
Family of PRGs based on
Collections of Arithmetic Progressions

Ch. Srikanth C.E. Veni Madhavan

Indian Institute of Science, Bengaluru, India - 560012
E-mail: {sricheru1214, veni.madhavan}@gmail.com

Abstract. We consider the mathematical object: collection of arithmetic progressions with
elements satisfying the property: jth terms of ith and (i+ 1)th progressions of the collection are
multiplicative inverses of each other modulo the (j+1)th term of ith progression. Under a certain
condition on the common differences of the progressions, such a collection is uniquely generated
from a pair of co-prime seed integers. The object is closely connected to the standard Euclidean
gcd algorithm. In this work, we present one application of this object to a novel construction of
a new family of pseudo random number generators (PRG) or symmetric key ciphers. We present
an authenticated encryption scheme which is another application of the defined object.
In this paper, we pay our attention to a basic symmetric key method of the new family. The
security of the method is based on a well-defined hard problem. Interestingly, a special case
of the hard problem (defined as Problem A) is shown to be computationally equivalent to the
problem of factoring integers. The work leaves some open issues, which are being addressed in
our ongoing work.

Keywords : Arithmetic progression, sequence, pseudorandom number, factoring, Eu-
clidean algorithm, authenticated encryption

Table of Contents

1 Introduction . 3
1.1 Inversive Congruential Generators . 3
1.2 Our Contributions . 4
1.3 Organization of the Paper . 4

2 Sequence of Arithmetic Progressions . 5
2.1 Groupings of S(a0, d0) . 5
2.2 Pseudo-random Behavior . 6
2.3 Computing Specific Terms is easy . 6
2.4 The Inverse Computational Problem (Problem 1) . 8
2.5 Yield of S(a0, d0) . 9
2.6 Keystream Generation . 10

3 Family of pseudorandom number generators . 11
3.1 Other Stream Generating Methods . 11
3.2 Refreshing Functions . 11

4 Security analysis . 11
4.1 Indistinguishability . 12

Proof. 12
Randomness Testing. 13

4.2 Computational Complexity of Problem 1 . 13
Nature of the Problem . 13
Complexity of Exhaustive search. 14

5 Symmetric Key Encryption scheme . 15
5.1 Authenticated Encryption Scheme. 15
5.2 Sharing of Secret Key Pair . 16

6 Timing data . 16
6.1 Data on the first method . 16
6.2 Data on the second method . 18

7 Special Cases of Problem 1 . 18
7.1 Case 1 (Easy Instance) . 19
7.2 Case 2 (Problem A) . 20
7.3 Problem of finding (r, f) pairs . 22

8 Conclusions . 24
8.1 Performance Related Issues . 24
8.2 Security Related Issues . 24

A Properties of S(a0, d0) . 26
A.1 Properties of terms within a grouping . 26
A.2 Proof of Theorem 1 . 27
A.3 Proof of Theorem 2 . 27
A.4 Proof of Lemma 1 . 27

B Proof of Theorem 5 . 28

1 Introduction

Arithmetic progressions are well-known objects in mathematics. They appear in a wide va-
riety of theoretical and practical situations. In particular, the notion of primes in arithmetic
progressions is useful in proving some number theoretical bounds applicable to cryptogra-
phy. The notion of a collection of arithmetic progressions has been studied in the context
of covering systems [19] for integers. In the present work, the object of our study is also a
collection of arithmetic progressions (AP). But we provide a new perspectives based on a
defining invertibility property introduced in this paper. We present applications of this object
in the design of cryptographic primitives, especially in the construction of pseudorandom
number generators. The progressions in our defined collection are ordered. Hence we call it a
sequence of APs rather than a collection of APs.

The defining invertibility property binds together consecutive progressions in the sequence
of APs. The property states that jth terms of the ith and the (i + 1)th progressions of the
sequence are multiplicative inverses of each other modulo the (j + 1)th term of the ith pro-
gression. This holds for any i, j ≥ 1. Such a sequence is uniquely generated from a pair of
co-prime integers under the condition that common differences of the progressions are in non-
increasing order. The pair defines the first AP in the sequence. Properties of this sequence
are closely related to the standard Euclidean algorithm.

The uniqueness existence of the sequence for a given seed pair along with an efficient
computation of terms of its progressions and the random behavior of the terms lead to an
efficient construction of a family of pseudorandom keystream generators. In this paper, we
highlight one such generator and show the possibility of its variants. The main functionality
of the generators is: given a seed pair (x0, y0) of relatively prime numbers, compute the pairs
(xi, yi) using the invertibility property and expose only the sequence of numbers ni, where
ni = (x−1

i (mod yi)) + αiyi. Here, αi are suitably chosen integers. The sequence of ni forms
the keystream. Our iterative construction of the sequence is reminiscent of the inversive
congruential generators, which is discussed below.

1.1 Inversive Congruential Generators

The generating function of Inversive Congruential Generator (ICG) is:

x0 = seed,

xi+1 ≡

{
ax−1

i + c (mod m) ifxi 6= 0,

c ifxi = 0.

Here, m is a fixed prime number, and a, c are fixed integers. The properties of ICG
are studied in [7,8,12]. Generalized ICGs are called Compound Inversive Generators (CIG).
These are discussed in [9].

The fundamental difference between CIG and our method is that the modulus is not a
fixed number in our case. This feature introduces a degree of freedom which precludes any
natural, efficient reversibility (in other words, polynomial-time next-bit predictability). This
will be be inferred from the nature of the inverse problem, defined as Problem 1 in Section 2.4.
The security of the generators assumes the difficulty of solving Problem 1. Our preliminary

analysis indicate that the problem is hard. We discuss certain open issues concerning the
problem.

1.2 Our Contributions

The aim of the paper is to show how the sequence of APs can be used in an efficient con-
struction of pseudorandom number generators. Throughout the paper, we focus attention on
this central theme and present our results around it. The results are listed below.

– A method for construction of a pseudorandom generator based on the sequence of APs
and its performance and security analysis. We show that the sequence amortized cost per
keybit is O

(
1
)
. The theoretical result is supported by empirical data on the performance.

– Proofs of two principal aspects of security of the proposed method:

• (Computational difficulty) The difficulty of solving the inverse problem (defined as
Problem 1) of recovering the seed from the given keystream. We analyze the hardness
of the problem and show that existing techniques are not applicable to solving it.

• (Indistinguishability) Negligible probability of success for a polynomial time adver-
sary in differentiating the keystream produced by the generator from a random string
of the same length.

– Using the sequence in additional ways of constructing generators, we show a family of
pseudorandom number generators. We note that security of the variants is not dependent
on Problem 1, and also indistinguishability game differs. We have not studied these issues
in detail, thus leave them open.

– We show that a computational problem, defined in the present context, is equivalent
to factoring integers. The problem is interesting for two reasons: (i) the study of this
problem led us to formulate Problem 1 and (ii) in the proof of reduction from factoring
to the problem, we define a number theoretic problem related to large divisor d of integer
x bounded by

√
x.

– We present a method for Authenticated Encryption using the sequence of progressions.
But the efficiency of the method demands fast arithmetic operations over integers: mul-
tiplication for encryption and division for decryption. One possible solution for achieving
the efficiency is to employ Fast Fourier Transform (FFT) technique over very large inte-
gers. But this puts forth another problem of sharing of large secret integers. Despite this
shortcomings, we still see a potential application of this method to bulk encryption.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we present the properties of terms
of the sequence. In Section 3, we discuss several ways of generating keystreams using the se-
quence of APs. In Section 4, we study the computational difficulty of Problem 1 and establish
the indistinguishability feature of our generator. In Section 6, we present our experimental
results which show that amortized cost per bit is O

(
1
)
. In Section 7, we study special cases of

the inverse problem. One case, defined as Problem A, is shown to be equivalent to factoring
integers. In Section 5, we present the Authenticated Encryption method. In Appendix A, we
present the proofs of the theorems given in Section 2.

Note 1. Properties of the defined sequence of progressions are also presented in our other
communications, which are under reviewing process. Presentation of these properties is im-
portant as they are essential prerequisite to study of any aspect of the sequence.

2 Sequence of Arithmetic Progressions

Let A(a, d) denote an arithmetic progression (AP) with leading term a, and common differ-
ence d.

Suppose A(a0, d0), A(a1, d1), A(a2, d2), . . . is a sequence of progressions, in which the
terms of the progressions satisfy the property:

(ai + jdi)(ai+1 + jdi+1) ≡ 1 (mod ai + (j + 1)di), i, j ≥ 0. (1)

i.e., jth terms of ith and (i+1)th progressions are multiplicative inverses of each other modulo
(j + 1)th term of ith progression. We refer to this property of the terms as Property P.

The leading terms and the common differences of the progressions of the above sequence
satisfy the properties:

di+1 ≡ a−1
i (mod di),

ai+1 = di+1 +
aidi+1 − 1

di
. (2)

From the properties (2), we observe that if the common differences are in non-increasing
order then both ai, di are unique for any i ≥ 1. Thus the sequence is constructed uniquely and
inductively from the starting progression A(a0, d0). The unique sequence produced, starting
from the progression A(a0, d0), satisfying the Property P is denoted by S(a0, d0).

Since the common differences are decreasing and consecutive common differences are co-
prime, the sequence S(a0, d0) eventually has a progression with common difference 1. After
that point, the same progression repeats. Hence the sequence (or collection) S(a0, d0) will
have only finitely many distinct progressions. For example, consider the sequence S(11, 25)
with seed pair (11, 25).

11, 36, 61, 86, . . .
23, 39, 55, 71, . . .
17, 24, 31, 38, . . .
17, 22, 27, 32, . . .
13, 16, 19, 22, . . .
5, 6, 7, 8, . . .
5, 6, 7, 8, . . .

The sequence S(11, 25) has 6 distinct arithmetic progressions.

2.1 Groupings of S(a0, d0)

A sub-collection G of consecutive distinct progressions of S(a0, d0) is called a grouping if it
satisfies the following two properties.

1. The difference between the common differences of any two consecutive progressions of G
is the same

2. G is maximal.

We call the difference between consecutive common differences as the second common
difference corresponding to G. Note that any two consecutive groupings of S(a0, d0) share a
common progression.

For example, S(11, 25) has two groupings:

G1 = < A(11, 25), A(23, 16), A(17, 7) >,

G2 = < A(17, 7), A(17, 5), A(13, 3), A(5, 1) > .

The second common difference corresponding to G1 is 9. The second common difference
corresponding to G2 is 2. Groupings G1, G2 share the progression A(17, 7). The sizes of G1

and G2 are 3, 4, respectively.

2.2 Pseudo-random Behavior

The terms of the progressions of S(a0, d0) satisfy Property P. The leading terms and common
differences are related by inverse modular reduction as expressed below.

ai+1 ≡ a−1
i ≡ a

ϕ(ai+di)−1
i (mod ai + di),

di+1 ≡ a−1
i ≡ a

ϕ(di)−1
i (mod di).

Here, ϕ(x) is the Euler’s totient function (the number of numbers less than x that are co-prime
to x). The random behavior of ϕ(.) and inverse modular reduction introduce randomness in
leading terms of progressions of S(a0, d0). Hence, terms of progressions can be used to build
cryptographic primitives. However, from a security point of view, certain restrictions need to
be placed on the choice of such terms. We study these aspects in detail in Section 4.

2.3 Computing Specific Terms is easy

In this subsection, we discuss two properties satisfied by the sequence of S(a0, d0). These
properties lead to an efficient computation of specific terms of progressions of S(a0, d0).
Theorem 1 shows how to compute a term of a progression within a grouping given its main
parameters.

Theorem 1. Let L, D be the leading term and common difference of the first progression of a
grouping G. Let 4 be the second common difference corresponding to G. Let |G| be the number
of progressions of G. Then, the leading term of jth progression of G is given by L+ b4+ cV .
Here, V = d− z with d ≡ D (mod 4) and z ≡ (d−1 (mod 4)). The coefficients

c = j − 1,

b = c (|G| − j + 1).

(Note: d is the common difference of the last progression of G).

Proof. Ref. Appendix A.2 �

Theorem 2 shows the relation between the main parameters of two consecutive groupings of
S(a0, d0). This will allow an efficient computation of main parameters of subsequent groupings
from the main parameters of a grouping in S(a0, d0).

Theorem 2. Suppose Gi, Gi+1 are two successive groupings of S(a0, d0). Let Di, Di+1 be
the common differences of the first progressions of Gi, Gi+1, respectively. Let 4i, 4i+1 be the
corresponding second common differences. Then,

Di+1 ≡ Di (mod 4i),

4i+1 ≡ 4i (mod Di+1). (3)

Proof. Ref. Appendix A.3 �
From the definition of grouping and Theorem 1, the quantity b d4c + 1 is the number

of progressions of the grouping G. From Theorem 1 and Theorem 2, we can infer that the
computation of a specific term of a progression can avoid inductive construction of all the
progressions of S(a0, d0). Let N (a0, d0) denote number of progressions in S(a0, d0). The
Algorithm 1 computes N (a0, d0) for given integers a0 and d0.

Algorithm 1 Computing N (a0, d0)
Input : a0, d0 with d0 > a0 ≥ 1
Output : N (a0, d0)
1: b← a−1

0 (mod d0)
2: 4← d0 − b
3: d← d0
4: n← 0
5: while d > 1 do
6: n← n+ b d4c
7: d← d (mod 4)
8: 4← 4 (mod d)
9: end while

10: n← n+ 1
11: Return n

The each iteration of the Algorithm 1 corresponds to a grouping. The algorithm (starting
from Step 2) is an variant of the Euclidean GCD algorithm on input (4, d). Since the suc-
cessive iterations of the Euclidean algorithm are wrapped in a single iteration of Algorithm 1,
the number of iterations of the Algorithm 1 is half that of the Euclidean algorithm.

The average case analysis of the Euclidean algorithm [14,16,17] shows that the average
number of iterations of the Euclidean algorithm on co-prime input pair (4, d0), where4 < d0,
is about

12 log 2

π2
log d0 + P + O

(
d
−1/6
0 + ε

)
≈ 0.842 log d0.

Here, P is called Porter’s constant [17], whose value is approximately 1.4670. Hence, the
expected number of groupings of S(a0, d0) is about 0.421 log d0.

Lemma 1. The maximum number of groupings of S(a0, d0) is less than
logφ

√
5d0−2

2 . Here,

φ =
√

5+1
2 is connected to Fibonacci numbers.

Proof. Ref. Supplementary Material. �
The quotients in the Euclidean algorithm are more often small. Due to this, the expected

value of N (a0, d0) is O
(
log d0)

)
.

The Algorithm 1 can be modified to compute specific terms, which is given in Algorithm
2. The running time of both algorithms can be proved to be O

(
log2 d0

)
.

Algorithm 2 : Algorithm for computing specific terms
Input a0, d0
Output Leading term U and common difference V of the middle progression of each grouping of S(a0, d0)
1: L← a0
2: D ← d0
3: 4← D − L−1 (mod D)
4: i← 1
5: while i ≤ r do
6: λ← bD4c
7: Z ← L4+1

D

8: D ← D (mod 4)
9: v ← D − Z

10: if λ ≥ 2 then
11: U ← L+ dλ/2e(4(λdλ/2e − 1) + v)
12: V ← D + bλ/2c4
13: i← i+ 1
14: end if
15: L← L+ λv
16: 4← 4 (mod D)
17: end while

2.4 The Inverse Computational Problem (Problem 1)

As discussed in previous subsection, given the integers a0, d0, we can efficiently compute terms
of the progressions of S(a0, d0) using Algorithm 2. The inverse computational problem is
to recover the initial parameters a0, d0 given a few terms of some arbitrary progressions of
S(a0, d0). From a security point of view, this reduces to the question what is the minimum
number of terms to be revealed so that computing a0, d0 remains difficult? Special cases of
the problem are:

– Given 〈f1, f2, f3〉, the leading terms of three progressions of a grouping G of S(a0, d0),
recovering the main parameters of G has complexity of O

(
|G|3

)
where |G| is the number

of progressions of G. The expected size of a grouping of S(a0, d0) is log d0.
– Given 〈f1, f2〉, the leading terms of two consecutive progressions of grouping G of S(a0, d0),

computing the main parameters of G is referred to as Problem A. This problem is
polynomial-time equivalent to factoring f1f2−1. The reduction from Problem A to integer
factoring problem is probabilistic, while the other way reduction is deterministic.

The analysis of these cases is presented in Section 7. The study of computational hardness
of the cases lead to the following natural problem. The security of the proposed pseudorandom
number generators assumes the computational difficulty of this problem.

Problem 1. Given the terms of some random progressions of S(a0, d0), L1, L2, . . ., Lt, with
each term from a distinct grouping of S(a0, d0), recover the integers a0, d0.

It appears that, this problem, and the case of two non-consecutive terms of the same
grouping being given, do not admit a natural characterization as in the case of Problem A.
This observation together with the analysis formulations in Section 4.2 lead us to believe that
Problem 1 is computationally hard. We strengthen this claim by providing certain heuristic
arguments in Section 4.2. These arguments are based on a representation of the inverse
problem as one of solving a nearly-defined system of algebraic equations over integers.

2.5 Yield of S(a0, d0)

A method of generating a pseudo-random keystream based on the sequence S(a0, d0) is to
concatenate the (leading) terms of some arbitrary progressions of the sequence. In this paper,
we focus our attention on this method, and analyze its performance and security features.
Later in the paper, we note other ways of constructing a keystream generator. This allows
us customization feature for the generation of keystreams. The performance and security
analysis of the proposed method will be useful in understanding other generators as well.

The number of bits that can be generated by terms of the progressions of S(a0, d0) is
called yield of S(a0, d0). At the same time, given the produced bits, it should be infeasible to
recover the pair (a0, d0). In the last section, we have defined a hard problem (Problem 1). So
the yield that we defined is dependent on the hardness of the problem. The required security
parameter determines the balance between the yield and the hardness of the Problem 1. We
note that one can can use arbitrary terms of the sequence with the condition that the terms
are from distinct groupings. We consider two different ways, which are defined as follows.

– STR1(a0, d0) is the binary string (or keystream) that is formed by concatenating the
leading terms of first progressions of groupings, subject to the condition that the chosen
leading terms are from distinct groupings. The yield Y1(a0, d0) is defined as the length of
STR1(a0, d0).

– STR2(a0, d0) is the binary string (or keystream) that is formed by concatenating the
leading terms of middle progressions of groupings, subject to the condition that the
chosen leading terms are from distinct groupings. The yield Y2(a0, d0) is the length of
STR2(a0, d0).

The amortized cost per bit, when the first progressions of groupings are used, is C1 =
Y1(a0, d0)/C. The amortized cost per bit, when the middle progressions of groupings are
used, is C2 = Y2(a0, d0)/C ′. The quantities C and C ′ are the running time complexities of
producing the keystreams, respectively.

In Algorithm 2, the generation of keystream requires one inverse computation. After the
computation, the steps of the algorithm are similar to the Euclidean algorithm. In addition
to these computations, the algorithm performs a few additions and multiplications. Thus it
can be verified that both C and C ′ are O

(
log2 d0

)
.

Lemma 2. Suppose the number of leading terms used in producing keystream STR1(a0, d0) is
t. Then, for large enough d0, the expected values of Y1(a0, d0) and Y2(a0, d0) are Θ(t log2 d0).

Proof. We sketch the proof for Y1(a0, d0). The proof for Y2(a0, d0) is similar.
Let the chosen leading terms be L1, L2, . . ., Lt. Let the corresponding common differences

be D1, D2, . . ., Dt. Let the ratio bLi/Dic be ri. Let |x| denote the number of binary bits of
string (number) x.

Y1(a0, d0) =
t∑
i=1

|Li| ≤ t|L|

where L is the greatest of Li, 1 ≤ i ≤ t. From Theorem 1, L < d2
0. So, Y1(a0, d0) < ct log2 d0

for some constant c. The derivation of a lower-bound uses the condition of Problem 1: the
chosen leading terms should be from different groupings, which means ri+1 > ri + 2. Thus,

Y1(a0, d0) > |
t∏
i=1

Li| > |
t∏
i=1

riDi|

≥ |2tt!
t∏
i=1

Di|

> |
(

(2tD)

e

)t
|.

Here, D is the smallest of Di, 1 ≤ i ≤ t. The above approximation uses the Stirling’s formula
for the factorial of a number. If D is O(log2 d0), then the result follows. Indeed D is O(log2 d0).
We see this in our experiments. �

Corollary 1. If the quantity t (from the above lemma) is c ∗ log2 d0 for some constant 0 <
c < 1, then both C1 and C2 are O(1).

Proof. If t is c log2 d0, then Y1(a0, d0) is Θ(log2 d0). From the definition of C1 and C2, the
result follows. �

2.6 Keystream Generation

By Lemma 2, the yield of S(a0, d0) is Θ(log2 d0). The main idea for generating a keystream
of arbitrary length is to refresh at least one of the main parameters a0 or d0 to a new value
so that each time a new sequence of arithmetic progressions is used. A method is to increase
one of a0, d0 by a fixed value.

Suppose (a
(0)
0 , d

(0)
0) is the seed pair. Using some refreshing function, distinct pairs (a

(1)
0 , d

(1)
0),

(a
(2)
0 , d

(2)
0), . . . are generated iteratively. Let KSb denote the keystream produced by concate-

nating leading terms of the progressions of S(a
(i)
0 , d

(i)
0), i ≥ 0, one after another. For b = 1,

the leading terms of first progressions of groupings are used. For b = 2, the leading terms of
middle progressions of groupings are used. So, we have

KSb := STRb(a
(0)
0 , d

(0)
0)||STRb(a

(1)
0 , d

(1)
0)||STRb(a

(2)
0 , d

(2)
0)|| . . .

The operator || is concatenation.

3 Family of pseudorandom number generators

The above section presents two different methods of using terms of S(a0, d0) for producing
a keystream. The terms can be used in various ways in producing the keystream, thus we
obtain a a family of pseudorandom number generators. The following discussion highlights
this feature.

3.1 Other Stream Generating Methods

In Section 2.5, a keystream is generated by just concatenating the computed terms Xi where
Xi = QTi Bi where Qi = [ai, bi, ci, di], and Bi = [Li,4i, Vi, Di]. For the methods presented in
the above section, we have ai = 1, di = 0, 1 ≤ i ≤ t, which means that Xi is the leading term
of some random progression of S(a0, d0).

One can set different values for the entries of the coefficient vector Qi to generate a
different keystream. For a new method, the computed numbers X ′i = Q′Ti Bi will not be
related (directly) to S(a0, d0). The security will not be dependent on Problem 1.

– A general way of computing the numbers Xi is by performing the operation Xi = QTi �Bi.
The operator � can be term-by-term addition or XOR.

3.2 Refreshing Functions

By Lemma 2, the yield of S(a0, d0) is Θ(log2 d0). A keystream of arbitrary length is generated
by refreshing at least one of the main parameters a0 or d0 to a new value so that each time
a new sequence of arithmetic progressions is used in keystream generation.

Refreshing the main parameters (a0, d0) can be done in various ways. Other than the
simple increment method discussed in Section 3, an example for a refreshing function is as
follows. Fix a value for d0, and set a0 ← az0 (mod d0) for a fixed integer z > 0. For efficiency,
the value of z is kept small. In this powering method, each new value of a0 will be co-prime to
d0 which is an advantage over the simple increment method. In case of the simple increment,
for a new pair (a0, d0), if a0 is not co-prime to d0, the common factor gcd(a0, d0) will be taken
off a0, so the sequence S(a0

gcd(a0,d0) , d0) is used in the keystream generation.

A set of refreshing functions is based on utilizing the elements of the present sequence to
update the values of the main parameters.

4 Security analysis

In this section, we analyze the keystream generated by the generator defined in the Section
3. We discuss indistinguishability property and prove that the success probability of dis-
tinguishing keystream generated by our generator from a random string by a probabilistic
polynomial time adversary is negligible. We also discuss the difficulty of solving the inverse
problem (defined as Problem 1) by exhaustive search method.

4.1 Indistinguishability

Let the ensemble X = {Xn}n∈N be the sequence of numbers produced by our method de-
scribed in Section 3. By the method, X can be split into subsequences, X0, X1, X2, . . ., of
contiguous numbers of X . The numbers in the subsequence Xi are nothing but leading terms

of progressions of S(a
(i)
0 , d

(i)
0). By the behavior of leading terms, the numbers in a subsequence

diminish in size as their index increases.
Suppose A is a (probabilistic) polynomial time adversary. He knows the size properties

of numbers within a subsequence of the ensemble X . In other words, a random oracle O, to
which A queries, publishes in advance the length of the number it is going to output. After
querying by A, O reveals numbers in X . The oracle now challenges A by providing either a
random string or leading term L of the same length. The leading term belongs to Xi for some
i. Now A gas to guess correctly whether the given number is random or it is the leading term
belonging to X . We argue that he will not be able to distinguish the two events if the given
integer is large enough. In other words, we show the following.

|Pr[A(r)→ 1]− Pr[A(L)→ 1]| = negligible.

where r denotes a random integer of the same length as L from X .
For proving the result, we recall the known number theoretic bounds [1,2,3] on the Euler’s

totient function ϕ.

1. For x > 2,

ϕ(x) >
x

eγ log log x+ 3
log log x

.

2. As x→∞
x∑
i=1

ϕ(i) =
3x2

π2
+O

(
x(log x)

2
3 (log log x)

4
3

)
In the above formula, γ is the Euler’s constant whose value is approximately 0.5772.

Proof. Let the leading term be L. Let its corresponding common difference be D. Let 4 be
the second common difference corresponding to grouping where L belongs to. Let the ratio
bL/Dc = k. Here k is nothing but the index of progression used. So, for a given L, the number
of distinct (D,4) pairs will be equal to the number of D ∈ (L

k+1 ,
L
k) that are co-prime to L.

We derive this number as follows.
For number n and constants 0 < c1 < c2 ≤ 1, define B(n; c1, c2) = {x ∈ (c1n, c2n) :

gcd(x, n) = 1}. For large enough n, it can be proved that B(n; c1, c2) is approximately
(c2 − c1)ϕ(n) + O

(
ω(n)

)
where ω(n) is the number of distinct prime factors of n.

So the total number of distinct co-prime pairs covered by L is

B(L; 1/k + 1, 1/k) =
ϕ(L)

k(k + 1)
+O(ω(L)).

The average order of ω(L) is log logL, which is very small compared to ϕ(L), thus we omit
this in subsequent expressions. By using bounds on ϕ (given above), we obtain

L

k(k + 1)(eγ log logL+ 3)
< B(L; 1/k + 1, 1/k) <

L− 1

k(k + 1)
. (4)

Let l be the length of L. Since k < L/D < (k+ 1), the total number of possible (D,4) pairs
is

2l−1
k∑

D= 2l−1

k+1

ϕ(D) =
3 ∗ 22l

π2

(
1

k2
− 1

4(k + 1)2

)
+O(l ∗ 2l).

The total number of pairs is approximately
(

3∗2l
2kπ

)2
+ O(l ∗ 2l). The inequality (4) indicate

that each leading term L ∈ [2l−1, 2l − 1] contributes to almost the same number of (D,4)
pairs, which can not be distinguished by polynomial time adversary A if L is large enough.
This observation is formally given in the following probability arguments.

|Pr[A(r)→ 1]− Pr[A(L)→ 1]| = 1

2l−1

(
1− 2k2π2

9eγ(k(k + 1) log l

)
.

Here L is the smallest of all leading terms. If L is large enough, the probability is negligible.
Note that k is O

(
l
)
.

Randomness Testing. We have tested the keystreams generated by our generators for ran-
domness using the NIST Statistical suite. For different seed pairs (a0, d0), we have generated
keystreams. These keystreams are subjected to tests in NIST suite. A brief description of the
test is as follows. For each fixed value of d0 we have used 100 different values of a0. For each
pair value of a0, d0, we have generated STR2(a0, d0). Note that before appending leading
terms, we removed most significant bit (as it is always 1). We have used 100 values of d0 of
sizes from 128 to 4096 bits. The keystreams generated passed NIST tests at high significance
levels.

4.2 Computational Complexity of Problem 1

Here, we discuss the algebraic nature of the problem. By the nature of the problem, it appears
that the existing techniques are not applicable directly to solving the problem. We establish
the complexity of exhaustive search.

Nature of the Problem From Theorem 1, each leading term used in the keystream gen-
eration is a linear combination of three unknown variables: 〈Li,4i, Vi〉. Note that Vi can be
expressed in terms of Li, 4i, so we have two degrees of freedom. In other words, a leading
term introduces an equation in 2 unknowns. From each sequence of progressions, t leading
terms are used in the key generation where t is c ∗ k with c < 1/2 and k is the size of secret
parameter (i.e., d0). Thus, corresponding to a sequence of progressions, we get a system of t
equations in 2t unknowns. By Theorem 2, variables from two successive equations are related
through modular multiplicative inverse and modular reduction operations. These modular
operations introduce successive quadratic non-linearities in the system.

From the known keystream KSb := STRb(a
(0)
0 , d

(0)
0)||STRb(a

(1)
0 , d

(1)
0)|| . . . we get systems

of equations S1, S2, S3, Each Si is a system of t equations in 2t variables. We get a
nearly-defined system of equations.

The security of recently proposed cryptographic systems are dependent on the difficulty
of solving systems of multivariate quadratic polynomial equations. This problem is NP-hard
in general. For both under-defined [5] and over-defined systems [4], efficient methods exist for
finding solutions. For nearly-defined systems (i.e, number of equations is same as the number
of variables), the best techniques are exhaustive search for small fields and a Gröbner base
algorithm for large fields. Gröbner base algorithm is not feasible when the number of variables
≥ 15. Our present system is a nearly-defined system of equations with number of variables
≥ 60. For example, for d0 of size at least 256 bits, the method uses leading terms from at
least 30 groupings.

We derive below the complexity of an exhaustive search for finding a solution to the
problem. The established complexity is useful in recommending the sizes of d0 that provide
adequate protection. The parameter a0, which will be set to a value less than d0, should be
large enough accordingly.

Complexity of Exhaustive search. The exhaustive search is to try out all possible values
for the common difference of the progression whose leading term is L1. For each chosen value
of the common difference, say D1, the process of constructing the sequence of progressions
S(L1, D1) is easy, due to Algorithm 2. After constructing the sequence it amounts to verifying
whether remaining terms L2, L3, . . ., Lt appear as leading terms or not. The complexity of
the process is O(log2 L1) for one value of D1.

In the worst case, this exhaustive search tries out all possible values of the common
difference D1. From the properties of the terms of S(a0, d0), it can be inferred that the ratio
of leading term to common difference for a progression gives the index (position) of that
progression in the sequence S(a0, d0). The ratio is upper-bounded by N (a0, d0) the number
of progressions of S(a0, d0). Let z1 be the position of the progression whose leading term is
L1. Then, D1 falls in the interval (L1

z1
, L1
z1−1). Thus the number of possible values for D1 is

about L1
z1(z1−1) . For each value of D1, the method requires an inverse computation (mod L1).

So, the total complexity of the search for solving the problem is about L1∗log2 L1

z1(z1−1) .

In general, the exhaustive search can be carried out on any Li, 1 ≤ i ≤ t. Let zi be the
position of the progression whose leading term is Li. The complexity of the search at Li is
Li∗log2 Li
zi(zi−1) .

The search should be infeasible for any Li. Suppose the complexity of the search is mini-
mum for Lt. Then,

Lt ∗ log2 Lt
zt(zt − 1)

> 280.

The index zt < N (a0, d0). The expected value of N (a0, d0) is O(log2 d0). Let Lt = dc0 for some
0 < c < 1. Then,

c3dc0
log2 d0

> 280.

For c = 1/2, the integer d0 > 2190 provides 80-bit security against the exhaustive search. The
value of c decides the number of groupings that could be used for keystream generation. For

secure against quantum search algorithm [11], the condition should be
c3dc0

log2 d0
> 2160, which

implies that d0 > 2340. However, our method is easily scalable to bigger values of a0 and d0

(see Section 6).

5 Symmetric Key Encryption scheme

In a symmetric key scheme, both parties, Alice and Bob share a secret key k. Alice first
encodes a message P into a number M . A pseudorandom keystream K is generated using
the shared key k. The bits of M are XORed with the bits of K to obtain cipher text C. At
receiving end, Bob uses the same shared key k to generates the same keystream K. K is used
decrypt the encrypted text C to obtain M . Finally, Bob decodes M to recover the plain text
message P .

In our scheme, the key k shared between the Alice and Bob is a pair (a0, d0) of co-prime
integers, with d0 > a0. Both parties will start with the sequence S(a0, d0) to generate the
same keystream. The same refreshing function is used at both ends.

5.1 Authenticated Encryption Scheme

We have seen that there are various ways of using the terms of the object S(a0, d0) for
generating keystreams, and hence there are many ways possible for encryption of messages.
In the following, we describe a simple encryption algorithm, which is also an example of
Authenticated Encryption.

Suppose the message (number) M is divided into smaller numbers 〈M1,M2, . . . ,Mt〉.
The encryption algorithm E is defined as follows: The cipher block for Mi, 1 ≤ i ≤ t, is
Ci = Li+Mi ∗Di. In other words, Ci is M th

i term of progression A(Li, Di). At receiving end,
Mi is recovered by performing (Ci − Li)/Di. We see that if cipher data is tampered, then
the decryption fails. Precisely, we prove that if man-in-the-middle tampers the cipher data
and the tampered data is decrypted properly, then this means that he will be to decrypt the
messages by himself. The following result proves this.

Lemma 3. If a person, called Eve, modifies cipher block Ci to C ′i. If C ′i is decrypted properly
by the recipient, then this implies that Eve can actually decrypt the subsequent messages.

Proof. The modified cipher block C ′i is decrypted properly by the recipient. This means that
C ′i = Li +M ′i ∗Di. This could have happened only when Eve could add a multiple of Di to
Ci. This means that Eve knew Di, so she could decrypt Ci to recover Mi. Also, she would be
able to decrypt subsequent cipher blocks as well . �

The problem with the method is that cipher blocks will be of different length. This problem
can be solved by having varying length message blocks. Suppose we want all cipher blocks to
have same length, say ` bits. Then the message M will be split into 〈M1,M2, . . . ,Mt〉 where
|Mi| = `− |Di|. Here |x| is the number of binary bits of x.

The algorithm is inefficient as the cost of multiplications employed for producing the cipher
blocks (i.e., L+M ∗D) dominate the cost of producing (L,D) pairs. The difference between
the two costs will be small if one uses Fast Fourier Transform (FFT) based multiplication
algorithm. The algorithm is efficient on very large operands. We have not yet tested the
performance of the encryption method using FFT.

Indeed, it is generally accepted that the FFT algorithms perform better than both Karat-
suba and quadratic methods for operands of sizes beyond 4K bits.

Other than this performance issue, there are trivial drawbacks by which security of the
scheme will easily be compromised. For example, if a message block, say Mi is power of 2,
then Li and Di will be known from Ci the cipher block for Mi. Such attacks can be prevented
by some padding technique.

5.2 Sharing of Secret Key Pair

The proposed symmetric key scheme requires a pair (a0, d0) of integers to be shared between
the sender Alice and the receiver Bob. Sharing of secret can use the well-known public key
algorithms: (i) RSA algorithm [18], (ii) Diffie-Hellman (DH) key exchange algorithm [6].
Another public key system, which is getting close to being optimal, is variants of NTRU
cryptosystem [13]. Using the DH method, Alice and Bob will come to agree upon a secret
integer in two message exchanges. Thus, four message exchange are required for sharing the
pair: 2 message exchanges for agreeing upon a0, and 2 exchanges for agreeing upon d0. On
the other hand, a message encrypted using the RSA algorithm is large enough to hold both
a0 and d0.

Some other possibilities for sharing a pair are as follows. One can avoid transfer of two
integers by agreeing upon only one integer, mainly d0. After sharing the d0, the parameter
a0 can be computed from d0 based on any one of pre-specified protocols. One simple idea is
to obtain initial value of a0 by setting a0 = bd02 c. Thus only the single secret key parameter
d0 needs to be exchanged securely as in every block cipher and stream cipher scenario. The
discussion concludes that agreeing upon a seed pair is not difficult.

6 Timing data

We have conducted experiments to confirm our theoretical estimates on the performance of
the keystream generator proposed in Section 3. The experiments were carried out on 2.53
GHz Intel processor, Linux OS, using GNU Multi Precision (GMP) library.

As described in Section 3, we have followed two methods of generating a keystream. In
the first method, we choose leading terms of the first progression of each groupings. In the
second method, we select leading terms of middle progression of each groupings. We present
the summary of our experimental results of these two methods. The results indicate that the
first method gives better performance.

6.1 Data on the first method

For generation of a keystream, seed pair (a0, d0) is chosen randomly. We used the refreshing
function that updates only a0 as a0 ← a2

0 (mod d0). For each sequence of progressions, the
size of smallest leading term chosen is always greater than 100 bits. From the security analysis,
we know that the size of smallest leading should be greater than 80 bits.

Table 1 gives data on the running times of producing a keystream of length 8 Giga bits
from a seed pair (a0, d0) where d0 is chosen randomly with size varying between 256 bits and
16k bits, and a0 is a randomly chosen integer < d0.

From the data, our observations are as follows. The running time decreases with increas-
ing size of d0. The yield Y1(a0, d0) is c ∗ log2

2 d0 for c ∼ 0.1. The yield is quadratic in log2 d0

as proved in Lemma 2. We notice that as length of d0 doubles, the running time is reduced
by about 1.5 times. The number of pairs used in generating the keystream is inversely pro-
portional to log2

2 d0.
Performance results are summarized in Table 2. From the data, we notice that the speed

of about 0.63 Gbps is achieved for 1024-bit d0. Equivalently, the speed is 4 cycles/bit.

Size of d0 Keystream Run-time #Pairs-used yield/pair time/pair
(bits) (bits ∼ 8 Gb) (sec) (bits) (microsec)

256 8590000094 36.63 1397638 6146 26.21

512 8590000143 23.21 318103 27003 72.97

1024 8590000098 13.66 78517 109403 174.06

2048 8590000549 9.21 19651 437127 468

4096 8590001887 6.41 4924 1744517 1302

8192 8590000355 4.90 1234 6961102 3978

16384 8590006879 4.31 450 19088904 9588

Table 1. Running times of keystream generation

Note: Leading terms of the first progression of groupings are used The size of the leading terms is ≥ 100 bits.

Size of d0 Bit rate cycles/bit
(bits) (Giga bits/second)

256 0.234 10.7
512 0.370 6.8
1k 0.628 4
2k 0.932 2.7
4k 1.34 1.88
8k 1.75 1.44
16k 1.99 1.26

Table 2. Performance data

These experimental results in Table 2 (column 3) indicate that our pseudorandom genera-
tor is comparable to many ciphers discussed in [10]. Speeds of close to 1 Gbps on platforms of
the type used by us are acceptable state-of-the-art, suitable for most practical applications.
We mention that our method has the further advantage of exploiting the asymptotically
fast multiplication algorithms such as FFT. It is known that such fast algorithms work bet-
ter than Karatsuba and quadratic algorithms for sizes of operands exceeding 4k bits. Our
method naturally scales to such sizes.

We have conducted experiments to study the effect of the size of smallest leading term on
the running time. Table 3 presents relevant data. In the table, T (l, c) denote the time taken
for producing keystream of 8 Giga bits using l-bit d0 where the size of the smallest leading
term considered in the keystream generation is not less than c ∗ n. If c ∗ n < 128, T (l, n) is
marked with “-” meaning that the keystream is not generated.

By comparing the running times within Table 3 and also with that of Table 1, we observe
that performance is better when chosen leading terms are of length ≥ 0.5 ∗ log2 d0. The
decrease in the performance with decreasing c is expected as the arithmetic on small operands
is paid off with a small yield. At c = 1/2, the method achieves the speed of about 0.73 Gbps for
1024-bit d0. Equivalently, the speed is 3.45 cycles/bit. The maximum speed is 1.18 cycle/bit
for 16k-bit d0.

l T (l, 1
2
) T (l, 1

3
) T (l, 1

4
) T (l, 1

5
) T (l, 1

6
)

256 37.71 - - - -
512 20.19 21.2 21.98 - -
1k 11.74 12.2 12.6 12.8 13.1
2k 7.53 7.74 7.94 8.09 8.2
4k 5.47 5.55 5.63 5.72 5.76
8k 4.47 4.47 4.52 4.58 4.63
16k 4.03 4.01 4.05 4.05 4.06

Table 3. Effect of size of leading terms on running time in seconds

6.2 Data on the second method

Table 4 presents data on running times when leading terms of middle progressions of group-
ings are used. Like the first method, at c = 1/2, the method achieves better performance.
By comparing the numbers in the table with that of Table 3, we clearly observe that the
generation of using leading terms of the first progressions gives better performance. This is
unexpected as the leading term of middle progression of a grouping G is the greatest of all
other leading terms within G. This property holds for any grouping (From Theorem 1). This
unexpected behavior need to be examined further.

l T (l, 1
2
) T (l, 1

3
) T (l, 1

4
) T (l, 1

5
) T (l, 1

6
)

256 49.5 - - - -
512 25.2 27 28.1 - -
1k 14.7 15.53 16.12 16.6 16.4
2k 9.58 9.91 10.2 10.3 10.3
4k 6.89 7.03 7.18 7.25 7.27
8k 5.61 5.68 5.75 5.76 5.77
16k 5.09 5.09 5.11 5.14 5.14

Table 4. Effect of the size of middle leading terms on running time in seconds

7 Special Cases of Problem 1

Given the leading terms of some arbitrary progressions of S(a0, d0), the problem is to recover a
pair (a0, d0). We present two cases of this problem. The cases deal with difficulty of recovering

the main parameters of a grouping when more than term from it are given. The study of these
cases led us to finally define an hard instance, i.e., Problem 1.

Note that our study restricts only to first grouping of S(a0, d0). The arguments are similar
for other groupings as well. In the results, A(a0, d0) denotes the first grouping of S(a0, d0).
We recall the property of terms in Eq. 2 for proving the results.

7.1 Case 1 (Easy Instance)

Lemma 4. For given f1, f2 and f3 > 0, there exists at most one co-prime pair (a, n) such
that f1, f2 and f3 are the leading terms of some three consecutive progressions of A(a, n).

Proof. Suppose that f1, f2, f3 are the leading terms of ith, (i+1)th, and (i+2)th progressions
of A(a, n), respectively, for some integer i. Then, by Theorem 1

f1 = a+4(ki− i2) + iv,

f2 = a+4
(
k(i+ 1)− (i+ 1)2

)
+ (i+ 1)v,

f3 = a+4
(
k(i+ 2)− (i+ 2)2

)
+ (i+ 2)v. (5)

By arithmetic on the above equations, we get 4 = f2 − f1+f3
2 . Suppose u is the common

difference of the progression of A(a, n) whose leading term is f3. Then, due to property in
Eq. 2, we have

f3 = u+
f2u− 1

u+4
.

So u is the positive root of polynomial x2 + (f2 − f3 +4)x − (4f3 + 1), which shows that
u, 4 are unique. From Lemma 12, the index (or position) of the progression of A(a, n) with
leading term f3 is equal to b uf3 c. So, the common difference of the first progression of A(a, n)

is n = u+b uf3 c∗4, and the leading term of the first progression is a ≡ −4−1 (mod n). Since
u, 4 are unique, so are a, n. The quantities a, n can be computed efficiently. �

Suppose given integers f1, f2 and f3 are not consecutive. Suppose they are leading terms
of jth1 , jth2 , and jth3 progressions of A(a0, d0). Our aim is to compute a pair (a0, d0). In this
case, we obtain a system of equations: Mx = b where

M =

1 kj1 − j2
1 j1

1 kj2 − j2
2 j2

1 kj3 − j2
3 j3


x = [a0,4, v]T and b = [f1, f2, f3]T . We have 1 < j1 < j2 < j3 < k. By Property in Eq. 2,
a04 ≡ −1 (mod d0). So, one of a0 and4 is at least

√
d0 − 1. This shows that f1, f2, f3 >

√
d0.

For a fixed k, an exhaustive search tries out all possible values of j1, j2, and j3. So, we require
roughly O

(
k3
)

matrix inversions of M where k = dd04 e. The value of k (i.e., the size of

grouping) is usually small. The expected value of k is O
(
log f

)
where f is the minimum of

f1, f2 and f3. In the worst case k = f where 4 = 1. For example, S(d0 − 1, d0) has only one
grouping with 4 = 1.

From the above calculation, we conclude that if the size of grouping is small, an exhaustive
search will compute quickly the main parameters of the grouping from given three integers.
This result shows that not more than two terms from the same grouping should be chosen.
However, the study of the case (below) shows that chosen two leading terms should not be
consecutive.

7.2 Case 2 (Problem A)

Suppose that we are given only two numbers f1, f2. Problem A is to compute a pair (a, n)
such that f1, f2 are the leading terms of some consecutive progressions of A(a, n). Unlike
Case 1, we loose the uniqueness of existence on the pair (a, n). The number of solution pairs
is upper bounded by the number of divisors of f1f2 − 1. We show that computing solutions
to the problem requires factoring f1f2 − 1.

Let given f1 and f2 be the leading terms of two consecutive arithmetic progressions with
corresponding common differences d+4 and d. Then, we have f2 = d+ f1d−1

d+4 . This implies

that d2 + d4+ (f1 − f2)d− f24− 1 = 0. Thus, (d,4) is a solution pair to the equation

x2 + xy + (f1 − f2)x− f2y − 1 = 0. (6)

The following result proves that the number of integer solutions to the above equation is
finite.

Lemma 5. For any r, s, t ∈ Z, with s2 − rs + t 6= 0, the number of integer solutions of
f(x, y) = x2 + xy + rx+ sy + t = 0 is σ0(s2 − rs+ t). Here, σ0(x) is the number of divisors
of number x.

Proof. The equation can be expressed as

y =
−(x2 + rx+ t)

x+ s
.

Let x = q − s for some integer q. Then

y = q +
s2 − rs+ t

q
− (2s− r).

y is an integer only when q divides s2 − rs + t. Thus, the number of possible integer values
for y is equal to the total number of divisors of s2 − rs + t. Hence, the number of solution
pairs is equal to σ0(s2 − rs+ t). �

Corollary 2. For any divisor z of f1f2 − 1, (d,4) is a solution to Equation (6) where

d = f2 + z,

4 = z +
f1f2 − 1

z
− (f1 + f2).

Proof. Substitute r = f1 − f2, s = −f2 and t = −1 in the above lemma. Then we get
s2 − rs + t = f1f2 − 1 and 2s − r = f1 + f2. So, (d,4) is a solution to Eq. 6 where
d = z − s = f2 + z, 4 = z + f1f2−1

z − (f1 + f2). �

Equivalence to integer factoring

Let B(f1, f2) be the set of all co-prime integer pairs (a, n) for which f1, f2 are the leading
terms of ith, (i+ 1)th progressions of A(a, n), respectively, for some integer i ≥ 1.

From corollary above, if we know a divisor z of f1f2 − 1 with z + f1f2−1
z − (f1 + f2) > 0,

then we can compute an element of B(f1, f2). So, computing solutions to problem A reduces
to factoring integers. We now prove that factoring reduces to problem A. The reduction is
probabilistic.

Let N be the number to be factored. Suppose f1, f2 are integers such that f1f2 = Nr+ 1
for some r > 0. Suppose an algorithm A, on input (f1, f2), produces a co-prime pair (a, n) ∈
B(f1, f2). Let the second common difference corresponding to A(a, n) be 4. From the results
we know that 4 = zr1 + Nr

zr1
− (f1 + f2) where z is a divisor of N and r1 is a divisor of r.

Then, a divisor of N can be computed as follows.

zr1 +
Nr

zr1
=4+ (f1 + f2)

zr1 −
Nr

zr1
=
√

(4+ (f1 + f2))2 − 4Nr. (7)

By adding the above equations, we get

2zr1 = 4+ (f1 + f2) +
√

(4+ (f1 + f2))2 − 4Nr.

So, the gcd of 4 + (f1 + f2) +
√

(4+ (f1 + f2))2 − 4Nr and N gives a divisor of N . The
following result proves that, with some assumptions, the gcd computation results in a non-
trivial divisor of N with probability at least 1

2 .

Theorem 3. (factoring ⇒ Problem A) Suppose N is an odd composite integer which is not
a prime power. Let f1, f2 be two integers such that f1f2 = Nr + 1 for some integer r > 0
co-prime to N , and the set

X = {a+ b− (f1 + f2) : ab = Nr}

consists only of positive integers. Then, using the output of the algorithm A on input (f1, f2),
we can find a non-trivial divisor of N with probability at least 1

2 .

Proof. Suppose A produces (a, n) on input (f1, f2). The second common difference 4 corre-
sponding to A(a, n) is in X. The gcd computation, using Eq. 7, results in a non-trivial divisor
of N when N splits non-trivially between a and b, i.e., a ≡ 0 (mod z), b ≡ 0 (mod N/z) for
a non-trivial divisor z of N . Let d1 be the total number of divisors of N . Let d2 be the total
number of divisors of r. The size of X is d1d2

2 . The probability that output of A fails to give

a non-trivial divisor of N is

P ∗ = Pr[z = 1 or z = N]

=
d2

(d1d2)/2

≤ 1

2
. (∵ d1 ≥ 4)

Thus, the probability of successfully computing a non-trivial divisor of N is at least 1
2 . �

By running the algorithm A with i different input pairs (f1, f2), we can compute a non-
trivial divisor of N with probability at least 1− 1

2i
.

The above reduction requires a few pairs (r, f) such that the set X = {(a+b)−(f+Nr+1
f) :

ab = Nr} consists only of positive integers. For each such pair (r, f), (f, Nr+1
f) is an input

pair to Algorithm A. The problem is related to the largest divisor of x bounded by
√
x. We

study this problem in the following section.

7.3 Problem of finding (r, f) pairs

The set X in Theorem 3 is redefined as follows.
Definition: For integers n, r and f ,

X(n, r, f) = {(u+
nr

u
)− (f +

nr + 1

f
) : u|nr}.

The set consists of integers only when f divides nr+1. Thus, we note that whenever X (n, r, f)
is used, it is implicit that f is a divisor of nr + 1. For our convenience, we use the notation
[X (n, r, f)] > 0 to denote the fact that the set X(n, r, f) consists only of positive integers.

For integer n > 0, define

G(n) = {(r, f) : 1 ≤ r < n and [X(n, r, f)] > 0}.

We reiterate the fact that in the proof of Theorem 3, we have to produce an instance of
Problem A corresponding to the factoring instance n. Clearly, for each (r, f) ∈ G(n), (f, nr+1

f)
is an instance of Problem A corresponding to the factoring instance n. Thus, the aim is to
find, for a given n, a few pairs (r, f) ∈ G(n) without the knowledge of the prime factors of n.

we prove a necessary and sufficient condition for [X (n, r, f)] > 0.

Lemma 6. When x runs over the divisors of k, the minimum value of g(x) = x+k/x occurs
at x = l(k) and k

l(k) .

Proof. The result follows from the fact that g is a decreasing function in [1,
√
k], is an in-

creasing function in [
√
k, k]. �

Lemma 7. If one of nr and nr + 1 is a perfect square, then, for any divisor f of nr + 1,
X(n, r, f) consists of negative integers.

Proof. Clearly, only one of nr and nr + 1 can be a perfect square. We prove the claim for
both cases.

Suppose nr is a perfect square. Then, for any divisor f of nr + 1, X (n, r, f) consists of
integer t = 2

√
nr − (f + nr+1

f). Since f <
√
nr, we have f + nr+1

f > 2
√
nr. Thus t < 0.

Suppose nr + 1 = z2 for some integer z > 0. Then, for any divisor f of nr + 1, X (n, r, f)
consists of the element s = 2z− (f + nr+1

f). Since f ≤ z, we have f + nr+1
f ≥ 2z. Thus, s ≤ 0.

�

Theorem 4. Suppose n and r are two integers such that neither of nr and nr+1 is a perfect
square. Let f be a divisor of nr+1 with 1 ≤ f <

√
nr + 1. Then, the following two statements

are equivalent.

– [X(n, r, f)] > 0
– l(nr) < f ≤ l(nr + 1).

Proof. By Lemma 6, the least element of X(n, r, f) is l(nr) + nr
l(nr) − (f + nr+1

f). Let the least

element of X(n, r, f) be m. We show that m > 0 if and only if l(nr) < f ≤ l(nr+1). Consider
the product

f ×m = f ×
[
l(nr) +

nr

l(nr)
− (f +

nr + 1

f
)
]

= (f − l(nr))
[
nr

l(nr)
− f

]
− 1.

Since neither of nr, nr+1 is a perfect square, we have f, l(nr) <
√
nr. Thus, nr

l(nr) −f > 1. In

the above equality, if f > l(nr), then m > 0. Also, it is clear that m > 0 only when f > l(nr).
This completes the argument. �

From the above result, computing a pair (r, f) such that [X(n, r, f)] > 0 is equivalent to
computing integers f, r such that f is a divisor of nr + 1 with l(nr) < f ≤ l(nr + 1). Based
on this result, an algorithm for computing pairs (r, f) is given below.

For a pair (r, f) produced by the algorithm, f > r. If n prime, l(nr) = r < f . So,
(r, f) ∈ G(n). For composite n, the following results prove the success rate of the algorithm.

Lemma 8. For a pair (r, f) generated by the algorithm, we have
√
knr < f <

√
nr
k where

k = f/n is the ratio computed in Step 11 of the algorithm. Note that k ≥ 1
2 .

Proof. From Step 12 of the algorithm, the integers r, f satisfy the inequalities: kn < f < n
and kf < r < f . From these inequalities, we obtain

√
kf <

√
nr < f√

k
. Equivalently,

√
knr < f <

√
nr
k . �

From the above result, if l(nr) <
√
knr, then [X (n, r, f)] > 0. The following theorem

shows that, for composite n, (r, f) ∈ G(n) with probability greater than 0.842 since k ≥ 1/2.

Theorem 5. The probability that l(nr) <
√
knr is at least 1 + log k

2 .

Proof. Ref. Appendix B. �

Algorithm 3 : Algorithm for computing (r, f) with l(nr) < f ≤ l(nr + 1)

Input: Integer n and k ∈ [1/2, 1)
Output: A pair (r, f) ∈ G(n) with probability ≥ 1 + log k

2

1: if n is prime then
2: Choose f ∈ (1, n− 1)
3: Compute f1 such that ff1 = 1 (mod n)
4: Compute r = (ff1 − 1)/n
5: Output (r, f)
6: end if
7: if n is composite then
8: Choose f ∈ (kn, n− 1) co-prime to n
9: Compute f1 such that ff1 = 1 (mod n)

10: Compute r = (ff1 − 1)/n
11: Compute the ratio k = f/n
12: if (r is prime) or (r > kf) then output (r, f)
13: else jump to Step 8
14: end if

8 Conclusions

In this work, we proposed a new family of pseudo random number generators based on
collections of arithmetic progressions with certain inverse property (Property P). For the
proposed pseudorandom generators, the generation of keystream is shown to be efficient. Our
experiments confirms this feature. The construction of the generators has several interesting
aspects and also leaves some open issues, which we are addressing presently in our ongoing
work. The issues are described below.

8.1 Performance Related Issues

For the proposed generators, the keystream generation is efficient . For example, for 1024-
bit d0 the amortized cost of producing the keystream is 4 cycles/bit (Section 6). This result
shows that the methods can be used in real-time applications. Also, there is a scope for further
improvement in the performance as the methods are suitable for a parallel implementation.
Our keystream generation algorithms invoke a little variant of the Euclidean algorithm, so
it is amenable to hardware implementation as well for achieving further speedup. We are
carrying out a new set of experiments for addressing these performance issues.

The Authenticated Encryption scheme proposed in Section 5 can make use of high speed
multiplication technique such as FFT when one wants to work with very large integers. The
performance of this method is yet to be tested.

8.2 Security Related Issues

In the paper, we mainly focused our attention to two keystream generating methods (Section
3). The security of the methods is dependent on the computational difficulty of solving the
inverse problem: Problem 1. Solving the problem is equivalent to finding common solution
to a nearly-defined system of equations. Our prelimanry analysis suggests that the existing

attacks are not directly applicable to solving the system. But, rigorous arguments are required
to establish the security of the schemes.

The proof of indistinguishability assumes the fact that both a0, d0 are chosen randomly.
However, for an efficient generation of keystream, it is suggested that only one of a0, d0 is
refreshed and the other is fixed. The proof of indistinguishability for this case is open. The
arguments indicating (or supporting) the cryptographic strength of the two methods are not
applicable to other variants of keystream generation. The security analysis of these variants
need to be done separately. Our present study is addressing these open issues.

References

1. E. Bach and J. O. Shallit, Algorithmic number theory, Vol. 1, Foundations of Computing Series, MIT
Press, Cambridge, MA, 1996, Efficient algorithms.

2. J. Barkley Rosser and Lowell Schoenfeld, “Approximate formulas for some functions of prime numbers”,
Illinois Journal of Mathematics, Vol 6, (1962): pp. 64-94.

3. H. Cohen, A course in computational algebraic number theory, Springer, 1996.

4. N. Courtois, A. Klimov, J. Patarin and A. Shamir, “Efficient algorithms for solving overdefined systems
of multivariate polynomial equations”, Advances in Cryptology, Eurocrypt, Vol 1807, LNCS, (2000): pp.
392-407.

5. N. Courtois, L. Goubin, W. Meier and J.-D. Tacier, “Solving underdefined systems of multivariate poly-
nomial equations”, Public Key Cryptography (PKC), Vol 2567, LNCS, (2002): pp. 211-227.

6. W. Diffie and M. Hellman, “New directions in cryptography”, IEEE Transactions on Information Theory,
22(6), 1976: pp. 644-654.

7. J. Eichenauer and J. Lehn, “A non-linear congruential pseudo random number generator”, Statist. Papers,
Vol 27, (1986): pp. 315-326.

8. J. Eichenauer and J. Hermann, “Inversive congruential pseudorandom numbers avoid planes”, Math.
Comp., Vol 56, (1991): pp. 297-301.

9. J. Eichenauer and J. Hermann, “On generalized inverse congruential pseudorandom numbers”, Math.
Comp., Vol 63, (1994): pp. 293-299.

10. eBACS: ECRYPT Benchmarking of Cryptographic Systems, http://bench.cr.yp.to/results-stream.
html.

11. L.K. Grover, “A fast quantum mechanical algorithm for database search”, Proceedings, 28th Annual ACM
Symposium on the Theory of Computing, (1996): pp. 212-219.

12. P. Hellekalek, “Inversive pseudorandom number generators: concepts, results and links”, Proceeding of the
Winter Simulation Conference, (1995): pp. 255-262.

13. J. Hoffstein, J. Pipher and J. H. Silverman, “NTRU: A Ring-based public key cryptosystem”, Algorithmic
Number Theory, LNCS, (1998): pp. 267-288.

14. D.E. Knuth, The art of computer programming: Seminumerical algorithms, Vol 2, second edition, (1998):
pp. 354-355.

15. D.E. Knuth, “Evaluation of Porter’s constant”, Computers & Mathematics with Applications, Volume 2,
(1976): pp. 137-139.

16. G.H. Norton, “On the asymptotic analysis of the Euclidean algorithm”, Journal of Symbolic Computation,
volume 10, (1990): pp. 53-58.

17. J.W. Porter, “On a theorem of Heilbronn”, Mathematika, volume 22, (1975): pp. 20-28.

18. R. Rivest, A. Shamir, and L.Adleman, “A method for obtaining digital signatures and public-key cry-
tosystems”, Communications of ACM, 21(2), (1978): pp. 120-126.

19. Zhi-Wei Sun, “Problems and results on covering systems”, a survey article, http://maths.nju.edu.cn/ zw-
sun/Cover.pdf.

http://bench.cr.yp.to/results-stream.html
http://bench.cr.yp.to/results-stream.html

Appendix A Properties of S(a0, d0)

Proposition 1 The leading terms ai, and the common differences di of the progressions of
S(a0, d0) satisfy:

di+1 ≡ a−1
i (mod di),

ai+1 = di+1 +
aidi+1 − 1

di
. (8)

Proof. By Property P, (ai + rdi)(ai+1 + rdi+1) ≡ 1 (mod ai + (r + 1)di), for i, r ≥ 0. This
implies that

zr =
(ai+1 + rdi+1)di + 1

ai + (r + 1)di
is an integer.

So, for r ≥ 1, zr+1 − zr = Cdi
(ai+(r+1)di)(ai+rdi)

is an integer where

C = di+1ai + di+1di − ai+1di − 1.

Since di, a+ rdi, and ai + (r + 1)di are pair-wise co-prime, we have that ai + rdi divides C.
Therefore, C = 0.

A.1 Properties of terms within a grouping

Let G be a grouping of S(a0, d0) consisting of progressions,

A(aα, dα), A(aα+1, dα+1), . . . , A(aβ, dβ),

for some 0 ≤ α < β. Let 4 be the second common differences corresponding to G. By the
definition of grouping, 4 = di − di+1, α ≤ i ≤ β − 1.

Lemma 9. ai+14+1
di+1

= ai4+1
di

+4, α ≤ i ≤ β − 1.

Proof. By Equation 2, we have aidi+1 + didi+1 − ai+1di − 1 = 0. Thus,

ai+14+ 1

di+1
− ai4+ 1

di
=4

(
ai+1di − aidi+1 + 1

didi+1

)
=4.

Lemma 10. For α ≤ i ≤ β − 1, ai+1 − ai = (α+ β − 1− 2i)4+ dβ − zα where

zα =
aα4+ 1

dα
.

Proof. By introducing the terms ai+1di+1 + (−ai+1di+1) and d2
i+1 + (−d2

i+1) in the equation
aidi+1 + didi+1 − ai+1di − 1 = 0, we get

ai+1 − ai = −ai+14+ 1

di+1
+4+ di+1

= −ai+14+ 1

di+1
+4+ (dβ + (β − i− 1)4)

= −(zα + (i+ 1− α)4) + dβ + (β − i)4
= (α+ β − 1− 2i)4+ dβ − zα.

Lemma 11. baidi c = baαdα c+ i− α, α ≤ i ≤ β.

Proof. From Lemma 9, we have ai4+1
di

= aα4+1
dα

+ (i− α)4.

Lemma 12. Suppose S(a0, d0) is the sequence of progressions A(a0, d0), A(a1, d1), . . . ,
A(al, dl) where d0 > d1 > d2 > . . . > dl, and dl = 1. Then,

baj
dj
c = j, 0 ≤ j ≤ l.

Proof. Since a0 < d0, ba0d0 c = 0. The above lemma shows that, within a grouping G, the
difference between the values of the ratio badc is one for any two consecutive progressions.
Any two consecutive groupings share an arithmetic progression. Hence, the result follows.

It can be verified that leading terms and common difference of the progressions of S(11, 25)
satisfy the above ratio property.

A.2 Proof of Theorem 1

From Lemma 10,

ai − aα =

i−1∑
j=α

(aj+1 − aj) =

i−1∑
j=α

(
4(α+ β − 1− 2j) + dβ − zα

)
=4(α+ β − 1)(i− α)−4(

i∑
j=α

2j) + (dβ − zα)i

=4(β − i)(i− α) + (i− α)(dβ − zα).

Here, zα is the inverse of dβ (mod 4).

A.3 Proof of Theorem 2

Lemma 13. Let 4′ be the second common difference of successive grouping of G. Then,
dβ ≡ dα (mod 4), and 4′ ≡ 4 (mod dβ).

Proof. It is easy to see the first congruence. We prove the second congruence relation. From

Lemma 12,
aβ4+1
dβ

is an integer. This implies that4 ≡ −a−1
β (mod dβ). By Eq. 2, dβ+1 ≡ a−1

β

(mod dβ). Thus, 4 ≡ dβ − dβ+1 (mod dβ). This proves the lemma.

A.4 Proof of Lemma 1

For 1 ≤ a0 < d0, the maximum value for the number of groupings of S(a0, d0) is attained
when

d0 = Fi,

a0 ≡ −F−1
i−1 (mod d0). (9)

Here, Fi, Fi−1 are ith and (i−1)th Fibonacci numbers, respectively. The number of iterations
of the Euclidean algorithm on input pair (Fi, Fi−1) will be i−2. So, the number of iterations
of Algorithm 1 on pair (a0, d0) in Equation 9 is b i−2

2 c. The ith Fibonacci number is Fi =
(φi−(−1)iφ−i)√

5
where φ =

√
5+1
2 . So, Fi ≈ φi√

5
for large i. This proves the lemma.

Appendix B Proof of Theorem 5

For integer x, a real number 0 < k < 1, define the set

τ(x, k) = {r ≤ x : l(r) <
√
kr}.

We prove a lower bound on the size of τ , which will give us the success rate of the algorithm.
To establish this result, we work with its complement set τ̄ .

τ̄(x, k) = {r ≤ x :
√
kr ≤ l(r) ≤

√
r}.

For integer a ≥ 1, define S(x; a, k) = {ab ≤ x : a ≤ b ≤ a/k}.

Lemma 14. For any 0 < k ≤ 1

τ̄(x, k) =

b
√
xc⋃

a=1

S(x; a, k)

Proof. For ab ∈ S(x; a, k), we have
√
kab ≤ a ≤

√
ab, which satisfies the definition of τ̄ . Thus,

ab ∈ τ̄ . Conversely, suppose r ∈ τ̄(x, k). Let r = ab where a = l(r), b = r
l(r) . The integer r

satisfies the condition l(r) ≤ r
l(r) ≤

l(r)
k . Hence, r = ab ∈ S(x; l(r), k).

The number of integers in S(x; a, k) depends on the value of a.

– For 1 ≤ a <
√
kx, |S(x; a, k)| = bakc − a

– For
√
kx < a ≤ b

√
xc, |S(x; a, k)| = bxac − a.

From the above lemma, we have

|τ̄(x, k)| ≤
b
√
xc∑

a=1

|S(x; a, k)|

=

b
√
kxc∑

a=1

|S(x; a, k)|+
b
√
xc∑

a=d
√
kxe

|S(x; a, k)|

=

b
√
kxc∑

a=1

ba
k
c − a+

b
√
xc∑

a=d
√
kxe

bx
a
c − a

<

√
xk∑

a=1

(
1

k
− 1)a+

√
x∑

a=
√
kx

(
x

a
− a)

= (
1

k
− 1)

√
xk∑

a=1

a+

√
x∑

a=
√
kx

(
x

a
− a)

=

√
xk

2k
− x log k

2
−
√
x

2
.

Thus,

|τ(x, k)| = x− |τ̄(x, k)|

≥ x−
√
xk

2k
+
x log k

2
+

√
x

2
.

=

(
1 +

log k

2

)
x−
√
xk

2k
+

√
x

2
.

The probability that n ∈ τ(x, k) is

|τ(x, k)|
x

≥ 1 +
log k

2
−
√
k

2k
√
x

+
1

2
√
x
.

This proves Theorem 5.

	Introduction
	Inversive Congruential Generators
	Our Contributions
	Organization of the Paper

	Sequence of Arithmetic Progressions
	Groupings of S(a0,d0)
	Pseudo-random Behavior
	Computing Specific Terms is easy
	The Inverse Computational Problem (Problem 1)
	Yield of S(a0,d0)
	Keystream Generation

	Family of pseudorandom number generators
	Other Stream Generating Methods
	Refreshing Functions

	Security analysis
	Indistinguishability
	Proof.
	Randomness Testing.

	Computational Complexity of Problem 1
	Nature of the Problem
	Complexity of Exhaustive search.

	Symmetric Key Encryption scheme
	Authenticated Encryption Scheme
	Sharing of Secret Key Pair

	Timing data
	Data on the first method
	Data on the second method

	Special Cases of Problem 1
	Case 1 (Easy Instance)
	Case 2 (Problem A)
	Problem of finding (r,f) pairs

	Conclusions
	Performance Related Issues
	Security Related Issues

	Properties of S(a0,d0)
	Properties of terms within a grouping
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 1

	Proof of Theorem 5

