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Abstract. In this paper we present an encoding method for �xed-point
numbers tailored for homomorphic function evaluation. The choice of
the degree of the polynomial modulus used in all popular somewhat ho-
momorphic encryption schemes is dominated by security considerations,
while with the current encoding techniques the correctness requirement
allows for much smaller values. We introduce a generic encoding method
using expansions with respect to a non-integral base, which exploits this
large degree at the bene�t of reducing the growth of the coe�cients
when performing homomorphic operations. In practice this allows one
to choose a smaller plaintext coe�cient modulus which results in a sig-
ni�cant reduction of the running time. We illustrate our approach by
applying this encoding in the setting of homomorphic electricity load
forecasting for the smart grid which results in a speed-up by a factor
13 compared to previous work, where encoding was done using balanced
ternary expansions.

1 Introduction

The cryptographic technique which allows an untrusted entity to perform arbi-
trary computation on encrypted data is known as fully homomorphic encryption.
The �rst such construction was based on ideal lattices and was presented by Gen-
try in 2009 [19]. When the algorithm applied to the encrypted data is known in
advance one can use a somewhat homomorphic encryption (SHE) scheme which
only allows to perform a limited number of computational steps on the encrypted
data. Such schemes are signi�cantly more e�cient in practice.

In all popular SHE schemes, the plaintext space is a ring of the form Rt =
Zt[X]/(f(X)), where t ≥ 2 is a small integer called the coe�cient modulus, and
f(X) ∈ Z[X] is a monic irreducible degree d polynomial called the polynomial
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modulus. Usually one lets f(X) be a cyclotomic polynomial, where for reasons
of performance the most popular choices are the power-of-two cyclotomics Xd+
1 where d = 2k for some positive integer k, which are maximally sparse. In
this case arithmetic in Rt can be performed e�ciently using the fast Fourier
transform, which is used in many lattice-based constructions (e.g. [6,7,8,30])
and most implementations (e.g. [3,4,5,20,21,25,27]).

One interesting problem relates to the encoding of the input data of the algo-
rithm such that it can be represented as elements of Rt and such that one obtains
a meaningful outcome after the encrypted result is decrypted and decoded. This
means that addition and multiplication of the input data must agree with the
corresponding operations in Rt up to the depth of the envisaged SHE compu-
tation. An active research area investigates di�erent such encoding techniques,
which are often application-speci�c and dependent on the type of the input data.
For the sake of exposition we will concentrate on the particularly interesting and
popular setting where the input data consists of �nite precision real numbers θ,
even though our discussion below is fairly generic. The main idea, going back to
Dowlin et al. [16] (see also [17,23,26]) and analyzed in more detail by Costache
et al. [14], is to expand θ with respect to a base b

θ = arb
r + ar−1b

r−1 + · · ·+ a1b+ a0 + a−1b
−1 + a−2b

−2 + · · ·+ a−sb
−s (1)

using integer digits ai, after which one replaces b by X to end up inside the
Laurent polynomial ring Z[X,X−1]. One then reduces the digits ai modulo t
and applies the ring homomorphism to Rt de�ned by

ι : Zt[X,X−1]→ Rt :

{
X 7→ X,
X−1 7→ −g(X) · f(0)−1,

where we write f(X) = Xg(X) + f(0) and it is assumed that f(0) is invertible
modulo t; this is always true for cyclotomic polynomials, or for factors of them.
The quantity r + s will sometimes be referred to as the degree of the encoding
(where we assume that ar, a−s 6= 0).

Remark 1. For power-of-two-cyclotomics the homomorphism ι amounts to let-
ting X−1 7→ −Xd−1, so that the encoding of (1) is given by

arX
r + ar−1X

r−1 + · · ·+ a1X + a0 − a−1Xd−1 − a−2Xd−2 − · · · − a−sXd−s .

In fact in [14] it is mentioned that inverting X is only possible in the power-
of-two cyclotomic case, but this seems to be overcareful. In particular, contrary
to what is claimed there, the above construction is compatible with the SIMD
computations described in [16,29].

Decoding is then performed by applying the inverse of the restricted map
ι|Zt[X,X−1][−`,m]

where

Zt[X,X−1][−`,m] = { amXm + am−1X
m−1 + . . .+ a−`X

−` | ai ∈ Zt for all i }
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Fig. 1. Box in which to stay during computation, where `+m+ 1 = d.

is a subset of Laurent polynomials whose monomials have bounded exponents. If
`+m+1 = d then this restriction of ι is indeed invertible as a Zt-linear map. The
precise choice of `,m depends on the data encoded. After applying this inverse,
one replaces the coe�cients by their representants in {−b(t − 1)/2c, . . . , d(t −
1)/2e} to end up with an expression in Z[X,X−1], and evaluates the result at
X = b. Ensuring that decoding is correct to a given computational depth places
constraints on the parameters t and d, in order to avoid ending up outside the
box depicted in Figure 1 if the computation were to be carried out directly in
Z[X,X−1]. In terms of Rt we will often refer to this event as the `wrapping
around' of the encoded data modulo t or f(X), although we note that this is an
abuse of language. In the case of power-of-two cyclotomics, ending up above or
below the box does indeed correspond to wrapping around modulo t, but ending
up at the left or the right of the box corresponds to a mix-up of the high degree
terms and the low degree terms.

The precise constraints on t and d not only depend on the complexity of the
computation, but also on the type of expansion (1) used in the encoding. Dowlin
et al. suggest to use balanced b-ary expansions with respect to an odd base
b ∈ Z≥3, which means that the digits are taken from {−(b−1)/2, . . . , (b−1)/2}.
Such expansions have been used for centuries going back at least to Colson (1726)
and Cauchy (1840) in the quest for more e�cient arithmetic.

If we �x a precision, then for smaller b the balanced b-ary expansions are
longer but the coe�cients are smaller, this implies the need for a larger d but
smaller t. Similarly for larger bases the expansions become shorter but have
larger coe�cients leading to smaller d but larger t. For the application to some-
what homomorphic encryption considered in [4,14] the security requirements ask
for a very large d, so that the best choice is to use as small a base as possible,
namely b = 3, with digits in {±1, 0}. Even for this smallest choice the result-
ing lower bound on t is very large and the bound on d is much smaller than
that coming from the cryptographic requirements. To illustrate this, we recall
the concrete �gures from the paper [4], which uses the Fan-Vercauteren (FV)
somewhat homomorphic encryption scheme [18] for privacy-friendly prediction
of electricity consumption in the setting of the smart grid. Here the authors use
d = 4096 for cryptographic reasons, which is an optimistic choice that leads to
80-bit security only (and maybe even slightly less [1]). On the other hand using
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Fig. 2. Comparison between the amount of plaintext space which is actually used in
the setting of [4], where d = 4096. More precise �gures to be found in Section 4.

balanced ternary expansions, correct decoding is guaranteed as soon as d ≥ 368,
which is even a conservative estimate. This eventually leads to the huge bound
t ' 2107, which is overcome by decomposing Rt into 13 factors according to the
Chinese Remainder Theorem (CRT). This is then used to homomorphically fore-
cast the electricity usage for the next half hour for a small apartment complex
of 10 households in about half a minute, using a sequential implementation.

The discrepancy between the requirements coming from correct decoding
and those coming from security considerations suggests that other possible ex-
pansions may be better suited for use with SHE. In this paper we introduce a
generic encoding technique, using very sparse expansions having digits in {±1, 0}
with respect to a non-integral base bw > 1, where w is a sparseness measure.
These expansions will be said to be of `non-integral base non-adjacent form'
with window size w, abbreviated to w-NIBNAF. Increasing w makes the degrees
of the resulting Laurent polynomial encodings grow and decreases the growth
of the coe�cients when performing operations; hence lowering the bound on t.
Our encoding technique is especially useful when using �xed-point real numbers,
but could also serve in dealing with �xed-point complex numbers or even with
integers, despite the fact that bw is non-integral (this would require a careful
precision analysis which is avoided here).

We demonstrate that this technique results in signi�cant performance in-
creases by re-doing the experiments from [4]. Along with a more careful precision
analysis which is tailored for this speci�c use case, using 950-NIBNAF expan-
sions we end up with the dramatically reduced bound t ≥ 33. It is not entirely
honest to compare this to t ' 2107 because of our better precision analysis; as
explained in Section 4 it makes more sense to compare the new bound to t ' 242,
but the reduction remains huge. As the reader can see in Figure 2 this is ex-
plained by the fact that the data is spread more evenly across plaintext space
during computation. As a consequence we avoid the need for CRT decomposi-
tion and thus reduce the running time by a factor 13, showing that the same
homomorphic forecasting can be done in only 2.5 seconds.

Remark 2. An alternative recent proposal for encoding using a non-integral base
can be found in [13], which targets e�cient evaluation of the discrete Fourier
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transform on encrypted data. Here the authors work exclusively in the power-of-
two cyclotomic setting f(X) = Xd + 1, and the input data consists of complex
numbers θ which are expanded with respect to the base b = ζ, where ζ is
a primitive 2d-th root of unity, i.e. a root of f(X). One nice feature of this
approach is that the correctness of decoding is not a�ected by wrapping around
modulo f(X). To �nd a sparse expansion they use the LLL algorithm [24], but
unfortunately for arbitrary complex inputs the digits become rather large, at
least when compared to w-NIBNAF. An alternative viewpoint on this method
is to �nd an element of Rt having small coe�cients which under the canonical
embedding has one known component that approximates θ. In this sense the
method is very similar to that from [10] where they use ciphertext packing and
encode d complex numbers into a single element of Rt which under the canonical
embedding returns the given complex numbers, up to a predetermined scalar.
But again, to achieve this, the coe�cients must be in general quite large.

2 Encoding data using w-NIBNAF

2.1 The non-adjacent form with window size w

One �rst approach to try to reduce the lower bound on t is by using encodings for
which many of the coe�cients are zero. One way to achieve this is by using the
non-adjacent form (NAF) representation which was introduced by Reitweisner
in 1960 for speeding up early multiplication algorithms [28].

De�nition 1. The non-adjacent form (NAF) representation of a real number θ
is an expansion of θ to the base b = 2 with coe�cients in {−1, 0, 1} such that
any two adjacent coe�cients are not both non-zero.

Note that NAF representations always exist and are unique, modulo periodic
in�nite expansion issues such as

20 + 2−2 + 2−4 + 2−6 + 2−8 + . . . = 21 − 2−1 − 2−3 − 2−5 − . . .

This representation can be generalized, for an integer w ≥ 1 (called the `window
size') one can ensure that in any window of w consecutive coe�cients at most
one of them is non-zero. This is possible to base b = 2 but for w > 2 one requires
larger coe�cients. This generalization is called w-NAF and was �rst considered
by Cohen et al. [11].

De�nition 2. Let w ≥ 1 be an integer. A w-NAF representation of a real num-
ber θ is an expansion of θ with base 2 and whose non-zero coe�cients are odd
and less that 2w−1 in absolute value such that for every set of w consecutive
coe�cients at most one of them is non-zero.

Just as for NAF representations, the w-NAF representation is essentially unique.
Further, we see that NAF is just the special case of w-NAF for w = 2. Unfor-
tunately, due to the fact that the coe�cients are taken from a much larger set,
using w-NAF encodings in the SHE setting actually gives larger bounds on both
t and d for increasing w. This is not useful in the setting of SHE when the goal
is to reduce the parameter sizes and the running time of the algorithm.
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2.2 The non-integral base when computing a non-adjacent form
with window size w

Ideally, we want the coe�cients in our expansions to be members of {±1, 0}
with many equal to 0, as this would lead to the slowest growth in coe�cient
sizes, allowing us to use smaller values for t. This would come at the expense of
using longer encodings, but remember that we have a lot of manoeuvring space
on the d side. One way to achieve this is to use a non-integral base b > 1 when
computing a non-adjacent form. We �rst give the de�nition of a non-integral
base non-adjacent form with window size w (w-NIBNAF) representation and
then explain where this precise formulation comes from.

De�nition 3. A sequence a0, a1, . . . , an, . . . is a w-balanced ternary sequence
if it has ai ∈ {−1, 0, 1} for i ∈ Z≥0 and satis�es the property that each set of w
consecutive terms has no more than one non-zero term.

De�nition 4. Let θ ∈ R and w ∈ Z>0. De�ne bw to be the unique positive real
root of the polynomial

Fw(x) = xw+1 − xw − x− 1.

A w-balanced ternary sequence ar, ar−1, . . . , a1, a0, a−1, . . . is a w-NIBNAF rep-
resentation of θ if

θ = arb
r
w + ar−1b

r−1
w + · · ·+ a1bw + a0 + a−1b

−1
w + · · · .

Of course, a priori it may be possible that a given θ has no such w-NIBNAF
representation or it may have (in�nitely) many of them. We will show that every
θ has at least one such w-NIBNAF representation and provide an algorithm to
�nd such a representation. However, let us �rst state a lemma which shows that
bw is well-de�ned for w ≥ 1.

Lemma 1. For an integer w ≥ 1 the polynomial Fw(x) = xw+1−xw−x−1 has
a unique positive real root bw > 1. The sequence b1, b2, . . . is strictly decreasing
and the limit as w tends to in�nity of bw is 1. Further, (x2 + 1) | Fw(x) for
w ≡ 3 mod 4.

The proof is straightforward and given in Appendix A. We give the �rst few
values of bw and note that b3 is the golden ratio φ:

b1 = 1 +
√
2 ≈ 2.414214, b2 ≈ 1.839287,

b3 = 1
2 (1 +

√
5) ≈ 1.618034, b4 ≈ 1.497094,

b5 ≈ 1.419633, b6 ≈ 1.365255.

Since we are using a non-integral base, a w-NIBNAF representation of a
�xed-point number has in�nitely many non-zero terms in general. Obviously,
this is not practical since one needs to store each non-zero coe�cient. In order
to overcome this problem one can approximate the �xed-point number by termi-
nating the w-NIBNAF representation after some power of the base. We denote

6



such a terminated sequence an approximate w-NIBNAF representation. There
are two straightforward ways of achieving this: either the power of the base used
to determine the termination is chosen in advance which gives an easy bound
on the maximal possible error created, or we choose a maximal allowed error in
advance and terminate after the �rst power which gives error less than or equal
to this pre-determined value.

2.3 Encoding and decoding using w-NIBNAF

The process of encoding works as described in the introduction, i.e. we follow the
approach from [14,16] except we use an approximate w-NIBNAF representation
instead of the balanced ternary representation. That is, to encode a �xed-point
number θ we �nd an approximate w-NIBNAF representation of θ with small
enough error and replace each occurrence of bw by X, after which we apply
the map ι to end up with an element of the plaintext space Rt. Decoding is
almost the same as well, only that after inverting ι and lifting the coe�cients
to Z we evaluate the resulting Laurent polynomial at X = bw rather than X =
3, computing the value only to the required precision. Rather than evaluating
directly it is best to reduce the Laurent polynomial modulo Fw(X) (or modulo
the polynomial Fw(X)/(X2+1) if w ≡ 3 mod 4) so that we only have to compute
powers of bw up to w (respectively w − 2). As we encode using approximate
representations, there can be many encodings which decode, within a certain
precision, to the same value.

Let us prove that every θ ∈ R has a w-NIBNAF representation: Algorithm 1
produces such a representation. Algorithm 1 is a greedy algorithm which chooses
the closest signed power of the base to θ and then iteratively �nds a represen-
tation of the di�erence. Except when θ can be written as θ = h(bw)/b

q
w, for

some polynomial h with coe�cients in {±1, 0} and q ∈ Z≥0, any w-NIBNAF
representation is in�nitely long. Hence, we must terminate Algorithm 1 once the
iterative input is smaller than some pre-determined precision ε > 0.

We now prove that the algorithm works as required.

Lemma 2. Algorithm 1 produces an approximate w-NIBNAF representation of
θ with an error of at most ε.

Proof. Assuming that the algorithm terminates, the output clearly represents θ
to within an error of at most size ε. First we show that the output is w-NIBNAF.
Suppose that the output, on input θ, bw, ε, has at least two non-zero terms, the
�rst being ad. This implies either that bdw ≤ |θ| < bd+1

w and bd+1
w − |θ| > |θ| − bdw

or bd−1w < |θ| ≤ bdw and bdw − |θ| ≤ |θ| − bd−1w . These conditions can be written as
bdw ≤ |θ| < 1

2b
d
w(1 + bw) and

1
2b
d−1
w (1 + bw) ≤ |θ| ≤ bdw respectively. This shows

that

||θ| − bdw| < max
{
bdw − 1

2b
d−1
w (1 + bw),

1
2b
d
w(1 + bw)− bdw

}
= 1

2b
d
w(bw − 1) .

The algorithm subsequently chooses the closest power of bw to this smaller value,
suppose it is b`w. By the same argument with θ replaced by |θ|− bdw we have that
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Algorithm 1: GreedyRepresentation

Input: θ � the �xed-point number to be represented,
bw � the w-NIBNAF base to be used in the representation,
ε � the precision to which the representation is determined.
Output: An approximate w-NIBNAF representation ar, ar−1, . . . of θ with

error less than ε, where ai = 0 if not otherwise speci�ed.
while |θ| > ε do

σ ← sgn(θ)
t← σθ
r ←

⌈
logbw (t)

⌉
if brw − t > t− br−1

w then
r ← r − 1

ar ← σ
θ ← θ − σbrw

Return (ai).

either b`w ≤
∣∣|θ| − bdw∣∣ or 1

2b
`−1
w (1 + bw) ≤

∣∣|θ| − bdw∣∣ and since b`w is larger than
1
2b
`−1
w (1+bw) the maximal possible value of `, which we denote by `w(d), satis�es

`w(d) = max
{
` ∈ Z

∣∣ 1
2b
`−1
w (1 + bw) <

1
2b
d
w(bw − 1)

}
.

The condition on ` can be rewritten as b`w < bd+1
w (bw−1)/(bw+1) which implies

that ` < d+ 1 + logbw((bw − 1)/(bw + 1)) and thus

`w(d) = d+

⌈
logbw

(
bw − 1

bw + 1

)⌉
,

so that the smallest possible di�erence is independent of d and equal to

s(w) := d− `w(d) = −
⌈
logbw

(
bw − 1

bw + 1

)⌉
=

⌊
logbw

(
bw + 1

bw − 1

)⌋
.

We thus need to show that s(w) ≥ w. As w is an integer this is equivalent to

logbw

(
bw + 1

bw − 1

)
≥ w ⇐⇒ bww ≤

bw + 1

bw − 1
⇐⇒ bw+1

w − bww − bw − 1 ≤ 0

which holds for all w since Fw(bw) = 0. We point out that our algorithm works
correctly and deterministically because when |θ| is exactly half-way between two
powers of bw we choose the larger power. This shows that the output is of the
required form.

Finally, to show that the algorithm terminates we note that the k'th suc-

cessive di�erence is bounded above by 1
2b
d−(k−1)s(w)
w (bw − 1) and this tends

to 0 as k tends to in�nity. Therefore after a �nite number of steps (at most⌈
(d− logbw (2ε/(bw − 1)) /s(w)

⌉
+ 1) the di�erence is smaller than or equal to ε

and the algorithm terminates. ut
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In the limit as ε tends to zero we reach a w-NIBNAF representation of θ
hence we have proven that any real number indeed admits a w-NIBNAF repre-
sentation. Clearly we can also use this algorithm to encode θ by instead returning∑
i aiX

i, this gives an encoding of θ with maximal error ε. Since the input θ of
the algorithm can get arbitrarily close to but larger than ε, the �nal term in the
encoding can be ±Xh where h = blogbw(2ε/(1 + bw))c + 1. If we are to ensure
that the smallest power of the base to appear in any approximate w-NIBNAF
representation is bsw then we require that if bs−1w is the nearest power of bw to
the input θ then |θ| ≤ ε so that we must have 1

2b
s−1
w (1 + bw) ≤ ε which implies

the smallest precision we can achieve is ε = bs−1w (1 + bw)/2. In particular if we
want `polynomial' encodings then the best precision possible using the greedy
algorithm is (1 + b−1w )/2 < 1.

Remark 3. If in Algorithm 1 one replaces bw by a smaller base b > 1 then
it still produces a w-NIBNAF expansion to the desired precision: this follows
easily from the proof of Lemma 2. The distinguishing feature of bw is that it is
maximal with respect to this property, so that the resulting expansions become
as short as possible.

3 Analysis of coe�cient growth when computing with

encodings

After encoding the input data it is ready for homomorphic computations. This
increases both the number of non-zero coe�cients as well as the size of these co-
e�cients. Since we are working in the ring Rt there is a risk that our data wraps
around modulo t as well as modulo f(X), in the sense explained in the intro-
duction, which we should avoid since this leads to erroneous decoding. Therefore
we need to understand the coe�cient growth more thoroughly. We simplify the
analysis in this section by only considering multiplications and what constraint
this puts on t, it is then not hard to generalize this to include additions.

3.1 Worst case coe�cient growth for w-NIBNAF encodings

Here we analyze the maximal possible size of a coe�cient which could occur from
computing with w-NIBNAF encodings. As fresh w-NIBNAF encodings are just
approximate w-NIBNAF representations written as elements of Rt we consider
�nite w-balanced ternary sequences and the multiplication endowed on them
from Rt or from Zt[X,X−1]. Further, as we ensure in practice that there is no
wrap around modulo f(X) this can be ignored in our analysis.

To start the worst case analysis we have the following lower bound.

Lemma 3. A lower bound on the maximal absolute size of a term that can be
produced by taking the product of p arbitrary w-balanced ternary sequences of
length d+ 1 is

Bw(d, p) :=

bbpbd/wc/2c/(bd/wc+1)c∑
k=0

(−1)k
(
p

k

)(
p− 1 + bpbd/wc/2c − kbd/wc − k

p− 1

)
.

9



A full proof of this lemma is given in Appendix A but the main idea is
to look at the largest coe�cient of mp where m has the maximal number of
non-zero coe�cients, bd/wc + 1, all being equal to 1 and with exactly w − 1
zero coe�cients between each pair of adjacent non-zero coe�cients. We note
that the w-NIBNAF encoding, using the greedy algorithm with precision 1

2 ,

of b
d+w−(d mod w)
w (bw − 1)/2 is m so in practice this lower bound is achievable

although unlikely to occur.
We expect that this lower bound is tight, indeed we were able to prove the

following lemma, the proof is also given in Appendix A.

Lemma 4. Suppose w divides d, then Bw(d, p) equals the maximal absolute size
of a term that can be produced by taking the product of p arbitrary w-balanced
ternary sequences of length d+ 1.

We thus make the following conjecture which we assume to be true.

Conjecture 1 The lower bound Bw(d, p) given in Lemma 3 is exact for all
d, that is the maximal absolute term size which can occur after multiplying p
arbitrary w-balanced ternary sequences of length d+ 1 is Bw(d, p).

This conjecture seems very plausible since as soon as one multiplicand does
not have non-zero coe�cients exactly w places apart the non-zero coe�cients
start to spread out and decrease in value.

3.2 Approximating Bw(d, p)

To approximate Bw(d, p) for �xed p de�ne n := bd/wc + 1, then for suitably
large n (so that the variable k varies over a range only dependent on p) we can
expand the expression for Bw(d, p) as a `polynomial' in n of degree p − 1, see
Appendix B for the details. The expressions we �nd are in fact valid for all n,
the �rst few are:

Bw(d, 1) = 1; Bw(d, 2) = n;

Bw(d, 3) =
1
8 (6n

2 + 1)− (−1)n
8 ; Bw(d, 4) =

1
3 (2n

3 + n);

Bw(d, 5) =
1

384 (230n
4 + 70n2 + 27)− (−1)n

384 (30n2 + 27);

Bw(d, 6) =
1
20 (11n

5 + 5n3 + 4n);

Bw(d, 7) =
1

23040 (11774n
6 + 4235n4 + 2261n2 + 1125)

− (−1)n
23040 (1155n

4 + 1365n2 + 1125)

Bw(d, 8) =
1

315 (151n
7 + 70n5 + 49n3 + 45n).

Denoting the coe�cient of np−1 in these expressions by `p, it can be shown

(see [2] or Appendix B) that limp→∞
√
p`p =

√
6/π and hence we have

lim
p→∞

log2(Bw(d, p))− (p− 1) log2(n) +
1
2 log2

(
πp
6

)
= 0
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or equivalently Bw(d, p) ∼p
√

6/πpnp−1. Thus we have the approximation

log2(Bw(d, p)) ≈ (p− 1) log2(n)− 1
2 log2

(
πp
6

)
which for large enough n (experimentally we found for n > 1.825

√
p− 1/2) is

an upper bound for p > 2. For a guaranteed upper bound when p > 2 we have
the result Bw(d, p) ≤

√
6/(πp(n2 − 1))np.

3.3 Statistical analysis of the coe�cient growth

Based on the w-NIBNAF encodings of random numbers in N ∈
[
−240, 240

]
, we

try to get an idea of the amount of −1, 0 and 1 coe�cients in a fresh encoding
without fractional part, obtained by running Algorithm 1 to precision (1+b−1w )/2.
We also analyze how these proportions change when we perform multiplications.
We plot this for di�erent values of w to illustrate the positive e�ects of using
sparser encodings.

We know from the de�nition of a w-NIBNAF expansion that at least w − 1
among each block of w consecutive coe�cients of the expansion will be 0, so
we expect for big w that the 0 coe�cient occurs a lot more than −1 or 1.
This is clearly visible in Figure 3. In addition we see an increasing number of
0 coe�cients and decreasing number of −1 and 1 coe�cients for increasing w.
Hence we can conclude that both the absolute and the relative sparseness of our
encodings increase as w increases.

Since the balanced ternary encoding of [14,16] and the 2-NAF encoding [28],
only have coe�cients in {−1, 0, 1} it is interesting to compare them to 1-NIBNAF
and 2-NIBNAF respectively. We compare them by computing the percentage of
coe�cients which are equal to −1, 0 and 1 respectively, in 10 000 encodings of
random integers N in

[
−240, 240

]
. We compute this percentage up to an accu-

racy of 10−4 and consider for our counts all coe�cients up to and including the
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balanced ternary 1-NIBNAF 2-NAF 2-NIBNAF

percentage of −1s 0.3387 0.2556 0.1739 0.1471
percentage of 0s 0.3225 0.4869 0.6523 0.7046
percentage of 1s 0.3389 0.2575 0.1738 0.1483

Table 1. Comparison between the previous encoding techniques and w-NIBNAF
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Fig. 4. Plot of log2(#coe�) on the vertical axis against the respective value of the
coe�cient on the horizontal axis for the result of a multiplication of two w-NIBNAF
encodings of random numbers between

[
−240, 240

]
.

leading coe�cient, further zero coe�cients are not counted. When we compare
the percentages of −1, 0 and 1 coe�cients occurring in 1-NIBNAF and bal-
anced ternary in Table 1 we see that for the balanced ternary representation,
the occurrences of −1, 0 and 1 coe�cients are approximately the same, while for
1-NIBNAF the occurrence of 0 coe�cients is bigger than the occurrence of −1
and 1 coe�cients. Hence we can conclude that the encodings with this new base
will be sparser than the balanced ternary encodings even though the window
size is equal. For 2-NIBNAF we also see an improvement in terms of sparseness
of the encoding compared to 2-NAF.

The next step is to investigate what happens to the coe�cients when we
multiply two encodings. From Figure 4 we see that when w increases the max-
imal size of the resulting coe�cients becomes smaller. So the plots con�rm the
expected result that sparser encodings lead to a reduction in the size of the
resulting coe�cients after one multiplication.
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Fig. 5. Plot of the log2 of the maximum of the absolute value of the coe�cient of xi

on the vertical axis against i on the horizontal axis.

Next, we investigate the behaviour for an increasing amount of multiplica-
tions. In Figure 5 one observes that for a �xed number of multiplications the
maximum coe�cient, considering all coe�cients in the resulting polynomial, de-
creases as w increases and the maximum degree of the polynomial increases as
w increases. This con�rms that increasing the degree of the polynomial, in order
to make it more sparse, has the desirable e�ect of decreasing the size of the
coe�cients. Figure 5 also shows that based on the result of one multiplication
we can even estimate the maximum value of the average coe�cients of xi for a
speci�c number of multiplications by scaling the result for one multiplication.

To summarize, we plot the number of bits of the maximum coe�cient of the
polynomial that is the result of a certain �xed amount of multiplications as a
function of w in Figure 6. From this �gure we clearly see that the maximal co-
e�cient decreases when w increases and hence the original encoding polynomial
is sparser. In addition we see that the e�ect of the sparseness of the encoding
on the size of the resulting maximal coe�cient is bigger when the amount of
multiplications increases. However the gain of sparser encodings decreases as w
becomes bigger. Furthermore, Figure 6 shows that the bound given in Lemma 3
is much bigger than the average upper bound we get from 10 000 samples.

Remark 4. Since the w-NIBNAF encodings produced by Algorithm 1 applied
to −N and N are obtained from one another by changing all the signs, the
coe�cients −1 and 1 must be distributed evenly, as we indeed observe. This is
good, because it typically leads to the maximal amount of cancellation possible
during computation. While this does not a�ect our worst case analysis from
Section 3.1, in practice where the worst cases are extremely unlikely, this allows
for a considerable reduction of the size of the coe�cient modulus t. This is
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Fig. 6. Plot of the log2 of the maximum coe�cient of the resulting polynomial on the
vertical axis against w on the horizontal axis.

implicitly used in the next section. If in some application the input encodings
happen to be biased towards 1 or −1 then it might help to work with respect to
the negative base −bw < −1, by switching the signs of all the digits that appear
at an odd index.

4 Practical impact

The size of the plaintext modulus might have a signi�cant impact on the per-
formance of a homomorphic algorithm. In this section we demonstrate that
switching to using w-NIBNAF encodings enhances the practical performance
of a homomorphic forecasting algorithm by a factor 13.

Being evaluated homomorphically any arithmetic circuit encounters the fol-
lowing constraints while using polynomial encodings of real numbers. The �rst
constraint comes from the correctness requirement of an underlying SHE scheme.
Namely, the noise inside the ciphertext should not exceed some level during the
computations, otherwise decryption fails. In this context, an increase to the
plaintext modulus expands the noise and this places an upper bound on the
possible t which can be used. The second constraint does not relate to SHE but
to the circuit itself. After any arithmetic operation the polynomial coe�cients
tend to grow. Given that fact, one should take a big enough plaintext modu-
lus in order to prevent or mitigate possible wrapping around modulo t. This
determines the lower bound on range of possible values of t.

In practice, for deep enough circuits these two constraints do not juxtapose,
i.e. there is no interval where t can be chosen. However, the plaintext space Rt
can be split into smaller rings Rt1 , . . . , Rtk with t =

∏k
i=1 ti using the Chinese
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Remainder Theorem (CRT). This technique [6] allows us to take the modulus
big enough for correct evaluation of the circuit and then perform k threads of the
homomorphic algorithm over {Rti}i. As a result, these k output polynomials will
be combined into the �nal output, again by CRT. This approach needs k times
more memory and time than the case of a single modulus. Hence, the problem is
how to reduce the number of factors of t. The plaintext modulus can be de�ned
for any arithmetic circuit using the worst case scenario in which the �nal output
has the maximal possible coe�cient. However, this case occurs in practice with a
negligible probability that decreases for circuits of a bigger multiplicative depth.

In this section we show that for practical applications one can take t to be
smaller than that given by the worst case. This is based on the fact that for a
given t one can approximate the probability of a circuit evaluating incorrectly.
This probability becomes negligible for a large enough plaintext modulus. More-
over, we can allow some coe�cients to wrap around modulo t with no harm to
the �nal results as long as they are one of the least signi�cant coe�cients of the
fractional part.

One of the experimental environments recently studied in the SHE set-
ting [4,9,17] is that of arti�cial neural networks (ANNs). Being a statistical tool,
ANNs often deal with real numbers. Thus, for homomorphic evaluation they
need to convert real input values and internal parameters into elements of the
plaintext space of an underlying SHE scheme. The main obstacle to the SHE-
friendly use of ANNs consists in the highly non-linear functions inherent within
their structure. One way to overcome this problem is to replace those non-linear
functions with quadratic polynomials [17] such that the resulting network will
be expressed by a polynomial with a reasonable degree.

Proposed in 1970 [22], the group method of data handling (GMDH) addresses
the �tting task as well. In addition, it has a simpler structure than ANNs avoid-
ing many additions during evaluation. Recently this method was applied in the
homomorphic setting together with the balanced ternary expansion [4] in order
to forecast electricity consumption using smart meters. Due to the fact that 80
percent of electricity meter devices in the European Union should be replaced
with smart meters by 2020, this application may mitigate some emerging privacy
and e�ciency issues.

4.1 The group method of data handling (GMDH)

The basic version of the GMDH algorithm consists in creating a neural network-
like structure (see Figure 7) where each node contains a bivariate quadratic
polynomial

νij : R2 → R : (x, y) 7→ bij0 + bij1x+ bij2y + bij3xy + bij4x
2 + bij5y

2.

Indeed, each node has only two input parameters which is the main simpli�-
cation in comparison with conventional ANNs. The output node is expressed by
a polynomial that approximates the target function depending on data points
x1, . . . , xn0 . Henceforth, we refer to such a structure as the GMDH network.
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Fig. 7. GMDH network.

The learning algorithm constructs the GMDH network layer by layer in the
following way. Before starting the learning process one should set up the number
of nodes ni for each layer and an error function that will help to sort nodes. Those
prerequisites are often called hyperparameters. Then the learning algorithm looks
for polynomial coe�cients bijk of each node of the next layer using the output
of the previous one.

For the �rst layer the algorithm constructs nodes corresponding to all pairs
of input values. Each node represents the linear regression problem determined
by the equation

O = bA + e,

where A = (1, x, y, xy, x2, y2)ᵀ, b = (bij0, bij1, bij2, bij3, bij4, bij5), O is the ex-
pected output and e is a random noise. The coe�cient vector b can be found
with standard statistical tools, e.g. the least squares method. As a result, every
node has an assigned output of its polynomial together with the corresponding
error estimation. According to this error one excludes the worst

(
ni−1

2

)
−ni nodes

to build the layer. As already stated, this procedure is then repeated for the next
layer.

4.2 Experimental setup

To perform experiments we followed the same framework as in [4]. We use real
world measurements obtained from the smart meter electricity trials performed
in Ireland [12]. This dataset [12] contains observed electricity consumption over
5000 residential and commercial buildings during 30 minute intervals. We used
aggregated consumption data of 10 buildings. Given previous consumption data
with some additional information, the GMDH network has the goal of predicting
electricity demand for the next time period. In particular, it requires 51 input
parameters: the 48 previous measurements plus the day of the week, the month
and the temperature. The number of hidden layers r is equal to 3 with 8, 4, 2
nodes, respectively (as speci�ed and used in [4]). A single output node provides
the electricity consumption prediction for the next half hour.

We encode the input data, given as �xed-point numbers, using approximate
w-NIBNAF representations with a �xed number of integer and fractional dig-
its. When increasing the window size w one should take into account that the
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precision of the corresponding encodings changes as well. To maintain the same
accuracy of the algorithm it is important to keep the precision �xed, hence for
bigger w's the smaller base bw may cause an over�ow in the number of integer
digits needed for an encoding. Thus, one should increase the number of coe�-
cients used by an encoding.

Starting with the balanced ternary expansion (BTE) and NAF expansions,
for any w > 2, the numbers `(w)i and `(w)f of integer and fractional digits
should be expanded according to the following formula

`(w)i = (`(BTE)i − 1) · logbw 3 + 1, `(w)f = −blogbw efc,

where ef is the maximal error of an approximate w-NIBNAF representation
such that the prediction algorithm preserves the same accuracy. Empirically we
found that the GMDH network demonstrates reasonable absolute and relative
errors when `(BTE)inpi = 4 and einpf = 1 for the input and `(BTE)poli = 2 and

epolf = 0.02032 for polynomial coe�cients of νij .

Finally, we set the polynomial ring Rt = Zt[X]/(X4096 + 1) according to
the security level 80 of the underlying SHE scheme (in this case the scheme
due to Fan and Vercauteren [18] is used). The degree of the ring constrains the
multiplicative depth of the algorithm. In particular, the integer and fractional
parts may juxtapose because the maximal position of a non-zero integer and
fractional coe�cients come closer together after each multiplication. Once the
integer and fractional parts have started to overlap it is no longer possible to
decode correctly.

4.3 Results

The results reported in this section are obtained running the same software
and hardware as in [4]: namely, FV-NFLlib software library [15] running on a
laptop equipped with an Intel Core i5-3427U CPU (running at 1.80GHz). We
performed 8560 runs of the GMDH algorithm with BTE, NAF and 950-NIBNAF.
The last expansion is with the maximal possible w such that the resulting output
polynomial still has discernible integer and fractional parts. Correct evaluation
of the prediction algorithm requires the plaintext modulus to be bigger than
the maximal coe�cient of the resulting polynomial. This lower bound for t can
be deduced either from the maximal coe�cient appearing after any run or, in
case of known distribution of coe�cient values, from the mean and the standard
deviation. In both cases increasing window sizes reduce the bound as depicted in
Figure 8. Since negative encoding coe�cients are used, 950-NIBNAF demands
a plaintext modulus of 7 bits which is almost 6 times smaller than for BTE and
NAF.

As expected, w-NIBNAF encodings have longer expansions for bigger w's
and that disrupts the decoding procedure in [4,14]. Namely, they naively split
the resulting polynomial into two parts of equal size. As one can observe in
Figure 8, using 950-NIBNAF, decoding in this manner will not give correct
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Fig. 8. The mean and the maximal size per coe�cient of the resulting polynomial.

results. Instead, the splitting index is should be shifted towards zero, i.e. to 385.
To be speci�c, is lies in the following interval implied by [4, Lemma 1]

(di + 1, d− df )

where di = 2r+1(`(w)inpi + `(w)poli )− `(w)poli and df = 2r+1(`(w)inpf + `(w)polf )−
`(w)polf . Indeed, this is the worst case estimation which results in the maximal
w = 74 for the current network con�guration.

One can notice that the impact of lower coe�cients of the fractional part
might be much smaller than the precision required by an application. In our
use case the prediction value should be precise up to einpf = 1. We denote the
aggregated sum of lower coe�cients multiplied by corresponding powers of the
w-NIBNAF base as L(j) =

∑is
i=j−1 aib

−i
w . Then the omitted fractional coe�-

cients ai should satisfy

|L(ic)| < 1,

where ic is the index after which coe�cients are ignored.
To �nd ic we computed L(j) for every index j of the fractional part and

stored those sums for each run of the algorithm. For �xed j the distribution of
L(j) is bimodal with mean µL(j) and standard deviation σL(j) (see Figure 9).
Despite the fact that this unknown distribution is not normal, we naively ap-
proximate the prediction interval [µL(j)−6σL(j), µL(j)+6σL(j)] that will contain
the future observation with high probability. It seems to be a plausible guess in
this application because all observed L(j) fall into that region with a big overes-
timate according to Figure 9. Therefore ic is equal to the maximal j that satis�es
τ(j) < 1, where τ(j) = max(|µL(j) − 6σL(j)|, |µL(j) + 6σL(j)|).

As Figure 10 shows, ic is equal to 3388. Thus, the precision setting allows
an over�ow in any fractional coe�cient aj for j < 3388. The �nal goal is to
provide the bound on t which is bigger than any aj for j ≥ 3388. Since the ex-
plicit distributions of coe�cients are unknown and seem to vary among di�erent
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t CRT factors timing for one run

950-NIBNAF 25.044 1 2.57 s
BTE (this paper) 241.627 5 12.95 s

BTE [4] 2103.787 13 32.5 s

Table 2. GMDH implementation with 950-NIBNAF and BTE [4]

indices, we rely in our analysis on the maximal coe�cients occurring among all
runs. Hence, the plaintext modulus should be bigger than maxj≥3388{aj} over
all resulting polynomials. Looking back at Figure 8, one can �nd t.

As mentioned in the beginning of Section 4, t is constrained in two ways:
from the circuit and SHE correctness requirements. Now we bound the modulus
according to SHE. In our setup, the FV scheme with 80 bits of security, the ring
degree 4096 and the standard deviation of noise 102 requires t ≤ 396 [4]. We
compare our approach to the previous GMDH implementation in Table 2. As one
can notice, 950-NIBNAF with the chopped fractional part does not need a CRT
trick and requires a single modulus which reduces the timings in the sequential
mode by 13 times. In the parallel mode it implies a 13 times smaller amount of
memory is needed to hold the encrypted results.

Additionally, these plaintext moduli are much smaller than the worst case
estimation from Section 3.1. For 950-NIBNAF we take d ∈ [542, 821] accord-
ing to the encoding degrees of input data and network coe�cients. Any such
encoding contains only one non-zero coe�cient. Consequently, any product of
those encodings has only one non-zero coe�cient which is equal to 1. When all
monomials of the GMDH polynomial result in an encoding with the same index
of a non-zero coe�cient, the maximal possible coe�cient of the output encoding
will occur. In this case the maximal coe�cient is equal to the evaluation of the
GMDH network with all input data and network coe�cients being just 1. It
leads to t = 2 · 615 ' 239.775.
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5 Conclusions

We have presented a generic technique to encode �xed-point numbers using
a non-integral base. This encoding technique is especially suitable for use when
evaluating homomorphic functions since it utilizes the large degree of the de�ning
polynomial imposed by the security requirements. This leads to a considerably
smaller growth of the coe�cients and allows one to reduce the size of the plain-
text modulus signi�cantly, resulting in faster implementations. We show that in
the setting studied in [4], where somewhat homomorphic function evaluation is
used to achieve a privacy-preserving electricity forecast algorithm, the plaintext
modulus can be reduced from 2103 when using a balanced ternary expansion
encoding, to 33 ' 25.044 when using the encoding method introduced in this
paper (non-integral base non-adjacent form with window size w), see Table 2.
This smaller plaintext modulus means a factor 13 decrease in the running time
of this privacy-preserving forecasting algorithm: closing the gap even further to
making this approach suitable for industrial applications in the smart grid.
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A Proofs

Lemma 1 For an integer w ≥ 1 the polynomial Fw(x) = xw+1−xw−x− 1 has
a unique positive root bw > 1. The sequence b1, b2, . . . is strictly decreasing and
the limit as w tends to in�nity of bw is 1. Further, (x2 + 1) | Fw(x) for w ≡ 3
mod 4.

Proof. We have for w ≥ 1 that

F ′w(x) = (w + 1)xw − wxw−1 − 1 = (x− 1)((w + 1)xw−1 + xw−2 + · · ·+ 1)

so that for x ≥ 0 there is only one turning point of Fw(x), at x = 1. Further,
F ′′w(x) = (w+1)wxw−1−w(w− 1)xw−2, which takes the value 2w > 0 at x = 1,
so the turning point is a minimum. Since Fw(0) = −1 and limx→∞ Fw(x) = ∞
we conclude that there is a unique positive root of Fw(x), bw > 1, for any
w ≥ 1. Further, we have that Fw+1(x) = xFw(x) + x2 − 1 so that Fw+1(bw) =
b2w − 1 > 0 so that bw+1 < bw and hence the sequence bw is strictly decreasing
and bounded below by 1 so must converge to some limit, say b∞ ≥ 1. If b∞ > 1
then as bw is the positive solution to x − 1 = (x + 1)/xw and, for x ≥ b∞ > 1,
limw→∞(x+1)/xw = 0 we see that b∞ = limw→∞ bw = 1, a contradiction. Hence
b∞ = 1 as required. Finally we see that Fw(x) = x(x− 1)(xw−1 + 1)− (x2 + 1)

and for w = 4k + 3 that xw−1 + 1 = 1− (−x2)2k+1 = (x2 + 1)
∑2k
i=0(−x2)i and

hence (x2 + 1) | F4k+3(x). ut

Recall that to �nd a lower bound on the maximal absolute coe�cient size
we consider w-balanced ternary sequences and to each sequence (ai) we have
the corresponding polynomial

∑
i aiX

i in Rt. As we only look at the coe�-
cients and their relative distances we can simply assume that to each w-balanced
ternary sequence c0, c1, . . . , cd of length d+1 we have the associated polynomial
c0 + c1X + . . .+ cdX

d of degree d. Multiplication of polynomials thus gives us a
way of multiplying (�nite) w-balanced ternary sequences. In the rest of this ap-
pendix we use the polynomial and sequence notation interchangeably according
to whichever is more convenient.

Lemma 3 A lower bound on the maximal absolute size of a term that can be
produced by taking the product of p arbitrary w-balanced ternary sequences of
length d+ 1 is

Bw(d, p) :=

bbpbd/wc/2c/(bd/wc+1)c∑
k=0

(−1)k
(
p

k

)(
p− 1 + bpbd/wc/2c − kbd/wc − k

p− 1

)
.
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Proof. Consider the product of p sequences all of which are equal to m =
10 · · · 010 · · · 010 · · · 0 of length d + 1, having n := bd/wc + 1 non-zero terms
(all being 1) and between each pair of adjacent non-zero terms there are exactly
w−1 zero terms. Note that n is the maximal number of non-zero terms possible.
As polynomials we have that

m =

n−1∑
i=0

Xiw =
1−Xnw

1−Xw
,

and hence we have

mp =

(
1−Xnw

1−Xw

)p
= (1−Xnw)p · (1−Xw)−p

=

(
p∑
i=0

(−1)i
(
p

i

)
Xinw

) ∞∑
j=0

(
p− 1 + j

p− 1

)
Xjw


=

∞∑
j=0

p∑
i=0

(−1)i
(
p

i

)(
p− 1 + j

p− 1

)
X(in+j)w

=

∞∑
`=0

b`/nc∑
k=0

(−1)k
(
p

k

)(
p− 1 + `− kn

p− 1

)X`w ,

where we have used the substitution (i, j)→ (k, `) = (i, in+ j). Since we know
that mp has degree p(n− 1)w we can in fact change the in�nite sum over ` to a
�nite one from ` = 0 to p(n−1). To give the tightest lower bound we look for the
maximal coe�cient of mp. We prove in Lemma 5 below that ` = bp(n − 1)/2c
does the job and this coe�cient is exactly Bw(d, p). ut

Lemma 4 Suppose w divides d, then Bw(d, p) equals the maximal absolute size
of a term that can be produced by taking the product of p arbitrary w-balanced
ternary sequences of length d+ 1.

Proof. Let Sw(d, p) be the set of all sequences that are the product of p arbitrary
w-balanced ternary sequences of length d+1. To prove the lemma we bound all
the terms of any sequence in Sw(d, p). For i = 0, . . . , pd de�ne

mw(d, p, i) = max{ |ai| | ai is the i'th term of a sequence in Sw(d, p) } .

We will prove by induction on p that mw(d, p, i) ≤ Bw(d, p, bi/wc) where

Bw(d, p, `) =

b`/nc∑
k=0

(−1)k
(
p

k

)(
p− 1 + `− kn

p− 1

)
is the coe�cient of X`w in mp. We will use the notation Ci(f) for a polynomial
f to denote the coe�cient of Xi in f(X); this is de�ned to be zero if i > deg(f)
or i < 0. Thus in this notation Bw(d, p, `) = C`w ((1−Xnw)p/(1−Xw)p).
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The base case p = 1 is straight forward, all the mw(d, p, i) are equal to 1
by the de�nition of a w-balanced ternary sequence. We therefore suppose that
mw(d, p− 1, i) ≤ Bw(d, p− 1, bi/wc) for 0 ≤ i ≤ (p− 1)d.

Consider a product of p w-balanced ternary sequences of length d+1. It can be
written as f(X)e(X) where f(X) ∈ Sw(d, p− 1) and e(X) ∈ Sw(d, 1). We know

that if f(X) =
∑(p−1)d
i=0 aiX

i then |ai| ≤ mw(d, p−1, i) and if e(X) =
∑d
j=0 αjX

j

that

f(X)e(X) =

pd∑
k=0

min((p−1)d,k)∑
i=max(0,k−d)

aiαk−i

Xk ,

and because of the form of e(X) we see that

|Ck(fe)| ≤
nk∑
j=1

|aij | ≤
nk∑
j=1

mw(d, p− 1, ij)

for some nk ≤ n, max(0, k − d) ≤ i1 < i2 < · · · < ink
≤ min((p − 1)d, k) and

ij+1 − ij ≥ w for j = 1, . . . , nk − 1.

The �nal condition on the ij implies that the bij/wc are distinct and since
mw(d, p− 1, i) is bounded above by Bw(d, p− 1, bi/wc), which depends only on
bi/wc, we can recast this as

|Ck(fe)| ≤
nk∑
j=1

Bw(d, p− 1, `j) =

nk∑
j=1

C`jw

((
1−Xnw

1−Xw

)p−1)

where max(0, bk/wc−(n−1)) ≤ `1 < `2 < · · · < `nk
≤ min((p−1)(n−1), bk/wc)

where we have used that d/w = n− 1 is an integer.

Since bk/wc − (bk/wc − (n− 1)) + 1 = n we see that to make nk as large as
possible the `j must be the (at most n) consecutive integers in this range subject
also to 0 ≤ `1 and `nk

≤ (p−1)(n−1). Thus taking a maximum over all possible
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f and e we have

mw(d, p, k) ≤
bk/wc∑

`=bk/wc−(n−1)

C`w

((
1−Xnw

1−Xw

)p−1)

=

n−1∑
j=0

Cbk/wcw

((
1−Xnw

1−Xw

)p−1
Xw(n−1−j)

)

= Cbk/wcw

(1−Xnw

1−Xw

)p−1 n−1∑
j=0

Xw(n−1−j)


= Cbk/wcw

((
1−Xnw

1−Xw

)p−1 n−1∑
i=0

Xwi

)

= Cbk/wcw

((
1−Xnw

1−Xw

)p−1(
1−Xnw

1−Xw

))

= Cbk/wcw

((
1−Xnw

1−Xw

)p)
= Bw(d, p, bk/wc) ,

which proves the inductive step. To �nish the proof we note as before that the
maximal value of Bw(d, p, bk/wc) for 0 ≤ k ≤ pd is reached, for example, when
bk/wc = bpbd/wc/2c and in this case we have Bw(d, p) as required. ut

Lemma 5. The maximum coe�cient of mp occurs as the coe�cient of X` for
` = bp(n− 1)/2c (although it may also appear as other coe�cients).

Proof. To prove this we prove the following, let a` be the coe�cient of X`w then
we claim that

a` = ap(n−1)−` and 1 = a0 ≤ a1 ≤ · · · ≤ abp(n−1)/2c. (2)

From these two claims it followed that abp(n−1)/2c ≥ abp(n−1)/2c+1 ≥ · · · ≥
ap(n−1) which is what we require.

We will prove (2) by induction on p. The base case p = 1 is true as all
a` = 1. Thus, suppose that p ≥ 2 and that the coe�cients (in powers of Xw)
of mp−1 are ci for i = 0, . . . , (p− 1)(n− 1) and satisfy the inductive hypothesis
ci = c(p−1)(n−1)−i and 1 = c0 ≤ c1 ≤ · · · ≤ cb(p−1)(n−1)/2c. We have

p(n−1)∑
`=0

a`X
`w = mp = mp−1m =

(p−1)(n−1)∑
i=0

ciX
iw

n−1∑
j=0

Xjw


=

p(n−1)∑
`=0

min((p−1)(n−1),`)∑
k=max(0,`−n+1)

ck

X`w ,
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so that

ap(n−1)−` =

min((p−1)(n−1),p(n−1)−`)∑
k=max(0,(p−1)(n−1)−`)

ck =

min(0,n−1−`)∑
k=max(−(p−1)(n−1),−`)

c(p−1)(n−1)+k

=

min((p−1)(n−1),`)∑
i=max(0,`−n+1)

c(p−1)(n−1)−i =

min((p−1)(n−1),`)∑
i=max(0,`−n+1)

ci = a` ,

which is the �rst part of the inductive step. Further,

a` − a`−1 =

min((p−1)(n−1),`)∑
k=max(0,`−n+1)

ck

−
max((p−1)(n−1),`−1)∑

k=max(0,`−n)

ck


=


c` if 1 ≤ ` < n

c` − c`−n if n ≤ ` ≤ (p− 1)(n− 1) + 1

−c`−n if (p− 1)(n− 1) + 1 < ` ≤ p(n− 1) .

We are interested in the case when ` ≤ p(n − 1)/2 which implies that ` −
n ≤ (p − 2)(n − 1)/2 − 1 < (p − 1)(n − 1)/2. If ` < n then the di�erence is
certainly positive as c` ≥ 1 so suppose ` ≥ n so that if the di�erence is negative,
c` − c`−n < 0, then c` < c`−n. This implies, by the inductive hypothesis, that
` > (p − 1)(n − 1)/2 in which case c`−n > c` = c(p−1)(n−1)−` but this implies
that (p− 1)(n− 1)− ` < `− n, as both are smaller than (p− 1)(n− 1)/2, which
rearranges to give p(n− 1) + 1 < 2`. This is a contradiction as we are assuming
that ` ≤ p(n− 1)/2. Clearly a0 = c0 = 1 so this proves that

1 = a0 ≤ a1 ≤ · · · ≤ abp(n−1)/2c

as required, completing the inductive step. ut

B How we approximated Bw(d, p)

In this appendix we describe how to approximate Bw(d, p) and give details and
sketch proofs of the results stated in section 3.2.

As previously mentioned, the easiest way to bound Bw(d, p) is by Bw(d, p) ≤
(bd/wc + 1)p−1 = np−1 but we can be more precise than this. For p even and
�xed, we have bp(n− 1)/2c = p(n− 1)/2 and so

(
p− 1 +

⌊
p(n−1)

2

⌋
− kn

p− 1

)
=

(
(p2 − k)n+ p

2 − 1

p− 1

)
=

(p2 − k)
p−1

(p− 1)!
np−1 +O(np−3)

which is a polynomial in n of degree p − 1 and whose coe�cients depend on p
and k. The coe�cient of np−2 is zero since

∑p−2
i=0 (

p
2 − 1 − i) = 0, in fact the
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coe�cient of any even power of n is zero since we have(
(p2 − k)n+ p

2 − 1

p− 1

)
=

1

(p− 1)!

p−1∏
j=1

(
(p2 − k)n+ p

2 − j
)

=
(p2 − k)n
(p− 1)!

∏
1≤j<p/2

(
(p2 − k)

2n2 − (p2 − j)
2
)
=

(p2 − k)n
(p− 1)!

∏
1≤j<p/2

(
(p2 − k)

2n2 − j2
)
.

For n ≥ p
2 we have that b(p(n − 1)/2)/nc = bp2 −

p
2nc =

p
2 − 1 which does not

depend on n. In this case multiplying by (−1)k
(
p
k

)
and summing from k = 0 to

k = p
2 − 1 gives a polynomial in n of degree p− 1 and whose leading coe�cient

is

`p = p
∑

0≤k<p2

(−1)k
(p2 − k)

p−1

k!(p− k)!
, (3)

the reason for the strange way of writing the upper limit on k will become clear
in a moment. Although we do not prove it here it turns out that this polynomial
also correctly gives the value of Bw(d, p) for 1 ≤ n < p

2 too.
Now suppose that p > 1 is odd. This time the value of bp(n− 1)/2c depends

on the parity of n. For n odd it is again p(n−1)/2 while for n even it is (p(n−1)−
1)/2. Thus for n odd the expansion of the binomial coe�cient as a polynomial
in n follows almost as above except now all odd powers of n disappear:(

(p2 − k)n+ p
2 − 1

p− 1

)
=

1

(p− 1)!

∏
1≤j<p/2

(
(p2 − k)

2n2 − (j − 1
2 )

2
)
,

while for n even it is(
p− 1 +

⌊
p(n−1)

2

⌋
− kn

p− 1

)
=

(
(p2 − k)n+ p−3

2

p− 1

)
=

(p2 − k)
p−1

(p− 1)!
np−1 +O(np−2)

and the coe�cients of odd powers of n do not disappear. Indeed we have(
(p2 − k)n+ p−3

2

p− 1

)
=

1

(p− 1)!

(
1− p− 1

(p− 2k)n

) ∏
1≤j<p/2

(
(p2 − k)

2n2 − (j − 1)2
)
.

(4)
This time we have, for n ≥ p, that bbp(n−1)/2c/nc = p−1

2 which is independent
of n and we �nd that again we can write Bw(d, p) as a `polynomial' in n of degree
p−1 and whose coe�cients depend on p and the parity of n. Of course this is not
really a polynomial in n since the coe�cients depend on the parity of n however
we can see that the leading coe�cient does not depend on n and is also given
by (3). It turns out (although we don't prove it) that this `polynomial' in fact
has no odd powers of n and again gives the correct value of Bw(d, p) even when
1 ≤ n < p. That is we have for odd p and even n:

Bw(d, p) =
∑

0≤k<p/2

(−1)k
(
p

k

)
1

(p− 1)!

∏
1≤j<p/2

(
(p2 − k)

2n2 − (j − 1)2
)
.
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Another way of writing this, for odd p, is that Bw(d, p) = f(n) − (−1)ng(n)
for two even polynomials f and g of degree p − 1 and p − 3 respectively. This
approach is used in section 3.2. It is not hard to see that the constant terms of f
and g are equal since

(
(p/2−k)n+(p−3)/2

p−1
)
has zero constant term as a polynomial

in n; in fact they take the value Bw(w, p− 2)2/22p−3 =
(

p−1
(p−1)/2

)2
/22p−1.

What is remarkable about the coe�cients of these polynomials is that they
can we written as integrals. This fact for the leading coe�cient `p (r = 0 below)
is proven in [2] and the references therein. We also present a simple generalization
here for the other coe�cients.

Lemma 6. For p even or n odd,

Bw(d, p) =
∑

0≤r<p/2

(
ar(p)

π

∫ ∞
−∞

sinp θ

θp−2r
dθ

)
np−1−2r,

and for p > 1 odd and n even

Bw(d, p) =
∑

0≤r<p/2

(
ar(p− 1)(p− 2r − 1)

(p− 1)π

∫ ∞
−∞

sinp θ

θp−2r
dθ

)
np−1−2r,

where ar(x) is a polynomial of degree r whose coe�cients are rational and with
leading coe�cient (6rr!)−1. More precisely we have a0(x) = 1 and for any integer
x we have

ar(2x) :=

∑
0<i1<i2<···<ir<x

(i1i2 · · · ir)2∏
1≤j≤2r

(x− j
2 )

for r ≥ 1.

Note that the above also encompasses the p = 1 case if one de�nes p−1
p−1 = 1.

Proof. To start we use the well known formula for sine:

sinp θ =

(
eiθ − e−iθ

2i

)p
=

1

(2i)p

p∑
k=0

(
p

k

)
eikθ(−e−iθ)p−k

=

(
i

2

)p p∑
k=0

(−1)k
(
p

k

)
e(2k−p)iθ.

We are thus interested in the integral
∫∞
−∞ e(2k−p)iθ/θq, if it exists. We will see

that the integral exists, for q ∈ Z>0, as a Cauchy principal value, namely the
limit of integrating from −R1 to −R2 plus from R2 to R1 as R1 → ∞ and
R2 → 0. We start with the case q = 1, and have three cases, either 2k − p is
negative, zero or positive. In the case when 2k = p then the function is just θ−1

which is an odd function. Therefore
∫ −R2

−R1
θ−1dθ +

∫ R1

R2
θ−1dθ = 0 and so in the

limit it is also 0. For the other two cases we use complex analysis, if 2k − p is
positive then we consider integrating along the curve Γ+ shown below:
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Re

Im

Γ+

−R1 −R2 R2 R1

Since e(2k−p)iz/z has no poles inside Γ+ we have that
∫
Γ+ e

(2k−p)iz/z dz = 0 by
Cauchy's Integral Theorem, hence we have∫ −R2

−R1

e(2k−p)iz

z
dz +

∫ R1

R2

e(2k−p)iz

z
dz +

∫ π

0

ie(2k−p)iR1e
it

dt−
∫ π

0

ie(2k−p)iR2e
it

dt = 0

where we have used the substitution z = Reit in the last two integrals. We note
that for 0 < t < π we have |ie(2k−p)iR1e

it | = e(p−2k)R1 sin t → 0 as R1 →∞ since
sin t is positive and p−2k is negative. Thus by Jordan's lemma the third integral
tends to 0 as R1 tends to in�nity. For the last integral we note that, as R2 tends
to 0, it tends to (π−0)iRes(e(2k−p)iz/z, z = 0) = πi limz→0 e

(2k−p)iz = πi. Hence
we have, on taking the limit as R1 →∞ and R2 → 0 and rearranging, that∫ ∞

−∞

e(2k−p)iz

z
dz = πi for 2k − p > 0.

In a similar manner, when 2k−p is negative we can integrate around the contour
Γ− which is the same as Γ+ except that the arcs are now in the lower half of the
complex plane instead of the upper half, we thus have to change the direction to
be clockwise on the outer arc and anti-clockwise on the inner arc. This ensures
that as R1 tends to in�nity the integral on the outer arc tends to zero and as
R2 tends to zero the integral on the inner arc tends to πi as before. We can
therefore deduce that∫ ∞

−∞

e(2k−p)iz

z
dz = −πi for 2k − p < 0.

Now assuming the integrals exist we use integration by parts with u = e(2k−p)iθ

and dv = θ−q then du = i(2k − p)e(2k−p)iθ and v = −θ−(q−1)/(q − 1) and on
noting that limR→∞[uv]R−R = 0 we have∫ ∞

−∞

e(2k−p)iθ

θq
dθ =

i(2k − p)
q − 1

∫ ∞
−∞

e(2k−p)iθ

θq−1
dθ,
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and a simply induction argument shows that for q ∈ Z>0 the integrals exist as
Cauchy principal values and are equal to

∫ ∞
−∞

e(2k−p)iθ

θq
dθ =


−πi (i(2k−p))

q−1

(q−1)! for 2k − p < 0

0 for 2k − p = 0

πi (i(2k−p))
q−1

(q−1)! for 2k − p > 0.

Therefore

1

π

∫ ∞
−∞

sinp θ

θp−2r
dθ =

1

π

(
i

2

)p p∑
k=0

(−1)k
(
p

k

)∫ ∞
−∞

e(2k−p)iθ

θp−2r
dθ

=

(
−1
2

)p−∑
0≤k<p/2

(−1)k
(
p

k

)
(2k − p)p−2r−1

i2r(p− 2r − 1)!
+
∑

p/2<k≤p

(−1)k
(
p

k

)
(2k − p)p−2r−1

i2r(p− 2r − 1)!


=

∑
0≤k<p/2

(−1)r+k

22r+1

(
p

k

)
(p2 − k)

p−2r−1

(p− 2r − 1)!
+
∑

0≤k<p/2

(−1)r+2p−k

22r+1

(
p

p− k

)
(p2 − k)

p−2r−1

(p− 2r − 1)!

=
∑

0≤k<p/2

(−1)r+k

22r

(
p

k

)
(p2 − k)

p−2r−1

(p− 2r − 1)!
.

On the other hand we have for even p that

Bw(d, p) =
∑

0≤k<p/2

(−1)k
(
p

k

)(
(p2 − k)n+ p

2 − 1

p− 1

)

=
∑

0≤k<p/2

(−1)k
(
p

k

)
(p2 − k)n
(p− 1)!

∏
1≤j<p/2

(
(p2 − k)

2n2 − j2
)

=
∑

0≤k<p/2

(−1)k
(
p

k

) ∑
0≤r<p/2

(p2 − k)
p−1−2r

(p− 1)!
(−1)r

∑
0<i1<···<ir<p/2

(i1i2 · · · ir)2
np−1−2r

=
∑

0≤r<p/2

ar(p) ∑
0≤k<p/2

(−1)r+k

22r

(
p

k

)
(p2 − k)

p−2r−1

(p− 2r − 1)!

np−1−2r

=
∑

0≤r<p/2

(
ar(p)

π

∫ ∞
−∞

sinp θ

θp−2r
dθ

)
np−1−2r

as stated.
To show the stated properties of ar(x) we note that

br(x) :=
∑

0<i1<···<ir<x
(i1i2 · · · ir)2 =

∑
0<ir<x

 ∑
0<i1<i2<···<ir−1<ir

(i1 · · · ir−1)2
 i2r

=
∑

0<ir<x

br−1(ir)i
2
r
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so we can use an inductive argument on r. For r = 1 and integer x we have
b1(x) = 1

6 (x − 1)x(2x − 1) where we have used Faulhaber's formula for the
sum of squares. Note that the leading coe�cient is 2

6 = (311!)−1. More generally

Faulhaber's formula states that
∑`
k=1 k

q = 1
q+1

∑q
j=0(−1)j

(
q+1
j

)
Bj`

q+1−j where

Bj are the Bernoulli numbers with B0 = 1, B1 = − 1
2 , . . . . As an inductive

hypothesis we have that for integer x, br(x) is a polynomial in x of degree 3r
and with leading coe�cient (3rr!)−1. Say

br(x) =

3r∑
j=0

βr,jx
j

where βr,3r = (3rr!)−1. Then

br+1(x) =

x−1∑
ir+1=1

br(ir+1)i
2
r+1 =

x−1∑
ir+1=1

3r∑
j=0

βr,ji
j+2
r+1 =

3r∑
j=0

βr,j

x−1∑
ir+1=1

ij+2
r+1

=

3r∑
j=0

βr,j
1

j + 3

j+2∑
k=0

(−1)k
(
j + 3

k

)
Bk(x− 1)j+3−k

which is again a polynomial in x of degree 3r + 3 − 0 = 3(r + 1) and lead-
ing coe�cient βr,3r

1
3r+3 = 1

3r+1(r+1)! . Hence we have proved the inductive step

and the result holds. In particular for even x, br(x/2) has leading coe�cient
βr,3r/2

3r = (22r6rr!)−1.

Further we note that br(x) is zero at x = 0, 1, 2, . . . , r since in the sum we
must have ij ≥ j for j = 1, 2, . . . , r so if r ≤ ir < x ≤ r there is no possible value
that ir can take and the sum is empty. To show that ar(x) is a polynomial we
need to also prove that br(x) is zero at each half integers between 0 and r, we
do not show this as it is not needed in our later approximations. Finally we note
that the leading coe�cient of ar(x) is 2

2r/(22r · 6rr!) = (6rr!)−1 as required.

Now when p and n are both odd we have almost exactly the same proof only
with a very similar expression in place of br(x). Namely we have for an integer
x the sum ∑

0<i1<i2<···<ir<x

(
(i1 − 1

2 )(i2 −
1
2 ) · · · (ir −

1
2 )
)2

which can be shown to equal br(x + 1
2 ) although we do not show it here. Since

we are interested in the integer x = p+1
2 we note that this gives br(p/2) which

is the same as in the case when p is even. Hence we again have the same form
for Bw(d, p).

Finally when p is odd and n is even we use (4) and the proof follows in almost
the same manner as before however this time we note that∑

0<i1<···<ir<x
((i1 − 1)(i2 − 1) · · · (ir − 1))

2
= br(x− 1)
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so that ∑
0<i1<i2<···<ir<p/2

((i1 − 1)(i2 − 1) · · · (ir − 1))2

∏
1≤j≤2r

(p2 −
j
2 )

=
b((p− 1)/2)∏

1≤j≤2r

(p2 −
j
2 )

= ar(p− 1)

∏
1≤j≤2r(

p−1
2 −

j
2 )∏

1≤j≤2r(
p
2 −

j
2 )

= ar(p− 1)
p− 1− 2r

p− 1
.

This is still a polynomial in p since x | ar(x) for all r ≥ 1 and when r = 0 this
simpli�es to a1(p− 1) = 1. ut

The �rst few expressions for the ar(x) are:

a1(x) =
x

6
; a2(x) =

x

72

(
x+

2

5

)
; a3(x) =

x

1296

(
x3 +

6

5
x2 +

16

35
x

)
;

a4(x) =
x

31104

(
x3 +

12

5
x2 +

404

175
x+

144

175

)
;

a5(x) =
x

933120

(
x4 + 4x3 +

244

35
x2 +

208

35
x+

768

385

)
;

a6(x) =
x

33592320

(
x5 + 6x4 +

572

35
x3 +

4248

175
x2 +

255968

13475
x+

1061376

175175

)
.

We can use this formulation to consider the limit of the coe�cients as p tends
to in�nity. In particular we have the following lemma:

Lemma 7. For r ∈ Z≥0, let ar(x) be the polynomials given in Lemma 6. Then
we have

lim
p→∞

√
p
ar(p)

π

∫ ∞
−∞

sinp θ

θp−2r
dθ =

1

22r

√
6

π

(
2r

r

)
.

Proof. Apply the substitution θ = t/
√
p to give

√
p

∫ ∞
−∞

sinp(θ)

θp−2r
dθ =

√
p

∫ ∞
−∞

(√
p

t

)p−2r
sinp
(
t
√
p

)
dt
√
p
=

1

pr

∫ ∞
−∞
t2r
(√

p

t
sin

(
t
√
p

))p
dt

and since ar(p) is a polynomial of degree r with leading coe�cient (6rr!)−1 and

√
p

t
sin

(
t
√
p

)
= 1− t2

6p
+O(p−2)

we have under the assumption that we can interchange the limit and the integral,
which we do not prove, that

lim
p→∞

√
p
ar(p)

π

∫ ∞
−∞

sinp θ

θp−2r
dθ =

1

π6rr!

∫ ∞
−∞

t2re−t
2/6dt.
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The integral can be evaluated for a positive integer r by using integration by
parts with u = t2r−2 and v = −3e−t2/6 to give∫ ∞
−∞

t2re−t
2/6dt = 3(2r−1)

∫ ∞
−∞

t2r−2e−t
2/6dt =

3(2r)(2r − 1)

2r

∫ ∞
−∞

t2(r−1)e−t
2/6dt

which by a simple inductive argument and the integral
∫∞
−∞ e−t

2/6 =
√
6π gives∫ ∞

−∞
t2re−t

2/6dt =
√
6π

(
3

2

)r
(2r)!

r!

and hence

lim
p→∞

√
p
ar(p)

π

∫ ∞
−∞

sinp θ

θp−2r
dθ =

√
6π( 32 )

r(2r)!

π6r(r!)2
=

1

22r

√
6

π

(
2r

r

)
as required. ut

Taking r = 0 shows the leading coe�cient `p satis�es limp→∞
√
p`p =

√
6/π

as was claimed in section 3.2. Further, replacing ar(p) by ar(p − 1)p−1−2rp−1 has
no e�ect on the limit. Finally we remark that for positive n

∑
0≤r<p/2

1

22r

(
2r

r

)
np−1−2r ≤

∞∑
r=0

1

22r

(
2r

r

)
np−1−2r =

np−1√
1− n−2

=
np√
n2 − 1

so that by the fact, which we haven't proved, that
√
p times the coe�cient of

np−1−2r in the expansion of Bw(d, p) is increasing for p > 2 as p increases, we
can conclude that for p > 2

Bw(d, p) ≤

√
6

πp(n2 − 1)
np.
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