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Abstract. In this paper we focus on three open questions regarding NIST SP 800-22 randomness test: 

the probability of false acceptance, the number of minimum sample size to achieve a given 
probability error and tests independence. We shall point out statistical testing assumptions, source of 

errors, sample constructions and a computational method for determining the probability of false 

acceptance and estimating the correlation between the statistical tests. 
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1. INTRODUCTION 

Statistical tests are an efficient tool for deciding if a set of independent observations, called 

measurements, belongs to a specific population or probability distribution; they are commonly used in the 

field of cryptography, specifically in randomness testing. Statistics can be useful in showing a proposed 

system is weak. Thus, one criterion in validating ciphers is that there is no efficient method for breaking it 

that brute force. That is, if we have a collection of cipher texts (and eventually the corresponding plain texts) 

all the keys have the same probability to be the correct key, thus we have uniformity in the key space. If we 

are analyzing the output of the cipher and find a non-uniform patterns than it can be possible to break it. 

However if we cannot find these non-uniform patterns no one can guarantee that there are no analytical 

methods in breaking it. Also statistical tests can be used for analyzing communication data and detect covert 

communications (steganographic systems) and anomalies in TCP flow (cyber attacks).  
The paper is organized as follows. In section 2 we present the statistical tests assumptions sources 

of errors and sample constructions for the situation of testing the cryptographic algorithms. The 

statistical methods used in academic security evaluation of the AES candidates are generally based on “de 

facto” standard STS SP 800-22 [7], a publication of Computer Security Research Center, a division of NIST, 

that initially describes sixteen statistical tests (because improper evaluation of the mean and variance, the 

Lempel-Ziv test was dropped from the revised version). Beside the above there exist other several statistical 

testing procedures and tools specified in Donald Knuth’s book [2], The Art of Computer Programming, 

Seminumerical Algorithms, the Crypt-XS suite of statistical tests developed by researchers at the 

Information Security Research Centre at Queensland University of Technology in Australia, the DIEHARD 

suite of statistical tests developed by George Marsaglia [4], TestU01, a C library for empirical testing of 

random number generators developed by P. L’Ecuyer and R. Simard [3]. In section 3 we discuss about STS 

SP 800-22, the statistical cryptographic evaluation standard used in AES candidates’ evaluation.  

One weak point of the statistical test suite is that does not compute second type error, which represents 

the probability of failing to reject the null hypothesis when it is false. Another open question in the academic 

world is regarding the independence of SP 800-22 statistical tests. In section [5] we propose a procedure to 

solve by simulation the problem of tests correlation.  

Finally in section [5] we conclude. 

2. STATISTICAL TESTING ASSUMPTIONS, SOURCE OF ERRORS AND SAMPLE 

CONSTRUCTIONS 

Statistical hypothesis testing is a mathematical technique, based on sample data, used for supporting 

the decision making on the theoretical distribution of a population. In the case of statistical analysis of a 

cryptographic algorithm the sample is the output of the algorithm from different inputs for the key and plain 

text. Because we deal with sample data from the population, the decision process of the population’s 
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probability distribution is prone to errors. To meet this challenge, we model the decision making-process 

with the aid of two statistical hypotheses: the null hypothesis denoted by H0 - in this case, the sample does 

not indicate any deviation from the theoretically distribution - and the alternative hypothesis HA  - when the 

sample indicates a deviation from the theoretically distribution. 

There can be three types of errors: 

 First type error (also known as the level of significance), i.e. the probability of rejecting the 

null hypothesis when it is true: 

=P(reject H0| H0 is true) 

 Second type error, which represents the probability of failing to reject the null hypothesis 

when it is false: 

=P(accept H0|H0 is false),  

the complementary value of  is denoted as the test’s power: 

1-=P(reject H0|H0 is false) 

 Third type error happens when we ask a wrong question and use the wrong null hypothesis. 

This error is less analytical and requires that we pay attention before starting our analysis.  
These two errors,  and β, can’t be minimized simultaneously since the risk β increases as the risk  

decreases and vice-versa. From this reason one solution is to have under control the value of  and compute 

the probability β. Sometimes we ask a wrong question and use the wrong null hypothesis. This type of error 

is called type III error. 

 The strong law of large numbers is usually used for randomness testing of binary sequences. This 

theorem can be stated in two different ways: 

 The first form is derived from Leapunov’s theorem and states that if (fn) is a sequence of independent 

random variables with the same distribution (with mean m and variance ), then for “large” values   

n > 30 we have:  
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 The second form is derived from De Moivre’s theorem and formulas and states that if (fn) is a 

sequence of binary independent random variables with P(X=1)=p and P (X=0)=q, then for “large”   

n > 30 values we have:  
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The above formulas are good estimations even in the case we have small values of n and a and b very 

close one to other. 

The analysis plan of the statistical test includes decision rules for rejecting the null hypothesis. These 

rules can be described in two ways: 

Decision based on P-value. In this case, we consider f to be the value of the test function and compare 

the P-value, defined as P(X < f), with the value  and decide on the null hypothesis if P-value is greater than 

. 

The “critical region” of a statistical test is the set which causes the null hypothesis to be rejected; the 

complementary set is called the “acceptance region”. In the acceptance region, we shall find the ideal results 

of the statistical test.  

Because for each statistical test the rejection rate   is a probability, which is “approximated” from the 

sample data, we need to compute the minimum sample size necessary for achieving the desired rejection rate 

. Also, the sample must be: 

 independent; 

 “from the same world”, i.e. governed by the same distribution.  
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A way to construct samples for testing block ciphers is to setup the plain text and the key: Xi=E(Pi;ki) 

where E is the encryption function, Pi is the set of plain texts and ki is the set of keys. For each plain text 

input Pi and each encryption key ki the output from the encryption function must have a uniform distribution. 

To test this assumption, for AES candidates, Soto [9] constructed the samples with low/high density plain 

text/key (a low density text/key it is a text/key with a small number of 1s in oppositions a high density 

text/key which it is a text/key with a small number of 0s). As we can see using this type of construction the 

samples are not independent variables because they are connected by means of the encryption function E. 

Are the results of the statistical tests relevant if this assumption is not true? If the statistical test accepts the 

null hypothesis then we can say that there is not enough evidence for the non-uniformity of the sample.  

If a cryptographic primitive passes a statistical test, it does not mean that the primitive is secure. For 

example, the predictable sequence 01010…01 is “perfect” if we analyze it with the bit frequency test. This is 

one of the reasons why we should be “suspicious” if we obtain perfect results. To avoid these situations, in 

some cases, it is indicated to include the neighborhood of the ideal result in the critical region. 

NIST SP 800-90A [7] contains the specifications of four cryptographic secure PRBG for use in 

cryptography based on: hash functions, hash-based message authentication code, block ciphers and elliptic 

curve cryptography. Some problems with the later one (Dual_EC_DRBG) were discovered in 2006: the 

random numbers it produces have a small bias and it raise the question whether the NSA put a secret 

backdoor in Dual_EC_DRBG. It was proved in 2013 that (Dual_EC_DRBG) has flows. Internal memos 

leaked by a former NSA contractor, Edward Snowden, suggest that NSA generated a trapdoor in 

Dual_EC_DRBG. To restore the confidence on encryption standards, NIST reopen the public vetting process 

for the NIST SP 800-90A.Thus, if algorithm will fail to certain tests then it should not be used in 

cryptographic applications because an attacker will be able to predict the behavior of the algorithm or, even 

worse, may indicate the existence of certain trapdoors. 

 

3. A VIEW ON STS SP 800-22  

Pseudorandom bit generators (PRBG) are cryptographically secure if pass next bit test, that is there is 

no polynomial time algorithm which, given the first l-bits of the output, can predict l+1-bit with probability 

significantly greater than 0.5 and, in the situation that a part of PRBG is compromised, it should be 

impossible to reconstruct the stream of random bits prior to the compromising. Yao [10] proved that PRBG 

pass next bit test if and only if passes all polynomial time statistical tests. Because practically is not feasible 

to test PRBG for all polynomial statically tests we need to find a representative, polynomial time, statistical 

testing suite such as STS SP 800-22. Because STS SP 800-22 is a standard, we shall focus on it rather than 

other statistical test suites ([2], [3] or [4]). STS SP 800-22 (the revised version) consists of fifteen statistical 

tests, which highlight a certain fault type proper to randomness deviations. Each test is based on a computed 

test statistic value f, which is a function of the sample. The statistic test is used to compute a P-value=P(f|H0) 

that summarizes the strength of the evidence against the null hypothesis. If the P-value is greater then the 

null hypothesis is accepted (the sequence appears to be random). The tests are not jointly independent, 

making it difficult to compute an overall rejection rate (i.e. the power of the test). Recall that the tests 

T1,…,T15 are jointly independent if P(Ti1,…,Tik)=P(Ti1) P(Tik) for every subset {i1,…,ik} of {1,…,15}. 

Obviously, jointly independent tests are pair wise independent. The converse is not true [1]. If the statistical 

tests would be independent, then the overall rejection rate, would be computed using the probability of the 

complementary event 1-(1-)
15
0.14. 

In table II we can see the reference distribution of NIST statistical tests: 
Table II 

Test Reference distribution 

Frequency (monobit) test half normal 

Frequency Test within a Block 
2
(N) 

Runs Test Normal 

Test for the Longest Run of Ones in a 

Block 


2
(K) 
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Test Reference distribution 

Binary Matrix Rank Test 
2
(2) 

Discrete Fourier Transform (Spectral) Test Normal 

Non-overlapping Template Matching Test 
2
(N) 

Overlapping Template Matching Test 
2
(K) 

Maurer’s “Universal Statistical” Test Normal 

Linear Complexity Test 
2
(K) 

Serial Test 
2
(2

m-1
)+ 

2
(2

m-2
) 

Approximate Entropy Test 
2
(2

m
) 

Cumulative Sums (Cusum) Test Normal 

Random Excursions Test 
2
(5) 

Random Excursions Variant Test half normal 

 

STS SP 800-22 provides two methods for integrating the results of the tests, namely percentage of 

passed tests and the uniformity of P values. The experiments revealed that these decision rules were 

insufficient and therefore researchers considered their improvement would be useful. Therefore, in [6], were 

introduced new integration methods for these tests:  

 Maximum value decision, based on the max value of independent test statistics Ti, i=1,…,n. 

In this case the maximum value of the random variables was computed; the repartition function of 

the max value, P(max(T1,…,Tn)<x), being the product of the repartition functions of the random 

variables Ti: 
1

( )
n

i

i

P T x


 ; 

 Sum of square decision, based on the sum of squares S of the results of the tests (which have 

a normal distribution). The distribution of S, in this case, is 
2
, the freedom degrees given by the 

number of partial results which are being integrated.  

Weak points of STS SP 800-22: 

 Fixed first order error =0.01; 

 The tests are not evaluating the second order error, which represents the probability to accept 

a false hypothesis. 

Let us suppose that we have a binary sequence produced by a random variable X  with P(X=1)=p0 and 

P(X=0)=q0=1-p0 and test the null hypothesis H0: p=p0 (if p0=0.5 then we perform a uniformity test) against the 

alternative hypothesis H1: p=p1 with p1p0. 

In [6] the possibility of extending the frequency test from STS SP 800-22 to arbitrary level of 

significance  (and computing (p1)) is presented by computing, for some n>30, the second order 

probability: 
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where 
1

2

u 


 and 
2

u  stand for quantiles of the normal distribution and 1 11q p  . 

 

Deriving formulas for all STS 800-22 is rather difficult, however one can estimate the value of  (as 

function of p1) by using computational methods. Namely, having a validated randomness source (for 

example a hardware device), we propose to estimate the value of j(p1) for every j=1…15 NIST statistical 

test in the following way:  

- set every ith
 bit of the sample (of size n) to 0 and compute the number of failures; 

- increment i and repeat the experiment until the STS 800-22 will not distingue the tested sequence 

from a random one; 

- the value of i/n is an estimation of j(p1); 

 The false acceptance rate of the full NIST battery test is the maxj j(p1). 
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A problem that we encountered is that of finding the minimum sample size to achieve, with error >0 

and a given rejection rate . Formally, if (fn) is a sequence of binary independent random variables with 

P(X=1)=p and P(X=0)=q, where p is unknown, we need to find n such that: 

P(| | ) 1 ,n p       

where: 

1 ... n
n

f f

n


 
  

represents the sequence of relative occurrence of the symbol 1. Using the De Moivre form of the strong law of 
large numbers, the equation can sequentially be rewritten: 

1(| ... | ) 1nP f f pn n        

1n n
 
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 
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Finally, using the fact that p(1-p)0.25, we find that the minimum sample size is: 

2

min 2
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1
.
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Numerical computation values are presented in Table III. We interpret the data as follows. The relative 

frequency n estimate p with an error  and this statement is valid in 100(1-) of the cases. In some practical 

situations, the sample size can be fixed.  In this case, after the estimation of p, we can fix the confidence 1- 

and compute the error . For example, in the case of NIST STS SP 800-22 test vectors, where sample size is 

n=100 and confidence 0.9, numerical computations give =0.0825. 

Table III Connection between error, confidence and minimum sample size 

Error  Confidence 1- Minimum sample size nmin 

0.01 0.90 6724 

0.01 0.95 9604 

0.01 0.99 16641 

0.03 0.90 748 

0.03 0.95 1068 

0.03 0.99 1835 

0.05 0.90 269 

0.05 0.95 385 

0.05 0.99 661 

 
In [5] there are some comments about NIST statistical testing methodology: ambiguous hypothesis 

(does not specify the family of distribution and/or the alternative), error quantification (NIST does not give 

the size of the category-test decisions), power of the test suite, invariant test (cryptographically equivalent 

tests performed on the same sample do not necessary give the same result), and inadmissible tests (the 

existence of better tests). 

After the process of evaluation of AES candidates researchers [11] reported that the test setting of 

Discrete Fourier Transform test (designed is to detect periodic features in the tested sequence that would 

indicate a deviation from the assumption of randomness) and Lempel-Ziv test (designed to see if the 
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sequence can be compressed and will be considered to be non-random if it can be significantly compressed) 

of the STS SP 800-22 are unsuitable:  

 threshold value and the variance σ
2
 of theoretical distribution, respectively; 

 the setting of standard distribution, which has no algorithm dependence (SHA-1 for million 

bit sequences) and the re-definition of the uniformity of P-values (based on simulation). 

Because the mean and variance of Lempel-Ziv test were evaluated using samples generated by an 

algorithm, in the revised version of STS SP 800-22 the Lempel-Ziv was dropped. 

4. PROPOSAL FOR ESTIMATING TESTS (IN)DEPENDENCE  

Because the SP 800-22 test functions have a complicated form, in order to check the independence of 

tests  i and j we propose the following procedure: 

i) implement the NIST SP 800-22 testing suite; 

ii) using a “good” pseudorandom generator GPA test N binary samples; 

iii) for each test i define the Bernoulli random variable Ti which gives 1 if the sample 

pass the test and 0 otherwise; 

iv) estimate the value of P(Ti and Tj)- P(Ti) P(Tj). If the tests are independent then this 

value should be close to zero.  

v) find the highest value of the above value for i and j. 

5. CONCLUSIONS 

In this paper we have proposed numerical methods for solving three open problems regarding the 

standard NIST 800-22 STS: determining the probability of accepting a false hypothesis, finding the number 

of minimum sample size to achieve a given probability error and the (in)dependence of statistical tests. 
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