at T by computing

DKID,T =
∏
i∈FT

sk
(i)
ID · KUT = MK · F1(ID)

∑
i∈FT

ri · F2(T)s.

In the security proof, we employ the dual system encryption methodology [Wat09]. Namely,
we define semi-functional forms of ciphertexts, secret keys, key updates, and decryption keys, and
change them from normal forms to semi-functional ones one by one. However, in general, the dual
system encryption methodology works well since an adversary cannot obtain a secret key SKID∗

for the target identity ID∗, whereas in the RIBE setting, the adversary can get it as well as a
key update KUT∗ at the target time period T∗. In other words, SKID∗ and KUT∗ may leak some
important information during the ordinary dual system encryption proof. Therefore, we have to
take into account the difference between (H)IBE and RIBE when we design hybrid games in the
context of RIBE.

3The fact is well known in the context of anonymous HIBE (e.g., [BW06])

8

To resolve this issue, we take the following proof strategy: We transform SKID∗ and KUT∗ into
their semi-functional forms by using the underlying CFF and semi-functional randomness of all
other secret keys and key updates. Namely, we first change all secret keys for ID (̸= ID∗) and key
updates for T (̸= T∗) (as well as challenge ciphertexts) with semi-functional ones. The underlying

CFF ensures that there exists sk
(ℓ)
ID∗ not used for at most Q decryption keys for ID∗, which are issued

to the challenger by the adversary. The semi-functional randomness and the existence of sk
(ℓ)
ID∗ allow

us to transform SKID∗ and KUT∗ into their semi-functional forms without leaking any important
information (see Lemma 9 for details). The rest of the proof can be proved by the ordinary dual
system encryption methodology. We more rigorously prove the security through the methodology
than previous works [CLL+12a, SE15, Lee16, XWW+16, XWW+17, XWWT18]. For instance, we
explicitly check that the distributions of semi-functional randomness are correctly simulated, while
the previous works do not care about them despite its importance in the security proof.

1.4 Roadmap

In Section 3, we define B-DKER RIBE. In Section 4, we construct the first B-DKER RIBE scheme
from the LWE assumption. In Section 5, we construct an anonymous B-DKER RIBE scheme from
pairings.

2 Preliminaries

“Probabilistic polynomial-time” is abbreviated as “PPT”. We denote [a, b] by a set {a, a+1, . . . , b}
for any integers a, b ∈ N such that a ≤ b. We sometimes write [d] as [1, d] for simplicity. Let a
bold capital A and a bold lower a denote a matrix and a column vector respectively. Let A⊤ and
a⊤ denote their transposes. If we write (y1, y2, . . . , ym) ← A(x1, x2, . . . , xn) for an algorithm A
having n inputs and m outputs, it means to input x1, x2, . . . , xn into A and to get the resulting

output y1, y2, . . . , ym. If X is a set, we write x
$←X to mean the operation of picking an element x

of X uniformly at random. We use λ as a security parameter. For sufficiently large λ, a function
negl : N → R is negligible if negl(λ) < 1/p(λ) for any polynomial p(λ). Let X and Y be two
random variables taking values in some finite set Ω. Statistical distance is defined as ∆(X;Y), as
∆(X;Y) := 1

2

∑
s∈Ω |Pr[X = s]− Pr[Y = s]|. For sets of random variables X and Y , we say that

X and Y are statistically close if ∆(X;Y) is negligible.

2.1 Lattice Preliminaries

An m-dimensional integer lattice is an additive discrete subgroup of Zm. For positive inte-
gers q, n,m, a matrix A ∈ Zn×mq , and a vector u ∈ Zmq , the m-dimensional integer (shifted)

lattices Λ⊥
q (A) and Λu

q (A) are defined as Λ⊥
q (A) := {e ∈ Zm : Ae = 0mod q} and Λu

q (A) :=

{e ∈ Zm : Ae = umod q} . The lattice Λu
q (A) is a shift of the lattice Λ⊥

q (A); if t ∈ Λu
q (A) then

Λu
q (A) = Λ⊥

q (A) + t. Let TA ∈ Zm×m be a basis of a lattice Λ⊥
q (A). Then TA ∈ Zm×m is also a

basis of a lattice Λ⊥
q (HA) for a full rank H ∈ Zn×nq .

9

Matrix Norms. For a vector u, we let ∥u∥ denote its L2 norm. For a matrix R ∈ Zk×m, we
let ∥R∥ denotes the L2 length of the longest column of R and ∥R∥GS = ∥R̃∥ where R̃ is the
Gram-Schmidt orthogonalization of R.

Gaussian Distributions. Let DΛ,σ,c denote the discrete gaussian distribution over Λ with center
c and a parameter σ. If c = 0, we omit the subscript and denote DΛ,σ. We summarize some basic
properties of discrete Gaussian distributions.

Lemma 1 ([GPV08]). Let Λ be an m-dimensional lattice. Let T be a basis for Λ, and suppose
σ ≥ ∥T∥GS · ω(

√
logm). Then Pr[∥x∥ > σ

√
m : x← DΛ,σ] ≤ negl(m).

Lemma 2 ([GPV08]). Let n and q be positive integers with q prime, and let m ≥ 2n log q. Then
for all but a 2q−n fraction of all A ∈ Zn×mq and for any σ ≥ ω(

√
logm), the distribution of u = Ae

mod q is statistically close to uniform over Znq where e ← DZm,σ. Furthermore, the conditional
distribution of e given Ae = u mod q is exactly DΛu

q (A),σ.

Sampling Algorithms.

Lemma 3. Let n,m, q > 0 be positive integers with q prime. There are probabilistic polynomial
time algorithms such that

• ([BLP+13]): SampleGaussian(T, σ)→ e
a randomized algorithm that, given a basis T for an m-dimensional lattice Λ and a parameter
σ ≥ ∥T∥GS · ω(

√
logm) as inputs, then outputs e which is distributed according to DΛ,σ.

• ([Ajt99, AP11, MP12]): TrapGen(q, n,m)→ (A,TA)
a randomized algorithm that, when m ≥ 2n⌈log q⌉, outputs a full rank matrix A ∈ Zn×mq and

a basis TA ∈ Zm×m for Λ⊥
q (A) such that A is statistically close to uniform and ∥TA∥GS =

O(
√
n log q) with overwhelming probability in n.

• ([CHKP12]): SampleLeft(A,F,u,TA, σ)→ e
a randomized algorithm that, given a full rank matrix A ∈ Zn×mq , a matrix F ∈ Zn×mq , a

vector u ∈ Znq , a basis TA for Λ⊥
q (A), and a Gaussian parameter σ > ∥TA∥GS · ω(

√
logm)

as inputs, then outputs a vector e ∈ Z2m
q sampled from a distribution that is statistically close

to DΛu
q (A|F),σ.

• ([ABB10a]): SampleRight(A,G,R,u,TG, σ)→ e where F = AR+G
a randomized algorithm that, given full rank matrices A,G ∈ Zn×mq , a matrix R ∈ Zm×m, a

vector u ∈ Znq , a basis TG of Λ⊥
q (G), and a Gaussian parameter σ > ∥TG∥GS ·∥R∥·ω(

√
logm)

as inputs, then outputs a vector e ∈ Z2m
q sampled from a distribution that is statistically close

to DΛu
q (A|F),σ.

• ([MP12]): Let m > n⌈log q⌉. Then there is a fixed full rank matrix G ∈ Zn×mq such that the

lattice Λ⊥
q (G) has a publicly known basis TG ∈ Zm×m

q with ∥TG∥GS ≤
√
5.

10

We sometimes call G a gadget matrix that enables us to reduce several parameters. We use
SampleGaussian(T, σ) only for sampling a distribution DZm,σ. For the purpose, we always use a
standard basis for Zm as T. Hence, we write SampleGaussian(Zm, σ) throughout the paper.

To obtain a lower bound of σ, we will use the following fact.

Lemma 4 ([ABB10a]). Let R be a m×m matrix chosen at random from {−1, 1}m×m. Then there
is a universal constant C such that Pr [∥R∥ > C

√
m] < e−m.

Randomness Extraction.

Lemma 5 ([ABB10a]). Suppose that m > (n + 1) log2 q + ω(log n) and that q > 2 is prime. Let
R be an m× k matrix chosen uniformly in {−1, 1}m×k where k = k(n) is polynomial in n. Let A
and B be matrices chosen uniformly in Zn×mq and Zn×kq respectively. Then, for all vectors e ∈ Zmq ,
the distribution (A,AR,R⊤e) is statistically close to the distribution (A,B,R⊤e).

Encoding Identities as Matrices.

Definition 1. Let q be a prime and n be a positive integer. We say that a function H : Znq → Zn×nq

is a full-rank difference (FRD) map if:

1. for all distinct u,v ∈ Znq , the matrix H(u)−H(v) ∈ Zn×nq is full rank,

2. H is computable in polynomial time in n log q.

Learning with Errors (LWE). The security of our RIBE scheme is reduced to the following
LWE assumption.

Assumption 1 (Learning with Errors (LWE) Assumption [Reg05]). For integers n,m = m(n),

α ∈ (0, 1) such that a prime q = q(n) > 2 and αq > 2
√
n, define the distribution: A

$← Zn×mq , s
$←

Znq ,x
$← DZm,αq,v

$← Zmq . We assume that for any PPT algorithm A (with output in {0, 1}),
AdvLWE

A :=
∣∣Pr [A(A,A⊤s+ x) = 1

]
− Pr [A(A,v) = 1]

∣∣ is negligible in the security parameter n.

Regev [Reg05] showed that (through a quantum reduction) the LWE problem is as hard as
approximating the worst-case GapSVP to Õ(n/α) factors. Peikert [Pei09], Brakerski et al. [BLP+13]
showed analogous results through classical reductions.

2.2 Pairing Preliminaries

Bilinear Groups. A bilinear group generator G is an algorithm that takes a security parameter
λ as input and outputs a bilinear group (q,G1, G2, GT , g1, g2, e), where q is a prime, G1, G2, and
GT are multiplicative cyclic groups of order q, g1 and g2 are (random) generators of G1 and G2,
respectively, and e is an efficiently computable and non-degenerate bilinear map e : G1×G2 → GT
with the following bilinear property: For any u, v ∈ Zq, e(gu1 , gv2) = e(g1, g2)

uv. In this paper, we
consider asymmetric pairing , i.e., G1 ̸= G2.

Complexity Assumptions. We describe the symmetric external Diffie-Hellman (SXDH) assump-
tion, which is the underlying assumption of our pairing-based construction.

11

Assumption 2 (Decisional DIffie-Hellman Assumption in Gi (DDHi Assumption)). Given a group
generator G with input a security parameter λ, define the distribution:

G := (q,G1, G2, GT , g1, g2, e)← G(λ), c1, c2, µ
$← Zq,

D := (G, gc1i , g
c2
i), V := gc1c2i , W := gc1c2+µi .

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvDDHi
A := |Pr [A(D,V) = 1]− Pr [A(D,W) = 1]|

is negligible in the security parameter λ.

Assumption 3 (Symmetric External DIffie-Hellman (SXDH) Assumption). Given a group gener-
ator G, both the DDH1 and DDH2 assumptions hold.

2.3 KUNode Algorithm

To reduce costs of a revocation process, we use a binary tree structure and apply the following
KUNode algorithm as in the previous RIBE schemes [BGK08, LV09, SE14b]. KUNode(BT,RLT)
takes as input a binary tree BT and a revocation list RL, and outputs a set of nodes. When η is a
non-leaf node, then we write ηL and ηR as the left and right child of η, respectively. When η is a
leaf node, Path(BT, η) denotes the set of nodes on the path from η to the root. Each user is assigned
to a leaf node. If a user who is assigned to η is revoked on a time period T ∈ T , then (η,T) ∈ RLT.
KUNode(BT,RLT) is executed as follows. It sets X := ∅ and Y := ∅. For any (ηi,Ti) ∈ RLT, if
Ti ≤ T then it adds Path(BT, ηi) to X (i.e., X := X ∪Path(BT, ηi)). Then, for any η ∈ X , if ηL /∈ X ,
then it adds ηL to Y. If ηR /∈ X , then it adds ηR to Y. Finally, it outputs Y if Y ̸= ∅. If Y = ∅,
then it adds root to Y and outputs Y.

2.4 Cover Free Families

We define a cover free family (CFF), which is a core building block in our construction, as follows.

Definition 2 (Cover Free Families [EFF85]). Let α, d,Q be positive integers, and F := {Fµ}µ∈[α]
be a family of subsets of [d], where every |Fµ| = w. F is said to be w-uniform Q-cover-free if it

holds that
∪Q
j=1Fij ̸⊃ FiQ+1 for any Fi1 ,Fi2 , . . . ,FiQ+1 ∈ F such that Fik ̸= Fiℓ for any distinct

k, ℓ ∈ [Q+ 1].

Lemma 6 ([KRS99]). There is a deterministic polynomial time algorithm CFF.Gen that, on input
of positive integers α and Q, returns d ∈ N and a family F = {Fµ}µ∈[α], such that F is Q-cover
free over [d] and w-uniform, where d ≤ 16Q2 logα and w = d/4Q.

In our B-DKER RIBE constructions, we assume FT is a d-bit string such that ℓ-th bit is one
for ℓ ∈ FT and other bits are zero.

12

3 B-DKER RIBE

3.1 Definitions

In this section, we formally define B-DKER RIBE.M, I, and T denote sets of plaintexts, identities,
and time-periods, respectively. Our definition follows that of recently proposed Katsumata et al.’s
R(H)IBE [KMT18]. Although syntaxes and security models of R(H)IBE are slightly different in
other papers, we believe that Katsumata et al. introduced the simplest syntax and the most
rigorous security model.

Syntax. In the syntax, unlike those in other papers, the state information and the revocation list
are parts of the master secret key. Hence, the master secret key may be updated during the secret
key generations and key update information generations. Furthermore, we omit the “revocation”
algorithm in the syntax since the operation is simple and common in all R(H)IBE schemes; given
an identity ID which will be revoked and the time period T, KGC adds a tuple (ID,T) to the
revocation list. Therefore, the revocation list RLT at the time period T contains tuples (IDi,Ti)’s,
where the IDi have already been revoked at the time period Ti.

An RIBE scheme Π consists of the six algorithms (SetUp,PKG,KeyUp,DKG,Enc,Dec) defined
as follows:

SetUp(1λ)→ (PP,MK) : This is the probabilistic setup algorithm that takes a security parameter
1λ as input, and outputs a public parameter PP and a master secret key MK that contains a
state st and an initial revocation list RL1 := ∅.
We assume that the plaintext space M, the time period space T , and the identity space I
are determined only by the security parameter λ, and their descriptions are contained in PP.

PKG(PP,MK, ID)→ (SKID,MK′) : This is the secret key generation algorithm that takes the public
parameter PP, the master secret key MK, and an identity ID ∈ I as input, and may update
the state information st in the master secret key MK. Then, it outputs a secret key SKID for
the identity ID and also the “updated” master secret key MK′.

KeyUp(PP,T,MK)→ (KUT,MK′) : This is the key update information generation algorithm that
takes the public parameter PP, a time period T ∈ T , the master secret key MK (that contains
the revocation list RLT) as input, and may update the state information st in MK. Then, it
outputs a key update KUT and also the “updated” master secret key MK′.

DKG(PP, SKID,KUT)→ DKID,T or ⊥ : This is the decryption key generation algorithm that takes
the public parameter PP, a secret key SKID, and a key update KUT as input, and outputs a
decryption key DKID,T for the time period T or the special “invalid” symbol ⊥ if ID has been
revoked by T.

Enc(PP, ID,T,M)→ CTID,T : This is the encryption algorithm that takes the public parameter
PP, an identity ID, a time period T, and a plaintext M as input, and outputs a ciphertext
CTID,T.

13

Dec(PP,DKID,T,CT)→M : This is the decryption algorithm that takes the public parameter PP,
a decryption key DKID,T and a ciphertext CT as input, and outputs the decryption result M .

Correctness. We require the following to hold for an RIBE scheme. Informally, we require a
ciphertext corresponding to an identity ID for a time period T to be properly decrypted by ID if ID
is not revoked on time T. To fully capture this, we consider all the possible scenarios of creating
the secret key for ID. Namely, for all λ ∈ N, (PP,MK)← SetUp(1λ), ID ∈ I, T ∈ T , M ∈ M, and
RLT ⊆ I \ {ID}, we require M ′ =M to hold after executing the following procedures:

(1) (SKID,MK)← PKG(PP,MK, ID).

(2) (KUT,MK)← KeyUp(PP,T,MK).

(3) DKID,T ← DKG(PP,SKID,KUT).

(4) CTID,T ← Enc(PP, ID,T,M).

(5) M ′ ← Dec(PP,DKID,T,CTID,T).

We note that, the most stringent way to define correctness would be to also capture the fact that
the secret key MK could be updated after executing PKG. In particular, the output of KeyUp,
which takes as input the KGC’s secret key MK, may differ in general before and after PKG is run.
Therefore, to be more precise, we should also allow an arbitrary (polynomial) number of executions
of PKG in between steps (1) and (2). However, we defined correctness as above for the sake of
simplicity and readability. We note that our scheme satisfies the more stringent correctness (which
will be obvious from construction).

Security Definitions. Here, we give the security definitions of an RIBE scheme Π = (SetUp,
PKG,KeyUp,DKG,Enc,Dec) with bounded decryption key exposure resistance (B-DKER). We first
give the formal definition of selective-identity security which we call IND-sRID-Q-CPA security via
a game between an adversary A and the challenger C. The game is parametrized by the security
parameter λ, and has the global counter Tcu, initialized with 1, that denotes the “current time
period” with which C’s responses to A’s queries are controlled. Intuitively, A can get all the
key updates, secret keys, and decryption keys under the following restriction about the challenge
identity ID∗: Only if ID∗ is revoked by the challenge time period T∗, then A is allowed to get a
secret key for ID∗. Otherwise, A is allowed to get at most Q decryption keys for ID∗. Formally, the
game proceeds as follows:

At the beginning, A sends the challenge identity/time period pair (ID∗,T∗) ∈ I ×T to C. Next,
C runs (PP,MK) ← SetUp(1λ), and prepares a list SKList that initially contains (KGC,MK), and
into which identity/secret key pairs (ID,SKID) generated during the game will be stored. From this
point on, whenever a new secret key SKID is generated for an identity ID ∈ I due to the execution of
PKG or the master secret key MK is updated due to the execution of KeyUp, C will store (ID,SKID)
or update (KGC,MK) in SKList, and we will not explicitly mention this addition/update. Then,

14

C executes (KU1,MK′) ← KeyUp(PP,Tcu = 1,MK), where RL1 = ∅, for generating the initial time
period Tcu = 1. After that, C gives PP and KU1 to A.

From this point on, A may adaptively make the following five types of queries to C:

Secret Key Generation Query: Upon a query ID ∈ I from A, where it is required that (ID, ∗) /∈
SKList, C executes (SKID,MK′)← PKG(PP,MK, ID) (and returns nothing to A).

Secret Key Reveal Query: Upon a query ID ∈ I from A, C checks if the following conditions
are simultaneously satisfied:

(a) (ID, SKID) ∈ SKList.

(b) If Tcu ≥ T∗ and ID∗ /∈ RLT∗ , then ID ̸= ID∗.

If these conditions are not satisfied, then C returns ⊥ to A. Otherwise, C finds SKID from
SKList, and returns it to A.

Revocation & Key Update Query: Upon a query RL ⊆ I (which denotes the set of identities
that are going to be revoked in the next time period) from A, C checks if the following
conditions are satisfied simultaneously:4

(a) RLTcu ⊆ RL.

(b) If Tcu = T∗ − 1 and SKID∗ for the challenge ID∗ has been revealed to A via a secret key
reveal query ID∗, then ID∗ ∈ RL.

(c) If Tcu = T∗ − 1 and DKID∗,T for the challenge ID∗ has been revealed to A more than Q
times via decryption key reveal queries (ID∗,T), then ID∗ ∈ RL.

If these conditions are not satisfied, then C returns ⊥ to A.
Otherwise C increments the current time period by Tcu ← Tcu + 1. Then, C updates the
master secret key MK by setting RLTcu ← RL, and runs (KUTcu ,MK′)← KeyUp(PP,Tcu,MK).
Finally, C returns KUTcu to A.

Decryption Key Reveal Query: Upon a query (ID,T) ∈ I×T from A, C checks if the following
conditions are simultaneously satisfied:

(a) T ≤ Tcu.

(b) ID /∈ RLT.

(c) (ID,T) ̸= (ID∗,T∗).

(d) If Tcu ≥ T∗, ID∗ /∈ RLT∗ , and DKID∗,T for the challenge ID∗ has been revealed to A Q
times via decryption key reveal queries (ID∗,T), then ID ̸= ID∗.

(e) (ID, SKID) ∈ SKList.

4The condition (c) ensures the B-DKER security.

15

If these conditions are not satisfied, then C returns ⊥ to A. Otherwise, C finds SKID from
SKList, runs DKID,T ← DKG(PP, SKID,KUT), and returns DKID,T to A.

Challenge Query: A is allowed to make this query only once. Upon a query M∗ ∈ M from A,
C picks the challenge bit b ∈ {0, 1} uniformly at random, runs CT∗ ← Enc(PP, ID∗,T∗,M∗)
if b = 0 or samples CT∗ uniformly at random from the ciphertext space if b = 1. Finally, C
returns the challenge ciphertext CT∗ to A.

At some point, A outputs b′ ∈ {0, 1} as its guess for b and terminates.
The above completes the description of the game.

Definition 3 (IND-sRID-Q-CPA). For any a-priori fixed Q (:= poly(λ)), we say that an RIBE
scheme Π satisfies IND-sRID-Q-CPA security, if the advantage AdvIND-sQ-CPA

Π,A (λ) := 2 · |Pr[b′ =
b]− 1/2| is negligible for all PPT adversaries A.

The semi-adaptive security is a slight modification of the selective security; A sends the challenge
identity/time period pair (ID∗,T∗) ∈ I × T to C just after C gives PP and KU1 to A.

The more desirable security notion, called adaptive-identity security, is defined in the same way
as selective-identity security, except that in the security game the adversary A chooses the pair of
the challenge identity and time period (ID∗,T∗) not at the beginning of the game, but at the time
it makes the challenge query. Since C does not know (ID∗,T∗), the condition (b) in secret key reveal
queries, the condition (b), (c) in revocation & key update queries, the condition (c) in decryption
key reveal queries can be omitted in advance of the challenge query. In turn, the response to the
challenge query is defined differently as follows:

Challenge Query: A is allowed to make this query only once. Upon a query (ID∗,T∗,M∗) from
A, where it is required that the following conditions are satisfied simultaneously:

(a) if SKID∗ has been revealed to A, then it is required that ID∗ ∈ RLT∗ ,

(b) if DKID∗,T has been revealed to A more than Q times, then it is required that ID∗ ∈ RLT∗ ,

(c) if T∗ ≤ Tcu, then A has not submitted (ID∗,T∗) as a decryption key reveal query,

C returns the challenge ciphertext CT∗ in the same way as the selective-identity game.

Definition 4 (IND-RID-Q-CPA). For any a-priori fixed Q (:= poly(λ)), we say that an RIBE
scheme Π satisfies IND-RID-Q-CPA security, if the advantage AdvIND-Q-CPA

Π,A (λ) := 2 · |Pr[b′ =
b]− 1/2| is negligible for all PPT adversaries A.

16

3.2 Treatment of Binary Trees

In the subsequent sections, we propose lattice-based and pairing-based B-DKER RIBE schemes.
Since both constructions utilize the complete subtree (CS) method as several previous works, we
explain the treatment of binary trees. Experts of R(H)IBE can skip this part.

KGC keeps a binary tree BT in the master secret key MK to manage users. The binary tree BT
has N leaves and can manage at most N users. To manage arbitrary polynomial number of users,
we set N super-polynomial in the security parameter λ, e.g., N = λlog(λ). Let θ denote nodes of
the binary tree BT, and especially η denote leaf nodes. To realize the revocation mechanism, during
secret key generations, KGC assigns each user ID to a randomly selected leaf node η in the binary
tree BT. In addition, during secret key generations and key update information generations, KGC
assigns random elements, i.e., random vectors uθ ∈ Znq in the lattice-based scheme and random
group elements Pθ
inG2 in the pairing-based scheme, to some required nodes θ. When we say “the binary tree BT”,
we assume that it contains the description of the nodes θ as natural numbers, assignment of users
ID, and a random element in each node.

Although the binary tree BT has super-polynomially many leaves, the amount of information
which KGC keeps is polynomial in the security parameter λ. To produce a secret key SKID, KGC
keeps at most O(logN) = O(log2(λ)) random elements in nodes θ ∈ Path(BT, ηID). Since the number
of secret key generation queries is polynomial in the security parameter λ, the amount of information
produced during the queries is also polynomial. Similarly, to produce a key update KUT, KGC keeps
at most O(R log(N/R)) = O(R log2(λ)) random elements in nodes θ ∈ KUNode(BT,RLT), where R
denotes the number of revoked users. Since the life-time of the scheme is polynomial in the security
parameter λ, the amount of information produced during key update queries is also polynomial.

To utilize the binary tree data structure and realize the revocation mechanism, we prepare the
following four algorithms (CS.SetUp,CS.Assign,CS.Cover,CS.Match) in this paper:

CS.SetUp(N)→ BT: on input the natural number N , it outputs a binary tree BT with N leaves.
CS.Assign(BT, ID)→ (η, BT): on input a binary tree BT and an identity ID, it randomly assigns a

leaf node η, which no other identities are still assigned to, to the identity ID. Then, it outputs
the leaf η and also the “updated” binary tree BT.

CS.Cover(BT,RLT)→ KUNode(BT,RLT): on input a binary tree BT and a revocation list RLT, it
runs the KUNode algorithm and outputs a set of nodes KUNode(BT,RLT).

CS.Match(Path(BT, ηID),KUNode(BT,RLT))→ θ or ∅: on input Path(BT, η) and KUNode(BT,RLT),
it outputs an arbitrary node θ ∈ Path(BT, ηID) ∩ KUNode(BT,RLT) if it exists. Otherwise, it
outputs ∅.

3.3 Strategy-Dividing Lemma

As the previous works, during the security proof, we separate strategies of adversaries in the
following two types:

• Type-I adversary: ID∗ will be revoked before T∗. Hence, Amay issue a secret key extraction
query for SKID∗ or decryption key queries DKID∗,T for T ̸= T∗ more than Q times.

17

• Type-II adversary: ID∗ will not be revoked before T∗. Hence, A may issue decryption key
queries DKID∗,T for T ̸= T∗ at most Q times.

Let AI and AII denote adversaries which always follow the Type-I and the Type-II strategy, re-
spectively. By definition, strategies of AI and AII cover all possible strategies of A. Furthermore,
the strategies are publicly detectable, i.e., during the security game, as soon as A deviates from the
Type-i strategy, it can be efficiently recognized given A’s view at the moment it deviates from the
strategy. In general, A does not always follow either Type-I or Type-II, however, Katsumata et
al. [KMT18] formally proved the following strategy-dividing lemma, i.e., if we can prove the security
against each AI and AII , we can prove it against general A.

Lemma 7 (Strategy-Dividing Lemma [KMT18]). Let Π be an RIBE scheme, and let A be any
PPT adversary against the IND-sRID-Q-CPA security of Π. Let AI and AII be an adversary A
which always follows the Type-I and the Type-II strategy, respectively. Let AdvIND-sQ-CPA

Π,AI
(λ) and

AdvIND-sQ-CPA
Π,AII

(λ) denote AI ’s and AII ’s advantage against IND-sRID-Q-CPA security, respectively.
Since two types cover all possible strategies and publicly detectable,

AdvIND-sQ-CPA
Π,A (λ) ≤ AdvIND-sQ-CPA

Π,AI
(λ) + AdvIND-sQ-CPA

Π,AII
(λ)

holds. The analogous inequality holds for an adversary against the IND-RID-Q-CPA security of Π.

4 B-DKER RIBE Scheme from Lattices

4.1 Construction

In this section, we construct a lattice-based B-DKER RIBE scheme by combining Chen et al.’s
RIBE without DKER [CLL+12b] and CFFs.

We set the plaintext space as M = {0, 1} and the identity space as I = Znq \ {0n}. We also
encode the the time period space T = {1, 2, · · · ,Tmax} into a polynomial sized subset of Znq \ {0n}.
There are three matrices A0,A1,A2 in PP. We use the following hash functions to encode an
identity and a time period into a matrix:

• FID = A1 +H(ID)G ∈ Zn×mq ,

• FT = A2 +H(T)G ∈ Zn×mq ,

where H(·) is a FRD map defined in Definition 1 and G is a gadget matrix.

Our RIBE construction is as follows:

SetUp(1n)→ (PP,MK) : Set parameters m, q, σ, α, and N . Run (A0,TA0) ← TrapGen(q, n,m),

(w, d,F) ← CFF.Gen(|T |, Q), and BT ← CS.SetUp(N). Let RL0 := ∅. Sample (A1,A2)
$←

(Zn×mq)2 and u
$← Znq . Choose an FRD map H(·) as in Definition 1. Then, outputs

PP := (H(·),A0,A1,A2,u) , MK := (BT,RL0,TA0).

18

PKG(PP,MK, ID)→ (SKID,MK′) : Run (ηID, BT
′) ← CS.Assign(BT, ID). For each node θ ∈

Path(BT, ηID), recall {u′
θ,ℓ}ℓ∈[d] ∈ (Znq)d if they were defined. Otherwise, choose ran-

dom {u′
θ,ℓ}ℓ∈[d]

$← (Znq)d and store them in θ. For every ℓ ∈ [d], sample e′θ,ℓ ←
SampleLeft(A0,FID,u

′
θ,ℓ,TA0 , σ). Then, it outputs

SKID =
({
θ, {e′θ,ℓ}ℓ∈[d]

}
θ∈Path(BT,ηID)

)
, MK′ := (BT′,RLT,TA0).

KeyUp(PP,T,MK)→ (KUT,MK′) : Run KUNode(BT,RLT) ← CS.Cover(BT,RLT). For each node
θ ∈ KUNode(BT,RLT), recall {u′

θ,ℓ}ℓ∈[d] ∈ (Znq)d if they were defined. Otherwise, choose ran-

dom {u′
θ,ℓ}ℓ∈[d]

$← (Znq)d and store them in θ. Sample ẽθ ← SampleLeft(A0,FT, ũθ,TA0 , σ).
Then, it outputs

KUT =
(
{θ, ẽθ}θ∈KUNode(BT,RLT) ,FT

)
, MK′ := (BT′,RLT,TA0).

DKG(PP, SKID,KUT)→ DKID,T or ⊥ : Parse SKID and KUT as
({
θ, {e′θ,ℓ}ℓ∈[d]

}
θ∈Path(BT,ηID)

)
and(

{θ, ẽθ}θ∈KUNode(BT,RLT)
,FT

)
, respectively. Output ⊥ if ∅ ← CS.Match(Path(BT, ηID),

KUNode(BT,RLT)). Otherwise, for θ ← CS.Match(Path(BT, ηID),KUNode(BT,RLT)), compute
eθ =

∑
ℓ∈FT

e′θ,ℓ and output
DKID,T = (eθ, ẽθ).

Enc(PP, ID,T,M)→ CTID,T : To encrypt a bit M ∈ {0, 1}, it samples a secret vector s
$← Znq ,

random matrices
(
RID,RT

) $←
(
{−1, 1}m×m)2, noise x ← DZ,αq, and a noise vector y ←

DZm,αq. It computes

c0 = u⊤s+ x+M
⌊q
2

⌋
∈ Zq, c = [A0|FID|FT]

⊤ s+

 Im
R⊤

ID

R⊤
T

y ∈ Z3m
q ,

and outputs a ciphertext CTID,T := (c0, c) ∈ Zq × Z3m
q .

Dec(PP,DKID,T,CT)→M : Parse c as [c0|c1|c2]⊤, where ci ∈ Zmq . Compute

c′ = c0 − e⊤θ

[
c0
c1

]
− ẽ⊤θ

[
c0
c2

]
∈ Zq.

Compare c′ and ⌊ q2⌋ treating them as integers in Z. If they are close, i.e., if |c′ − ⌊ q2⌋| < ⌊
q
4⌋,

output 1, otherwise output 0.

Parameters and Correctness. Due to the property of the CS method, an output of
CS.Match(Path(BT, ηID),KUNode(BT,RLT)) is not ⊥ for non-revoked ID. We have during decryption,

c′ = c0 − e⊤θ

[
c0
c1

]
− ẽ⊤θ

[
c0
c2

]
19

=M
⌊q
2

⌋
+ x− e⊤θ

[
Im
R⊤

ID

]
y − ẽ⊤θ

[
Im
R⊤

T

]
y︸ ︷︷ ︸

error term

.

Let eθ = [eθ,1|eθ,2] and ẽθ = [ẽθ,1|ẽθ,2] with [eθ,1, eθ,2, ẽθ,1, ẽθ,2] ∈ (Zm)4. Then the error term is

x− (eθ,1 + ẽθ,1 +RIDeθ,2 +RTẽθ,2)
⊤ y.

From Lemma 1, we have ∥e′θ,ℓ∥ ≤ σ
√
2m, ∥ẽθ∥ ≤ σ

√
2m, |x| ≤ αq, and ∥y∥ ≤ αq

√
m with high

probability. Since the underlying CFF is w-uniform, we have

∥eθ∥ ≤
∑
ℓ∈FT

∥e′θ,ℓ∥ ≤ wσ
√
2m.

From Lemma 4, ∥RID∥ ≤ O(
√
m) and ∥RT∥ ≤ O(

√
m) with high probability. Then,

∥eθ,1 + ẽθ,1 +RIDeθ,2 +RTẽθ,2∥ ≤ ∥eθ∥+ ∥ẽθ∥+ ∥RID∥ · ∥eθ∥+ ∥R2∥ · ∥ẽθ∥ ≤ O(wσm).

Thus, the error term is bounded above by

|x|+
∣∣∣[eθ,1 + ẽθ,1 +RIDeθ,2 +R2ẽθ,2]

⊤y
∣∣∣ ≤ wσm3/2qα

with high probability.
Now, for the scheme to work correctly, the following conditions should hold, taking n to be the

security parameter:

• the error term is less than q/5 with high probability, i.e., α < (wσm3/2)−1,

• that TrapGen can operate, i.e., m > 2n log q,

• that σ is sufficiently large for SampleLeft and SampleRight, i.e., σ > ∥TG∥GS · ∥RID∥ ·
ω(
√
logm) =

√
m · ω(

√
logm),

• that Regev’s reduction applies, i.e., q > 2
√
n/α,

Hence, we set the parameters as follows:

m = 2n1+δ, q = wm5/2 · ω(
√

log n), σ =
√
m · ω(

√
log n), α =

(
wm2 · ω(

√
log n)

)−1
.

and round up m to the nearest larger integer and q to the nearest larger prime. Here we assume
that δ is such that nδ > ⌈log q⌉ = O(log n).

20

4.2 Security

In this section, we prove the security of our scheme in Section 4.1.

Theorem 1. If the LWE assumption holds and the underlying CFF is w-uniform Q-cover-free, then
the proposed RIBE scheme in Section 4.1 with the parameters set as above is IND-sRID-Q-CPA
secure.

The proof proceeds in a sequence of games, where the first game is the same as IND-sRID-Q-
CPA game. In the last game, the challenge ciphertext is a uniform random element in the ciphertext
space, hence, the advantage of a PPT adversary A is zero. Let Ei denote the event that A wins
the game, i.e., b′ = b, in Game i. Then, A’s advantage in Game i is

∣∣Pr[Ei]− 1
2

∣∣. As we claimed
in Section 3.3, we provide distinct reductions against the Type-I and the Type-II adversary. The
proof against the Type-I adversary is similar to that of Chen et al.[CLL+12b]. During the proof
against the Type-II adversary, we use the property of CFFs and answer Q bounded decryption key
queries on (ID∗,T).

Proof. The proof proceeds in a sequence of games.

Gamereal: This is the original IND-sRID-Q-CPA game between an adversary A against our scheme
and an IND-sRID-Q-CPA challenger C.

Game 0: This game is a preparation to utilize the property of CFFs later. We separate descriptions
of Game 0 depending on types of the adversary.

Type-I Adversary: The game is the same as Gamereal. Thus,

Pr[E0] = Pr[Ereal].

Type-II Adversary: Let {Ti}i∈[Q] be a set of time periods, where A issues decryption key reveal
queries (ID∗,Ti). Notice that C does not know the actual values of {Ti}i∈[Q] at the beginning of
the game.

The game is the same as Gamereal except that at the beginning of the game, C guesses an
index ℓ∗ ∈ FT∗ such that the short vector e′θ,ℓ∗ is not used to answer A’s decryption key reveal
queries on (ID∗,Ti), i.e.,

ℓ∗ ∈ FT∗ ∧ ℓ∗ /∈ FT1 ∧ · · · ∧ ℓ∗ /∈ FTQ
. (2)

If the guess is incorrect, C aborts the game and output a random bit.
If C does not abort the game, the game is the same as Gamereal from A’s view. Since the

underlying CFF is w-uniform, C’s guess is correct with probability 1/w. Thus,∣∣∣∣Pr[E0]−
1

2

∣∣∣∣ = 1

w

∣∣∣∣Pr[Ereal]− 1

2

∣∣∣∣ .
In the rest of the proof, C utilizes the knowledge of the index ℓ∗.

21

Game 1: In Game 0, PP contains random matrices A0,A1,A2 in Zn×mq . At the challenge phase,
C creates the challenge ciphertext CTID∗,T∗ . We use RID∗ and RT∗ to denote random matrices
which C will use to create the challenge ciphertext.

A modification in this game is the same as that of Chen et al. [CLL+12b]. Game 1 is the same
as Game 0 except that C changes the way to create random matrices A1 and A2 in PP. At the
setup phase, C samples random matrices RID∗ and RT∗ , which will be used to create the challenge
ciphertext CTID∗,T∗ , and creates public matrices A1 and A2 as

A1 ← A0RID∗ −H(ID∗)G and A2 ← A0RT∗ −H(T∗)G. (3)

The remainder of the game is unchanged.
We show that Game 0 and Game 1 are statistically close in A’s view. The only difference

between the games is whether the matrices RID∗ and RT∗ are used to create A1 and A2 in PP
or not. Let R∗ := [RID∗ |RT∗] ∈ Zm×2m

q . From Lemma 5, the following two distributions are
statistically close: (

A0, [A1|A2] , (R
∗)⊤ y

)
and

(
A0,A0R

∗, (R∗)⊤ y
)

for independently random matrices A1 and A2 in Zn×mq . It follows that A0RID∗ and A0RT∗ are
independently random matrices in Zn×mq . Hence, Game 0 and Game 1 are statistically close in
A’s view. Thus, ∣∣∣∣Pr[E1]−

1

2

∣∣∣∣ ≤ ∣∣∣∣Pr[E0]−
1

2

∣∣∣∣− negl(λ).

Game 2: In Game 1, {u′
θ,ℓ}ℓ∈[d] are independently random vectors in Znq , and C samples short

vectors {e′θ,ℓ}ℓ∈[d] and ẽθ using the SampleLeft algorithm. Game 2 is the same as Game 1 except
the assignment of ID∗ in BT and creations of

• vectors {u′
θ,ℓ}ℓ∈[d] in BT,

• short vectors {e′θ,ℓ}ℓ∈[d] for ID
∗,

• short vectors ẽθ for T∗,

so that C creates the keys without using the trapdoor TA0 .
At first, we explain the assignment of ID∗ in BT. Just after C generates BT, C picks a random

leaf node in BT and set it as η∗. Upon A’s secret key generation queries for ID ̸= ID∗, C picks a
random leaf node ηID in BT \ {η∗} and assign ID. Upon A’s secret key generation query for ID∗, C
assigns ID∗ to η∗. The modification does not change the distribution of the game.

Then, we separate the way for creating the above vectors depending on types of the adversary.
Although C first samples {u′

θ,ℓ}ℓ∈[d] then samples {e′θ,ℓ}ℓ∈[d] and ẽθ using the SampleLeft algorithm

in Game 1, C first samples {e′θ,ℓ}ℓ∈[d] for ID∗ and ẽθ for T∗ using the SampleGaussian(Z2m, σ)
algorithm then uses them to create {u′

θ,ℓ}ℓ∈[d] in Game 2.

Type-I Adversary: A modification in this game is similar to that of Chen et al. [CLL+12b]. By
definition, short vectors {e′θ,ℓ}ℓ∈[d] used to create SKID∗ and DKID∗,T are associated with nodes

22

θ ∈ Path(BT, η∗). By definition of the Type-I adversary, since ID∗ will be revoked by T∗, short
vectors ẽθ in KUT∗ have to be associated with nodes θ /∈ Path(BT, η∗) due to the property of the
CS method. Observe that there are no nodes θ that are common for SKID∗ and KUT∗ . Since C has
already set the leaf node η∗, we change the creations of the above vectors as follows:

• For θ ∈ Path(BT, η∗), C samples an independently random vector e′θ,ℓ ←
SampleGaussian(Z2m, σ) and sets u′

θ,ℓ = [A0|FID∗]eθ,ℓ for ℓ ∈ [d].

• For θ /∈ Path(BT, η∗), the creation of u′
θ,ℓ is the same as that of Game 1 for ℓ ∈ [d] \FT∗ . For

the nodes, C samples ẽθ ← SampleGaussian(Z2m, σ) and sets u′
θ,ℓ for ℓ ∈ FT∗ as uniformly

random vectors in Znq subject to u−
∑

ℓ∈FT∗
u′
θ,ℓ = [A0|FT∗]ẽθ.

Then, C creates SKID, KUT, and DKID,T to answer A’s queries as follows:

• C’s creations of SKID for ID ̸= ID∗ and KUT for T ̸= T∗ are unchanged,

• C uses the above
{
e′θ,ℓ
}
ℓ∈[d] as SKID∗ ,

• C uses the above ẽθ as KUT∗ .

• C uses the above SKID and KUT to create DKID,T.

Here, C does not use the trapdoor TA0 to create SKID∗ and KUT∗ .
We show that Game 2 and Game 1 are statistically close with high probability in A’s view,

where the discussion is the same as that of Chen et al. [CLL+12b]. In Game 1, observe that

• vectors u′
θ,ℓ distribute according to uniform in Znq ,

• short vectors e′θ,ℓ of SKID∗ distribute according to D
Λ
u′
θ,ℓ

q ([A0|FID∗]),σ
,

• short vectors ẽθ for T∗ distribute according to D
Λ
u−

∑
ℓ∈FT∗

u′
θ,ℓ

q ([A0|FT∗]),σ
.

In Game 2, {e′θ,ℓ}ℓ∈[d] for ID
∗ and ẽθ for T∗ distribute according to DZ2m,σ due to the property of

SampleGaussian(Z2m, σ). Hence, from Lemma 2, the distribution of each {u′
θ,ℓ}ℓ∈[d] is statistically

close to uniform in Znq as Game 1. Furthermore, the conditional distribution of each {e′θ,ℓ}ℓ∈[d]
and ẽθ given {u′

θ,ℓ}ℓ∈[d] is D
Λ
u′
θ,ℓ

q ([A0|FID∗]),σ
and D

Λ
u−

∑
ℓ∈FT∗

u′
θ,ℓ

q ([A0|FT∗]),σ
, respectively, as Game

1. Hence, Game 2 and Game 1 are statistically close with high probability in A’s view. Thus,∣∣∣∣Pr[E2]−
1

2

∣∣∣∣ ≤ ∣∣∣∣Pr[E1]−
1

2

∣∣∣∣− negl(λ).

Type-II adversary. A modification of Game 2 is the most technical part of this paper. By definition
of the Type-II adversary, since ID∗ will not be revoked by T∗, short vectors ẽθ in KUT∗ have to be
associated with nodes θ ∈ Path(BT, η∗) due to the property of the CS method. Observe that there
are nodes θ that are common for SKID∗ and KUT∗ . Since C has already set the leaf node η∗, we
change the creations of the above vectors as follows:

23

• For θ ∈ Path(BT, η∗), C samples an independently random vector e′θ,ℓ ←
SampleGaussian(Z2m, σ) and sets u′

θ,ℓ = [A0|FID∗]eθ,ℓ for ℓ ∈ [d] \ {ℓ∗}. For the nodes, C
samples ẽθ ← SampleGaussian(Z2m, σ) and sets u′

θ,ℓ = u−
∑

ℓ∈FT∗\{ℓ∗} u
′
θ,ℓ − [A0|FT∗]ẽθ.

• For θ /∈ Path(BT, η∗), the creations of u′
θ,ℓ and ẽθ are the same as in Game 2 against the type

I adversary.

Then, C creates SKID, KUT, and DKID,T to answer A’s queries as follows:

• C’s creations of SKID for ID ̸= ID∗ and KUT for T ̸= T∗ are unchanged,

• C uses the above
{
e′θ,ℓ
}
ℓ∈[d] as SKID∗ ,

• C uses the above ẽθ as KUT∗ .

• C uses the above SKID and KUT to create DKID,T.

Here, C does not use the trapdoor TA0 to create SKID∗ and KUT∗ .
We show that Game 2 and Game 1 are statistically close with high probability in A’s view.

At first, we observe that C is able to answer all key queries by A. In particular, C is able to answer
DKID∗,T queries although it does not have e′θ,ℓ∗ . In Game 0, we set the index ℓ∗ so that e′θ,ℓ∗ is
not used to answer decryption key reveal queries as stated in (2). Hence, the absence of e′θ,ℓ∗ does
not occur any problems. Then, the remaining proof is the same as that of Game 2 against the
Type-I adversary. All vectors u′

θ,ℓ, e
′
θ,ℓ, and ẽθ distribute the same way as in Game 1 with high

probability in A’s view from Lemma 2. Thus,∣∣∣∣Pr[E2]−
1

2

∣∣∣∣ ≤ ∣∣∣∣Pr[E1]−
1

2

∣∣∣∣− negl(λ).

Game 3: In Game 2, a matrix A0 is generated by the TrapGen algorithm and its trapdoor TA0

is used to create SKID for ID ̸= ID∗ and KUT for T ̸= T∗. Game 3 is the same as Game 2 except
that we sample A0 as a random matrix in Zn×mq . From the property of the TrapGen algorithm, the
matrix A0 generated by the algorithm is statistically close to a uniformly random matrix in Zn×mq .
Hence, the distributions of PP are statistically close between Game 2 and Game 3.

Then, we show they way C creates SKID for ID ̸= ID∗ and KUT for T ̸= T∗ without using the
trapdoor TA0 . Observe that

[A0|FID] := [A0|A1 +H(ID)G] = [A0|A0RID∗ + (H(ID)−H(ID∗))G] ,

[A0|FT] := [A0|A2 +H(T)G] = [A0|A0RT∗ + (H(T)−H(T∗))G] .

Due to the property of gadget matrix G, we know a trapdoor TG which is also a trapdoor for
(H(ID) − H(ID∗))G and (H(T) − H(T∗))G if ID ̸= ID∗ and T ̸= T∗, since H(ID) − H(ID∗) and
H(T)−H(T∗) in Zn×nq are full rank. Furthermore, C also knows random matrices RID∗ and RT∗ .
Then, C creates {e′θ,ℓ}ℓ∈[d] ∈ SKID for ID ̸= ID∗ and ẽθ ∈ KUT for T ̸= T∗ by using the SampleRight
algorithm, i.e.,

24

• e′θ,ℓ ← SampleRight(A0,H(ID)G,RID∗ ,u′
θ,ℓ,TG, σ),

• ẽθ ← SampleRight(A0,H(T)G,RT∗ ,u−
∑

ℓ∈FT
u′
θ,ℓ,TG, σ).

The distributions of the vectors are statistically close between Game 2 and Game 3.
In Game 2, the distributions of e′θ,ℓ and ẽθ are statistically close to D

Λ
u′
θ,ℓ

q ([A0|FID]),σ
and

D
Λ
u−

∑
ℓ∈FT

u′
θ,ℓ

q ([A0|FT]),σ
due to the property of SampleLeft. In Game 3, the distributions of e′θ,ℓ

and ẽθ are statistically close to D
Λ
u′
θ,ℓ

q ([A0|FID]),σ
and D

Λ
u−

∑
ℓ∈FT

u′
θ,ℓ

q ([A0|FT]),σ
due to the property of

SampleRight. Hence, Game 3 and Game 2 are statistically close in A’s view. Thus,∣∣∣∣Pr[E3]−
1

2

∣∣∣∣ ≤ ∣∣∣∣Pr[E2]−
1

2

∣∣∣∣− negl(λ).

Gamefinal: Gamefinal is the same as Game 3 except that the challenge ciphertext CTID∗,T∗ =
(c0, c) is always chosen as a random independent element in the ciphertext space Zq × Z3m

q . Since
the challenge ciphertext is always a fresh random element in the ciphertext space, A’s advantage
in this game is zero.

We show that Game 3 and Gamefinal are computationally indistinguishable for a PPT adver-
sary under the LWE assumption. Thus,∣∣∣∣Pr[E3]−

1

2

∣∣∣∣ = |Pr[E3]− Pr[Efinal]| ≤ AdvLWE
B .

Reduction from LWE. Suppose A has non-negligible advantage in distinguishing Game 3 and
Gamefinal. Then we use A to construct a PPT algorithm B which solves LWE with non-negligible
advantage.

By definition, an LWE problem instance (A,v) consists of a uniformly random matrix A and a
vector v is either noisy inner-product with a secret vector s; v = A⊤s+x, or a truly random vector
v. Given the former distribution, B can create a challenge ciphertext distributed as in Game 3
whereas B can create a challenge ciphertext distributed as in Gamefinal otherwise. B uses the
adversary A to distinguish between the two distributions. B proceeds as follows:

Instance: B is given the LWE instance; a random matrix [u|A0] ∈ Zn×(m+1)
q along with a vector

v = [v0|v′] ∈ Zm+1
q .

Targeting: A announces to B the target identity ID∗ and the target time period T∗ that intends
to attack.

SetUp: B sets (A0,u) as the LWE instance. B samples RID∗ ,RT∗ and computes A1,A2 as (3)

in Game 1. B runs (w, d,F) $← CFF.Gen(|T |, Q) and guesses an index ℓ∗ ∈ FT∗ for Type-II
adversary A as stated in Game 0. B runs BT← CS.SetUp(N) and picks a random leaf node
η∗ as stated in Game 2. Let RL0 = ∅. B chooses an FRD map H(·) as in Definition 1. Then,
B outputs PP := (H(·),A0,A1,A2,u) and MK = (BT, ℓ∗,RL0,RID∗ ,RT∗).

25

Secret Key Generation Query: B is given a query ID ∈ I from A, where it is required that
(ID, ∗) /∈ SKList. If ID ̸= ID∗, B pick an unassigned leaf node uniformly random in BT \ {η∗}
and assigns ID to the node, while B assigns ID∗ to η∗ as stated in Game 2. For each node
θ ∈ Path(BT, ηID), recall {u′

θ,ℓ}ℓ∈[d] ∈ (Znq)d if they were defined. Otherwise, B creates random

vectors {u′
θ,ℓ}ℓ∈[d]

$← (Znq)d as stated in Game 2 and store them in θ:
When A is type-I:

– For θ ∈ Path(BT, η∗), C samples an independently random vector e′θ,ℓ ←
SampleGaussian(Z2m, σ) and sets u′

θ,ℓ = [A0|FID∗]eθ,ℓ for ℓ ∈ [d].

– For θ /∈ Path(BT, η∗), the creation of u′
θ,ℓ is the same as that of Game 1 for ℓ ∈ [d]\FT∗ .

For the nodes, C samples ẽθ ← SampleGaussian(Z2m, σ) and sets u′
θ,ℓ for ℓ ∈ FT∗ as

uniformly random vectors in Znq subject to u−
∑

ℓ∈FT∗
u′
θ,ℓ = [A0|FT∗]ẽθ.

When A is type-II:

– For θ ∈ Path(BT, η∗), C samples an independently random vector e′θ,ℓ ←
SampleGaussian(Z2m, σ) and sets u′

θ,ℓ = [A0|FID∗]eθ,ℓ for ℓ ∈ [d] \ {ℓ∗}. For the nodes, C
samples ẽθ ← SampleGaussian(Z2m, σ) and sets u′

θ,ℓ = u−
∑

ℓ∈FT∗\{ℓ∗} u
′
θ,ℓ− [A0|FT∗]ẽθ.

– For θ /∈ Path(BT, η∗), the creations of u′
θ,ℓ and ẽθ are the same as in Game 2 against

the Type-I adversary.

For every ℓ ∈ [d], B samples e′θ,ℓ ← SampleRight(A0,H(ID)G,RID∗ ,u′
θ,ℓ,TG, σ) for ID ̸= ID∗

as stated in Game 3. For ID∗, B uses e′θ,ℓ which it computes during the creations of u′
θ,ℓ as

a part of SKID∗ as stated in Game 2. Then, B outputs SKID =
({
θ, {e′θ,ℓ}ℓ∈[d]

}
θ∈Path(BT,ηID)

)
along with an updated binary tree BT′ (and returns nothing to A). When A is type-II,
SKID∗ =

({
θ, {e′θ,ℓ}ℓ∈[d]\{ℓ∗}

}
θ∈Path(BT,ηID)

)
Secret Key Reveal Query: Upon a query ID ∈ I from A, B checks if the conditions (a) and (b)

are satisfied (see Section 3 for details). If these conditions are not satisfied, then B returns
⊥ to A. Otherwise, B finds SKID from SKList, and returns it to A.

Revocation & Key Update Query: Upon a query RL ⊆ I (which denotes the set of identities
that are going to be revoked in the next time period) from A, B checks if the conditions
(a)–(c) are satisfied (see Section 3 for details). If these conditions are not satisfied, then B
returns ⊥ to A.
Otherwise B increments the current time period by Tcu ← Tcu + 1. Then, B updates
RLTcu ← RL and runs KUNode(BT,RLTcu) ← CS.Cover(BT,RLTcu). For each node θ ∈
KUNode(BT,RLTcu), recall {u′

θ,ℓ}ℓ∈[d] ∈ (Znq)d if they were defined. Otherwise, choose random

{u′
θ,ℓ}ℓ∈[d]

$← (Znq)d and store them in θ as during secret key generation queries. B sam-
ples ẽθ ← SampleRight(A0,H(Tcu)G,RT∗ ,u−

∑
ℓ∈FTcu

u′
θ,ℓ,TG, σ) for Tcu ̸= T∗ as stated in

Game 3. For T∗, B uses ẽθ which it computes during the creations of u′
θ,ℓ as a part of KUT∗

as stated in Game 3. Then, B returns KUTcu =
(
{θ, ẽθ}θ∈KUNode(BT,RLTcu) ,FTcu

)
to A.

Decryption Key Reveal Query: Upon a query (ID,T) ∈ I × T from A, B checks if the con-
ditions (a)–(d) are satisfied (see Section 3 for details). If these conditions are not satisfied,

26

then B returns ⊥ to A. Otherwise, B finds SKID from SKList, runs DKID,T ← DKG(PP,SKID,
KUT), and returns DKID,T to A.

Challenge Query: Upon a query M∗ ∈M from A, B computes

c0 = v0 +M∗
⌊q
2

⌋
∈ Zq, c =

 Im
R⊤

ID∗

R⊤
T∗

v′ ∈ Z3m
q .

Finally, B returns the challenge ciphertext CTID∗,T∗ to A.
Guess: At some point, A outputs b′ ∈ {0, 1} as its guess for b and terminates. Then, B outputs

A’s guess as the answer to the LWE challenge. This completes the description of B.

We show that the challenge ciphertext CTID∗,T∗ is properly distributed. At first we show that
if the LWE instance follows the form (u|A0)

⊤s + x, then CTID∗,T∗ is distributed as in Game 3.
Observe that

[A0|FID∗ |FT∗] = [A0|A0RID∗ |A0RT∗].

By definition, v0 = u⊤s + x with a noise x ∈ Zq distributed as DZ,αq and v′ = A⊤
0 s + y with a

noise vector y ∈ Zmq distributed as DZm,αq. Hence,

c0 = v0 +M∗
⌊q
2

⌋
= u⊤s+ x+M∗

⌊q
2

⌋
,

c =

 Im
R⊤

ID∗

R⊤
T∗

v′ =

 Im
R⊤

ID∗

R⊤
T∗

 (A⊤
0 s+ y) =

 A⊤
0

(A0RID∗)⊤

(A0RT∗)⊤

 s+

 Im
R⊤

ID∗

R⊤
T∗

y

= [A0|A0RID∗ |A0RT∗]⊤s+

 Im
R⊤

ID∗

R⊤
T∗

y,

holds, where the creation is the same as in Game 3.
Next, if the LWE instance v is a random vector, then CTID∗,T∗ is distributed as in Gamefinal.

Since v0 is uniform in Zq, c0 = v0 +M∗ ⌊ q
2

⌋
is also uniform in Zq. Since v′ is uniform in Zmq ,

c = [Im|RID∗ |RT∗]⊤v′ is also uniform in Z3m
q by the standard leftover hash lemma, e.g., Theorem

8.38 of [Sho06].
Thus, we complete the proof.

4.3 Discussion

Towards Full DKER. After the publication of the preliminary version of this paper [TW17],
Katsumata et al. [KMT18] constructed the first lattice-based RIBE scheme with full DKER, where
the construction completely differs from ours. An advantage of our B-DKER scheme is that our
scheme satisfies anonymity while Katsumata et al.’s scheme does not have.

Insecurity of Cheng-Zhang’s RIBE Scheme [CZ15]. Cheng and Zhang claimed that their
proposed RIBE scheme with the subset difference (SD) method is the first adaptively secure one

27

with smaller key updates. However, there are critical bugs in their security proof, i.e., Game 3 in
the proof of their Theorem 1. Here, we follow the notation from [CZ15], e.g., id and t. In their
Game 3, the simulator aborts the game if hid∗ = 0, where h() is a certain function for achieving
adaptive security, to answer secret key extraction queries. In addition, the simulator also aborts
the game if hid∗ ̸= 0 to create a challenge ciphertext. Hence, the game never ends. Note that the
same situation occurs for the target time period t∗.

One may think that Chen et al.’s Gaussian sampling technique [CLL+12b], which we also used,
can be used to fix the bugs. However, it is not the case. Furthermore, Cheng-Zhang’s RIBE scheme
is not secure even in the selective security model. The difficulty comes from the SD method which
they used to revoke users. The SD method is another subset cover framework and it enables us to
reduce the size of key updates. Notice that the subset cover framework which Chen et al. [CLL+12b]
and we used in this paper is the CS method. If we modify Cheng-Zhang’s RIBE scheme in the
selective security model, the secret key e′ and the key update ẽ satisfy the following equations:

[A0|A1 +H(id)G] e′ = u′ and [A0|A2 +H(t)G] ẽ = ũ.

The main difference between the SD method and the CS method is the restriction of syndrome
vectors u′ and ũ. In the security proof, the simulator should create both the secret key e′ for the
target id∗ and the key update ẽ for the target t∗. As opposed to the CS method case, if we use the
SD method, the simulator should create both e′ and ẽ for the same syndrome vector u′ = ũ even
without DKER. Since we cannot create the keys by using the trapdoor TG, we try to create them
by using a Gaussian sampling algorithm. Once the simulator uses a Gaussian sampling algorithm
to sample e′ for the target id∗, then the corresponding syndrome vector u′ = ũ is fixed. Therefore,
the simulator cannot create ẽ for the target t∗ by using a Gaussian sampling algorithm. Therefore,
a construction of lattice-based RIBE with the SD method even in the selective security model and
even without DKER is an interesting open problem.

Semi-adaptive Security. If we replace the hash function FID = A1 + H(ID)G of Agrawal
et al. [ABB10a] by that of adaptively secure schemes [AFL16, Boy10, BL16, CHKP12, GPV08,
KY16, Yam16, Yam17, ZCZ16], our scheme achieves semi-adaptive security5, where an adversary
issues the target (ID∗,T∗) in advance of any key queries. What is required to prove the security of
lattice-based RIBE is an existence of trapdoors that can sample short vectors e′θ,ℓ for ID ̸= ID∗ and
ẽ for T ̸= T∗ according to discrete Gaussian distributions, where all the lattice-based IBE schemes
have. However, it is insufficient to construct adaptively secure RIBE even without DKER.

In the RIBE setting, we have to set all u′
θ,ℓ in advance of any key queries, then we use FID∗ ,

or equivalently ID∗, for the computations. It means that the simulator has to know ID∗ at that
time. To avoid the obstacle, we should develop new lattice-based RIBE constructions, which are
different from Chen et al.’s [CLL+12b], or it may be equivalent to new lattice-based fuzzy IBE
constructions, which are different from Agrawal et al.’s [ABV+12].

5 Notice that we do not have to replace FT = A2 + H(T)G by adaptively secure ones. Since the maximum
time period is polynomially bounded, |T | security loss enables us to guess the target time period T∗. Indeed, Seo-
Emura [SE14b] constructed adaptively secure DKER RIBE scheme by combining the Waters IBE [Wat05] for ID and
the Boneh-Boyen IBE [BB11] for T.

28

One may think that adaptively secure IBE is more than enough to construct semi-adaptively
secure RIBE. However, we do not know how to construct semi-adaptively secure lattice-based IBE
that is more efficient than adaptively secure ones. We think that the construction should be an
interesting open problem in this research topic.

5 B-DKER RIBE Scheme from Pairings

5.1 Construction

In this section, we construct a pairing-based B-DKER RIBE scheme which is based on the Jutla-
Roy IBE [JR17] and its variant [RS14]. Specifically, we show our construction based on the 2-level
Jutla-Roy HIBE. Roughly speaking, we combine it with CFFs and the CS method, and use the
second level of the Jutla-Roy HIBE for time-periods. As we will explain in Section 5.2.2, it is not
straightforward to utilize the dual system encryption methodology [Wat09] for RIBE constructions.
To overcome the issue, we carefully design the sequence of games, and utilize the property of CFFs.

Our RIBE construction is as follows:

SetUp(1λ): Let N := superpoly(λ), where superpoly(·) is some super-polynomial (e.g., λlog λ). Run
G := (q,G1, G2, GT , g1, g2, e)← G, (w, d,F)← CFF.Gen(N,Q), and BT← CS.SetUp(N). Let

RL0 := ∅. Choose α, x, x0, x1, x2, x3, y, y0, y1, y2, y3
$← Zq, and set

z := e(g1, g2)
x0α+y0 , uid := gx1α+y11 , ut := gx2α+y21 , h := gx3α+y31 , v := gxα+y1 .

Output

PP := (G, gα1 , uid, ut, h, v, z) ,
MK := (BT,RL0, x, x0, x1, x2, x3, y, y0, y1, y2, y3) ,

PKG(PP,MK, ID): Parse MK as (BT,RLT, x, x0, x1, x2, x3, y, y0, y1, y2, y3). Run (ηID, BT
′) ←

CS.Assign(BT, ID). For each node θ ∈ Path(BT, ηID), recall {P (ℓ)
θ,x, P

(ℓ)
θ,y}

d
ℓ=1 if they were de-

fined. Otherwise, choose random {P (ℓ)
θ,x, P

(ℓ)
θ,y}

d
ℓ=1 ∈ G2 and store them in θ. For every ℓ ∈ [d],

choose rθ,ℓ ∈ Zq and compute

sk
(ℓ)
ID,θ := g

rθ,ℓ
2 ,

sk
(ℓ)
ID,θ,x := g

rθ,ℓx
2 , sk′

(ℓ)
ID,θ,x := P

(ℓ)
θ,x · g

rθ,ℓ(x1ID+x3)
2 , sk′′

(ℓ)
ID,θ,x := g

rθ,ℓx2
2 ,

sk
(ℓ)
ID,θ,y := g

rθ,ℓy
2 , sk′

(ℓ)
ID,θ,y := P

(ℓ)
θ,y · g

rθ,ℓ(y1ID+y3)
2 , sk′′

(ℓ)
ID,θ,y := g

rθ,ℓy2
2 .

Set SK
(ℓ)
ID,θ :=

(
sk

(ℓ)
ID,θ, sk

(ℓ)
ID,θ,x, sk

′(ℓ)
ID,θ,x, sk

′′(ℓ)
ID,θ,x, sk

(ℓ)
ID,θ,y, sk

′(ℓ)
ID,θ,y, sk

′′(ℓ)
ID,θ,y

)
. Output

SKID =

{
SKID,θ :=

(
θ,
{
SK

(ℓ)
ID,θ

}
ℓ∈[d]

)}
θ∈Path(BT,ηID)

,

MK′ := (BT′,RLT, x, x0, x1, x2, x3, y, y0, y1, y2, y3).

29

KeyUp(PP,T,MK): Parse MK as (BT,RLT, x, x0, x1, x2, x3, y, y0, y1, y2, y3). Run KUNode(BT,

RLT) ← CS.Cover(BT,RLT). For each node θ ∈ KUNode(BT,RLT), recall {P (ℓ)
θ,x, P

(ℓ)
θ,y}

d
ℓ=1 if

they were defined. Otherwise, choose random {P (ℓ)
θ,x, P

(ℓ)
θ,y}

d
ℓ=1 ∈ G2 and store them in θ.

Choose sθ ∈ Zq and compute

kuT,θ := gsθ2 ,

kuT,θ,x := gsθx2 , ku′T,θ,x :=

∏
ℓ∈FT

(
P

(ℓ)
θ,x

)−1

 · gx0+sθ(x2T+x3)2 , ku′′T,θ,x := gsθx12 ,

kuT,θ,y := gsθy2 , ku′T,θ,y :=

∏
ℓ∈FT

(
P

(ℓ)
θ,y

)−1

 · gy0+sθ(y2T+y3)2 , ku′′T,θ,y := gsθy12 .

Set KUT,θ :=
(
θ, kuT,θ, kuT,θ,x, ku

′
T,θ,x, ku

′′
T,θ,x, kuT,θ,y, ku

′
T,θ,y, ku

′′
T,θ,y

)
. Output

KUT :=
(
{KUT,θ}θ∈KUNode(BT,RLT)

,FT

)
,

MK′ := (BT′,RLT, x, x0, x1, x2, x3, y, y0, y1, y2, y3).

DKG(PP, SKID,KUT): Parse SKID, and KUT as {(θ, {SK(ℓ)
ID,θ}ℓ∈[d])}θ∈Path(BT,ηID) and

({KUT,θ}θ∈KUNode(BT,RLT),FT), respectively. Output ⊥ if ∅ ← CS.Match(Path(BT, ηID),
KUNode(BT,RLT)). Otherwise, for θ ← CS.Match(Path(BT, ηID),KUNode(BT,RLT)), compute

dkID,T :=

∏
ℓ∈FT

sk
(ℓ)
ID,θ

 · KUT,θ = g

∑
ℓ∈FT

rθ,ℓ+sθ

2 = gr2,

dkID,T,x =

∏
ℓ∈FT

sk
(ℓ)
ID,θ,x

 · KUT,θ,x = g
(
∑

ℓ∈FT
rθ,ℓ+sθ)x

2 = grx2 ,

dk′ID,T,x =

∏
ℓ∈FT

sk′
(ℓ)
ID,θ,x

(
sk′′

(ℓ)
ID,θ,x

)T · KU′
T,θ,x

(
KU′′

T,θ,x

)ID
= g

x0+(
∑

ℓ∈FT
rθ,ℓ+sθ)(x1ID+x2T+x3)

2 = g
x0+r(x1ID+x2T+x3)
2 ,

dkID,T,y =

∏
ℓ∈FT

sk
(ℓ)
ID,θ,y

 · KUT,θ,y = g
(
∑

ℓ∈FT
rθ,ℓ+sθ)y

2 = gry2 ,

dk′ID,T,y =

∏
ℓ∈FT

sk′
(ℓ)
ID,θ,y

(
sk′′

(ℓ)
ID,θ,y

)T · KU′
T,θ,y

(
KU′′

T,θ,y

)ID
= g

y0+(
∑

ℓ∈FT
rθ,ℓ+sθ)(y1ID+y2T+y3)

2 = g
y0+r(y1ID+y2T+y3)
2 ,

30

where SK
(ℓ)
ID,θ = (sk

(ℓ)
ID,θ, sk

(ℓ)
ID,θ,x, sk

′(ℓ)
T,θ,x, sk

′′(ℓ)
T,θ,x, sk

(ℓ)
ID,θ,y, sk

′(ℓ)
T,θ,y, sk

′′(ℓ)
T,θ,y), KUT,θ = (θ, kuT,θ,

kuT,θ,x, ku
′
T,θ,x, ku

′′
T,θ,x, kuT,θ,y, ku

′
T,θ,y, ku

′′
T,θ,y), and r :=

∑
ℓ∈FT

rθ,ℓ + sθ. Output

DKID,T := (dkID,T, dkID,T,x, dk
′
ID,T,x, dkID,T,y, dk

′
ID,T,y).

Enc(PP, ID,T,M ∈ GT): Pick random t, δ1, δ2, δ3 ∈ Zq and compute

tag := δ1ID+ δ2T+ δ3, ctm :=M · zt, ctx := (gα1)
t, cty := gt1, ctID,T :=

(
vtaguIDidu

T
th
)t
.

Output CTID,T := (ctm, ctx, cty, ctID,T, tag).

Dec(PP,DKID,T,CTID,T): Parse DKID,T and CTID,T as (dkID,T, dkID,T,x, dk
′
ID,T,x, dkID,T,y, dk

′
ID,T,y)

and (ctm, ctx, cty, ctID,T, tag), respectively. Compute

M =
ctm · e(ctID,T, dkID,T)

e(ctx, dk
tag
ID,T,xdk

′
ID,T,x) · e(cty, dk

tag
ID,T,ydk

′
ID,T,y)

.

Correctness. We show the decryption correctness. For DKID,T = (dkID,T, dkID,T,x, dk
′
ID,T,x,

dkID,T,y, dk
′
ID,T,y) and CTID,T = (ctm, ctx, cty, ctID,T, tag), we have

ctm · e(ctID,T, dkID,T)
e(ctx, dk

tag
ID,T,xdk

′
ID,T,x) · e(cty, dk

tag
ID,T,ydk

′
ID,T,y)

=

ctm · e
((

(gxα+y1)tag(gx1α+y11)ID(gx2α+y21)Tgx3α+y31

)t
, gr2

)
e((gα1)

t, (grx2)tagg
x0+r(x1ID+x2T+x3)
2) · e(gt1, (g

ry
2)tagg

y0+r(y1ID+y2T+y3)
2)

=

ctm · e
((

g
tag(xα+y)+ID(x1α+y1)+T(x2α+y2)+x3α+y3)
1

)t
, gr2

)
e((gα1)

t, g
x0+r(xtag+x1ID+x2T+x3)
2) · e(gt1, g

y0+r(ytag+y1ID+y2T+y3)
2)

=
M · e(g1, g2)t(x0α+y0) · e(gtag(xα+y)+ID(x1α+y1)+T(x2α+y2)+x3α+y3

1 , g2)
rt

e(gα1 , g
x0
2)t · e(gα1 , g

xtag+x1ID+x2T+x3
2)rt · e(g1, gy02)t · e(g1, gytag+y1ID+y2T+y3

2)rt

=M.

5.2 Security

The proposed construction can be proved to be IND-RID-Q-CPA secure.

Theorem 2. If the SXDH assumption holds and the underlying CFF is Q-cover-free, then the
proposed RIBE scheme is IND-RID-Q-CPA secure.

Note that our pairing-based construction does not require the underlying CFF to be w-uniform.
We devote the rest of this section to the proof of the above theorem.

31

5.2.1 Semi-functional Ciphertexts, Keys, and Key Updates

We use the dual system encryption methodology to prove Theorem 2. We describe semi-functional
forms of ciphertexts, secret keys, key updates, and decryption keys.

Semi-functional ciphertext for (ID,T): For a normal ciphertext CTID,T = (ctm, ctx, cty,

ctID,T, tag), its semi-functional form C̃TID,T = (c̃tm, c̃tx, c̃ty, c̃tID,T, t̃ag) is computed by

t̃ag := tag,

c̃tm := ctm · e(g1, g2)x0µ =M · e(g1, g2)x0(tα+µ)+y0t,
c̃tx := ctx · gµ1 = gtα+µ1 ,

c̃ty := cty = gt1,

c̃tID,T := ctID,T · g
µ(xt̃ag+x1ID+x2T+x3)
1 = g

(tα+µ)(xt̃ag+x1ID+x2T+x3)+t(yt̃ag+y1ID+y2T+y3)
1 ,

where µ
$← Zq.

Semi-functional secret-key for ID: Let η be a leaf node of BT assigned to ID, and parse a normal

secret key SKID as {SKID,θ = (θ, {SK(ℓ)
ID,θ}ℓ∈[d])}θ∈Path(BT,ηID). For each θ ∈ Path(BT, ηID) and ℓ ∈ [d], a

semi-functional secret-key component S̃K
(ℓ)

ID,θ := (s̃k
(ℓ)
ID,θ, s̃k

(ℓ)
ID,θ,x, s̃k

′(ℓ)
ID,θ,x, s̃k

′′(ℓ)
ID,θ,x, s̃k

(ℓ)
ID,θ,y, s̃k

′(ℓ)
ID,θ,y,

s̃k′′
(ℓ)

ID,θ,y) is computed by

s̃k
(ℓ)
ID,θ := sk

(ℓ)
ID,θ,

s̃k
(ℓ)
ID,θ,x := sk

(ℓ)
ID,θ,x,

s̃k′
(ℓ)

ID,θ,x := sk′
(ℓ)
ID,θ,x · g

ϕθ,ℓ
2 = P

(ℓ)
θ,x · g

rθ,ℓ(x1ID+x3)+ϕθ,ℓ
2 ,

s̃k′′
(ℓ)

ID,θ,x := sk′′
(ℓ)
ID,θ,x,

s̃k
(ℓ)
ID,θ,y := sk

(ℓ)
ID,θ,y,

s̃k′
(ℓ)

ID,θ,y := sk′
(ℓ)
ID,θ,y · g

−αϕθ,ℓ
2 = P

(ℓ)
θ,y · g

rθ,ℓ(y1ID+y3)−αϕθ,ℓ
2 ,

s̃k′′
(ℓ)

ID,θ,y := sk′′
(ℓ)
ID,θ,y,

where SK
(ℓ)
ID,θ = (sk

(ℓ)
ID,θ, sk

(ℓ)
ID,θ,x, sk

′(ℓ)
ID,θ,x, sk

′′(ℓ)
ID,θ,x, sk

(ℓ)
ID,θ,y, sk

′(ℓ)
T,θ,y, sk

′′(ℓ)
T,θ,y) and ϕθ,ℓ

$← Zq. A semi-

functional secret key is S̃KID := {S̃KID,θ = (θ, {S̃K
(ℓ)

ID,θ}ℓ∈[d])}θ∈Path(BT,ηID).

Semi-functional key update for T: Parse a normal key update KUT as
({KUT,θ}θ∈KUNode(BT,RLT),FT). For each θ ∈ KUNode(BT,RLT), a semi-functional key-update

component K̃UT,θ := (θ, k̃uT,θ, k̃uT,θ,x, k̃u′T,θ,x, k̃u′′T,θ,x, k̃uT,θ,y, k̃u′T,θ,y, k̃u′′T,θ,y) is computed by

k̃uT,θ := kuT,θ,

32

k̃uT,θ,x := kuT,θ,x,

k̃u′T,θ,x := ku′T,θ,x · gψθ
2 =

(∏
ℓ∈F

(
P

(ℓ)
θ,x

)−1
)
· gx0+sθ(x2T+x3)+ψθ

2 ,

k̃u′′T,θ,x := ku′′T,θ,x,

k̃uT,θ,y := kuT,θ,y,

k̃u′T,θ,y := ku′T,θ,y · g−αψθ
2 =

(∏
ℓ∈F

(
P

(ℓ)
θ,y

)−1
)
· gy0+sθ(y2T+y3)−αψθ

2 ,

k̃u′′T,θ,y := ku′′T,θ,y,

where KUT,θ = (θ, kuT,θ, kuT,θ,x, ku
′
T,θ,x, ku

′′
T,θ,x, kuT,θ,y, ku

′
T,θ,y, ku

′′
T,θ,y) and ψθ

$← Zq. A semi-

functional key update is K̃UT := ({K̃UT,θ}θ∈KUNode(BT,RLT),FT).

Semi-functional decryption key for (ID,T): A decryption key for (ID,T) is semi-functional if a
secret key for ID and/or a key update for T input into the DKG algorithm is semi-functional. More

specifically, a semi-functional decryption key D̃KID,T := (d̃kID,T, d̃kID,T,x, d̃k′ID,T,x, d̃kID,T,y, d̃k′ID,T,y)
is

d̃kID,T := dkID,T,

d̃kID,T,x := dkID,T,x, d̃k′ID,T,x := dk′ID,T,x · gφ2 = g
x0+r(x1ID+x2T+x3)+φ
2 ,

d̃kID,T,y := dkID,T,y, d̃k′ID,T,y := dk′ID,T,y · g−αφ2 = g
y0+r(y1ID+y2T+y3)−αφ
2 ,

where DKID,T = (dkID,T, dkID,T,x, dk
′
ID,T,x, dkID,T,y, dk

′
ID,T,y) is a normal decryption key and φ ∈ Zq.

Note that gx01 and gα2 are needed to compute semi-functional ciphertexts and keys (including
key updates), respectively. The following equation ensures that a normal ciphertext for (ID,T) can
be decrypted by a semi-functional decryption key for (ID,T):

e(ctx, g
φ
2) · e(cty, g

−αφ
2) = 1GT

,

where 1GT
is an identity element in GT . The following equation also ensures that a semi-functional

ciphertext for (ID,T) can be decrypted by a normal decryption key for (ID,T):

e(g1, g2)
x0µ · e(gµ(xt̃ag+x1ID+x2T+x3)

1)

e(gµ1 , dk
t̃ag
ID,T,xdk

′
ID,T,x)

= 1GT
.

5.2.2 Proof Idea and Game Sequence

Our proof approach. As Lee [Lee16] pointed out, we have to carefully design the hybrid games
when using the dual system encryption methodology in the RIBE (with DKER) setting. In security
proofs of all the existing (H)IBE schemes employing dual system encryption, secret keys queried to
the key extraction oracle are changed into semi-functional ones one by one. Similarly, we need to

33

Table 1: The overview of the hybrid games.

Challenger
knows

T∗ and i∗?

CTID∗,T∗
SKID

for
ID ̸= ID∗

KUT

for
T ̸= T∗

SKID∗

and
KUT∗

Gamereal no normal normal normal normal

Game 0 yes normal normal normal normal

Game 1 yes sf normal normal normal

Game 2 yes sf sf normal normal

Game 3 yes sf sf sf normal

Game 4 yes sf sf sf sf

Gamefinal yes random sf sf sf

transform both secret keys and key updates into semi-functional forms. However, in RIBE, unlike
(H)IBE, a secret key for the target identity ID∗ and/or a key update for the target time period T∗

may be issued to the oracles, and it might cause a bug in the security proof.
Our approach is similar to Lee’s one (also see Table 1): First, we assume we know when the

target time period T∗ is and when the target identity ID∗ is queried, and suppose that an i∗-th
secret key reveal query for PKG(·) is ID∗ (Game 0). It enables us to apply the strategy-dividing
lemma (Lemma 7). As in the dual-system-encryption (H)IBE schemes, we can change secret keys
for ID ̸= ID∗ and key updates for T ̸= T∗ into their semi-functional forms without any problem
(Game 2 and Game 3). Then, we show that the distributions on a normal secret key SKID∗ for

ID∗ and a normal key update KUT∗ for T∗ are identical to those on semi-functional ones (S̃KID∗ and
KUT∗). Namely, we show Game 3 and Game 4 are identical. As the final transition, we replace
the challenge ciphertext with the random elements of the ciphetext space, i.e., GT × G3

1 × Zq
(Gamefinal). It ensures that the adversary’s advantage is exactly 1/2.

Formal description of the game sequence. Formally, the hybrid games are defined as follows.

Gamereal: The original IND-RID-Q-CPA game.

Game 0: The game is the same as Gamereal except that at the beginning of the game, the
challenger correctly guesses the challenge time period T∗ and i∗ such that IDi∗ = ID∗.

Game 1: The game is the same as Game 0 except that the challenge ciphertext CTID∗,T∗ is semi-
functional.

Game 2j (1 ≤ j ≤ Qsk): Let ID1, ID2, . . . , IDQsk
. Game 2j is the same as Game 2j−1 except that

for a query IDj , the semi-functional form of SKIDj
is returned if IDj ̸= ID∗, where Game 20

34

means Game 1.

Game 3j (1 ≤ j ≤ |T |): Game 3j is the same as Game 3j−1 except that for a j-th revocation
and key update query, the semi-functional form of KUj is returned if j ̸= T∗, where Game
30 means Game 2Qsk

.

Game 4: This game is the same as Game 3|T | except that for a T∗-th revocation and key update
query (resp., a secret key reveal query ID∗), the semi-functional form of KUT∗ (resp., SKID∗)
is returned.

Gamefinal: This game is the same as Game 4 except that the challenge ciphertext is random
element in the ciphertext space.

Let Ek be an event that b′ = b occurs in Game k or Gamek. We then have

1

2
AdvIND-Q-CPA

Π,A (λ)

=

∣∣∣∣Pr[Ereal]− 1

2

∣∣∣∣
≤ |Pr[Ereal]− Pr[E0]|+ |Pr[E0]− Pr[E1]|+

Qsk−1∑
j=0

∣∣Pr[E2j]− Pr[E2j+1]
∣∣

+

|T |−1∑
j=0

∣∣Pr[E3j]− Pr[E3j+1]
∣∣+ ∣∣∣Pr[E3|T |]− Pr[E4]

∣∣∣+ |Pr[E4]− Pr[Efinal]| .

Note that |Pr[Efinal]− 1/2| = 0.

5.2.3 Proof of Theorem 2

Without loss of generality, in the proof we assume an adversary A issues only (ID∗, ·) as decryption
key reveal queries since A can get any decryption keys for ID (̸= ID∗) from SKID and KUT obtained
from the challenger C. We also assume that the running time of an adversary A is publicly known
(or, can be easily estimated), and the maximum number of queries issued to all the oracles by A
(denoted by Qall) can be estimated from A’s running time.6

The difference between Game 0 and Gamereal is whether or not the challenger knows (T∗, i∗)
at the beginning of the game. First, we consider the probability that the challenger C correctly
guesses i∗ such that IDi∗ = ID∗. Let IC be a random variable of the challenger’s guess, which takes
values in {0, 1, . . . , Qall}. “IC = 0” indicates that C guesses that A never issues ID∗ to the PKG
oracle (i.e., A is a Type-II adversary). Similarly, let IA be a random variable of A’s choice, which
tales values in {0, 1, . . . , Qall}. We then have

Pr[IC = IA]
6In practice, we may estimate Qall based on the running time of the fastest (super)computer, and such Qall is

still a polynomial in λ.

35

= Pr[IC = 0 ∧ IA = 0] + · · ·+ Pr[IC = Qall ∧ IA = Qall]

=
1

Qall + 1
Pr[IA = 0 | IC = 0] + · · ·+ 1

Qall + 1
Pr[IA = Qall | IC = Qall]

=
1

Qall + 1

Qall∑
j=0

Pr[IA = j] (4)

=
1

Qall + 1
,

where Eq. (4) follows from that C guesses i∗ independently of A′’s choice. Similarly, we can prove
C correctly guesses T∗ with probability 1/|T |.

Therefore, the challenger’s guess is right with probability 1/(|T |(Qall+1)). In other words, the
reduction loss is |T |(Qall + 1), which is polynomial in the security parameter. In the rest of the
proof, the simulator knows the exact value of T∗, and can distinguish if each queried identity is the
challenge one or not.

The difference between Game 0 and Game 1 is whether the challenge ciphertext is nor-
mal or semi-functional. The following lemma can be proved in a similar way to the Jutla-Roy
(H)IBE [JR17, RS14].

Lemma 8. If there exists a PPT adversary A to distinguish Game 1 and Game 0, then there
exists a PPT adversary B to break the DDH1 assumption.

Proof. Given the DDH1 assumption instance (G, gc11 , g
c2
1) with Z. The simulator B uses A to

distinguish if Z is distributed as gc1c21 or gc1c2+µ1 .

B implicitly sets α := c1, and chooses x, x0, x1, x2, x3, y, y0, y1, y2, y3
$← Zq. B then computes

v := (gc11)xgy1 , z := e(gc11 , g2)
x0e(g1, g2)

y0 ,

uid := (gc11)x1gy11 , ut := (gc11)x2gy21 , h := (gc11)x3gy31 .

B runs CS.SetUp(N)→ BT by choosing arbitrary N ∈ N, and sends PP := (G, gα1 , uid, ut, h, v, z) to
A. Note that B knows the master key. Therefore, B can respond to any queries.

When A submits (M∗, ID∗,T∗), B picks tag∗
$← Zq, and creates the challenge ciphertext

CT∗
ID∗,T∗ := (ct∗m, ct

∗
x, ct

∗
y, ct

∗
ID∗,T∗ , tag∗) as

ct∗m :=M∗ · e(Z, g2)x0e(gc21 , g2)
y0 , ct∗x := Z, ct∗y := gc21 ,

ct∗ID∗,T∗ := Zxtag
∗+x1ID

∗+x2T
∗+x3(gc21)ytag

∗+y1ID
∗+y2T

∗+y3 .

Obviously, the above ciphertext is normal if Z = gc1c21 . We show the above ciphertext is semi-
functional if Z = gc1c2+µ1 as follows.

ct∗m =M∗ · e(Z, g2)x0e(gc21 , g2)
y0

=M∗ · e(gc1c2+µ1)x0e(gc21 , g2)
y0

=M∗ · e(g1)c2(x0c1+y0)e(g1, g2)x0µ

36

=M∗ · zt · e(g1, g2)x0µ,
ct∗x = Z = gc1c2+µ1 = gαt+µ1 ,

ct∗y = gc21 = gt1,

ct∗ID,T = Zxtag
∗+x1ID

∗+x2T
∗+x3g

ytag∗+y1ID
∗+y2T

∗+y3
1

= g
(c1c2+µ)(xtag∗+x1ID

∗+x2T
∗+x3)

1 g
c2(ytag∗+y1ID

∗+y2T
∗+y3)

1

= g
c2)((xc1+y1)tag∗+(x1c1+y1)ID

∗+(x2c1+y2)T
∗+x3c1+y3)

1 g
µ(xtag∗+x1ID

∗+x2T
∗+x3)

1

=
(
vtag

∗
uID

∗

id uT
∗

t h
)t
g
µ(xtag∗+x1ID

∗+x2T
∗+x3)

1 .

In a similar way to ordinary the dual-system-encryption IBE schemes, we can show how normal
secret keys for any ID (̸= ID∗) and key updates for any T (̸= T∗) are transformed into their
semi-functional forms. Therefore, we omit the proofs here, and they are given in Appendix A.

We next show the distributions in Game 3|T | and Game 4 are identical.

Lemma 9. Game 3|T | and Game 4 are identical from the viewpoint of any PPT adversary A.

Proof. The difference between Game 3|T | and Game 4 is whether a secret key for ID∗ and a key
update for T∗ are normal or semi-functional. Therefore, the corresponding decryption keys for
(ID∗,T) also become normal or semi-functional depending on Game 3|T | or Game 4.

Consider the following components of SKID∗ and KUT∗ :

sk′
(ℓ)
ID∗,θ,x := P̃

(ℓ)
θ,x · g

rθ,ℓ(x1ID
∗+x3)+βθ,ℓ

2 , (5)

sk′
(ℓ)
ID∗,θ,y := P̃

(ℓ)
θ,y · g

rθ,ℓ(y1ID
∗+y3)−αβθ,ℓ

2 , (6)

ku′T∗,θ,x :=

 ∏
ℓ∈FT∗

(
P̃

(ℓ)
θ,x

)−1

 · gx0+sθ(x2T∗+x3)−
∑

ℓ∈FT∗
β′
θ,ℓ

2 , (7)

ku′T∗,θ,y :=

 ∏
ℓ∈FT∗

(
P̃

(ℓ)
θ,y

)−1

 · gy0+sθ(y2T∗+y3)−α
(
−

∑
ℓ∈FT∗

β′
θ,ℓ

)
2 . (8)

Note that in both games, all other secret keys and key updates are semi-functional. Therefore,
other secret key and key update components corresponding to the above θ (i.e., θ ∈ Path(BT, ηID∗)∪
KUNode(BT,RLT∗)) are

sk′
(ℓ)
ID,θ,x := P̃

(ℓ)
θ,x · g

rθ,ℓ(x1ID+x3)+ϕθ,ℓ
2 , (9)

sk′
(ℓ)
ID,θ,y := P̃

(ℓ)
θ,y · g

rθ,ℓ(y1ID+y3)−αϕθ,ℓ
2 , (10)

ku′T,θ,x :=

∏
ℓ∈FT

(
P̃

(ℓ)
θ,x

)−1

 · gx0+sθ(x2T∗+x3)+ψθ
2 , (11)

37

ku′T,θ,y :=

∏
ℓ∈FT

(
P̃

(ℓ)
θ,y

)−1

 · gy0+sθ(y2T∗+y3)−αψθ
2 . (12)

We show the distributions on the above (Eqs. (5)–(12)) are actually identical to the distributions
in both Game 3|T | and Game 4 from the viewpoint of an adversary A. Specifically, we show the
above from the standpoint of each of AI and AII .

Type-I adversary AI : For every θ ∈ Path(BT, ηID∗) ∪ KUNode(BT,RLT∗) and ℓ ∈ [d], if we set

P
(ℓ)
θ,x = P̃

(ℓ)
θ,x · g

βθ,ℓ
2 and P

(ℓ)
θ,y = P̃

(ℓ)
θ,y · g

−αβθ,ℓ
2 ,

it is easy to see that Eqs. (5)–(8) then turn to normal components of SKID∗ and KUT∗ . Then,
we show that the distributions on other secret keys and key updates are also identical to those
in Game 3|T |. Since CS.Match(Path(BT, ηID∗),KUNode(BT,RLT∗)) = ∅, all the components of

S̃KID (ID ̸= ID∗) and K̃UT (T ̸= T∗) corresponding to θ ∈ Path(BT, ηID∗) ∪ KUNode(BT,RLT∗)
are semi-functional. Namely, Eqs. (9)–(12) turn to

sk′
(ℓ)
ID,θ,x = P̃

(ℓ)
θ,x · g

rθ,ℓ(x1ID+x3)+ϕθ,ℓ
2

= P
(ℓ)
θ,x · g

rθ,ℓ(x1ID+x3)+ϕθ,ℓ−βθ,ℓ
2 = P

(ℓ)
θ,x · g

rθ,ℓ(x1ID+x3)+ϕ̃θ,ℓ
2 ,

sk′
(ℓ)
ID,θ,y := P̃

(ℓ)
θ,y · g

rθ,ℓ(y1ID+y3)−αϕθ,ℓ
2

= P
(ℓ)
θ,y · g

rθ,ℓ(y1ID+y3)−α(ϕθ,ℓ−βθ,ℓ)
2 = P

(ℓ)
θ,y · g

rθ,ℓ(y1ID+y3)−αϕ̃θ,ℓ
2 ,

ku′T,θ,x =

∏
ℓ∈FT

(
P̃

(ℓ)
θ,x

)−1

 · gx0+sθ(x2T∗+x3)+ψθ
2

=

∏
ℓ∈FT

(
P

(ℓ)
θ,x

)−1

 · gx0+sθ(x2T∗+x3)+ψθ+
∑

ℓ∈FT
βθ,ℓ

2

=

∏
ℓ∈FT

(
P

(ℓ)
θ,x

)−1

 · gx0+sθ(x2T∗+x3)+ψ̃θ
2 ,

ku′T,θ,y =

∏
ℓ∈FT

(
P̃

(ℓ)
θ,y

)−1

 · gy0+sθ(y2T∗+y3)−αψθ
2

=

∏
ℓ∈FT

(
P

(ℓ)
θ,y

)−1

 · gx0+sθ(x2T∗+x3)−α
(
ψθ+

∑
ℓ∈FT

βθ,ℓ

)
2

=

∏
ℓ∈FT

(
P

(ℓ)
θ,y

)−1

 · gx0+sθ(x2T∗+x3)−αψ̃θ
2 ,

38

where ϕ̃θ,ℓ := ϕθ,ℓ − βθ,ℓ and ψ̃θ := ψθ +
∑

ℓ∈FT
βθ,ℓ. Since ϕθ,ℓ and ψθ are randomly chosen

for every node θ of BT and ℓ ∈ [d], the distributions on the above components are identical to
those in Game 3|T |.

On the other hand, for every θ ∈ Path(BT, ηID∗) ∪ KUNode(BT,RLT∗), if we set

P
(ℓ)
θ,x = P̃

(ℓ)
θ,x and P

(ℓ)
θ,y = P̃

(ℓ)
θ,y ,

Eqs. (5)–(8) then turn to semi-functional components of S̃KID∗ and K̃UT∗ since we have

sk′
(ℓ)
ID∗,θ,x = P̃

(ℓ)
θ,x · g

rθ,ℓ(x1ID
∗+x3)+βθ,ℓ

2 = P
(ℓ)
θ,x · g

rθ,ℓ(x1ID
∗+x3)+ϕθ,ℓ

2 ,

sk′
(ℓ)
ID∗,θ,y = P̃

(ℓ)
θ,y · g

rθ,ℓ(y1ID
∗+y3)−αβθ,ℓ

2 = P
(ℓ)
θ,y · g

rθ,ℓ(y1ID
∗+y3)−αϕθ,ℓ

2 ,

ku′T∗,θ,x =

 ∏
ℓ∈FT∗

(
P̃

(ℓ)
θ,x

)−1

 · gx0+sθ(x2T∗+x3)−
∑

ℓ∈FT∗
β′
θ,ℓ

2

=

 ∏
ℓ∈FT∗

(
P

(ℓ)
θ,x

)−1

 · gx0+sθ(x2T∗+x3)+ψθ
2 ,

ku′T∗,θ,y =

 ∏
ℓ∈FT∗

(
P̃

(ℓ)
θ,y

)−1

 · gy0+sθ(y2T∗+y3)−α
(
−

∑
ℓ∈FT∗

β′
θ,ℓ

)
2

=

 ∏
ℓ∈FT∗

(
P

(ℓ)
θ,y

)−1

 · gy0+sθ(y2T∗+y3)−αψθ
2 ,

where ϕθ,ℓ := βθ,ℓ and ψθ := −
∑

ℓ∈FT∗
β′θ,ℓ. Therefore, the distributions on Eqs. (5)–(12) are

identical to those in Game 4.

Type-II adversary AII : Since AII cannot get the secret key for ID∗, we only need to show the
distributions on Eqs. (7)–(12) are identical to those in both Game 3|T | and Game 4.

In fact, we can show the distributions on Eqs. (7)–(12) are identical those in Game 3|T | as
above. However, since Path(BT, ηID∗) ∩ KUNode(BT,RLT∗) ̸= ∅, we have to be more careful
about the distributions on decryption keys when we show that the distributions on Eqs.
(7)–(12) are also identical to those in Game 4. Therefore, for every θ ∈ Path(BT, ηID∗) ∪
KUNode(BT,RLT∗), we set{

P
(ℓ)
θ,x := P̃

(ℓ)
θ,x and P

(ℓ)
θ,y = P̃

(ℓ)
θ,y , if ℓ ∈

∪Q
i=1FTi

,

P
(ℓ)
θ,x := P̃

(ℓ)
θ,x · g

βθ,ℓ
2 and P

(ℓ)
θ,y = P̃

(ℓ)
θ,y · g

−αβθ,ℓ
2 , otherwise,

where T1, . . . ,TQ are time periods issued for decryption key reveal queries. Then, there exists

at least one element ℓ ∈ FT∗ \
(∪Q

i=1FTi

)
due to the underlying CFF, and therefore Eqs.

39

(7) and (8) turn to semi-functional by setting ψθ := −
∑

ℓ∈FT∗\(
∪Q

i=1 FTi)
βθ,ℓ. Obviously, a

decryption key D̃KID∗,Ti
for (ID∗,Ti) with i ∈ [Q] is semi-functional, since K̃UTi

is semi-
functional. As in the case of AI , we can also show that Eqs. (9)–(12) turn to semi-functional
components, and the distributions on them are identical to those in Game 4. Hence, the
distributions on Eqs. (7)–(12) are identical to those in Game 4.

This completes the proof.

Finally, we show that the difference between Game 4 and Gamefinal is negligible as follows.
First, we define the following sub-game Gamesemi-final.

• Gamesemi-final: Gamesemi-final is the same as Game 4 except that the first component c̃tm
of the semi-functional challenge ciphertext is the random element in GT .

We show that,

|Pr[E4]− Pr[Efinal]| ≤ |Pr[E4]− Pr[Esemi-final]|+ |Pr[Esemi-final]− Pr[Efinal]| ,

is negligible.

Lemma 10. If there exists a PPT adversary A to distinguish Gamesemi-final and Game 4, then
there exists a PPT adversary B to break the DDH1 assumption.

Proof. Given the DDH1 instance (G, gc11 , g
c2
1) with Z. The simulator B uses A to distinguish if Z

is distributed as gc1c21 or gc1c2+η1 .

B chooses α, x, x1, x2, x3, y, y1, y2, y3
$← Zq. B also chooses y′0

$← Zq and implicitly sets

x0 := c1, y0 := y′0 − αc1.

B computes z := e(g1, g2)
y′0 , v := gxα+y1 , uid := gx1α+y11 , ut := gx2α+y21 , and h := gx3α+y31 . B runs

CS.SetUp(N)→ BT by arbitrarily choosing N ∈ N, and sends PP := (G, gα1 , uid, ut, h, v, z) to A.
B can respond to any secret key reveal queries since any secret key does not contain x0 and

y0. Since correct semi-functional decryption keys for (ID∗,T) can be generated if B simulates
correct semi-functional key updates, we here only show how B respond to revocation and key
update queries as follows. When a receiving a query RL ⊆ I, B checks if the conditions (a)–(c)
are satisfied (see Section 3 for details). If not, B outputs ⊥. Otherwise, B sets Tcu ← Tcu + 1

and RLTcu ← RL, and then for every θ ∈ KUNode(BT,RLTcu), B computes K̃UTcu,θ := (θ, k̃uTcu,θ,

k̃uTcu,θ,x, k̃u
′
Tcu,θ,x, k̃u

′′
Tcu,θ,x, k̃uTcu,θ,y, k̃u

′
Tcu,θ,y, k̃u

′′
Tcu,θ,y) as follows. B chooses sθ, ψ

′
θ

$← Zq, and
implicitly sets

ψθ := ψ′
θ − x0 (and hence ψ′

θ = x0 + ψθ).

B then computes

k̃uTcu,θ := gsθ2 ,

40

k̃uTcu,θ,x := gsθx2 ,

k̃u′Tcu,θ,x :=

 ∏
ℓ∈FTcu

(
P

(ℓ)
θ,x

)−1

 · gsθ(x2Tcu+x3)+ψ′
θ

2 =

 ∏
ℓ∈FTcu

(
P

(ℓ)
θ,x

)−1

 · gx0+sθ(x2Tcu+x3)+ψθ
2 ,

k̃u′′Tcu,θ,x := gsθx12 ,

k̃uTcu,θ,y := gsθy2 ,

k̃u′Tcu,θ,y :=

 ∏
ℓ∈FTcu

(
P

(ℓ)
θ,y

)−1

 · gy′0+sθ(y2Tcu+y3)−αψ′
θ

2 =

 ∏
ℓ∈FTcu

(
P

(ℓ)
θ,y

)−1

 · gy0+sθ(y2Tcu+y3)−αψθ
2 ,

k̃u′′Tcu,θ,y := gsθy12 .

Since ψ′
θ masks x0 in the information-theoretic sense, ψθ is a random element of Zq from A’s view.

B returns K̃UTcu := ({K̃UTcu,θ}θ∈KUNode(BT,RLTcu),FTcu) to A.

When A submits (M∗, ID∗,T∗), B picks t, δ∗1 , δ
∗
2 , δ

∗
3

$← Zq, and creates the challenge ciphertext

C̃T
∗
ID∗,T∗ := (c̃t

∗
m, c̃t

∗
x, c̃t

∗
y, c̃t

∗
ID∗,T∗ , t̃ag

∗
) as

t̃ag
∗
:= δ∗1 ID

∗ + δ∗2T
∗ + δ∗3 ,

c̃t
∗
m :=M∗ · zt · e(Z, g2), c̃t

∗
x := (gα1)

tgc21 , c̃t
∗
y := gt1,

c̃t
∗
ID,T :=

(
vt̃ag

∗
uID

∗

id uT
∗

t h
)t

(gc21)xt̃ag
∗
+x1ID

∗+x2T
∗+x3 .

Obviously, by setting µ := c2 the above ciphertext is semi-functional if Z = gc1c21 . On the other
hand, the first component of the above ciphertext is random element of G1 if Z = gc1c2+η1 since we
have

c̃t
∗
m :=M∗ · zt · e(Z, g2) =M∗ · zt · e(g1, g2)x0µ+η = R · zt · e(g1, g2)x0µ,

where R :=M∗ · e(g1, g2)η.

Lemma 11. If there exists a PPT adversary A to distinguish Gamefinal and Gamesemi-final,
then there exists a PPT adversary B to break the DDH1 assumption.

Proof. Basically, this lemma can be proved in a similar way to Lemma 10.

The given DDH1 instance is (G, gc11 , g
c2
1) with Z, where Z is gc1c21 or gc1c2+η1 . B chooses

α, x, x0, x1, x2, y, y0, y1, y2
$← Zq. B also chooses y′3

$← Zq and implicitly sets

x3 := c1, y3 := y′3 − αc1.

B computes z := e(g1, g2)
x0α+y0 , v := gxα+y1 , uid := gx1α+y11 , ut := gx2α+y21 , and h := g

y′3
1 . B runs

BT← CS.SetUp(N) by choosing arbitrary N ∈ N, and sends PP := (G, gα1 , uid, ut, h, v, z) to A.

41

Here, we only show how B responds to secret key generation and secret key reveal queries since
B can answer revocation and key update queries in a similar way. When receiving a query ID, B
runs (ηID, BT) ← CS.Assign(BT, ID). For every θ ∈ Path(BT, ηID), B recalls {P (ℓ)

θ,x, P
(ℓ)
θ,y}

d
ℓ=1 if they

were defined. Otherwise, B randomly chooses them from G2, and stores them in θ. For ℓ ∈ [d],

B computes S̃K
(ℓ)

ID,θ := (s̃k
(ℓ)
ID,θ, s̃k

(ℓ)
ID,θ,x, s̃k

′(ℓ)
ID,θ,x, s̃k

′′(ℓ)
ID,θ,x, s̃k

(ℓ)
ID,θ,y, s̃k

′(ℓ)
ID,θ,y, s̃k

′′(ℓ)
ID,θ,y) as follows. B

chooses rθ,ℓ, ϕ
′
θ,ℓ ∈ Zq , and implicitly sets

ϕθ,ℓ := ϕ′θ,ℓ − rθ,ℓx3 (and hence ϕ′θ,ℓ = rθ,ℓx3 + ϕθ,ℓ).

Since ϕ′θ,ℓ masks rθ,ℓx3 in the information-theoretic sense, ϕθ,ℓ is a random element of Zq from A’s
view. B then computes

s̃k
(ℓ)
ID,θ := g

rθ,ℓ
2 ,

s̃k
(ℓ)
ID,θ,x := g

rθ,ℓx
2 ,

s̃k′
(ℓ)

ID,θ,x := P
(ℓ)
θ,xg

rθ,ℓx1ID+ϕ′θ,ℓ
2 = P

(ℓ)
θ,xg

rθ,ℓ(x1ID+x3)+ϕθ,ℓ
2 ,

s̃k′′
(ℓ)

ID,θ,x := g
rθ,ℓx2
2 ,

s̃k
(ℓ)
ID,θ,y := g

rθ,ℓy
2 ,

s̃k′
(ℓ)

ID,θ,y := P
(ℓ)
θ,yg

rθ,ℓ(y1ID+y′3)−αϕ′θ,ℓ
2 = P

(ℓ)
θ,yg

rθ,ℓ(y1ID+y3)−αϕθ,ℓ
2 ,

s̃k′′
(ℓ)

ID,θ,y := g
rθ,ℓy2
2 .

Finally, B returns S̃KID := {S̃KID,θ := (θ, {S̃K
(ℓ)

ID,θ}dℓ=1)}θ∈Path(BT,ηID).

When A submits (M∗, ID∗,T∗), B picks t, δ∗1 , δ
∗
2 , δ

∗
3

$← Zq and Rm
$← GT , and creates the

challenge ciphertext C̃T
∗
ID∗,T∗ := (c̃t

∗
m, c̃t

∗
x, c̃t

∗
y, c̃t

∗
ID∗,T∗ , t̃ag

∗
) as

t̃ag
∗
:= δ∗1 ID

∗ + δ∗2T
∗ + δ∗3 ,

c̃t
∗
m := Rm, c̃t

∗
x := (gα1)

tgc21 , c̃t
∗
y := gt1,

c̃t
∗
ID,T :=

(
vt̃ag

∗
uID

∗

id uT
∗

t h
)t

(gc21)xt̃ag
∗
+x1ID

∗+x2T
∗
Z.

Obviously, by setting µ := c2 the first component of the above ciphertext is random element of GT
and the others are the components of semi-functional ciphetext if Z = gc1c21 . On the other hand,
the above ciphertext consists of random elements of GT ×G3

1 × Zq if Z = gc1c2+η1 since we have

c̃t
∗
ID∗,T∗ :=

(
vt̃ag

∗
uID

∗

id uT
∗

t h
)t

(gc21)xt̃ag
∗
+x1ID

∗+x2T
∗
Z

=
(
vt̃ag

∗
uID

∗

id uT
∗

t h
)t

(gc21)xt̃ag
∗
+x1ID

∗+x2T
∗
gx3µ+η1

= gη1 ·
(
vt̃ag

∗
uID

∗

id uT
∗

t h
)t

(gc21)xt̃ag
∗
+x1ID

∗+x2T
∗+x3 .

42

This means that a random element η masks c̃t
∗
ID∗,T∗ . Since δ∗1 , δ

∗
2 , δ

∗
3 , c2, and t are independent of

each other, all elements of C̃TID∗,T∗ are independently chosen from A’s view.

We thus conclude the proof.

6 Concluding Remarks

Human errors cannot be avoided, and therefore it is difficult to eliminate information leakage from
our society. Decryption key exposure resistance (DKER) is one of the solutions for the key exposure
problem in the context of RIBE. Since all the existing DKER RIBE schemes rely on the key re-
randomization technique to achieve DKER, there are several open problems related to the limitation
of the specific technique. In this paper, we newly introduced a mild form of DKER, called bounded
DKER, to (partly) resolve the open problems. As a result, we proposed two RIBE constructions
with bounded DKER, which are constructed from lattices and pairings, respectively. They are
the first lattice-based/pairing-based anonymous RIBE scheme that achieves a kind of DKER. Our
schemes are secure under the simple assumptions such as the LWE and SXDH assumptions.

It would be interesting to realize an anonymous RIBE scheme with (unbounded) DKER.

Acknowledgement. We would like to thank Shantian Cheng and Juanyang Zhang for their
sincere discussion with us. We would like to thank Shuichi Katsumata for his helpful comments
about lattice-based IBE.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, volume 6110 of Lecture Notes in Computer Science, pages 553–572.
Springer, 2010. 3, 10, 11, 28

[ABV+12] Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and
Hoeteck Wee. Functional encryption for threshold functions (or fuzzy IBE) from lat-
tices. In Marc Fischlin, Johannes A. Buchmann, and Mark Manulis, editors, Public Key
Cryptography - PKC 2012 - 15th International Conference on Practice and Theory in
Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science, pages
280–297. Springer, 2012. 28

[AFL16] Daniel Apon, Xiong Fan, and Feng-Hao Liu. Fully-secure lattice-based IBE as compact
as PKE. IACR Cryptology ePrint Archive, 2016:125, 2016. 3, 28

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In Jiŕı Wieder-
mann, Peter van Emde Boas, and Mogens Nielsen, editors, Automata, Languages and
Programming, 26th International Colloquium, ICALP’99, volume 1644 of Lecture Notes
in Computer Science, pages 1–9. Springer, 1999. 10

43

[AP11] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices.
Theory Comput. Syst., 48(3):535–553, 2011. 10

[BBDP01] MIhir Bellare, Alexandra Boldyreva, Anand Desai, David Pointcheval. Key-privacy in
public-key encryption. In Colin Boyd, editor, Advances in Cryptology - ASIACRYPT
2001, volume 2248 of Lecture Notes in Computer Science, pages 566–582. Springer,
2001. 4

[BB11] Dan Boneh and Xavier Boyen. Efficient selective identity-based encryption without
random oracles. J. Cryptology, 24(4):659–693, 2011. 3, 28

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
SIAM J. Comput., 32(3):586–615, 2003. 3

[BGK08] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption
with efficient revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
Proceedings of the 2008 ACM Conference on Computer and Communications Security,
CCS 2008, pages 417–426. ACM, 2008. 3, 12

[BL16] Xavier Boyen and Qinyi Li. Towards tightly secure lattice short signature and id-based
encryption. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
- ASIACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, volume 10032 of Lecture Notes in Computer
Science, pages 404–434, 2016. 3, 28

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, pages
575–584. ACM, 2013. 10, 11

[Boy10] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. In Phong Q. Nguyen and David Pointcheval, editors, Public
Key Cryptography - PKC 2010, 13th International Conference on Practice and Theory
in Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science, pages
499–517. Springer, 2010. 3, 28

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryp-
tion (without random oracles). In Cynthia Dwork, editor, Advances in Cryptology
- CRYPTO 2006, 26th Annual International Cryptology Conference, volume 4117 of
Lecture Notes in Computer Science, pages 290–307. Springer, 2006. 3, 4, 8

[CCKS18] Donghoon Chang, Amit Kumar Chauhan, Sandeep Kumar, and Somitra Kumar Sanad-
hya. Revocable identity-based encryption from codes with rank metric. In Nigel P.
Smart, editor, Topics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at
the RSA Conference 2018, volume 10808 of Lecture Notes in Computer Science, pages
435–451. Springer, 2018. 3

44

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. J. Cryptology, 25(4):601–639, 2012. 3, 10, 28

[CLL+12a] Jie Chen, Hoon Wei Lim, San Ling, Le Su, and Huaxiong Wang. Anonymous and adap-
tively secure revocable IBE with constant size public parameters. CoRR, abs/1210.6441,
2012. 4, 9

[CLL+12b] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Khoa Nguyen. Revocable
identity-based encryption from lattices. In Willy Susilo, Yi Mu, and Jennifer Seberry,
editors, Information Security and Privacy - 17th Australasian Conference, ACISP 2012,
volume 7372 of Lecture Notes in Computer Science, pages 390–403. Springer, 2012. 3,
4, 6, 18, 21, 22, 23, 28

[CZ15] Shantian Cheng and Juanyang Zhang. Adaptive-id secure revocable identity-based
encryption from lattices via subset difference method. In Javier Lopez and Yongdong
Wu, editors, Information Security Practice and Experience - 11th International Confer-
ence, ISPEC 2015, volume 9065 of Lecture Notes in Computer Science, pages 283–297.
Springer, 2015. 4, 27, 28

[EFF85] P. Erdös, P. Frankl, and Z. Füredi. Families of finite sets in which no set is covered by
the union of r others. Israel Journal of Mathematics, 51(1):79–89, 1985. 12

[ESY16] Keita Emura, Jae Hong Seo, and Taek-Young Youn. Semi-generic transformation of
revocable hierarchical identity-based encryption and its DBDH instantiation. IEICE
Transactions, 99-A(1):83–91, 2016. 3

[GLW12] Shafi Goldwasser, Allison B. Lewko, and David A. Wilson. Bounded-collusion IBE from
key homomorphism. In Ronald Cramer, editor, Theory of Cryptography - 9th Theory
of Cryptography Conference, TCC 2012, volume 7194 of Lecture Notes in Computer
Science, pages 564–581. Springer, 2012. 4

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, Proceedings of the
40th Annual ACM Symposium on Theory of Computing, pages 197–206. ACM, 2008.
3, 10, 28

[HK04] Swee-Huay Heng and Kaoru Kurosawa. k-resilient identity-based encryption in the
standard model. In Tatsuaki Okamoto, editor, Topics in Cryptology - CT-RSA 2004,
The Cryptographers’ Track at the RSA Conference 2004, San Francisco, CA, USA,
February 23-27, 2004, Proceedings, volume 2964 of Lecture Notes in Computer Science,
pages 67–80. Springer, 2004. 4

[HLCL18] Ziyuan Hu, Shengli Liu, Kefei Chen, and Joseph K. Liu. Revocable identity-based
encryption from the computational Diffie-Hellman problem. In Willy Susilo and

45

Guomin Yang, editors, Information Security and Privacy - 23rd Australasian Con-
ference, ACISP 2018, Wollongong, NSW, Australia, July 11-13, 2018, Proceedings,
volume 10946 of Lecture Notes in Computer Science, pages 265–283. Springer, 2018. 3

[IWS15] Yuu Ishida, Yohei Watanabe, and Junji Shikata. Constructions of cca-secure revocable
identity-based encryption. In Ernest Foo and Douglas Stebila, editors, Information
Security and Privacy - 20th Australasian Conference, ACISP 2015, volume 9144 of
Lecture Notes in Computer Science, pages 174–191. Springer, 2015. 3

[JR17] Charanjit S. Jutla and Arnab Roy. Shorter Quasi-Adaptive NIZK Proofs for Linear
Subspaces. In Journal of Cryptology, volume 30, Issue 4, pages 1116–1156, 2017. 3, 7,
29, 36

[KMT18] Shuichi Katsumata, Takahiro Matsuda, and Atsushi Takayasu. Lattice-based revocable
hierarchical identity-based encryption with decryption key exposure resistance. ePrint
(to appear), 2018. 6, 13, 18, 27

[KRS99] Ravi Kumar, Sridhar Rajagopalan, and Amit Sahai. Coding constructions for black-
listing problems without computational assumptions. In Michael J. Wiener, editor,
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Con-
ference, volume 1666 of Lecture Notes in Computer Science, pages 609–623. Springer,
1999. 12

[KY16] Shuichi Katsumata and Shota Yamada. Partitioning via non-linear polynomial func-
tions: More compact ibes from ideal lattices and bilinear maps. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd In-
ternational Conference on the Theory and Application of Cryptology and Information
Security, volume 10032 of Lecture Notes in Computer Science, pages 682–712, 2016. 3,
28

[Lee16] Kwangsu Lee. Revocable hierarchical identity-based encryption with adaptive security.
IACR Cryptology ePrint Archive, 2016:749, 2016. 3, 9, 33

[LLP17] Kwangsu Lee, Dong Hoon Lee, and Jong Hwan Park. Efficient revocable identity-based
encryption via subset difference methods. Des. Codes Cryptography, 85(1):39–76, 2017.
3, 4

[LP16] Kwangsu Lee and Seunghwan Park. Revocable hierarchical identity-based encryption
with shorter private keys and update keys. IACR Cryptology ePrint Archive, 2016:460,
2016. 3

[LV09] Benôıt Libert and Damien Vergnaud. Adaptive-id secure revocable identity-based en-
cryption. In Marc Fischlin, editor, Topics in Cryptology - CT-RSA 2009, The Cryptog-
raphers’ Track at the RSA Conference 2009, volume 5473 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2009. 3, 12

46

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptol-
ogy - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, volume 7237 of Lecture Notes in Computer
Science, pages 700–718. Springer, 2012. 6, 10

[NNL01] Dalit Naor, Moni Naor, Jeff Lotspiech. Revocation and tracing schemes for stateless
receivers. In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, volume 2139
of Lecture Notes in Computer Science, pages 41–62, 2001. 3

[NWZ16] Khoa Nguyen, Huaxiong Wang, and Juanyang Zhang. Server-aided revocable identity-
based encryption from lattices. In Sara Foresti and Giuseppe Persiano, editors, Cryptol-
ogy and Network Security - 15th International Conference, CANS 2016, volume 10052
of Lecture Notes in Computer Science, pages 107–123, 2016. 4

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, pages 333–342. ACM, 2009.
11

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 84–93. ACM, 2005. 11

[RLPL15] Geumsook Ryu, Kwangsu Lee, Seunghwan Park, and Dong Hoon Lee. Unbounded
hierarchical identity-based encryption with efficient revocation. In Howon Kim and
Dooho Choi, editors, Information Security Applications - 16th International Work-
shop, WISA 2015, volume 9503 of Lecture Notes in Computer Science, pages 122–133.
Springer, 2015. 3

[RS14] Somindu C. Ramanna and Palash Sarkar. Efficient (anonymous) compact HIBE from
standard assumptions. In Sherman S. M. Chow, Joseph K. Liu, Lucas C. K. Hui,
and Siu Ming Yiu, editors, 8th International Conference on Provable Security, ProvSec
2014, volume 8782 of Lecture Notes in Computer Science, pages 243–258, 2014. 3, 7,
29, 36

[SW05] Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. In Ronald Cramer,
editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 457–473. Springer, 2005. 3

[SE14b] Jae Hong Seo and Keita Emura. Revocable identity-based cryptosystem revisited:
Security models and constructions. IEEE Trans. Information Forensics and Security,
9(7):1193–1205, 2014. 3, 4, 12, 28

[SE15] Jae Hong Seo and Keita Emura. Adaptive-ID Secure Revocable Hierarchical Identity-
Based Encryption. In Keisuke Tanaka and Yuji Suga, editors, Advances in Information

47

and Computer Security - IWSEC 2015, volume 9241 of Lecture Notes in Computer
Science, pages 21–38. Springer, 1985. 9

[SE16] Jae Hong Seo and Keita Emura. Revocable hierarchical identity-based encryption via
history-free approach. Theor. Comput. Sci., 615:45–60, 2016. 3

[Sha84] Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In George R.
Blakley and David Chaum, editors, Advances in Cryptology - CRYPTO 1984, volume
196 of Lecture Notes in Computer Science, pages 47–53. Springer, 1985. 3

[Sho06] Victor Shoup. A computational introduction to number theory and algebra. Cambridge
University Press, 2006. 27

[TW17] Atsushi Takayasu and Yohei Watanabe. Lattice-based revocable identity-based encryp-
tion with bounded decryption key exposure resistance. In Josef Pieprzyk and Suriadi
Suriadi, editors, Information Security and Privacy - 22nd Australasian Conference,
ACISP 2017, volume 10342 of Lecture Notes in Computer Science, pages 184–204.
Springer, 2017. 1, 5, 27

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 29th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, volume
3494 of Lecture Notes in Computer Science, pages 114–127. Springer, 2005. 3, 28

[Wat09] Brent Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009,
24th Annual International Cryptology Conference, volume 5677 of Lecture Notes in
Computer Science, pages 619–636. Springer, 2009. 3, 8, 29

[WES17] Yohei Watanabe, Keita Emura, and Jae Hong Seo. New revocable IBE in prime-order
groups: Adaptively secure, decryption key exposure resistant, and with short public
parameters. In Helena Handschuh, editor, Topics in Cryptology - CT-RSA 2017 - The
Cryptographers’ Track at the RSA Conference 2017, volume 10159 of Lecture Notes in
Computer Science, pages 432–449. Springer, 2017. 3, 4

[XWW+16] Qianqian Xing, Baosheng Wang, Xiaofeng Wang, Peixin Chen, Bo Yu, Yong Tang,
and Xianming Gao. Unbounded revocable hierarchical identity-based encryption with
adaptive-id security. In Jinjun Chen and Laurence T. Yang, editors, 18th IEEE In-
ternational Conference on High Performance Computing and Communications; 14th
IEEE International Conference on Smart City; 2nd IEEE International Conference on
Data Science and Systems, HPCC/SmartCity/DSS 2016, pages 430–437. IEEE, 2016.
9

[XWW+17] Qianqian Xing, Baosheng Wang, Xiaofeng Wang, Yong Tang, and Yi Wang. Déjà Q
Encore RIBE: Anonymous Revocable Identity-Based Encryption with Short Parame-
ters. In GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pages
1–6, IEEE, 2017. 4, 9

48

[XWWT18] Qianqian Xing, Baosheng Wang, Xiaofeng Wang, and Jing Tao. Unbounded and
revocable hierarchical identity-based encryption with adaptive security, decryption key
exposure resistant, and short public parameters. PloS one, 13(4):e0195204, 2018. 9

[Yam16] Shota Yamada. Adaptively secure identity-based encryption from lattices with asymp-
totically shorter public parameters. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, volume 9666 of Lecture
Notes in Computer Science, pages 32–62. Springer, 2016. 3, 28

[Yam17] Shota Yamada. Asymptotically compact adaptively secure lattice IBEs and verifiable
random functions via generalized partitioning techniques. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, volume 10403 of Lecture Notes in Computer Science, pages 161–
193. Springer, 2017. 3, 28

[ZCZ16] Jiang Zhang, Yu Chen, and Zhenfeng Zhang. Programmable hash functions from
lattices: Short signatures and ibes with small key sizes. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual Inter-
national Cryptology Conference, volume 9816 of Lecture Notes in Computer Science,
pages 303–332. Springer, 2016. 3, 28

A Missing Proofs of Lemmas

A.1 Game 2j−1 → Game 2j with 1 ≤ j ≤ Qsk

To show that the difference between Game 2j−1 and Game 2j (1 ≤ j ≤ Qsk) is negligible, we
define pseudo-normal secret keys and pseudo-semi-functional secret keys as follows.

Pseudo-normal secret key for ID: Let η be a leaf node of BT assigned to ID, and parse

a normal secret key SKID as {SKID,θ = (θ, {SK(ℓ)
ID,θ = (sk

(ℓ)
ID,θ, sk

(ℓ)
ID,θ,x, sk

′(ℓ)
ID,θ,x, sk

′′(ℓ)
ID,θ,x, sk

(ℓ)
ID,θ,y,

sk′
(ℓ)
T,θ,y, sk

′′(ℓ)
T,θ,y)}ℓ∈[d])}θ∈Path(BT,ηID). Let δ∗1 , δ

∗
2 , δ

∗
3 ∈ Zq be elements of Zq used for t̃ag

∗
:=

δ∗1 ID
∗ + δ∗2T

∗ + δ∗3 in the challenge ciphertext C̃T
∗
ID∗,T∗ . For each θ ∈ Path(BT, ηID) and ℓ ∈ [d], a

pseudo-normal secret-key component SK
(ℓ)
ID,θ := (sk

(ℓ)
ID,θ, sk

(ℓ)
ID,θ,x, sk

′(ℓ)
ID,θ,x, sk

′′(ℓ)
ID,θ,x, sk

(ℓ)
ID,θ,y, sk

′(ℓ)
ID,θ,y,

sk′′
(ℓ)
ID,θ,y) is computed by

sk
(ℓ)
ID,θ := sk

(ℓ)
ID,θ,

sk
(ℓ)
ID,θ,x := sk

(ℓ)
ID,θ,x · g

−γθ,ℓ
2 = g

rθ,ℓx−γθ,ℓ
2 ,

sk′
(ℓ)
ID,θ,x := sk′

(ℓ)
ID,θ,x · g

γθ,ℓ(δ
∗
1 ID+δ∗3)

2 = P
(ℓ)
θ,x · g

rθ,ℓ(x1ID+x3)+γθ,ℓ(δ
∗
1 ID+δ∗3)

2 ,

sk′′
(ℓ)
ID,θ,x := sk′′

(ℓ)
ID,θ,x · g

δ∗2
2 = g

rθ,ℓx2+δ
∗
2

2 ,

sk
(ℓ)
ID,θ,y := sk

(ℓ)
ID,θ,y · g

αγθ,ℓ
2 = g

rθ,ℓy+αγθ,ℓ
2 ,

49

sk′
(ℓ)
ID,θ,y := sk′

(ℓ)
ID,θ,y · g

−αγθ,ℓ(δ∗1 ID+δ∗3)
2 = P

(ℓ)
θ,y · g

rθ,ℓ(y1ID+y3)−αγθ,ℓ(δ∗1 ID+δ∗3)
2 ,

sk′′
(ℓ)
ID,θ,y := sk′′

(ℓ)
ID,θ,y · g

−αδ∗2
2 = g

rθ,ℓy2−αδ∗2
2 ,

where γθ,ℓ
$← Zq. A pseudo-normal secret key is SKID := {SKID,θ = (θ, {SK(ℓ)

ID,θ}ℓ∈[d])}θ∈Path(BT,ηID).

Pseudo-semi-functional secret key for ID: Let η be a leaf node of BT as-

signed to ID, and parse a pseudo-normal secret key SKID as {SKID,θ = {(θ, SK(ℓ)
ID,θ =

(sk
(ℓ)
ID,θ, sk

(ℓ)
ID,θ,x, sk

′(ℓ)
ID,θ,x, sk

′′(ℓ)
ID,θ,x, sk

(ℓ)
ID,θ,y, sk′

(ℓ)
ID,θ,y, sk

′′(ℓ)
ID,θ,y)}ℓ∈[d])}θ∈Path(BT,ηID). For each θ ∈

Path(BT, ηID) and ℓ ∈ [d], a pseudo-semi-functional secret-key component ŜK
(ℓ)

ID,θ := (sk
(ℓ)
ID,θ,

sk
(ℓ)
ID,θ,x, ŝk

′(ℓ)
ID,θ,x, sk

′′(ℓ)
ID,θ,x, sk

(ℓ)
ID,θ,y, ŝk

′(ℓ)
ID,θ,y, sk

′′(ℓ)
ID,θ,y) is computed by

ŝk′
(ℓ)

ID,θ,x := sk′
(ℓ)
ID,θ,x · g

ϕθ,ℓ
2 = P

(ℓ)
θ,x · g

rθ,ℓ(x1ID+x3)+ϕθ,ℓ+γθ,ℓ(δ
∗
1 ID+δ∗3)

2 ,

ŝk′
(ℓ)

ID,θ,y := sk′
(ℓ)
ID,θ,y · g

−αϕθ,ℓ
2 = P

(ℓ)
θ,y · g

rθ,ℓ(y1ID+y3)−α(ϕθ,ℓ+γθ,ℓ(δ∗1 ID+δ∗3))
2 ,

where ϕθ,ℓ
$← Zq. A pseudo-semi-functional secret key is ŜKID := {ŜKID,θ =

{(θ, ŜK
(ℓ)

ID,θ}ℓ∈[d])}θ∈Path(BT,ηID).

Note that gα2 is needed to compute pseudo-normal/pseudo-semi-functional keys, and that nor-
mal ciphetexts can be decrypted by decryption keys generated from pseudo-normal/pseudo-semi-
functional secret keys and normal/semi-functional key updates.

We additionally define the following games.

Game 2j,1 (0 ≤ j ≤ Qsk − 1): The game is the same as Game 2j except that for a (j+1)-st secret
key reveal query IDj+1, a pseudo-normal secret key SKIDj+1

is returned.

Game 2j,2 (0 ≤ j ≤ Qsk − 1): The game is the same as Game 2j,1 except that for (j+1)-st secret

key reveal query IDj+1, a pseudo-semi-functional secret key ŜKIDj+1
is returned.

We show that for every j ∈ {0, 1, . . . , Qsk − 1},∣∣Pr[E2j]− Pr[E2j+1]
∣∣ ≤ ∣∣Pr[E2j]− Pr[E2j,1]

∣∣+ ∣∣Pr[E2j,1]− Pr[E2j,2]
∣∣+ ∣∣Pr[E2j,2]− Pr[E2j+1]

∣∣ ,
is negligible.

Lemma 12. For every j ∈ {0, 1, . . . , Qsk − 1}, if there exists a PPT adversary A to distinguish
Game 2j and Game 2j,1, then there exists a PPT adversary B to break the DDH2 assumption.

Proof. Given the DDH2 instance (G, gc12 , g
c2
2) with Z. The simulator B uses A to distinguish if Zq

is distributed as gc1c22 or gc1c2+γ2 .

B chooses α, x′, x0, x
′
1, x

′
2, x

′
3, y

′, y0, y
′
1, y

′
2, y

′
3, δ

∗
1 , δ

∗
2 , δ

∗
3

$← Zq, and implicitly sets

x := x′ − c2, y := y′ + c2α, x1 := x′1 + c2δ
∗
1 , y1 := y′1 − c2δ∗1α,

50

x2 := x′2 + c2δ
∗
2 , y2 := y′2 − c2δ∗2α, x3 := x′3 + c2δ

∗
3 , y3 := y′3 − c2δ∗3α.

Note that x1, x2, x3, y1, y2, y3 do not leak any information of δ∗1 , δ
∗
2 , δ

∗
3 since x′1, x

′
2, x

′
3, y

′
1, y

′
2, y

′
3 and

c2 mask them in the information-theoretic sense. Therefore, although δ∗1 , δ
∗
2 , δ

∗
3 will be used for the

challenge ciphertext, choosing them at this point does not affect any distribution of them. B then
computes

v := gx
′α+y′

1 , z := e(g1, g2)
x0α+y0 , uid := g

x′1α+y
′
1

1 , ut := g
x′2α+y

′
2

1 , h := g
x′3α+y

′
3

1 .

B runs BT ← CS.SetUp(N) by arbitrarily choosing N ∈ N, and sends PP := (G, gα1 , v, uid, ut, h, z)
to A. Note that B does not know all the master key. However, B can compute

gx2 := gx
′

2 (gc22)−1, gx2 := gy
′

2 (gc22)α, gx12 := g
x′1
2 (gc22)δ

∗
1 , gy12 := g

y′1
2 (gc22)−δ

∗
1α,

gx22 := g
x′2
2 (gc22)δ

∗
2 , gy22 := g

y′2
2 (gc22)−δ

∗
2α, gx32 := g

x′3
2 (gc22)δ

∗
3 , gy32 := g

y′3
2 (gc22)−δ

∗
3α.

Therefore, B can compute any secret keys and key updates in any forms (i.e., normal ones and
semi-functional ones).

We show how B responds to a (j+1)-st secret key reveal query IDj+1. B first runs (ηIDj+1
, BT)←

CS.Assign(BT, IDj+1). For each node θ ∈ Path(BT, ηIDj+1
), B recalls {P (ℓ)

θ,x, P
(ℓ)
θ,y}

d
ℓ=1 if they were

defined. Otherwise, B chooses them from G2 randomly, and stores them in θ. For every ℓ ∈ [d], B
chooses r

(1)
θ,ℓ , r

(2)
θ,ℓ

$← Zq and computes

sk
(ℓ)
IDj+1,θ

:= (gc12)r
(1)
θ,ℓ · g

r
(2)
θ,ℓ

2 ,

sk
(ℓ)
IDj+1,θ,x

:= g
r
(2)
θ,ℓx

′

2 · (gc12)r
(1)
θ,ℓx

′
· (gc22)−r

(2)
θ,ℓ · Z−r(1)θ,ℓ ,

sk′
(ℓ)
IDj+1,θ,x

:= P
(ℓ)
θ,x · g

r
(2)
θ,ℓ (x

′
1IDj+1+x

′
3)

2 · (gc12)r
(1)
θ,ℓ (x

′
1IDj+1+x

′
3) · (gc22)r

(2)
θ,ℓ (δ

∗
1 IDj+1+δ

∗
3) · Zr

(1)
θ,ℓ (δ

∗
1 IDj+1+δ

∗
3),

sk′′
(ℓ)
IDj+1,θ,x

:= g
r
(2)
θ,ℓx

′
2

2 · (gc12)r
(1)
θ,ℓx

′
2 · (gc22)r

(2)
θ,ℓδ

∗
2 · Zr

(1)
θ,ℓδ

∗
2 ,

sk
(ℓ)
IDj+1,θ,y

:= g
r
(2)
θ,ℓy

′

2 · (gc12)r
(1)
θ,ℓy

′
· (gc22)r

(2)
θ,ℓα · Zr

(1)
θ,ℓα,

sk′
(ℓ)
IDj+1,θ,y

:= P
(ℓ)
θ,y · g

r
(2)
θ,ℓ (y

′
1IDj+1+y

′
3)

2 · (gc12)r
(1)
θ,ℓ (y

′
1IDj+1+y

′
3) · (gc22)−r

(2)
θ,ℓα(δ

∗
1 IDj+1+δ

∗
3) · Z−r(1)θ,ℓα(δ

∗
1 IDj+1+δ

∗
3),

sk′′
(ℓ)
IDj+1,θ,y

:= g
r
(2)
θ,ℓy

′
2

2 · (gc12)r
(1)
θ,ℓy

′
2 · (gc22)−r

(2)
θ,ℓαδ

∗
2 · Z−r(1)θ,ℓαδ

∗
2 .

The above secret key is normal if Z = gc1c22 since we have

sk
(ℓ)
IDj+1,θ

= g
r
(1)
θ,ℓc1+r

(2)
θ,ℓ

2 = g
rθ,r
2 ,

sk
(ℓ)
IDj+1,θ,x

= g
(r

(1)
θ,ℓc1+r

(2)
θ,ℓ)(x

′−c2)
2 = g

rθ,ℓx
2 ,

51

sk′
(ℓ)
IDj+1,θ,x

= P
(ℓ)
θ,x · g

(r
(1)
θ,ℓc1+r

(2)
θ,ℓ)((x

′
1+c2δ

∗
1)IDj+1+(x′3+c2δ

∗
3))

2 = P
(ℓ)
θ,x · g

rθ,ℓ(x1IDj+1+x3)
2 ,

sk′′
(ℓ)
IDj+1,θ,x

= g
(r

(1)
θ,ℓc1+r

(2)
θ,ℓ)(x

′
2+c2δ

∗
2)

2 = g
rθ,ℓx2
2 ,

sk
(ℓ)
IDj+1,θ,y

= g
(r

(1)
θ,ℓc1+r

(2)
θ,ℓ)(y

′+αc2)

2 = g
rθ,ℓy
2 ,

sk′
(ℓ)
IDj+1,θ,y

= P
(ℓ)
θ,y · g

(r
(1)
θ,ℓc1+r

(2)
θ,ℓ)((y

′
1−c2αδ∗1)IDj+1+(y′3−c2αδ∗3))

2 = P
(ℓ)
θ,y · g

rθ,ℓ(y1IDj+1+y3)
2 ,

sk′′
(ℓ)
IDj+1,θ,y

= g
(r

(1)
θ,ℓc1+r

(2)
θ,ℓ)(y

′
2−c2αδ∗2)

2 = g
rθ,ℓy2
2 ,

where rθ,ℓ := r
(1)
θ,ℓ c1 + r

(2)
θ,ℓ .

On the other hand, the above key is pseudo-normal if Z = gc1c2+γ2 since we have

sk
(ℓ)
IDj+1,θ

= g
r
(1)
θ,ℓc1+r

(2)
θ,ℓ

2 = g
rθ,r
2 ,

sk
(ℓ)
IDj+1,θ,x

= g
(r

(1)
θ,ℓc1+r

(2)
θ,ℓ)(x

′−c2)−γr(1)θ,ℓ

2 = g
rθ,ℓx−γθ,ℓ
2 ,

sk′
(ℓ)
IDj+1,θ,x

= P
(ℓ)
θ,x · g

(r
(1)
θ,ℓc1+r

(2)
θ,ℓ)((x

′
1+c2δ

∗
1)IDj+1+(x′3+c2δ

∗
3))+γr

(1)
θ,ℓ (δ

∗
1 IDj+1+δ

∗
3)

2

= P
(ℓ)
θ,x · g

rθ,ℓ(x1IDj+1+x3)+γθ,ℓ(δ
∗
1 IDj+1+δ

∗
3)

2 ,

sk′′
(ℓ)
IDj+1,θ,x

= g
(r

(1)
θ,ℓc1+r

(2)
θ,ℓ)(x

′
2+c2δ

∗
2)+γr

(1)
θ,ℓδ

∗
2

2 = g
rθ,ℓx2+γθ,ℓδ

∗
2

2 ,

sk
(ℓ)
IDj+1,θ,y

= g
(r

(1)
θ,ℓc1+r

(2)
θ,ℓ)(y

′+αc2)+γr
(1)
θ,ℓα

2 = g
rθ,ℓy+γθ,ℓα
2 ,

sk′
(ℓ)
IDj+1,θ,y

= P
(ℓ)
θ,y · g

(r
(1)
θ,ℓc1+r

(2)
θ,ℓ)((y

′
1−c2αδ∗1)IDj+1+(y′3−c2αδ∗3))−γr

(1)
θ,ℓα(δ

∗
1 IDj+1+δ

∗
3)

2

= P
(ℓ)
θ,y · g

rθ,ℓ(y1IDj+1+y3)−γθ,ℓα(δ∗1 IDj+1+δ
∗
3)

2 ,

sk′′
(ℓ)
IDj+1,θ,y

= g
(r

(1)
θ,ℓc1+r

(2)
θ,ℓ)(y

′
2−c2αδ∗2)−γr

(1)
θ,ℓαδ

∗
2

2 = g
rθ,ℓy2−γθ,ℓαδ∗2
2 ,

where rθ,ℓ := r
(1)
θ,ℓ c1 + r

(2)
θ,ℓ and γθ,ℓ := γr

(1)
θ,ℓ . It is obvious that rθ,ℓ and γθ,ℓ is independent of each

other from the view point of A.

When A submits (M∗, ID∗,T∗), B picks t, µ
$← Zq and creates the challenge ciphertext

C̃T
∗
ID∗,T∗ := (c̃t

∗
m, c̃t

∗
x, c̃t

∗
y, c̃t

∗
ID,T, t̃ag

∗
) as

c̃t
∗
m :=M∗ · zt · e(g1, g2)x0µ,

c̃t
∗
x := (gα1)

t · gµ1 ,
c̃t

∗
y := gt1,

c̃t
∗
ID∗,T∗ :=

(
vt̃ag

∗
uID

∗

id uT
∗

t h
)t
· gµ(x

′tag∗+x′1ID
∗+x′2T

∗+x′3)
1

52

=
(
vt̃ag

∗
uID

∗

id uT
∗

t h
)t
· gµ((x

′−c2)t̃ag
∗
+(x′1+c2δ

∗
1)ID

∗+(x′2+c2δ
∗
2)T

∗+x′3+c2δ
∗
3)

1 · gµc2(t̃ag
∗−δ1ID∗−δ2T∗−δ3)

1

=
(
wt̃ag

∗
uID

∗
hvT

∗
)t
· gµ(xt̃ag

∗
+x1ID

∗+x2T
∗+x3)

1 ,

where t̃ag
∗
:= δ∗1 ID

∗ + δ∗2T
∗ + δ∗3 .

Lemma 13. For every j ∈ {0, 1, . . . , Qsk − 1}, all of the distributions in Game 2j,1 are identical
to those in Game 2j,2 from the view point of any PPT adversary A. Namely, it holds Pr[E2j,1] =
Pr[E2j,2] for every j ∈ {0, 1, . . . , Qsk − 1}.

Proof. The difference between between Game 2j,1 and Game 2j,2 is only that a secret key for the

(j+1)-st query is pseudo-normal SKIDj+1
or pseudo-semi-functional ŜKIDj+1

. More specifically, the

difference between SKIDj+1
and ŜKIDj+1

is whether or not the component sk′
(ℓ)
IDj+1,θ,x and sk′

(ℓ)
IDj+1,θ,y

(or ŝk′
(ℓ)

IDj+1,θ,x and ŝk′
(ℓ)

IDj+1,θ,y) contain ϕθ,ℓ for all θ ∈ Path(BT, ηIDj+1
) and ℓ ∈ [d], where ηIDj+1

is
a leaf node corresponding to IDj+1.

For every θ ∈ Path(BT, ηIDj+1
) and ℓ ∈ [d], the corresponding components of SKIDj+1

are:

sk′
(ℓ)
IDj+1,θ,x = P

(ℓ)
θ,x · g

rθ,ℓ(x1IDj+1+x3)+γθ,ℓ(δ
∗
1 IDj+1+δ

∗
3)

2 ,

sk′
(ℓ)
IDj+1,θ,y = P

(ℓ)
θ,y · g

rθ,ℓ(y1IDj+1+y3)−γθ,ℓα(δ∗1 IDj+1+δ
∗
3)

2 .

For any T ∈ T , A can compute

sk′
(ℓ)
IDj+1,θ,x ·

(
sk′′

(ℓ)
IDj+1,θ,x

)T
= P

(ℓ)
θ,x · g

rθ,ℓ(x1IDj+1+x2T+x3)+γθ,ℓ(δ
∗
1 IDj+1+δ

∗
2T+δ

∗
3)

2 ,

sk′
(ℓ)
IDj+1,θ,y ·

(
sk′′

(ℓ)
IDj+1,θ,y

)T
= P

(ℓ)
θ,y · g

rθ,ℓ(y1IDj+1+y2T+y3)−γθ,ℓα(δ∗1 IDj+1+δ
∗
2T+δ

∗
3)

2 ,

where sk′′
(ℓ)
IDj+1,θ,x = g

rθ,ℓx2+δ
∗
2

2 and sk′′
(ℓ)
IDj+1,θ,y = g

rθ,ℓy2−αδ∗2
2 .

On the other hand, the corresponding components of ŜKIDj+1
are:

ŝk′
(ℓ)

IDj+1,θ,x = P
(ℓ)
θ,x · g

rθ,ℓ(x1IDj+1+x3)+ϕθ,ℓ+γθ,ℓ(δ
∗
1 IDj+1+δ

∗
3)

2 ,

ŝk′
(ℓ)

IDj+1,θ,y = P
(ℓ)
θ,y · g

rθ,ℓ(y1IDj+1+y3)−αϕθ,ℓ−γθ,ℓα(δ∗1 IDj+1+δ
∗
3)

2 .

For any T ∈ T , A can compute

ŝk′
(ℓ)

IDj+1,θ,x ·
(
ŝk′′

(ℓ)

IDj+1,θ,x

)T

= P
(ℓ)
θ,x · g

rθ,ℓ(x1IDj+1+x2T+x3)+γθ,ℓ(δ
∗
1 IDj+1+δ

∗
2T+δ

∗
3+

ϕθ,ℓ
γθ,ℓ

)

2 ,

ŝk′
(ℓ)

IDj+1,θ,y ·
(
ŝk′′

(ℓ)

IDj+1,θ,y

)T

= P
(ℓ)
θ,y · g

rθ,ℓ(y1IDj+1+y2T+y3)−γθ,ℓα(δ∗1 IDj+1+δ
∗
2T+δ

∗
3+

ϕθ,ℓ
γθ,ℓ

)

2 ,

where ŝk′′
(ℓ)

IDj+1,θ,x = g
rθ,ℓx2+δ

∗
2

2 and ŝk′′
(ℓ)

IDj+1,θ,y = g
rθ,ℓy2−αδ∗2
2 .

53

The tag for the challenge ciphertext in both games is t̃ag
∗
:= δ∗1 ID

∗ + δ∗2T
∗ + δ∗3 . We can write

(
t̃ag

∗

δ∗1 IDj+1 + δ∗2T+ δ∗3

)
=

(
ID∗ T∗ 1

IDj+1 Tj 1

)
︸ ︷︷ ︸

(a)

 δ∗1
δ∗2
δ∗3

 .

Since IDj+1 ̸= ID∗, the matrix (a) has full rank. Namely, in Game 2j,1, t̃ag
∗
and δ∗1 IDj+1+δ

∗
2T+δ∗3

are independently distributed from A’s view. Moreover, we can write

(
t̃ag

∗

δ∗1 IDj+1 + δ∗2T+ δ∗3 +
ϕθ,ℓ
γθ,ℓ

)
=

(
ID∗ T∗ 1

IDj+1 Tj 1 +
ϕθ,ℓ
δ∗3γθ,ℓ

)
︸ ︷︷ ︸

(b)

 δ∗1
δ∗2
δ∗3

 .

Since the matrix (b) obviously has full rank, in Game 2j,2, t̃ag
∗
and δ∗1 IDj+1 + δ∗2T+ δ∗3 +ϕθ,ℓ/γθ,ℓ

are independently distributed from A’s view.
Hence, for every ℓ ∈ [d], the following distributions{

t̃ag
∗
, δ∗1 IDj+1 + δ∗2T+ δ∗3

}
and

{
t̃ag

∗
, δ∗1 IDj+1 + δ∗2T+ δ∗3 +

ϕθ,ℓ
γθ,ℓ

}
are equivalent from A’s view since ϕθ,ℓ and γθ,ℓ are randomly chosen. Note that γθ,ℓ ̸= 0 since
γθ,ℓ = 0 means that the (j + 1)-st secret key is normal or semi-functional, not pseudo-normal or
pseudo-semi-functional.

Lemma 14. For every j ∈ {0, 1, . . . , Qsk − 1}, if there exists a PPT adversary A to distinguish
Game 2j,2 and Game 2j+1, then there exists a PPT adversary B to break the DDH2 assumption.

Proof. We omit the proof since this lemma can be proved in a similar way to Lemma 12.

A.2 Game 3j−1 → Game 3j with 1 ≤ j ≤ |T |

To show that the difference between Game 3j−1 and Game 3j (1 ≤ j ≤ |T |) is negligible, we
define pseudo-normal key updates and pseudo-semi-functional key updates as well as secret keys.

Pseudo-normal key update for T: Parse a normal key update KUT as ({KUT,θ =
(θ, kuT,θ, kuT,θ,x, ku

′
T,θ,x, ku

′′
T,θ,x, kuT,θ,y, ku

′
T,θ,y, ku

′′
T,θ,y)}θ∈KUNode(BT,RLT),FT). Let δ∗1 , δ

∗
2 , δ

∗
3 ∈

Zq be elements of Zq used for t̃ag
∗

:= δ∗1 ID
∗ + δ∗2T

∗ + δ∗3 in the challenge ciphertext

C̃T
∗
ID∗,T∗ . For each θ ∈ KUNode(BT,RLT), a pseudo-normal key-update component KUT,θ :=

(θ, kuT,θ, kuT,θ,x, ku′T,θ,x, ku′′T,θ,x, kuT,θ,y, ku′T,θ,y , ku′′T,θ,y) is computed by

kuT,θ := kuT,θ,

kuT,θ,x := kuT,θ,xg
−γθ
2 = gsθx−γθ2 ,

54

ku′T,θ,x := ku′T,θ,x · g
γθ(δ

∗
2T+δ

∗
3)

2 =

∏
ℓ∈FT

(
P

(ℓ)
θ,x

)−1

−1

· gx0+sθ(x2T+x3)+γθ(δ
∗
2T+δ

∗
3)

2 ,

ku′′T,θ,x := ku′′T,θ,xg
δ∗1
2 = g

sθ,ℓx1+δ
∗
1

2 ,

kuT,θ,y := kuT,θ,yg
αγθ
2 = gsθy+αγθ2 ,

ku′T,θ,y := ku′T,θ,y · g
−αγθ(δ∗2T+δ∗3)
2 =

∏
ℓ∈FT

(
P

(ℓ)
θ,y

)−1

−1

· gy0+sθ(y2T+y3)−αγθ(δ
∗
2T+δ

∗
3)

2 ,

ku′′T,θ,y := ku′′T,θ,yg
−αδ∗1
2 = g

sθy1−αδ∗1
2 ,

where γθ
$← Zq. A pseudo-normal key update is KUT := ({kuT,θ}θ∈KUNode(BT,RLT),FT).

Pseudo-semi-functional key update for T: Parse a pseudo-normal key update KUT as
({KUT,θ = (θ, kuT,θ, kuT,θ,x, ku′T,θ,x, ku′′T,θ,x, kuT,θ,y, ku′T,θ,y, ku′′T,θ,y)}θ∈KUNode(BT,RLT),FT). For

each θ ∈ KUNode(BT,RLT), a pseudo-semi-functional key-update component K̂UT,θ :=

(θ, kuT,θ, kuT,θ,x, k̂u′T,θ,x, ku′′T,θ,x, kuT,θ,y, k̂u′T,θ,y, ku′′T,θ,y) is computed by

k̂u′T,θ,x := ku′T,θ,x · gψθ
2 =

∏
ℓ∈FT

(
P

(ℓ)
θ,x

)−1

−1

· gx0+sθ(x2T+x3)+ψθ+γθ(δ
∗
2T+δ

∗
3)

2 ,

k̂u′T,θ,y := ku′T,θ,y · g−αψθ
2 =

∏
ℓ∈FT

(
P

(ℓ)
θ,y

)−1

−1

· gy0+sθ(y2T+y3)−α(ψθ+γθ(δ
∗
2T+δ

∗
3))

2 ,

where ψθ
$← Zq. A pseudo-semi-functional key update is K̂UT := ({K̂UT,θ}θ∈KUNode(BT,RLT),FT).

We additionally define the following games.

Game 3j,1 (0 ≤ j ≤ |T | − 1): This game is the same as Game 3j except that for a (j + 1)-st
revocation and key update query, a pseudo-normal key update KUj+1 is returned.

Game 3j,2 (0 ≤ j ≤ |T | − 1): This game is the same as Game 3j,1 except that for a (j + 1)-st

revocation and key update query, a pseudo-semi-functional key update K̂Uj+1 is returned.

We show that for every j ∈ {0, 1, . . . , |T | − 1},∣∣Pr[E3j]− Pr[E3j+1]
∣∣ ≤ ∣∣Pr[E3j]− Pr[E3j,1]

∣∣+ ∣∣Pr[E3j,1]− Pr[E3j,2]
∣∣+ ∣∣Pr[E3j,2]− Pr[E3j+1]

∣∣ ,
is negligible.

Lemma 15. For every j ∈ {0, 1, . . . , |T | − 1}, if there exists a PPT adversary A to distinguish
Game 3j and Game 3j,1, then there exists a PPT adversary B to break the DDH2 assumption.

55

Lemma 16. For every j ∈ {0, 1, . . . , |T | − 1}, all of the distributions in Game 3j,1 are identical
to those in Game 3j,2 from the view point of any PPT adversary A. Namely, it holds Pr[E3j,1] =
Pr[E3j,2] for every j ∈ {0, 1, . . . , |T | − 1}.

Lemma 17. For every j ∈ {0, 1, . . . , |T | − 1}, if there exists a PPT adversary A to distinguish
Game 3j,2 and Game 3j+1, then there exists a PPT adversary B to break the DDH2 assumption.

We omit the proof of the above lemmas since those can be proved in the same ways as Lem-
mas 12, 13, and 14.

56

