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Abstract. This work pursues the idea of multi-forgery attacks as introduced by Ferguson
in 2002. We recoin reforgeability for the complexity of obtaining further forgeries once a
first forgery has succeeded. First, we introduce a security notion for the integrity (in terms
of reforgeability) of authenticated encryption schemes: j-Int-CTXT, which is derived from
the notion INT-CTXT. Second, we define an attack scenario called j-IV-Collision Attack
(j-IV-CA), wherein an adversary tries to construct j forgeries provided a first forgery. The
term collision in the name stems from the fact that we assume the first forgery to be the
result from an internal collision within the processing of the associated data and/or the nonce.
Next, we analyze the resistance to j-IV-CAs of classical nonce-based AE schemes (CCM,
CWC, EAX, GCM) as well as all 3rd-round candidates of the CAESAR competition. The
analysis is done in the nonce-respecting and the nonce-ignoring setting. We find that none
of the considered AE schemes provides full built-in resistance to j-IV-CAs. Based on this
insight, we briefly discuss two alternative design strategies to resist j-IV-CAs.
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1 Introduction

(Nonce-Based) Authenticated Encryption. Simultaneously protecting authenticity and pri-
vacy of messages is the goal of authenticated encryption (AE) schemes. AE schemes with support
for Associated Data (AEAD) provide additional authentication for associated data. The stan-
dard security requirement for AE schemes is to prevent leakage of any information about secured
messages except for their respective lengths. However, stateless encryption schemes would enable
adversaries to detect whether the same associated data and message has been encrypted before
under the current key. Thus, Rogaway proposed nonce-based encryption [43], where the user must
provide an additional nonce for every message it wants to process – a number used once (nonce).
AE schemes that require a nonce input are called nonce-based authenticated encryption (nAE)
schemes.

Reforgeability. In the cryptographic sense, reforgeability refers to the complexity of finding
subsequent forgeries once a first forgery has been found. Thus, it defines the hardness of forging
a ciphertext after the first forgery succeeded. The first attack known was introduced in 2002 by
Ferguson by showing collision attacks on OCB [44] and a Ctr-CBC-like MAC [17]. He showed that
finding a collision within the message processing of OCB “ leads to complete loss of an essential
function” (referring to the loss of authenticity/integrity).
Later on, in 2005, the term multiple forgery attacks was formed and defined by McGrew and
Fluhrer [34]. They introduced the measure of expected number of forgeries and conducted a thor-
ough analysis of GCM [33], HMAC [6], and CBC-MAC [8]. In 2008, Handschuh and Preneel [21]
introduced key recovery and universal forgery attacks against several MAC algorithms. The term



Reforgeability was first formally defined by Black and Cochran in 2009, where they examined
common MACs regarding their security to this new measurement [13]. Further, they introduced
WMAC, which they argue to be the “best fit for resource-limited devices”.

Relevance. For a reforgeability attack to work, an adversary must be provided with a verification
oracle in addition to its authentication (and encryption) oracle. In practice, such a setting can, for
example, be found when a client tries to authenticate itself to a server and has multiple tries to
log in to a system. Thus, the server would be the verification oracle for the client.
Obviously, the same argument holds for the case when the data to be send is of sensitive nature,
i.e., the data itself has to be encrypted. Thus, besides the resistance of MACs to reforgeability, also
the resistance of AE schemes is of high practical relevance.
Since modern and cryptographically secure AE schemes should provide at least INT-CTXT secu-
rity in terms of integrity, the first forgery is usually not trivially found and depends on the size of
the tag or the internal state. For that reason, reforgeability becomes especially essential when con-
sidering resource-constrained devices limited by, e.g., radio power, bandwidth, area, or throughput.
This is not uncommon in the area of low-end applications such as sensor networks, VoIP, streaming
interfaces, or, for example, devices connected to the Internet of Things (IoT). In these domains,
the tag size τ of MACs and AE schemes is usually quite small, e.g., τ = 64 or τ = 32 bits, or
even smaller (τ = 8 bits) as mentioned by Ferguson in regard to voice systems [18]. Therefore,
even if the AE scheme is secure in the INT-CTXT setting up to τ bits, it is not unreasonable
for an adversary to find a forgery for such a scheme in general. Nevertheless, even if finding the
first forgery requires a large amount of work, a rising question is, whether it can be exploited to
find more forgeries with significantly less than 2τ queries to an authentication oracle per forgery.
For our analysis, we derive a new security notion j-Int-CTXT, which states that an adversary
who finds the first forgery using t1 queries, can generate j additional forgeries in polynomial time
depending on j. In general, the best case would be to find j additional forgeries using t1+ j queries.
Nevertheless, for five schemes (AES-OTR [36], GCM [33], COLM [3], CWC [28], and OCB [29]),
there already exist forgery attacks in the literature (mentioned in Section 4.3 and Appendix C)
leading to j forgeries using only t1 queries (thus, the j additional authentication queries are not
even required).

Due to the vast number of submissions to the CAESAR competition [10], cryptanalysis proceeds
slowly for each individual scheme. For instance, forgery attacks on 3rd-round CAESAR candidates
have only been published for AES-COPA [4,31,38], which even might become obsolete since AES-

COPA and ELmD [14] have been merged to COLM [3]. Besides looking at 3rd-round CAESAR
candidates, we also analyze other existing and partially widely-used AE schemes, e.g., GCM,
EAX [9], CCM [16], and CWC. Naturally, due to their longer existence, there exist a lot more
cryptanalysis on those schemes in comparison to the CAESAR candidates (see [19,26,27,35,41,45]
for some examples. The hope is that an INT-CTXT-secure AE scheme does not lose its security
when considering reforgeability, i.e., j-Int-CTXT.
We briefly introduce what we mean by resistant to j-IV-CAs, whereby we assume the first forgery
to be the results from an internal collision of the processing of the associated data and/or the
nonce.

• Nonce-Ignoring: We call an nAE scheme resistant to j-IV-CAs if the required number of
queries of a nonce-ignoring j-IV-CA adversary for finding 1 + j forgeries (including the first)
is greater than t1 + j, where t1 denotes the number of queries for finding the first forgery.
• Nonce-Respecting: We call an nAE scheme resistant to j-IV-CAs if the required number of

queries of a nonce-respecting j-IV-CA adversary for finding 1+ j forgeries (including the first)
is greater than t1 · j/2, where t1 denotes the number of queries for finding the first forgery.

Further, we say that an nAE scheme is semi-resistant to j-IV-CAs if the internal state is of wide
size and the scheme itself is not trivially insecure in terms of j-IV-CA. Thereby, following a similar
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Scheme NI NR Scheme NI NR

3rd-Round CAESAR Candidates

ACORN [48] t1 + j t1 · j/2 Ketje [12] t2 + j t2 · j/2

AEGIS [51] t2 + j t2 · j/2 Keyak [20] t2 + j t2 · j/2

AES-OTR [36] t1 t1 MORUS [49] t2 + j t2 · j/2

AEZv4 [22] t1 + j t1 · j/2 NORX [5] t2 + j t2 · j/2

Ascon [15] t2 + j t2 · j/2 NR-NORX [5] t2 + j t2 · j

CLOC [23] t1 + j t1 · j OCB [29] t1 t1

COLM [3] t1 t1 + j SILC [23] t1 + j t1 · j

Deoxys [25] t1 + j t1 · j Tiaoxin [39] t2 + j t2 · j/2

JAMBU [50] t1 + j t1 · j/2

Classical Schemes

CWC [28] t1 t1 CCM [16] t1 + j t1 + j

EAX [9] t1 + j t1 · j GCM [33] t1 t1

Table 1: Expected #oracle queries required for j forgeries for IV/nonce-based classical schemes and 3rd-
round CAESAR candidates. By t1 and t2, we denote the computational cost for obtaining the first forgery,
where t2 relates to wide-state designs. NR = nonce-respecting setting; NI = nonce-ignoring setting. Since
we obtained the same results for Deoxys-I and Deoxys-II, we combine them to Deoxys in this table.
NR-NORX (draft) means the nonce-misuse-resistant version of NORX.

approach to the wide-pipe mode introduced for hash functions [32], the internal state of an nAE
scheme is at least twice as big as the output, i.e., the tag value. Such a design is, for example, given
by the widely used Sponge construction [11]. That would make the search for a generic collision
significantly harder than the search for multiple forgeries. We denote the number of queries required
for finding a collision within a wide internal state by t2. Finally, we call an nAE scheme vulnerable
to j-IV-CAs if it is neither resistant nor semi-resistant to j-IV-CA.

Contribution. This work classifies nonce-based AE schemes depending on the usage of their
inputs to the initialization, encryption, and authentication process, and categorize the considered
AE schemes regarding to that classification. To allow for a systematic analysis of the reforgeability
of AE schemes, we introduce the j-IV-Collision Attack based on the introduced security definition
j-Int-CTXT, providing us with expected upper bounds on the hardness of further forgeries (a
summary of our results can be found in Table 1). For our attack, we pursue the idea of the
message-block-collision attacks presented in [44] and [17]. However, in contrast, we focus on an
internal collision within the processing of the associated data and/or the nonce. In the last section,
we provide two alternative approaches to provide resistance in the sense of reforgeability and
j-IV-CAs. Moreover, for AES-OTR, COLM, and OCB, we describe three attacks making multi-
forgery attacks more efficient than our generic approach.

Outline. Section 2 provides necessary preliminaries including our security notions. Section 3
introduces our classification of generic AE schemes. Section 4 presents the j-IV-CA, a generic secu-
rity analysis, and categorization of authenticated encryption schemes regarding to the introduced
classes. Section 5 contains possible remedies to j-IV-CAs and Section 6 concludes our work.
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Algorithm 1 The j-Int-CTXT Experiment.

Experiment j-Int-CTXT

1: K և K
2: Run A

E(·),D(·) such that A never queries E →֒ D
3: if A made j distinct decryption queries (Ai, Ni, Ci, Ti), 1 ≤ i ≤ j such that DK(Ai, Ni, Ci, Ti) 6= ⊥

for all 1 ≤ i ≤ j then return 1

4: return 0

2 Preliminaries

We use lowercase letters x for indices and integers, uppercase letters X,Y for binary strings and
functions, and calligraphic uppercase letters X ,Y for sets and combined functions. We denote the
concatenation of binary strings X and Y by X ‖ Y and the result of their bitwise XOR by X ⊕ Y .
We indicate the length of X in bits by |X |, and write Xi for the i-th block (assuming that X can
be split into blocks of, e.g., n bits). Furthermore, we denote by X և X that X is chosen uniformly
at random from the set X . For an event E, we denote by Pr[E] the probability of E.

Adversaries and Advantages. An adversary A is an efficient Turing machine that interacts
with a given set of oracles that appear as black boxes to A. We denote by A

O the output of A after
interacting with some oracle O. We write Adv

X
F (A) for the advantage of an adversary A against

a security notion X on a function/scheme F . All probabilities are defined over the random coins
of the oracles and those of the adversary, if any. We write Adv

X
F (q, ℓ, t) = maxA{Adv

X
F (A)} to

refer to the maximal advantage over all X-adversaries A on a given scheme/function F that run
in time at most t and pose at most q queries consisting of at most ℓ blocks in total to the available
oracles. Wlog., we assume that A never asks queries to which it already knows the answer, and by
O1 →֒ O2 we denote that A never queries O2 with the output of O1.
We define as (qE , qD, ℓ, t)-adversary A an adversary that asks at most qE queries to its first oracle,
qD queries to its second oracle, which consist of at most ℓ blocks in sum, where A runs in time at
most t. We define a scheme Π to be (qE , qD, ℓ, t, ǫ)-X-secure to a notion X if the maximal advantage
of all (qE , qD, ℓ, t)-X-adversaries on Π is upper bounded by ǫ.
During the query phase, we say that an adversary A maintains a query history Q collecting all
requests together with their corresponding answer. We write Q|X , if we refer only to all entries of
type X in the query history. For example, Ni /∈ Q|N denotes that the nonce Ni is not contained
in the set of nonces already in the query history.

Nonce-Based AE Schemes. A nonce-based authenticated encryption (nAE) scheme (with asso-
ciated data) [42] is a tuple Π = (E ,D) of a deterministic encryption algorithm E : K×A×N×M→
C × T , and a deterministic decryption algorithm D : K × A × N × C × T → M ∪ {⊥}, with as-
sociated non-empty key space K, associated data space A ⊆ {0, 1}∗, the non-empty nonce space
N , and M, C ⊆ {0, 1}∗ denote the message and ciphertext space, respectively. We define a tag

space T = {0, 1}τ for a fixed τ ≥ 0. We write EA,N
K (M) and DA,N

K (C, T ) as short forms of

E(K,A,N,M) and D(K,A,N,C, T ). If a given tuple (A,N,C, T ) is valid, DA,N
K (C, T ) returns the

corresponding plaintext M , and ⊥ otherwise. We assume that for all K ∈ K, A ∈ A, N ∈ N , and
M ∈ M holds stretch-preservation: if EA,N

K (M) = (C, T ), then |C| = |M | and |T | = τ , correct-

ness : if EA,N
K (M) = (C, T ), then DA,N

K (C, T ) = M , and tidiness : if DA,N
K (C, T ) = M 6= ⊥, then

EA,N
K (M) = (C, T ), for all C ∈ C and T ∈ T .

Security Notions for Reforgeability. In 2004, Bellare et al. introduced the two security no-
tions Int-PTXT-M and Int-CTXT-M [7]; however, these notions capture the setting that an
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adversary can pose multiple verification queries for a single forgery. In contrast, we are interested
in finding multiple (in general j ≥ 1) forgeries based on multiple verification queries. In the scenario
of INT-CTXT, an adversary wins if it can find any valid forgery, that is a tuple (A,N,C, T ) for
which the decryption returns anything different from the invalid symbol ⊥ and which has not been
previously obtained by A as response of the encryption oracle. The j-Int-CTXT security notion,
as shown in Algorithm 1, is derived from INT-CTXT in the sense that A now has to provide j
distinct valid forgeries that all have not been obtained from the encryption oracle. In the following,
we define the j-Int-CTXT Advantage of an adversary.

Definition 1 (j-Int-CTXT Advantage). Let Π = (E ,D) be a nonce-based AE scheme, K և

K, and A be a computationally bounded adversary on Π with access to two oracles E and D such
that A never queries E →֒ D. Then, the j-Int-CTXT advantage of A on Π defined as

Adv
j-Int-CTXT

Π (A) := Pr
[

A
E,D forges j times

]

,

where “forges” means that DK returns anything other than ⊥ for a query of A, and “forges j
times” means that A provides j distinct decryption queries (Ai, Ni, Ci, Ti), 1 ≤ i ≤ j such that
DK(Ai, Ni, Ci, Ti) 6= ⊥ for all 1 ≤ i ≤ j.

We define Adv
j-Int-CTXT

Π (qE , qD, ℓ, t) for the maximal advantage over all adversaries A on Π that
ask at most qE encryption queries, qD decryption queries, which sum up to at most ℓ blocks in
total, and run in time at most t.

3 Classification of AE Schemes

In our work, we consider AE schemes from a general point of view. Therefore, in comparison to the
classification of Namprempre, Rogaway, and Shrimpton [37], we introduce one additional optional
input to the tag-generation step (a key-dependent chaining value) and further, we distinguish
between the message and the ciphertext being input to the tag generation.
We classify AE schemes according to their inputs to an initialization function FIV and a tag-
generation function FT . Let K,A,N , IV , T ,M, CV, and C define the key, associated data, nonce,
IV, tag, message, chaining-value, and ciphertext space, respectively. We define three functions FIV ,
E , and FT as follows:

FIV : K[×A][×N ][×M] → IV ,

E : K × IV ×M → C[×CV],

FT : K[×CV][×M][×C][×A][×N ]→ T ,

where A,N ,M, CV, C ⊆ {0, 1}∗, T ⊆ {0, 1}τ , and IV ⊆ {0, 1}∗. The expressions (sets) given in
brackets are optional inputs to the corresponding function, e.g., the function FIV must be provided
with at least one input (the key K ∈ K), but is able to process up to four inputs (including
associated data A ∈ A, nonce N ∈ N , and message M ∈ M).
From this, we introduce a generic classification based on which input is used in FIV and FT . Note
that the encryption algorithm E is equal for all classes described, i.e., it encrypts a message M
under a key K and an IV ∈ IV , and outputs a ciphertext C ∈ C. However, the authors of [37]
distinguished between IV-based (ivE) and nonce-based (nE) encryption schemes. Such a distinction
is covered by our generalized approach since one can simply assume the only input to FIV to be the
nonce (and the key) and making FIV itself the identity function, i.e., it forwards the nonce N to
the encryption function E . Moreover, AE schemes built from generic composition can be modelled
by setting x3 = 0 and assuming FT to be a PRF-secure MAC (see below for the meaning of x3).
In the following, we encode the combination of inputs as a sequence of eight bits x0, . . . , x7, where
each bit denotes whether an input is used (1) or not (0), resulting in a total of 28 = 256 possible
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Fig. 1: Generic AE scheme as considered in our analysis.

Set of Classes Input to FIV Input to FT

(01 ∗ ∗ ∗ ∗10) K ×N [×M] K[×CV][×M][×C]×A

(01 ∗ ∗ ∗ ∗11) K ×N [×M] K[×CV][×M][×C]×A×N

(11 ∗ ∗ ∗ ∗00) K ×A×N [×M] K[×CV][×M][×C]

(11 ∗ ∗ ∗ ∗01) K ×A×N [×M] K[×CV][×M][×C]×N

(11 ∗ ∗ ∗ ∗10) K ×A×N [×M] K[×CV][×M][×C]×A

(11 ∗ ∗ ∗ ∗11) K ×A×N [×M] K[×CV][×M][×C]×A×N

Table 2: Overview of accepted classes. All excluded classes are trivially insecure.

classes. More detailed, the first three bits x0, x1, x2 denote whether the associated data A, the nonce
N , or the message M is used as input to FIV , respectively. The bits x3, . . . , x7 denote whether
a key-dependent chaining value CV , M , C, A, or N is used as input to FT , respectively (see
Figure 1 for a depiction of our generic AE scheme). For example, the string (11010011) represents
FIV : K×A×N → IV and FT : K×CV ×A×N → T as it would be the case for, e.g., POET [2],
CLOC, and SILC [23]. Further, we mark a bit position by ’*’ if we do not care about whether the
specific input is available or not.
Our next step is to significantly reduce the number of possible classes by disregarding those that
are trivially insecure. First, we can simply discard 24 = 16 classes of the form (00 ∗ ∗ ∗ ∗00),
where neither the nonce N nor the associated data A is considered as input. Similarly, we can
exclude 6 · 24 = 96 classes which lack the use of either the nonce or the associated data, i.e.,
{(01 ∗ ∗ ∗ ∗00), (01 ∗ ∗ ∗ ∗01), (10 ∗ ∗ ∗ ∗00), (10 ∗ ∗ ∗ ∗10), (00 ∗ ∗ ∗ ∗01), (00 ∗ ∗ ∗ ∗10)}. Finally, since
a secure nonce-based AE scheme requires the nonce to influence at least the encryption step, we
can further disregard the 3 · 24 = 48 classes {(00 ∗ ∗ ∗ ∗11), (10 ∗ ∗ ∗ ∗01), (10 ∗ ∗ ∗ ∗11)} which omit
the nonce in the initialization function FIV . As a result, we reduced the number of relevant classes
to 96. An overview can be found in Table 2.

4 j-Int-CTXT-Analysis of nAE schemes

4.1 j-IV-Collision Attack

In this section, we introduce a new attack type called j-IV-Collision Attack (j-IV-CA) as one
possible way to analyze the security of a nonce-based AE scheme regarding to reforgeability. We
provide two variants (1) for the nonce-ignoring (NI; also known as nonce misuse) and (2) the nonce-
respecting (NR) setting. The core idea of a j-IV-CA is to (1) assume a first forgery can be found
caused by an internal collision within the processing of the associated data A and/or the nonce N
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Algorithm 2 j-IV-Collision Attack for nonce-ignoring adversaries.

1: Choose an arbitrary fixed message M
2: Q ← ∅
3: for i← 1 to t1 do
4: Choose (Ai, Ni) with (Ai, Ni) /∈ Q|A,N

5: Query (Ai, Ni,M) and receive (Ci, Ti).
6: Q ← Q∪ {(Ai, Ni,M,Ci, Ti)}
7: if Ti ∈ Q|T then
8: Store the tuples (Ai, Ni,M,Ci, Ti) and (Ak, Nk,M,Ck, Tk) for which Ti = Tk

9: break
10: for ℓ← 1 to j do
11: Choose Mℓ /∈ Q|M

12: Query (Ai, Ni,Mℓ) and receive (C′
ℓ, T

′
ℓ)

13: Q ← Q∪ {(∗, ∗,Mℓ, ∗, ∗)}
14: Output the forgery (Ak, Nk, C

′
ℓ, T

′
ℓ)

and (2) to exploit this collision for efficiently constructing j further forgeries. Depending on the
class of an AE scheme, such a collision can occur during the invocation of FIV , FT , or both.
Due to the character of the attacks presented in this section, we can derive a set of classes C0 of
nAE schemes for which those attacks are trivially applicable. For all schemes belonging to that
class, it holds that neither the message M , a message/ciphertext-depending chaining CV , nor
the ciphertext C influence the first collision found by our adversary, e.g., if an adversary tries to
construct a collision for the outputs of FIV , the only possible inputs to FIV are either the nonce
N , the associated data A, or both. Therefore, the set C0 contains the following 22 classes of AE
schemes:

C0 = {(110 ∗ ∗ ∗ 0∗), (01 ∗ 0001∗), (11000011), (11000010)}.

Nonce-Ignoring Setting. The attack for the nonce-ignoring setting is described in Algorithm 2.
An adversary A starts by choosing a fixed arbitrary message M and pairs (Ai, Ni) not queried
before ((Ai, Ni) /∈ Q|A,N , see Line 4). That builds up a query (Ai, Ni,M) resulting in an oracle
answer (Ci, Ti) which is stored by A in the query history Q. Once a collision of two tag values Ti

and Tk (implying a collision of two pairs (Ai, Ni) 6= (Ak, Nk))
3 was found (Line 7 of Algorithm 2),

A starts to generate j additionally queries with an effort of O(j) (Lines 10-14). In Lines 6 and 13,
the adversary is collecting all tuples queried so far, where in Line 13 we are only interested in the
values of Mℓ, since these are not allowed to repeat (see Line 11) by the definition of A.
It is easy to observe that A has to use the same nonce twice, i.e., Ni is chosen in Line 4 and reused
in Line 12 of Algorithm 2. Independent from the number of queries of finding the j additional
forgeries, A always (in the nonce-ignoring as well as in the nonce-respecting setting) has to find a
collision for two pairs (Ai, Ni) 6= (Ak, Nk). That number of queries (denoted by t1 in general, or by
t2 if the scheme employs a wide state of ≥ 2n bits (or ≥ 2τ bits, when referring to the size of the
tag value), see Table 1) always depends on the concrete instantiation of our generic AE scheme and
is usually bounded by at least O(q2/2n) (birthday bound), where q denotes the number of queries
and n the state size in bit. In Table 5 of Appendix B, the reader can find the security claims of
the considered AE schemes provided by their respective designers.

3 Based on our assumption, the case Ti = Tk can be caused by an internal collision of the processing of
two pairs (Ai, Ni) 6= (Ak, Nk). Moreover, since we are considering the nonce-ignoring setting allowing
an adversary for repeating the values Ni, we can say wlog. that we must have found two associated data
values Ai 6= Ak leading to an equal output of the processing of the associated data, e.g., the initialization
vector IV (see Figure 1).
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Algorithm 3 j-IV-Collision Attack for nonce-respecting adversaries.

1: Choose an arbitrary fixed message block M
2: Q ← ∅
3: for 1 to j do
4: for i← 1 to t1 do
5: Choose (Ai, Ni) with (Ai, Ni) /∈ Q|A,N

6: Choose Pi with Pi /∈ Q|P

7: Query (Ai, Ni,M ‖Pi) and receive (C1
i ‖C

Pi

i , Ti).
8: Q ← Q∪ {(Ai, Ni, C

1
i ‖C

Pi

i , Ti)}
9: if C1

i ∈ Q|C1 then

10: A outputs the tuples (Ai, Ni, C
1
i ‖C

Pk

k , Tk) and (Ak, Nk, C
1
k ‖C

Pi

i , Ti)
11: for which C1

i = C1
k holds

12: goto Step 4

Nonce-Respecting Setting. The second setting prohibits an adversary from repeating any
value Ni during its encryption queries. Therefore, we introduce a modified version of the j-IV-CA
as proposed above. Such an attack works for all schemes that allow to observe a collision of the
outputs of the IV-generation step by just looking at the ciphertext blocks. Thus, during the first
step, we do not care about finding the first forgery but only about the collision during FIV as
shown in Algorithm 3. This attacks works also for nAE schemes that consider the associated data
Ai only as input to FT . In such a situation, A would leave Ai constant (or empty when considering
FIV ) and would vary only Ni to find a collision within FIV .
If the number of queries for finding a collision during the processing of the associated data is given
by t1, an adversary requires j · t1 queries in average to obtain 2 · j forgeries. Clearly, this attack
is weaker than that in the nonce-misuse setting above, but still reduces the number of queries for
finding j forgeries from j · t1 to 1/2 · (j · t1).

4.2 Security Analysis

For all nAE schemes which belong to C0, there exist a straight-forward argument that they are
insecure in the nonce-ignoring setting. A j-IV-CA, as defined in Algorithm 2, requires an adversary
A to choose j pair-wise distinct messages M1, . . . ,Mj . Beforehand, we assume A to be successful
in finding the first forgery for two distinct pairs (Ai, Ni) and (Ak, Nk) (Lines 3-9 of Algorithm 2)
using t1 queries.
Therefore, the j-IV-CA adversary A queries t1 distinct pairs (Ai, Ni) 6= (Ak, Nk), together with a
fixed message M , until an internal collision leads to the case Ti = Tk. Since the event of that very
first collision does not depend on the message, a chaining value, and/or the ciphertext (requirement
for an nAE scheme to be placed in C0), we can always choose a new message and still can ensure
the internal collision for the pairs (Ai, Ni) and (Ak, Nk). Then, A only has to query (Ai, Ni,Mℓ)
for a fresh message Mℓ to the encryption oracle and receives (C′

ℓ, T
′
ℓ), where it is trivial to see that

the pair (C′
ℓ, T

′
ℓ) will also be valid for (Ak, Nk,Mℓ). A then only has to repeat this process for j

pairwise distinct messages Mℓ.

In the case of a nonce-respecting adversary (see Algorithm 3), an internal collision of the processing
of ((Ai) and) Ni is detected by observing colliding ciphertext blocks (see Line 9). Since the attack
requires an internal collision within the IV-generation step and the nonce Ni must not directly in-
fluence the tag-generation step FT , the nonce Ni must be given as input to FIV , but not to FT . The
associated data Ai can be given as input to FIV , FT , or both. Therefore, the attack described in Al-
gorithm 3 is applicable to all schemes belonging to the subset {(11∗∗∗∗00), (11∗∗∗∗00), (01∗∗∗∗10)}
of C0.
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Scheme Class NI NR Scheme Class NI NR

3rd-Round CAESAR Candidates (C0) 3rd-Round CAESAR Candidates (C1)

ACORN (11011000) – – AEGIS (11011010) ◦ ◦

AES-OTR (ser.) (11001100) – – AES-OTR (par.) (01001110) – –

Ascon (11010100) ◦ ◦ AEZv4 (11011011) – –

COLM (11011000) – – CLOC (11010101) – •

JAMBU (11011000) – – Deoxys-I (01011001) – •

Ketje (11010000) ◦ ◦ Deoxys-II (01011001) – •

NORX (11010100) ◦ ◦ Keyak (01011010) ◦ ◦

Classical AE Schemes (C1) MORUS (11011010) ◦ ◦

CCM (01011011) – • NR-NORX (11110100) ◦ •

CWC (01010110) – – OCB (01001010) – –

EAX (01000111) – • SILC (11010101) – •

GCM (01000111) – – Tiaoxin (11011010) ◦ ◦

Table 3: j-IV-CA-Resistance of the third-round CAESAR candidates and considered classical AE schemes,
in the nonce-ignoring (NI) and the nonce-respecting (NR) setting. ’•’ indicates resistance, ’◦’ vulnerability
under certain requirements (e.g., the scheme employs a wide state), and ’–’ vulnerability. AES-OTR (ser.)
means the serial and (par.) the parallel mode.

All remaining 74 classes in the set C1 provide resistance to j-IV-CAs from a theoretical point of
view, i.e., with regard to our generalized AE scheme as shown in Figure 1.

C1 = {(01 ∗ 0011∗), (01 ∗ 0101∗), (01 ∗ 0111∗), (01 ∗ 1001∗), (01 ∗ 1011∗),

(01 ∗ 1101∗), (01 ∗ 1111∗), (1100011∗), (1100101∗).(1100111∗),

(1101001∗), (1101011∗), (1101101∗), (1101111∗), (111 ∗ ∗ ∗ ∗∗)}

However, in practice, their security highly depends on the specific instantiation of FIV and/or FT .
In the next section, we look at concrete instantiations from the class C1 as well as from C0 when
considering classical nAE schemes and 3rd-round CAESAR candidates.

4.3 Concrete Instantiations of C1 and C0

The resistance of the classes in C1 to j-IV-CA regarding to our generalized AE scheme stems from
the fact that the message, and/or a chaining value, and/or the ciphertext affect the generation
of the IV or the tag, i.e., is input to FIV and/or FT . However, if we move from our generalized
approach to concrete instantiations of these classes, i.e., to existing AE schemes whose structure is
defined by a class in C1, we will see that some of those classes do not provide resistance to j-IV-CAs.
However, AE schemes whose classes belong to C0 are vulnerable to j-IV-CAs in both the NI and
the NR setting. In Table 3, we give an overview of the resistance the considered AE schemes to
j-IV-CAs. We also provide a brief discussion for those cases that are not trivially observable in
the following. In addition to the generic j-IV-CAs in this section, we recall stronger multi-forgery
attacks on OCB, AES-OTR, and COLM from the literature in Appendix C.

AEGIS, MORUS, and Tiaoxin. These schemes are semi-resist to j-IV-CAs in the nonce-
respecting and the nonce-ignoring setting. This stems from the fact that they employ very wide
states, which are initialized by nonce and associated data, and which are more than twice as large as
the final ciphertext stretch; therefore, the search for state collisions is at best a task of sophisticated
cryptanalysis, and at worst by magnitudes less efficient than the trivial search by querying many
forgery attempts. As a side effect, the search for state collisions is restricted to associated data and
messages of equal lengths since their lengths are used in FT (for that reason, we set the bit x6).
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CWC and GCM. In the nonce-ignoring setting, forgeries for CWC and GCM can be obtained
with a few queries. The tag-generation procedures of both modes employ a Carter-Wegman MAC
consisting of XORing the encrypted nonce with an encrypted hash of associated data and ciphertext.
The employed hash are polynomial hashes in both cases, which is well-known to lead to a variety
of forgeries after a few queries when nonces are repeated.
In the nonce-respecting setting, both CWC and GCM possess security proofs that show that they
provide forgery resistance up to the birthday bound (Iwata et al. [24] invalidated those for GCM

and presented revised bounds which still are bound by the birthday paradox). However, a series
of works from the past five years [45,40,1] illustrated that the algebraic structure of polynomial
hashing may allow to retrieve the hashing key from forgery polynomials with many roots. The most
recent work by Abdelraheem et al. [1] proposes universal forgery attacks that work on a weak key
set. Thus, a nonce-respecting adversary could find the hash key and possess the power to derive
universal forgeries for those schemes, even with significantly less time than our nonce-respecting
attack.

AES-OTR and OCB. In the nonce-ignoring setting, these schemes are trivially insecure, as
has been clearly stated by their respective authors. We consider OCB as an example, a similar
attack can be performed on AES-OTR if nonces are reused. A nonce-ignoring adversary simply
performs the following steps:

1. Choose (A,N,M) such that M consists of at least three blocks: M = (M1,M2, . . .), and ask
for their authenticated ciphertext (C1, C2, . . . , T ).

2. Choose ∆ 6= 0n, and derive M ′
1 = M1⊕∆ and M ′

2 = M2⊕∆. For M ′ = M ′
1,M

′
2 and M ′

i = Mi,
for i ≥ 3, ask for the authenticated ciphertext (C′

1, C
′
2, . . . , T ) that corresponds to (A,N,M ′).

3. Given the authenticated ciphertext (C′′, T ′′) for any further message (A, N , M ′′) with M ′′ =
(M1,M2, . . .), the adversary can forge the ciphertext by replacing (C′′

1 , C
′′
2 ) = (C1, C2) with

(C′
1, C

′
2).

Therefore, the complexities for j forgeries under nonce-ignoring adversaries are only t1 (and not
t1+j, see Table 1). Because of their structure, there exist nonce-respecting forgery attacks on AES-

OTR and OCB that are stronger than our generic j-IV-CA. Those can be found in Appendix C.

AEZv4. Since AEZv4 does not separate the domains of (Ai, Ni) for IV and tag generation, our
j-IV-CAs work out-of-the box here. More detailed, nonce and associated data are parsed into a
string T1, . . . , Tt of n-bit strings Ti, and simply hashed in a PHASH-like manner inside AEZ-hash:
∆ ←

⊕t
i=1

Ei+2,1
K (Ti), where E denotes a variant of four-round AES. The adversary can simply

ask for the encryption of approximately 264 tuples (Ai, Ni,M) for fixed M . Obtaining a collision
for this hash (requiring birthday-bound complexity) can be easily detected when the message is
kept constant over all queries. Given such a hash collision for (Ai, Ni) and (Ak, Nk), the adversary
can directly construct subsequent forgeries by asking for the encryption of (Ai, Ni,M

′) and the
same ciphertext will be valid for (Ak, Nk,M

′) for arbitrary M ′.

Deoxys. Deoxys-I, i.e., the nonce-requiring variant, possesses a similar structure as OCB.
Hence, there are trivial multi-forgery attacks with few queries if nonces repeat:

1. Choose (A,N,M) arbitrarily and ask for (C, T ).

2. Choose A′ 6= A, leave N and M constant and ask for (C′ = C, T ′). Since the tag is computed
by the XOR of Hash(A) with the encrypted checksum under the nonce as tweak, the adversary
sees the difference in the hash outputs in the tags: Hash(A)⊕Hash(A′) = T ⊕ T ′.

3. Choose (A,N ′,M ′) and ask for (C′′, T ′′). It instantly follows that for (A′, N ′,M ′), (C′′, T ′′′ =
T ⊕ T ′ ⊕ T ′′) will be valid.
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However, in the nonce-respecting setting, the use of a real tweaked block cipher that employs the
nonce in tweak (instead of the XEX construction as in AES-OTR and OCB) prevents the attacks
in Appendix C; the tag generation seems surprisingly strong in the sense that an adversary can
not detect collisions between two associated data since the hash is XORed with an output of a
fresh block cipher (because of the nonce is used as tweak) for every query. Therefore, we indicate
that Deoxys-I provides resistance in the nonce-respecting setting.
Deoxys-II is a two-pass mode, i.e., the message is processed twice (1) once for the encryption
process and (2) for the authentication process. In the nonce-ignoring setting, an adversary can
simply fix Ni and vary Ai for finding a collision for Auth, which renders the scheme vulnerable to
j-IV-CAs. Therefore, that kind of two-pass scheme (in comparison to SIV, where the message is
used as input to FIV ), does not implicitly provide resistance to j-IV-CAs.

NORX. The authors of NORX presented a nonce-misuse resistant version of their scheme in
Appendix D of [5]. NR-NORX follows the MAC-then-Encrypt paradigm, which yields a two-pass
scheme similar to SIV. Therefore, NR-NORX provides at the least resistance to j-IV-CAs in the
NR setting, which renders it stronger than NORX. However, this security comes at the cost of
being off-line and two-pass.

CCM, EAX, CLOC, and SILC. The resistance to j-IV-CAs in the nonce-respecting setting
provided by CCM, EAX, CLOC, and SILC stems from similar reasons as for Deoxys-II; the
tag is generated by the XOR of the MAC of the nonce with the MAC of the ciphertext and the
MAC of the associated data. Hence, collisions in ciphertext or header can not be easily detected
since the MAC of a fresh nonce is XORed to it.

5 Countermeasures to j-IV-C Attacks

This section briefly describes two possible approaches for providing resistance to j-IV-CAs in the
nonce-respecting (NR) as well as in the nonce-ignoring (NI) setting.

Independence of FIV and FT . For realizing that approach, the pair (Ai, Ni) has to be pro-
cessed twice. Let FIV (Ai, Ni, ∗) be the IV-generation step of an nAE scheme processing the tuple
(Ai, Ni, ∗), where ’∗’ denotes that FIV can optionally process the message M . Usually, it is proven
that FIV behaves like a PRF. Further, let FT (∗, ∗, ∗, Ai, Ni) be the tag-generation step of an AE
scheme processing the tuple (∗, ∗, ∗, Ai, Ni), where the first three inputs can be the chaining value
CV , the message M , and or the ciphertext C4, and there exists a proof showing that FT also be-
haves like a PRF. Hence, the corresponding scheme would have the class (11∗∗∗∗11) which belongs
to C1. If one can guarantee independence between FIV and FT , we can say that the outputs of
FIV (Ai, Ni, ∗) and FT (∗, ∗, ∗, Ai, Ni) are independent random values. Based on that assumption, a
simple collision of the form FIV (Ai, Ni, ∗) = FIV (Ak, Nk, ∗) (as required by the j-IV-CA) does not
suffice to produce a forgery since it is highly likely that FT (Ai, Ni, ∗) 6= FT (∗, ∗, ∗, Ak, Nk) and vice
versa. Therefore, this two-pass processing realizes a domain separation between the IV-generation
and the tag-generation step, providing resistance to j-IV-CAs. One way to achieve that goal can
be to invoke the same PRF twice (for FIV and FT ) but always guarantee distinct inputs, e.g.,
FIV (Ai, Ni, ∗, 1) and FT (∗, ∗, ∗, Ai, Ni, 2). Another approach would be to just use two independent
functions.

Wide-State IV. A second approach requires a PRF-processing of the associated data FIV which
produces a wide-state output τ ← FIV (Ai, Ni) with |τ | > n bit. For example, for |τ | = 2n, a pair

4 Note that at least one of the three inputs must be given since else, the tag would be independent from
the message, which would make the scheme trivially insecure.
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(Ai, Ni) would be processed to two independent n-bit values τ1 and τ2. Then, one could use τ1 as
initialization vector to the encryption step and τ2 as initialization vector to the tag-generation step.
Therefore, one can always guarantee domain separation between encryption and tag generation,
while remaining a one-pass AE scheme. One possible instantiation for such a MAC (which can be
utilized for the processing of the associated data) is PMAC2x [30].

6 Conclusion

In this work, we followed on the idea of multi-forgery attacks first described by Ferguson in 2002
and went on with introducing the j-Int-CTXT notion. Further on, we introduced a classification of
nonce-based AE schemes depending of the usage of their inputs to the initialization, encryption, and
authentication process, and categorize them regarding to that classification. To allow a systematic
analysis of the reforgeability of nonce-based AE schemes, we introduced the j-IV-Collision Attack,
providing us with expected upper bounds on the hardness of further forgeries. During our analysis,
we found that (1) no considered nAE schemes provides full resistance to j-IV-CA, (2) ACORN,
AES-OTR (serial), Ascon, COLM, JAMBU, Ketje, and NORX belong to the class C0, render-
ing them implicitly vulnerable to j-IV-CAs, and (3) Ascon, Ketje, Keyak, MORUS, NORX,
NR-NORX, and Tiaoxin are semi-resistant to j-IV-CAs since all of them employ a wide state.
This has no impact on the applicability of a j-IV-CA itself, but a wide state hardens the compu-
tation of the internal collision, e.g., if the internal state is of size 2n (wide state) instead of n, a
generic collision can be found in 2n instead of 2n/2. Finally, we briefly proposed two alternative
approaches which would render an nAE scheme resistant to j-IV-CAs in the nonce-respecting as
well as the nonce-ignoring setting.
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A1, A1.100111 (01001011) A7, A3.100111 (01001011)
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A Classification of NRS’14 Schemes

This section shows the eleven “favored” nAE schemes considered by [37] and how we map them
according to our classification. From Table 4, one can observe that the classes (A1, A7) and (A2,
A8) have pairwise the same class according to our generic nAE scheme. That stems from the
fact that we do not follow the distinction of nAE schemes from [37] regarding to whether the
message/ciphertext can be processed in parallel or if the tag can be truncated. For the scheme
N3, it holds that E gets the two separate inputs FL(A,N,M) and the nonce N . Since there is no
segregated tag generation for N3 (the tag is part of the ciphertext), we interpreted FL as FIV and
consider FIV to additionally hand over the nonce N to the encryption E internally in plain.
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Scheme NI NR Scheme NI NR

3rd-Round CAESAR Candidates

ACORN – 2τ JAMBU 22n/2 22n/2

AEGIS – 2τ Ketje – 2min{τ,s}

AES-OTR – 2τ/2 Keyak 2min{c/2,τ} 2min{c/2,τ}

AEZv4 255 255 MORUS – 2128

Ascon – 2τ OCB – 2τ

CLOC 2n/2 2n/2
SILC – 2τ/2

COLM 264 264 NORX – 2|τ |

Deoxys-I – 2τ Tiaoxin – 2128

Deoxys-II 2τ/2 2τ−1

Classical AE Schemes

CCM – 2n/2
CWC – 2n/2

EAX – 2n/2
GCM – 2n/2

Table 5: Claimed INT-CTXT bounds. NR = nonce-respecting adversary, NI = nonce-ignoring adversary,
where τ denotes the length of the tag, n the size of the internal state (usually the block size of the internally
used block cipher), and c the capacity for sponge-based designs.

Scheme Type Attack Time Data Memory Succ.

AES-OTRv3.1 par. ADP NR AUF 2n/2 2n/2 2n/2 1.0

AES-OTRv3.1 ser. ADP NR AUF 2n/2 2n/2 2n/2 1.0

AES-OTRv3.1 ser. ADP NI AUF 2n/2 2n/2 2n/2 1.0

COLMv1 NI AUF 2n/2 2n/2 2n/2 1.0

OCBv3 NR AUF 2n/2 2n/2 2n/2 1.0

Table 6: Stronger forgery attacks on AE schemes. NR/NI = nonce-respecting/nonce-ignoring; AUF =
almost universal forgery; Succ. = success probability.

B Security Claims

In Table 5, we state the security as claimed by the authors of the corresponding scheme. We denote
by τ, n, c, and r the tag length, block length, capacity, and the rate, respectively.

C Stronger Forgery Attacks

This section summarizes existing and new attacks on third-round CAESAR candidates and classical
AE schemes that yield multiple forgeries. This can be induced by the recovery of e. g., a masking key
or authentication key after a collision. While the complexity of the attacks are beyond the proved
security bounds and therefore do not invalidate the according proofs, they can be considered as
undesirable properties that should be avoided in recommendations by the community or even in
future standards.
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M1 M2 M3 M4

C1 C2 C3 C4L

L 2L

3L 2 · 3L EK

EK

EK

EK

EK

EK

τ, N Σ

T

. . .

L∗

Auth

Fig. 2: Simplified schematic illustration of the encryption process in AES-OTRv3.1 (parallel). The final

two message blocks Mm−1 and Mm are treated differently; Σ =
⊕m/2

i=1 M2i, L
∗ = 2m−1 · L, and Auth

denotes the result of processing the associated data.

C.1 OCB

Ferguson [17] showed collision attacks on OCBv1, which allowed to recover the masking key L
from a collision of the sums of input and output of two blocks Mi ⊕ Ci = Mj ⊕ Cj . Thereupon,
the recovered L allows the construction of many selective forgeries out of a single long message. To
address the length restriction of messages in OCBv1, Ferguson also derived attacks from collisions
among different messages, which also resulted in selective forgeries. The attacks by Ferguson still
hold in similar form also for OCBv3, as pointed out by Sun, Wang, and Zhang [47]. In the following,
we recall the details briefly.
For versions v1 and v3 of OCB, the designers used Gray codes for masking the block-cipher inputs.
The mask for the i-th message/ciphertext block is given by Zi := γi · L ⊕ R, where L ← EK(0n),
R ← EK(N ⊕ L), and γi represents the integer i in the canonical Gray code. The multiplications
are in GF(2n) with primitive polynomial x128 + x

7 + x
2 + x+ 1.

1. Choose A and N arbitrarily, and choose a long query M = (M1, . . . ,Mm), such that for all
k ∈ {1, ⌊m/4⌋}, it holds that M4k ⊕M4k+1 ⊕M4k+2 ⊕M4k+3 = 0n. Ask for its encryption
C = (C1, . . . , Cm) and T .

2. If it holds, for any pair i, j ∈ {1, . . . ,m}, i 6= j, that Mi ⊕ Ci = Mj ⊕ Cj , then it holds with
probability 0.5 that this collision is the result of colliding cipher inputs. Then, we can recover
L by L = (Mi ⊕Mj) · (γi ⊕ γj)

−1.
3. For any index d, change C′

k ← Cd ⊕ (γi ⊕ γk) · L for k = 4, . . . , 7. Leave other ciphertext
blocks, T , A, and N unchanged. The so-modified ciphertext C′ is still valid and will yield
M ′

4⊕M ′
5⊕M ′

6⊕M ′
7 = 0n, which also held for the original message. Hence, the tag T remains

valid also for the modified ciphertext.

C.2 AES-OTR

Similar collision attacks as for OCB can be applied to AES-OTR. As a reaction to Bost and
Sanders’ [46] polynomial attacks on the v2 version of AES-OTR, Minematsu updated the tweak
usage in v3 of AES-OTR to use the masking key L from encrypting N . We show two attacks on
AES-OTR v3.1 with birthday-bound complexity of 2n/2 that recover L: an attack with a single,
long message, and an attack with multiple messages.

Single-Message Attack. The first attack works as follows:

1. Choose A and N arbitrarily, and choose a long query M = (M1, . . . ,Mm) for even m such
that all even blocks are equal, i.e. M2 = M4 = . . . = M2i for all i ∈ {1, . . . ,m/2 − 1}, and
random pair-wise distinct odd blocks M2i−1. For simplicity, choose arbitrary full blocks Mm−1

and Mm. Ask for its encryption C = (C1, . . . , Cm) and T .
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2. If for any pair i, j ∈ {1, . . . ,m/2− 1}, it holds that C2i−1 = C2j−1, it follows from M2i = M2j

and from the fact that EK(·) is a permutation that

M2i−1 ⊕ 2i−1L = M2j−1 ⊕ 2j−1L, and hence,

L = (M2i−1 ⊕M2j−1) · (2
i−1 ⊕ 2j−1)−1.

3. For any pair of indices x, y ∈ {1, . . . ,m/2 − 1}, derive ∆ = 3 · (2x−1 ⊕ 2y−1) · L and ∇ =
(2x−1 ⊕ 2y−1) · L, and compute

C′
2x−1 = C2y−1 ⊕∆, C′

2x = C2y ⊕∇,

C′
2y−1 = C2x−1 ⊕∆, and C′

2y = C2x ⊕∇.

Leave other ciphertext blocks, T , A, and N unchanged. The so-modified ciphertext C′ is still
valid and will yield M ′

2x−1 = M2y−1 ⊕ ∇, M ′
2x = M2y ⊕ ∆, M ′

2y−1 = M2x−1 ⊕ ∇, and
M ′

2y = M2x ⊕∆.

Since the tag generation uses the sum of the even-indexed message blocks,

Σ =

m/2
⊕

i=1

M2i,

it holds that Σ′ = Σ since M ′
2x ⊕M ′

2y = M2y ⊕M2x.

Multi-Message Nonce-Respecting Attack. A variant of Ferguson’s collision attack with mul-
tiple messages on OCB may also be possible for AES-OTR; however, it would allow to recover
the relation of ∆ = 2i−1L⊕ 2j−1L. For OCB, Ferguson could inject differences of (4⊕ 5⊕ 6⊕ 7)∆
which cancels out in GF(2n). Since AES-OTR employs doublings instead, this would mean, one
would obtain (2i⊕2j⊕2k . . .)∆ when swapping double-blocks from between the colliding messages.
Thus, Ferguson’s collision attack seems not directly applicable to AES-OTR; at least, we could
not find a straight-forward way to cancel values. However, we found two attacks with collision
among different messages for the serial-ADP version of AES-OTR. Associated-data attack by Lu
on serial ADP works, can recover Q when N is constant, which is allowed by Minematsu.
For the serial version, we can derive a multi-message nonce-respecting collision attack. For this
version, the masking key is computed from L ← (EK(τ,N) ⊕ Auth) · 2. Leaving the (assumed
constant) parameter τ aside, it is easy to see that two values of L can collide at birthday bound.

1. Choose an integer m ≥ 4, and fix arbitrary values M,Mm−1 ∈ {0, 1}n.
2. For i = 1..q, choose pair-wise distinct random pairs of associated data and nonce (Ai, N i) such

that the nonces N i are all distinct. Choose M2j−1, for j = 1, . . . ,m/2 − 1 randomly. Ask for
the authenticated encryption of (Ai, N i,M i), with

M i = (M i
1,M,M i

3,M, . . . ,Mm−1,M)

and store (Ai, N i, Ci, T i) as well as the odd-indexed blocks of M i in a table L.
3. If, for any indices i 6= j, it holds that Ci

m = Cj
m, then it must follow from M i

m−1 = M j
m−1 and

M i
m = M j

m that the masking keys for both messages Li and Lj must be identical. It follows
furthermore from the tag generation of AES-OTR that the tags of both messages M i and M j

are identical.
4. Denote t = (m/2)−1. Leaving the final double-block (M i

m−1,M
i
m) aside that served for detect-

ing the collision of the masking keys, we have t double blocks (Ci
2k−i, C

i
2k) and (Cj

2k−i, C
j
2k),

for k = 1, . . . ,m/2 − 1, in our two involved ciphertexts that can be swapped across messages.
Since both yield M i

2k = M j
2k = M after decryption, the swaps do not change the tag. Assuming

M i
2k−1 6= M j

2k−1
for all k = 1, . . . ,m/2− 1, which holds with high probability, we can create in

total 2 ·2t different authenticated ciphertexts by exhaustive combination of double blocks with
either (Ai, N i) or (Aj , N j). Note that we already used two of those combinations for finding
the collision.
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Multi-Message Nonce-Ignoring Attack. Lu [31] published almost-universal forgery attacks
on AES-COPA, and Marble. They can be also translated into nonce-ignoring attacks on AES-

OTRv3.1. We consider the version with serial ADP since the specification claims that its “security
[. . . ] holds as far as a pair of AD and nonce (A,N) is unique for all encryption queries, for
privacy and authenticity notions”. Lu proposed attacks with constant associated data, requiring at
best about 2124 queries and time, at about 2120.6 bytes and a success probability of approximately
0.32. Moreover, he proposed an attack with 265 queries and time. Both recover the masking key
L. We transform the latter with birthday-bound complexity to an attack on AES-OTR that also
recovers L.
The attack works as follows:

1. Fix any message M and nonce N .
2. For i = 1, . . . , 2n/2, choose a single-block associated data Ai of length < n bit, s. t. all Ai are

pair-wise distinct. Ask for the encryption of (Ai, N,M) to Ci, T and store them into a table.

3. For j = 1, . . . 2n/2, choose a single-block associated data data A′j of length n bit. If there exist
i, j with Ai = A′j , then, we can recover the associated-data masking key Q = EK(0n) from

Ai ⊕ 2Q = A′j ⊕ 4Q and thus Q = (Ai ⊕A′j) · (2 ⊕ 4)−1.

Though, it suffices to compute Ai ⊕A′j = 2Q⊕ 4Q.
4. In the following, for each of the 2n/2 stored tuples (Ai, N, Ci, T i) with partial Ai, derive the

padded n-bit value A′i = (Ai ‖ 10∗) ⊕ (2Q ⊕ 4Q). All ciphertexts (A′i, N, Ci, T i) are valid
forgeries.

C.3 COLM

The multi-message nonce-ignoring attack by Lu can also be applied in similar form to COLMv1.
Here, we can recover first the masking key L, which is also used for encryption and tag generation.
Using the notation from the attack description on AES-OTR, it holds for COLMv1 that we
obtain

Ai ⊕ 3 · 2 · 7 · L = A′i ⊕ 3 · 2 · L and thus L = (Ai ⊕A′j) · 7−1.

For each of the 2n/2 stored tuples (Ai, N, Ci, T i) with partial Ai, derive the padded n-bit value

A′i = (Ai ‖ 10∗)⊕ (3 · 2 · 7 · L⊕ 3 · 2 · L). Again, all ciphertexts (A′i, N, Ci, T i) are valid forgeries.
However, the knowledge of L allows almost universal forgeries.
There are various ways to obtain a vast amount of more forgeries. For instance, choose some N ′, M ′

and a long associated data A′ = (A1, . . . , Aa), with A1 = A2 = . . . = Aa, such that (N ′, A′,M ′) has
not been queried before. Ask for its corresponding encryption (C′, T ′). From A1 = A2 = . . . = Aa

follows that the masked inputs to the block cipher, AAi ← Ai ⊕ 2i · 3 · L, are pair-wise distinct.
Since we know L, we can modify the blocks A′

i to obtain a permutation of the a values AAi. Since
there exist a! such permutations, we obtain a!− 1 forgeries from a single encryption query.

18


	Reforgeability of Authenticated Encryption Schemes

