DUPLO: Unifying Cut-and-Choose for Garbled Circuits*

Vladimir Kolesnikov', Jesper Buus Nielsen?, Mike Rosulek?, Ni Trieu®, and
Roberto Trifiletti?®)

! Bell Labs
kolesnikov@research.bell-labs.com
2 Aarhus University
{jbn,roberto}@cs.au.dk
3 Oregon State University
{rosulekm,trieun}@eecs.oregonstate.edu

Abstract. Cut-and-choose (C&C) is the standard approach to making Yao’s garbled
circuit two-party computation (2PC) protocol secure against malicious adversaries.
Traditional cut-and-choose operates at the level of entire circuits, whereas the LEGO
paradigm (Nielsen & Orlandi, TCC 2009) achieves asymptotic improvements by per-
forming cut-and-choose at the level of individual gates. In this work we propose a
unified approach called DUPLO that spans the entire continuum between these two
extremes. The cut-and-choose step in our protocol operates on the level of arbitrary
circuit “components,” which can range in size from a single gate to the entire circuit
itself.

With this entire continuum of parameter values at our disposal, we find that the best
way to scale 2PC to computations of realistic size is to use C&C components of in-
termediate size, and not at the extremes. On computations requiring several millions
of gates or more, our more general approach to C&C gives between 4-7x improvement
over existing approaches.

In addition to our technical contributions of modifying and optimizing previous proto-
col techniques to work with general C&C components, we also provide an extension of
the recent Frigate circuit compiler (Mood et al, EuroS&P 2016) to effectively express
any C-style program in terms of components which can be processed efficiently using
our protocol.

1 Introduction

Garbled Circuits (GC) are currently the most common technique for practical two-party se-
cure computation (2PC). GC has advantages of high performance, low round complexity, low
latency, and, importantly, relative engineering simplicity. Both the core garbling technique
itself and its application in higher level protocols have been the subject of significant im-
provement. In the semi-honest model, there have been relatively few asymptotic/qualitative
improvements since the original protocols of Yao [Yao86] and Goldreich et al. [GMWS87]. The
more challenging task of providing security in the presence of malicious parties has seen more
striking improvements, such as reducing the number of garbled circuits needed for cut-and-
choose [LP07,LP11,s511,Lin13], exploring trade-offs between online and offline computation
phases [HKK ' 14,1L.R14], and exploring slight weakenings of security [MF06, KMRR15,A012,
KM15]. These improvements have brought the malicious security setting to a polished state
of affairs, and even small-factor performance improvements are rare.

* The first author was supported by Office of Naval Research (ONR) contract number N00014-14-C-
0113. Third and fourth author partially supported by NSF awards #1149647 and #1617197. This
project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 731583 (SODA).

Cut-and-choose. The focus of this work is to unify two leading approaches for malicious
security in GC-based protocols, by viewing them as extreme points on a single continuum.
We will find that optimal performance — often significantly better than the state-of-the-art
— is generally found somewhere in the middle of the continuum. We start with reviewing the
idea of cut-and-choose (C&C) and the two existing approaches which we generalize.

According to the “Cut-and-Choose Protocol” entry of the Encyclopedia of Cryptography
and Security [TJ11], a (non-zero-knowledge) C&C protocol was first mentioned in the protocol
of Rabin [Rab77] where this concept was used to convince a party that the other party sent it
a specially formed integer n. The expression “cut and choose” was introduced later by Chaum
in [BCCB88] in analogy to a popular cake-sharing problem: given a cake to be divided among
two distrustful players, one of them cuts the cake in two shares, and lets the other one choose.

Whole-circuit C&C. Recall, Yao’s basic GC protocol is not secure against a cheating
GC generator, who can submit a maliciously garbled circuit. Today, C&C is the standard tool
in achieving malicious security in secure computation. At the high level, it proceeds in two
phases.

CéC phase. The GC generator generates a number of garbled circuits and sends them to
GC evaluator, who chooses a subset of them (say, half) at random to be opened (with the
help of the generator) and verifies their correctness.

FEvaluation phase. If all opened circuits were constructed correctly, the players proceed to
securely evaluate the unopened circuits, and take the majority (or other protocol-prescribed)
output.

A statistical analysis shows that the probability of the GC generator violating security
(by making the evaluator accept an incorrect output) is exponentially small in the number of
circuits n.

Significant progress has been made [Lin13, HKE13,Bral3,LR14,HKK*14] in reducing the
concrete value of n needed to achieve a given failure probability. Specifically, if the evaluation
phase of the protocol requires a majority of unopened circuits to be correct (as in [sS11]),
then ~ 3s circuits are required in total for statistical security 27°. If the evaluation phase
merely requires at least one unopened circuit to be correct (e.g., [Lin13,Bral3]), then only s
circuits are required for the same security. This multiplicative overhead in garbling material
due to replication, the replication factor, in the above protocols is 3s and s, respectively. In
the amortized setting where parties perform N independent evaluations of the same circuit,
all evaluations can share a common C&C phase where only a small fraction of circuits needs
to be opened. Here, the (amortized) replication factor per evaluation is O(1) + O(s/log N)
for statistical security 27° [LR14, HKK'14]. As an example, for N = 1024 and s = 40 the
amortized replication factor is around 5.

LEGO. The LEGO paradigm (Large Efficient Garbled-circuit Optimization), introduced
by Nielsen & Orlandi [NO09], works somewhat differently. First, the generator produces many
independent garbled gates (e.g., NAND gates). Similarly to the whole-circuit C&C, the eval-
uator chooses a random subset of these gates to be opened and checked. Now, the evaluator
randomly assigns the unopened gates into buckets. The garbled gates in each bucket are
carefully combined in a certain way, so that, as long as a majority of gates in each bucket
are correct, the bucket as a whole behaves like a correct logical garbled NAND gate. These
buckets are then assembled into the final garbled circuit, which is finally evaluated.

The extra step in the LEGO paradigm of randomly assigning unopened gates into buckets
improves the protocol’s asymptotic replication factor. More precisely, if the evaluated function
has N gates, then the LEGO protocol has replication factor 2 + O(s/log N) for security 27°
(compared to s or 3s for conventional whole-circuit C&C). The main disadvantage of the
LEGO approach is that there is a nontrivial cost to connect independently generated gates
together (“soldering,” in LEGO terminology). Since soldering needs to be performed for each

wire of the Boolean circuit, LEGO’s asymptotic advantages overtake whole-circuit C&C in
performance only for circuits of large size. In Section 3 we give more details about the LEGO
paradigm.

1.1 DUPLO: building garbled circuits from big pieces

We introduce DUPLO (DUPLO Unifying Procedure for LEGO), a new approach for malicious-
secure two-party computation.

As discussed above, the two standard approaches for malicious-secure 2PC perform C&C
at the level of entire circuits (whether in the single-execution setting or in the multi-execution
setting [LR15,RR16]), or at the level of individual gates (LEGO). DUPLO is a single unifying
approach that spans the entire continuum between these extremes. The DUPLO approach
performs C&C at the level of arbitrary garbled subcircuits (which we refer to as components).
After the C&C phase has completed, the parties can use the resulting garbled components
in any number of 2PC executions, of any (possibly different) circuits that can be built from
these components.

What is the value in generalizing C6C in this way? In short, the DUPLO approach unlocks a
new degree of freedom in optimizing practical secure computation. To understand its role, we
first review in more detail the costs associated with the C&C techniques (including LEGO).

The most obvious (and often the most significant) cost is the GC replication factor,
discussed above. When evaluating a function consisting of N components (either entire
circuits, gates, or generalized components explored in this work), the replication factor is
O(1) +O(s/log N), for desired security 2~°. Clearly, using smaller components improves the
replication factor, since N is increased.

The replication factor converges to a lower limit of 2 [ZH17]. As the number of components
grows, the benefit of amortization quickly reaches its effective maximum. With practical
parameters, there is little improvement to be gained beyond a few million components.

It is when the number of components is “maxed out” that the flexibility of DUPLO starts
to have its most pronounced effect. There will be a wide range of different component sizes
that all give roughly the same replication factor. Among these choices for component size, it
is now best to choose the largest, thereby reducing the cost of soldering, or connecting the
components. This cost is proportional to the number of input/output wires of a component
(whole-circuit C&C can be also seen this way, since we have special processing for the inputs
and outputs). When a circuit is decomposed into larger components, a smaller fraction of
wires will cross a boundary between components and therefore require soldering.

In other words, we expect a “sweet spot” for ideal component size, and for computations
of realistic size this sweet spot is expected to be between the extremes of gate-level and whole-
circuit components. We confirm this analysis by the empirical performance of our prototype
implementation. We indeed find such a “sweet spot” between the extremes of component size,
as we start considering computations with millions of gates. For these realistic problem sizes,
the DUPLO approach improves performance by 4-7x over gate-based and circuit-based C&C.
Details are given in Section 7.

Is it realistic to express computations in terms of moderately sized components? We note
that the C&C components need to garble identical circuits, i.e. be interchangeable in GC
evaluation. Indeed, all NAND gates in LEGO and all circuits in whole-circuit C&C are in-
terchangeable in the sense that they are garblings of the same functionality. One may rightly
ask whether it is reasonable to expect realistic computations to be naturally decomposable
into interchangeable and non-trivial (i.e. not a single-gate or entire-circuit) subcircuits.

We argue that this is indeed a frequent occurrence in standard (insecure) computation.
Standard programming language constructs (standard-size arithmetic operations, subrou-
tine calls, loops, etc.) naturally generate identical subcircuits. Given the recent and growing
tendency to automate circuit generation and to build 2PC compilers for higher-level lan-
guages [MNPS04, HFKV12, ZE15, LWNT15 MGC™16], it is natural to presume that many
practical circuits evaluated by 2PC will incorporate many identical components. Specifically,
consider the following scenarios:

— Circuits compiled from higher level languages containing multiple calls to the same sub-
routine (e.g. algebraic calculations), loops, etc. For example, a boolean circuit for matrix
multiplication can be expressed in terms of subcircuits for multiplication and addition.

— Two parties know they will perform many secure computations of a CBC-MAC-based
construction (e.g., CMAC) using AES as the block cipher, where one party provides the
key and the other provides the message to be authenticated. They can use the AES circuit
(or a CBC-composition of several AES circuits) as the main DUPLO component, and use
as many components as needed for each evaluation of CMAC. Another example involving
AES is to consider the AES round function as the DUPLO component. As this is the
same function used internally in AES-128, AES-192 and AES-256 (only the key schedule
and number of rounds differ) this preprocessing becomes more independent of the final
functionality.

— Two parties agree on a predetermined low-level instruction set, where for each instruction
(represented as a circuit), the parties can produce a large number of preprocessed garbled
components without knowing a priori the final programs/functionalities to be computed
securely. This CPU/ALU emulation setting has recently been considered in the context
of secure computation of MIPS assembly programs [SHST15, WGMK16]. The DUPLO
approach elegantly and efficiently provides a way to elevate these results to the malicious
setting.

In Section 7 we investigate several of these scenarios in detail, and compare our perfor-
mance to that of previous work.

1.2 Related work

Maliciously secure 2PC using Yao’s garbled circuit technique has seen dramatic improve-
ments in recent years, both algorithmic/theoretical and implementations. Since the first im-
plementation in [LPS08], tremendous effort has been put into improving concrete efficiency
[LP07, NO09, PSSW09, LP11, sS11, HEKM11, KsS12, FJNT13, Bral3, FN13, HKE13, Lin13,
MR13,sS13,HMsG13,AMPR14,HKK*14,LR14,LR15,RR16, WMK17,NST17,ZH17, KRW17]
yielding current state-of-the-art prototypes able to securely evaluate an AES-128 computation
in 6 ms (multi-execution) or 65 ms (single-execution). Multi-execution refers to evaluating the
same function several times (either in serial or parallel) on distinctly chosen inputs while the
more general single-execution setting treats the computation atomically. In addition, some of
these protocols allow for dividing the computation into different phases to utilize preprocess-
ing. In the most general case the computation can be split into three consecutively dependent
phases. Following the convention of [NST17] we have:

Function-independent preprocessing depends only on the statistical and computational
security parameters s and k. It typically prepares a given number of gates/components
that can be used for later computation.

Function-dependent preprocessing uses the previously computed raw function-independent
material and stitches it together to compute the desired function f.

Online/Eval phase lastly depends on the parties inputs to the actual computation and is
typically much lighter than the previous two phases.

Of notable interest are the protocols of [RR16] and [WMK17] which represent the cur-
rent state-of-the-art protocols/prototypes for the multi- and single-execution settings, re-
spectively. Both protocols also support function-dependent preprocessing. With regards to
constant-round function-independent preprocessing the works of [NST17,ZH17, KRW17] are
the most efficient, however at this time only the work of [NST17] provides a public prototype
implementation.

In addition to the above garbled circuit approaches another very active and fruitful re-
search area in secure computation is the secret-sharing based protocols [NNOB12, DPSZ12,
DKL'13,KSS13, DZ13, DLT14, LOS14, BLN*15, KOS16, DZ16, DNNR16]. These protocols
share a common blueprint in that initially the parties secret share their inputs and inter-
actively compute the function in question. This has the advantage of being less bandwidth
demanding than the garbled circuit approach, but at the cost of requiring O(depth(f)) rounds
of interaction to securely evaluate f. This approach also has the benefit of usually supporting
function-independent preprocessing and allowing for n participating parties rather natively.
In contrast, it seems considerably harder adapting the garbled circuit approach to n-parties
[BMR90, LPSY15,L.SS16].

The idea of connecting distinct garbled circuits has also previously been studied in [MGBF14]
by mapping previous output garbled values to garbled input values in a following computa-
tion. Their model and approach is different from ours and is mainly motivated by enabling
garbled state to be reusable for multiple computations. Finally we point out the recent work of
[GLMY16] for the semi-honest case of secure 2PC using garbled circuits. [GLMY16] likewise
considers splitting the function of interest into sub-circuits and processes these independently.
As there is no cut-and-choose overhead in the semi-honest setting, their approach is motivated
primarily by allowing function-independent preprocessing using the garbled components as
building blocks. Although the high-level idea is similar to ours, we apply it in a completely
different setting and use different techniques. Further, while malicious security is often signif-
icantly more expensive, the efficiency gap in the linking and online phase between [GLMY16]
and our protocol is surprisingly small. In the application of computing an AES-128 (by pre-
processing the required round functions) we see that [GLMY16] sends 82kB in the online
phase (link + evaluate) vs. 88 kB using our protocol. For the offline step the gap is larger
due to the overhead of C&C in the malicious case. However utilizing amortization this can be
reduced significantly and in some cases be as low as 3-5x that of the semi-honest protocols’.
We also highlight that our extension to the Frigate compiler for transforming a high-level
C-style program into Boolean circuit sub-components should be directly applicable for this
related work. To the best of our knowledge [GLMY16] does not provide such a tool.

1.3 Our Contributions and Outline of the Work

The main contribution of the paper is putting forward and technically and experimentally
supporting the idea of generalizing C&C protocols to arbitrary subcircuits. Due to the gener-
ality of the approach and the performance benefits we demonstrate, we believe the DUPLO
approach will be the standard technique in 2PC compilers. As a lower-level technical contri-
bution, we propose several improvements to garbling and soldering for this setting.

We implemented our solution and integrated it with the state-of-the-art compiler frame-
work Frigate [MGC™16]. Experimentally, we report of a 4-7x improvement in total running
time compared to [WMK17] for certain circuits. For the multi-execution setting we also im-
prove the performance of [RR16] by up to 5x in total running time. We accomplish the

above while at the same time retaining the desirable preprocessing and reactive capabilities
of LEGO.

We start our presentation with a more technical overview of the state of the art in LEGO,
including soldering techniques in Section 3. We then present the technical overview of our
approach and improvements in Section 4. We present the overview of our DUPLO framework,
including several implementation optimizations and the Frigate extensions in Section 6. We
report on performance in Section 7.

2 Preliminaries

Our DUPLO protocol is a protocol for 2PC that is secure in the presence of malicious ad-
versaries. We define security for 2PC using the framework of Universal Composition (UC),
due to Canetti [Can01]. This framework is demanding, as it guarantees security when such
protocols are executed concurrently, in arbitrary environments like the Internet.

A detailed treatment of UC security is beyond the scope of this work. At the high level,
security is defined in the real-ideal paradigm. We imagine an ideal interaction, in which parties
give their inputs to a trusted third party who computes the desired function f and announces
the result. In this interaction, the only thing a malicious party can do is select its input
to f. In the real interaction, honest parties interact following the prescribed protocol, while
malicious parties may arbitrarily deviate from the protocol. We say that the protocol securely
realizes f if the real world is “as secure as” the ideal world. More formally, for every adversary
attacking the real protocol, there is an adversary (called “simulator”) “attacking” the ideal
interaction achieving the same effect.

We assume some familiarity with modern garbled circuit constructions, in particular,
the Free-XOR optimization of Kolesnikov & Schneider [KS08]. This is reviewed in Sec-
tion 3. Free-XOR garbled circuits are secure under a circular correlation-robust hash as-
sumption [CKKZ12].

3 Overview of the LEGO Paradigm

We now give more details about the mechanics of the LEGO paradigm. Here we describe the
MiniLEGO approach of [FINT13]. We chose MiniLEGO as it is the simplest LEGO protocol
to present. At the same time, it contains and conveys all relevant aspects of the paradigm.

3.1 Soldering via XOR-Homomorphic Commitments

The sender generates many individual garbled NAND gates. Each garbled gate g is associated
with wire labels Lg, L; for the left input wire, labels RS, R; for the right input wire, and labels
Og7 O; for the output wire. Here the superscript of each label indicates the truth value that it
represents. In MiniLEGO, all gates are garbled using the Free-XOR optimization of Kolesnikov
& Schneider [KS08]. Therefore, there is a global (secret) value A so that L, = L) & A
and R; = Rg @® A and O; = 02 @ A. More generally, a wire label Kg can be written as
KS = Kg @ b+ A. Importantly, the same A is used for all garbled gates.

The garbled gate consists of the garbled table itself (i.e., for a single NAND gate, the
garbled table consists of two ciphertexts when using the scheme of [ZRE15]) along with
XOR-homomorphic commitments to the “zero” wire labels Lg, Rg, and Og. A global
homomorphic commitment to A is also generated and shared among all gates.

To assemble assorted garbled gates into a circuit, the LEGO paradigm uses a technique

called soldering. Imagine two wires (attached to two unrelated garbled gates) whose zero-keys

are A° and B°, respectively. The sender can “solder” these wires together by decommiting
to S = A% @ B°. We require that such a decommitment can be performed given separate
commitments to A° and BY, and that the decommitment reveals no more than S. Importantly,
S is enough information to allow the receiver to transfer a garbled truth value from the first
wire to the second (and vice-versa). For example, if the receiver holds wire label A (for
unknown b), he can compute

AoS=A"eb-A)eS=B"ab- A= DB,

which is the garbled encoding of the same truth value, but on the other wire.

Gates are assigned to buckets by the receiver, where each bucket, while possibly containing
malicious gates, will be assembled to correctly implement the NAND gate. For the gates inside
a bucket, the sender therefore solders all their left wires together, all their right wires together,
and all their output wires together with the effect that the bucket can operate on a single
set of input labels and produce a single set of output labels. For g gates in a bucket, this
gives B ways to evaluate the first gate (use solder values to transfer its garbled inputs to the
ith bucket gate, evaluate it, then transfer the result back to the first gate). In the most basic
form of LEGO, the cut-and-choose ensures that the majority of gates within the bucket are
good. Hence the evaluator can evaluate the bucket in 5 ways and take the majority output
wire label. Each bucket therefore logically behaves like a correct garbled gate.

The buckets are then assembled into a complete garbled circuit by soldering output wires
of one bucket to the input wires of another.

3.2 Recent LEGO Improvements

In recent years several improvements to the LEGO approach has been proposed in the litera-
ture. The TinyLEGO protocol [FINT15] provide several concrete optimizations to the above
MiniLEGO protocol, most notably a more efficient bucketing technique. The subsequent im-
plementation [NST17] further optimized the protocol and showed that, combined with the
XOR-homomorphic commitment scheme of [FINT16,CDD*16], the LEGO paradigm is com-
petitive with previous state-of-the-art protocols for malicious 2PC, in particular in scenarios
where preprocessing is applicable.

In addition to the above works, the protocol of [ZH17] also explores optimizations of LEGO
using a different soldering primitive, dubbed XOR-Homomorphic Interactive Hash (XOR-
HIH). This technique has a number of advantages over commitments as they allow for a better
probability than MiniLEGO and TinyLEGO of catching cheating in the C&C phase. XOR-
HIH also yields buckets only requiring a single “correct” gate, whereas MiniLEGO requires a
majority and TinyLEGO requires a mixed majority of gates and wire authenticator gadgets.
However, due to the communication complexity of the proposed XOR-HIH instantiation being
larger than that of the [FJNT16,CDD"16] commitment schemes, the overall communication
complexity of [ZH17] is currently larger than that of TinyLEGO.

4 Overview of Our Construction

DUPLO protocol big picture. At the high level, our idea is to extend the LEGO paradigm
to support components of arbitrary size and distinct functionalities, rather than just a single
kind of component that is either a single gate or the entire circuit. The approach is similar
in many ways to the LEGO protocol and is broken up into three phases.

In the function-independent phase, the garbler generates many independent garblings of
each kind of component, along with related commitments required for soldering. For each

kind of component, the parties perform a cut-and-choose over all garbled components. The
receiver asks the garbler to open some fraction of these components, which are checked for
correctness. The remaining components are assembled randomly into buckets. The soldering
required to connect components into a bucket is done at this step.

In the function-dependent phase, the parties agree on circuits that can be assembled from
the available components. The parties perform soldering that connects different buckets to-
gether, forming the desired circuits.

In the online phase, the parties have chosen their inputs for an evaluation of one of the
assembled circuits. They perform oblivious transfers for the evaluator to receive its garbled
input, and the garbler also releases its own garbled inputs. The evaluator then evaluates the
DUPLO garbled circuit and receives the result.

Challenges and New Techniques. The seemingly simple high-level idea described above en-
counters several significant technical challenges in its realization. We address the issues in
detail in Section 5. Here we mention that the main challenge is that the LEGO paradigm uses
the same Free-XOR offset A for all garbled components, and its soldering technique crucially
relies on this fact. This is not problematic when components are single gates, but turns out to
lead to scalability issues for larger components. As a result, we must change the fundamental
garbling procedure, and therefore change the soldering approach.

The TinyLEGO approach uses an input recovery technique inspired by [Lin13]. The idea
is that if the garbler cheats in some components, then the resulting garbled circuit will either
give the correct garbled output, or else it will leak the garbler’s entire input! In the latter
case, the evaluator can simply evaluate the function in the clear. As above, the TinyLEGO
approach to this input recovery technique relies subtly on the fact that the components are
small, and as a result it does not scale for large components. We introduce an elegant new
technique that works for components of any size, and improves the concrete cost of the input
recovery mechanism.

Implementation, Fvaluation, Integration. We implemented a high-performance prototype of
our protocol to explore the effect of varying component sizes in the C&C paradigm. We study
a variety of scenarios and parameter choices and find that our generalizations of C&C can
lead to significant performance improvement. Details are given in Section 7.

We have adapted the Frigate circuit compiler of Mood et al. [MGC™16], which compiles a
variant of C into circuits suitable for garbled circuit 2PC applications. We modified Frigate so
that subroutines are treated as DUPLO components. As an example, a CBC-MAC algorithm
that makes calls to an AES subroutine will be compiled into an “outer circuit” built from
atomic AES components, as well as an “inner circuit” that implements the AES component
from boolean gates. In our implementation, the inner circuits are then garbled as DUPLO
components, and the outer circuits are used to assemble the components into high-level func-
tionalities.

5 DUPLO Protocol Details

We now give more details about the challenges in generalizing the LEGO paradigm, and our
techniques to overcome them.

5.1 Different A’s

The most efficient garbling schemes use the Free-XOR optimization of [KKS08]. MiniLEGO/TinyLEGO
are compatible with Free-XOR, and in fact they enforce that all garbled gates use the same

global Free-XOR difference A. However, having a common A does lead to some drawbacks.
In particular, consider the part of the cut-and-choose step in which the receiver chooses some
garbled gates to be opened/checked. If we fully open a garbled gate, both wire labels are
revealed for each wire. In MiniLEGO, this would reveal A and compromise the security of
the unopened gates, which share the same A. To avoid this, the MiniLEGO approach is to
make the sender reveal only one out of the four possible input combinations to each opened
gate (by homomorphically decommitting to the input wire labels). Note that the receiver may
now have only a 1/4 probability of detecting an incorrectly garbled gate (the technique of
[ZH17] improves this probability to 1/2). The cut-and-choose analysis must account for this
probability.

This approach of only partially opening garbled gates does not scale well for large compo-
nents. If a component has n input wires, then the receiver will detect bad components with
probability 1/2™ in the worst case. In the DUPLO protocol, we garble each component ¢ with
a separate Free-XOR offset A, (so each gate inside the garbled component uses A., but other
garbled components use different offset). Hence, DUPLO components can be fully opened in
the cut-and-choose phase, while XOR gates are still free inside each component.

As a result:

— Bad components are detected with probability 1, so the statistical analysis for DUPLO
cut-and-choose is better than Mini/TinyLEGO by a constant factor.

— We can use a variant of the optimization suggested in [GMS08] to save bandwidth for cut-
and-choose. Initially the sender only sends a short hash of each garbled component. Then
to open a component, the sender decommits to the input and output keys as well as the
A, used for garbling the component. Hence, communication for the opened components
is minimal.

Adapting soldering. It remains to describe how to adapt the soldering procedure to solder
wires with different Free-XOR offsets (the MiniLEGO approach relies on the offsets being
the same). Here we adapt a technique of [AHMRI15] for soldering wires. Using the point-
and-permute technique for garbled circuits [BMR90], the two wire labels for each wire have
random and opposite least-significant bits. We refer to this bit as the color bit for a wire label.
The evaluator sees the color bit of a wire, but not the truth value of a wire.

In MiniLEGO, the garbler commits to the “zero-key” for each wire, which is the wire
label encoding truth value false. In DUPLO, we have the garbler generate homomorphic
commitments to the following:

— For each wire, commit to the wire label with color bit zero. In this section we therefore
use notation K to denote a wire label with color bit (not necessarily truth value) b.

— For each wire, commit to an indicator bit o for each wire that denotes the color bit of
the false wire label. Hence, wire label K? has truth value b & o.

— For each component ¢, commit to its Free-XOR offset A..

Consider a wire i with labels (K?, K} = K? & A;) and indicator bit o;, and another wire
j in a different component with labels (K?7 KJ1 = K]O @ A;) and indicator bit o;. To solder
these wires together, the garbler will give homomorphic decommitments to the following solder
values:

s7 =0; ®oj; SK:KiOEBKjQ@SU'Aj; SA=A;0 A4

Note that the decommitment to S can be reused for all wires soldered between these two
components. Now when the evaluator learns wire label K? (with color bit b visible), he can

compute:
KleSKab S2=Kle (K)o K)®s™ Aj)ab (A 4)
=b-A@(K)@s” - A)@b-A; Db A
_ 0 o _ s7 @b
=K;®(s7®b)-A; = K;

Also note that a common truth value has opposite color bits on wires i & j if and only if
s7 = 0; @ 0; = 1. Hence, the receiver obtains the wire label K; @ which encodes the same

truth value as Kf.

DUPLO bucketing. In Section 3.1 we described how [FJNT13] used a bucket size that guaran-
teed a majority of correct AND gates in each bucket. In this work we use the original bucketing
technique of [NOO09] that only requires a single correct component in each bucket, but requires
a majority bucket of wire authenticator (WA) gadgets on each output wire. The purpose of a
WA is to accept or reject a wire label as “valid” without revealing the semantic value on the
wire, and as such a simple construction can be based on a hash function and C&C. A WA
consists of a “soldering point” (homomorphic commitments to a A and a zero-key), along
with an unordered pair {H(K?), H(K & A)}. A wire label K can be authenticated checking
for membership H(K) € {H(K?), H(K? & A)}. In order to defeat cheating a C&C step is
carried out on the WAs to ensure that a majority of any WA bucket only accepts committed
wire labels. The choice of using WAs in this work is motivated by the fact that DUPLO com-
ponents can be of arbitrary size and are often much larger than a single gate. By requiring
fewer such components in total, we therefore achieve much better overall performance as WAs
are significantly cheaper to produce in comparison to garbled components.

Avoiding commitments to single bits. We also point out that the separate commitments to
the zero-label K and the indicator bit o; can be combined into a single commitment. The
main idea is that the least significant bit of K? is always zero (being the wire label with color
bit zero). Similarly, when using Free-XOR, the offset A must always have least significant
bit 1. Hence in the solder values S and S4, the evaluator knows a priori what the least
significant bit will be. We can instead use the least significant bits of the K? commitments to
store the indicator bit ¢; so that homomorphic openings convey o; @ ;. This approach saves
s bits of communication per wire commitment over the naive approach of instantiating the
bit-commitments using [FJNT16] using a bit-repetition code with length s.

In the online evaluation phase, the garbler decommits to the indicator bits of the evalu-
ators designated input and output. In this case, the garbler does not want to decommit the
entire wire label as this would potentially let the evaluator learn the global difference A (if
the evaluator learned the opposite label through the OTs or evaluation). To avoid this, we
have the garbler generate many commitments to values of the special form R||0 for random
R € {0,1}*~1. Using the homomorphic properties of these commitments, this can be done
efficiently by having the garbler decommit s random linear combinations of these commit-
ments to ensure that all of them have the desired form with probability 1 —27°. Then when
the garbler wants to decommit to a wire label’s indicator bit only, it gives a homomorphic
decommitment to the wire label XOR a mask R||0, which hides everything but the indicator
bit.

5.2 Improved Techniques for Circuit Inputs

We also present a new, more efficient technique for input recovery. The idea of input recov-
ery [Linl3] is that if the sender in a 2PC protocol cheats, the receiver will learn the sender’s
input (and can hence compute the function output).

10

Within each DUPLO bucket, the cut-and-choose guarantees at least one correctly garbled
component and a majority of correct output-wire authenticators. As such, the evaluator is
guaranteed to learn, for each output wire of a component, either 1 or 2 valid garbled outputs.
If only one garbled output is obtained, then it is guaranteed to be the correct one. Otherwise,
the receiver learns both wire labels and hence the Free-XOR offset A, for that component.
The receiver can then use the solder values to iteratively learn both wire labels on all wires in
the circuit (at least all the wires in the connected component in which the sender cheated).

However, knowing both wire labels does not necessarily guarantee that the receiver learns
their corresponding truth values. We need a mechanism so that the receiver learns the truth
value for the sender’s garbled inputs.

Our approach is to consider special input-components. These consist of an empty garbled
circuit but homomorphic commitments to a zero-wire-label K and a Free-XOR, offset A
that serve as soldering points. Suppose for every input to the circuit, we use such an input
component that is soldered to other components. The sender gives his initial garbled input
by homomorphically decommitting to either the zero wire-label K or K & A. If the sender
cheats within the computation, the receiver will learn A. The key novelty in our approach is
to use self-authenticating wire labels. In an input-gadget, the false wire label must be
H(A) and the true wire label must be H(A) ® A (the sender will still commit to whichever
has color bit zero). Then when the sender cheats, the receiver learns A, and can determine
whether the sender initially opened H(A) (false) or H(A) & A (true).

This special form of wire labels can be checked in the cut-and-choose for input components.
In the final circuit, we assemble input-components into buckets to guarantee that a majority
within each bucket is correct. Then the receiver can extract a cheating sender’s input according
to the majority of input-components in a bucket.

5.3 Formal Description, Security

Our protocol implements secure reactive two-party computation [NR16], i.e., the computation
has several rounds of secret inputs and secret outputs, and future inputs and as well as the
specification of future computations might depend on previous outputs.

To be more precise, let F denote the ideal functionality fg‘éqsc in Fig. 9 on page 1040
in [NR16]. Recall that this functionality allows to specify a reactive computation by dy-
namically specifying the functionality of sub-circuits and how they are linked together. The
command (FUNC, ¢, f) specifies that the sub-circuit identified by ¢ has circuit f. The com-
mand (INPUT, ¢,4,z) gives input = to wire 7 on sub-circuit ¢. Only one party supplies z, the
other party inputs (INPUT,¢,4,?) to instruct F that the other party is allowed to give an
input to the specified wire. The command defines the wire to have value x. The command
(LINK, t1, 41, t2, i2) specifies that output wire i; of sub-circuit ¢; should be soldered on input
wire io of sub-circuit to. When an output value becomes defined to some z, this in turn de-
fines the linked input wire to also have value z. The command (GARBLE, ¢, f) evaluates the
sub-circuit ¢. It assumes that all the input wires have already been defined. It runs f on these
values and defines the output wires to the outputs of f. There are also output commands
that allow to output the value of a wire to a given party. They may be called only on wires
that had their value defined.

The set L allows to restrict the set of legal sequences of calls to the functionality. We need
the restriction that all (FUNC,t, f) commands are given before any other command. This
allows us to compute how many times each f is used and do our preprocessing. The function
@ allows to specify how much information about the inputs and outputs of F is allowed to
leak to the adversary. We need the standard setting that we leak the entire sequence of inputs
and outputs to the adversary, except that when an honest party has input (INPUT,,14,x),

11

then we only leak (INPUT, t,,?) and when an honest party has output (OUTPUT, ¢,4,), then
we only leak (OUTPUT, ,1, 7).

With many components, many buckets, and many 2PC executions, the formal descrip-
tion of our protocol is rather involved. It is therefore deferred to Appendix A while we in
Appendix B prove the following theorem.

Theorem 1. Qur protocol implements F in the UC framework against a static, poly-time
adversary.

6 System Framework

In this section we give an overview of the DUPLO framework and our extension to the Frigate
compiler that allows to transform a high-level C-style program into a set of boolean circuit
components that can be fed to the DUPLO system for secure computation. We base our
protocol on the recent TinyLEGO protocol [FINT15], but adapted for supporting larger and
distinct components. Our protocol has the the following high-level interface:

Setup A one-time setup phase that initializes the XOR-homomorphic commitment protocol.

PreprocessComponent(n, f) produces n garbled representations F; of f that can be securely
evaluated.

PrepareComponents(i) produces i input authenticators that can be used to securely transfer
input keys from garbler G to evaluator E. In addition, for all F; previously constructed
using PreprocessComponent, this call constructs and attaches all required output authen-
ticators. These gadgets ensure that only a single valid key will flow on each wire of all
garbled components (otherwise the evaluator learns the generator’s private input).

Build(C) Takes a program C as input, represented as a DAG where nodes consist of the in-
put/output wires of a set of (possibly distinct) components { f;} and edges consist of links
from output wires to input wires for all of these f;’s. The Build call then looks up all previ-
ously constructed F} for each f; and stitches these together using the XOR-homomorphic
commitments so that they together securely compute the computation specified by C.
This call also precomputes the required oblivious transfers (OTs) for transferring E’s
input securely.

Evaluate(x,y) Given the plaintext input = of garbler G and y of evaluator E, the parties
can now compute a garbled output Z, representing the output of the f(z,y). The system
allows both parties to learn the full output, but also distinct output, e.g. G can learn the
first half of f(z,y) and E learn the second half.

Decode Finally the system allows the parties to decode their designated output. The reason
why we have a dedicated decode procedure is to allow partial output decoding. Based on
the decoded values the parties can then start a new secure computation on the remaining
non-decoded output, potentially adding fresh input as well. The input provided and the
new functionality to compute can thus depend on the partially decoded output. This
essentially allows branching within the secure computation.

Following the terminology introduced in [NST17] we have that the Setup, PreprocessCompo-
nent, and PrepareComponents calls can be done independently of the final functionality C.
These procedures can therefore be used for function-independent preprocessing by restrict-
ing the functionality C to be expressible from a predetermined set of instructions. The Build
procedure clearly depends on C, but not on the inputs of the final computation, so this phase
can implement function-dependent preprocessing. Finally the Evaluate and Decode procedures
implement the online phase of the system and depend on the previous two phases to run.

For a detailed pseudocode description of the system as well as a proof of its security we
refer the reader to Appendix A and Appendix B, respectively.

12

6.1 Implementation optimizations

As part of our work we developed a prototype implementation in C+-+ using the latest ad-
vances in secure computation engineering.* As the basis for our protocol we start from the
1libOTe library for efficient oblivious transfer extension [Rinl7]. As we in this work require UC
XOR-homomorphic commitments to the input and output wires of all components we instan-
tiate our protocol with the efficient construction of [FJNT16] and use the implementation of
[RT17] in our prototype.

As already mentioned, our protocol is described in detail in Appendix A. However, for
reasons related to efficiency our actual software implementation deviates from the high-level
description in several aspects

— In the homomorphic commitment scheme of [FJNT16], commitments to random values
(chosen by the protocol itself) are cheaper than commitments to values chosen by the
sender. Hence, whenever applicable we let the committed key-values be defined in this
way. This optimization saves a significant amount of communication since the majority
of commitments are to random values.

— Along the same lines we heavily utilize the batch-opening mechanism described in [FINT16].
The optimization allows a sender to decommit to n values with total bandwidth nk+O(s)
as opposed to the naive approach which requires O(nks).

— In the PrepareComponents step we construct all output-wire key authenticators using
a single global difference Ay,. This saves a factor 2x in terms of the required number
of commitments and solderings, at the cost of an incorrect authenticator only getting
caught with probability /2 (as opposed to prob. 1 using distinct differences). However as
the number of required key authenticators depends on the total number of output wires
of all garbled components the effect of this difference in catching probability does not
affect performance significantly when considerings many components.

In addition to the above optimizations, our implementation takes full advantage of modern
processors’ multi-core capabilities and instruction sets. We also highlight that our code leaves
a substantially lighter memory footprint than the implementation of [NST17] which stores all
garbled circuits and commitments in RAM. In addition to bringing down the required number
of commitments on the protocol level, our implementation also makes use of disk storage
in-between batches of preprocessed component types. This has the downside of requiring
disk reads of the garbled components during the online phase, but we advocate that the
added flexibility and possibility of streaming preprocessing is well worth this trade-off in
performance.

6.2 Frigate Extension

The introduction of Fairplay [MNPS04], the first compiler targeted for secure computation
(SC), has stimulated significant interest from the research community. Since then, a series
of new compilers with enhanced performance and functionality have been proposed, such as
CBMC [HFKV12], Obliv-C [ZE15], and ObliVM [LWN*15]. Importantly, the state-of-the-art
compiler, Frigate [MGC*16], features a modular and extensible design that simplifies the
circuit generation in secure computation. Relying on its rich language features, we provide an
extension to the original Frigate framework, in which we divide the specific input program
into distinct functions. We can then generate a circuit representation for each function which is
fully independent from the circuit representation of other functions. Due to this independence
we can easily garble each distinct function separately using the DUPLO framework and

4 Available at https://github.com/AarhusCrypto/DUPLO

13

afterwards solder these back together such that they compute the original source program. As
an additional improvement, which is tangential to the main thrust of this work, we construct
an AES module that optimizes the number of uneven gates (all even gates can be garbled
and evaluated without communication using e.g. [ZRE15]).

In the following, we describe the details of our compiler extension. Similar to the Frigate
output format, our circuit output contains a set of input and output calls, gate operations, and
function calls. The input and output calls consist of wires, which we enumerate and manage.
We also use wires to represent declared variables in the source program. Each wire (or, rather
its numeric id) is placed in a pool, and is ready for use whenever a new variable is introduced.
Our function representation however differs from that of Frigate. In that work, each function
reserves a specific set of wire values which requires no overlap among the functions’ wires.
As a result, Frigate’s function representation is dependent on that of other functions. We
remove this dependency by creating and managing separate wire pools for each function. In
particular, every time a variable is introduced, our compiler searches for the free wires with
the smallest indices in the pool of the current working function. Similarly to the original
Frigate, our compiler will free the wires it can after each operation or variable assignment.
Hence, our function is represented independently of other functions.

We now describe our strategy for constructing our optimized AES circuit. A key compo-
nent of AES is the Rijndael S-Box [DR02] which is a fixed non-linear substitution table used in
the byte substitution transformation and the key expansion routine. The circuit optimization
in our AES-128 source program is described in the context of this S-Box. We note that if we
generate the S-Box dynamically using the Frigate compiler, this will not optimize the number
of uneven gates substantially. Hence, we create an AES-128 source program that embed a
highly optimized S-Box circuit statically. To the best of our knowledge, [BP09] presents one
of the most efficient S-Box circuit representation which contains only 32 uneven gates in a
total of 115 gates. Therefore, we integrate this S-Box into our AES-128 source program, which
allows our Frigate extension to optimize the number of uneven gates. For the key-expanded
AES-128 circuit, which takes a 128-bit plaintext and ten 128-bit round keys as input and
outputs a 128-bit ciphertext, this results in 5,120 uneven gates. This is almost a 2x reduction
compared the AES-128 circuit originally reported in Frigate. Furthermore, our AES-128 cir-
cuit has 640 fewer uneven gates than the circuit reported in TinyGarble [SHS*15] which is the
current best compiler written in Verilog. For completeness we note that for the non-expanded
version of AES-128, our compiled circuit results in 6,400 uneven gates.

7 Performance

In order to evaluate the performance of our prototype we run a number of experiments on
a single server with simulated network bandwidth and latency. The server has two 36-core
Intel(R) Xeon(R) E5-2699 v3 2.30 GHz CPUs and 256 GB of RAM. That is, 36 cores and
128 GB of RAM per party. As both parties are run on the same host machine we simulate
a LAN and WAN connection using the Linux t¢ command: a LAN setting with 0.02ms
round-trip latency, 1 Gbps network bandwidth; a WAN setting with 96 ms round-trip latency,
200 Mbps network bandwidth.

For both settings, the code was compiled using GCC-5.4. Throughout this section, we per-
formed experiments with a statistical security parameter s = 40 and computational security
parameter k = 128. The running times recorded are an average over 10 trials.

We demonstrate the scalability of our implementation by evaluating the following circuits:

AES-128 circuit consisting of 6,400 AND gates. The circuit takes a 128-bit key from one
party and a 128-bit block from another party and outputs the 128-bit ciphertext to both.

14

(Note that this functionality is somewhat artificial for secure computation as the AES
function allows decryption with the same key; thus the player holding the AES key can
obtain the plaintext block. We chose to include the ciphertext output to the keyholder
to measure and demonstrate the performance for the case where both parties receive
output.)

CBC-MAC circuit with different number of blocks m € {16, 32, 64, 128, 256, 1024} using
AES-128 as the block cipher. The circuit therefore consists of 6,400m AND gates. The
circuit takes a 128-bit key from one party and m 128-bit blocks from another party and
outputs a 128-bit block to both.

Mat-Mul circuit consisting of around 4.2 million AND gates. The circuit takes one 16 x 16
matrix of 32-bit integers from each party as input and outputs the 16 x 16 matrix product
to both.

Random circuit consisting of 2" AND gates for various n where topology of the circuit is
chosen at random. The circuit takes 128-bit input from each party and outputs a 128-bit
value to both.

7.1 Effect of Decomposition

In this section we show how DUPLO scales for the above-mentioned circuits, when considering
subcomponents of varying size. As discussed in Section 1.1, we expect the performance of our
protocol to be optimal for a subcomponent size somewhere inbetween the extremes of whole-
circuit and gate-level C&C. We empirically validate this hypothesis by running two kinds
of experiments, one for the randomly generated circuits and one for the real-world AES-
128, CBC-MAC-16 and Mat-Mul circuits. The purpose of the random circuit experiment is
to explore the trade-offs in overall performance between different decomposition strategies.
For the latter experiment we aim to find their optimal decomposition strategy, both to see
how this aligns to the random circuit experiment, but also for use in our later performance
comparison in Section 7.2.

Random Clircuits. In order to build a random circuit consisting of 2 AND gates that is
easily divisible into different subcomponent sizes we initially generate a number of smaller
random circuit containing 28 AND gates with 256 input wires and 128 output wires. This
is done by randomly generating non-connected XOR and AND until exactly 28 AND gates
have been generated. Then for each of these generated gates ¢ we assign their two input wires
at random from the set of gates with index smaller than ¢ (the gate id ¢ is also the gate’s
output wire). Finally we solder 2"~! copies of these components together into a final circuit
C, thus consisting of 2™ AND gates overall. We consider n € {10,12,14,16,18,19,20} in this
experiment, and for each of these we build a circuit of size 2™ using several values of ¢.

As we are only considering relative performance between different strategies in these ex-
periments we run our implementation using a single thread for each party on the previously
mentioned LAN setup.® We summarize our findings in Figure 1. The x-axis of the figure rep-
resents the continuum from whole-circuit C&C (¢ = n) towards gate-level C&C (¢ = 0). The
overall trend of our experiments is strikingly clear, initially as the number of subcomponents
increases (t decreases) the running time goes down as well due to our protocol taking advan-
tage of the amortization benefits offered by the LEGO paradigm. However for all circuit sizes
considered it is also apparent that at some point this benefit is outweighed by the overhead
of soldering and committing to the increasing number of input/output wires between the
components. It is at exactly this point (the vertex of each graph), in the sweet spot between

5 For best absolute performance, we would always run our implementation using several threads per
party.

15

—_— = 10 e n=12—n=14 n=16
—n=18—n=19——n =20

T T T T T
25,000 B

20,000 |-

15,000 |- .

10,000 |- .

Running time ms

5,000 |-

! ! ! ! ! !
920 917 ol4 g1l 8 95
Subcomponent size (2° AND gates)

Fig. 1. DUPLO performance for random circuits consisting of 2" AND gates divided into 2"~*
subcomponents.

substantial LEGO amortization and low soldering overhead, that DUPLO has it’s optimal
performance. We thus conclude that for an ideally decomposable circuit such as the ones
generated in this experiment the viability of the DUPLO approach is apparent.

Real-world circuits. The experiments for the random circuits show that the DUPLO approach
for C&C does have merit for circuits that can be divided into multiple identical subcompo-
nents. Clearly, this is a very narrow class of functions so in addition we also evaluate our
prototype on the previously mentioned real-world circuits in order to investigate their op-
timal decomposition strategy. We first describe our approach of dividing these circuits into
subcomponents.

AES-128 We consider the following three strategies:

— Five kinds of subcomponents: each computing one of the functions of the AES al-
gorithm, that is 1x Key Expansions (1,280 AND gates), 11x AddRoundKey, 10x
SubBytes (512 AND gates), 10x ShiftRows, and 9x MixColumus.

— Three kinds of subcomponents: 1x Key Expansions and Initial Round (1,280 AND
gates); 9x AES Round Functions (each 512 AND gates); 1x AES Final Round (512
AND gates).

— A single component consisting of the entire AES-128 circuit (6,400 AND gates), i.e.
whole-circuit C&C.

CBC-MAC-16 We consider decomposing this circuit into a single subcomponent of varying
size. In each case, the component contains ¢ € {16,8,4,2,1} AES-128 blocks, meaning
each of these consists of 6,400 AND gates.

Mat-Mul In order to multiply two matrices A, B use the block-matrix algorithm: We divide
A, B into mxm 32-bit submatrices A; ;, B; ; for ¢, j € [1,16/m]. To compute AB, the block
entries A; ;, are first multiplied by the block entries By, ; for k € [1,m], while summing
the results over k. It is therefore the case that the experiment contains two different kinds
of components, m x m 32-bit matrix product and m x m 32-bit matrix addition. In our
experiment we consider block matrix sizes m € {16,8,4,2} and the concrete number of
AND gates for each kind of component are reported in Table 1.

16

When performing N = 1, 32,128 executions of AES-128 in parallel, we observe that our
protocol performs best when considering the entire circuit as a single component. This is in
contrast to what we observed in the random circuit experiment, but can be explained by the
non-uniformity of the considered decomposition strategies. The fact that we split the AES-
128 into three or five relatively small subcomponents, some of which are only used once, has
a very negative influence on DUPLO performance as there is some overhead associated with
preparing each component type while at the same time no LEGO-style amortization can be
exploited when preparing only a single copy.

10% |- N=1 I
. F — N =32 ||
g - —— N=128
g L i
:D L B
g
2 L |
=]
=
~ 10% | E
ge L]
5 L i
g L |
<< L |
L | | L
16 8 4 21

Subcomponent Size (#AES-128)

Fig. 2. DUPLO performance for N = 1, 32, 128 parallel executions of the CBC-MAC-16 circuit using
different decomposition strategies.

For the CBC-MAC-16 circuit however whole-circuit C&C is not the optimal approach and
we summarize the observed performance for the different decompositions in Figure 2. Here we
see that the best strategy is to decompose the circuit into many identical subcomponents. The
trend observed is similar to the random circuit experiments where initially it is best to opti-
mize for many identical subcomponents. In particular for a single execution of CBC-MAC-16
it is best to decompose into 16 copies of the AES-128 circuit yielding around 5x performance
increase over the whole-circuit approach. For the parallel executions (which contain overall
many more AES-128 circuits) we can see that it is best to consider subcomponents consisting
of 4xAES-128 circuits each. The lower relative performance difference between the strate-
gies for the parallel executions is due to there being a minimum of N circuits for utilizing
LEGO amortization, even for the whole-circuit approach. However as the number of total
subcomponents grow it can be seen that there are savings to be had by grouping executions
together.

Finally for the Mat-Mul circuit we see a similar overall trend as in the CBC-MAC-16
experiment (Table 1 and Figure 3). Most notably is the performance increase for a single
execution yielding around 31x by considering blocks of size 2 x 2 instead of a single whole-
circuit 16 x 16. This experiment indeed highlights the performance potential of the DUPLO
approach for large computations that can naturally be decomposed into distinct repeating
subcomponents, in this case matrix product and matrix addition. This is in contrast to the
previous AES-128 example where this approach was penalized. The difference however is that
in the Mat-Mul experiment each subcomponent is repeated several times and therefore all
benefit from LEGO amortization.

17

Block ||Component Size| Number Executions N
Size Mult [Add 1 [32] 128

2x2 8,192 124 | 11,160| 7,815 | 7,554

4x4 || 65,536 | 496 | 14,847 |7,539(6,622

8x8 || 524,288 | 1,984 | 52,334 | 9,615 | 7,324

16x16({4,194,304| O 351,002 |11,338| 9298
Table 1. Component sizes and amortized running time per execution for Mat-Mul (ms). Best per-
formance marked in bold.

i N1 ||
i — N=32 |]
- — N =128 |

10°

Amortized Running time ms

—_
o
(S
T
(|

\ \ \ \
16 8 4 2

Subcomponent Size (m x m)

Fig. 3. DUPLO performance for N = 1,32,128 parallel executions of the Mat-Mul circuit using
different decomposition strategies.

Ezxperiment Discussion. The above real-world examples show that the DUPLO approach has
merit, but the exact performance gains depend significantly on the circuit in question. As a
general rule of thumb DUPLO performs best when the circuit can be decomposed into many
identical subcomponents as can be seen from the CBC-MAC-16 and Mat-Mul experiments
(the more the better). As there is no immediate way of decomposing the AES-128 circuit in
this way, we see that performance suffers when the circuit cannot be decomposed into distinct
repeating parts. However the Mat-Mul experiments show that decomposing the circuit into
distinct circuits can certainly have merit, however it is crucial that each subcomponent is
repeated a minimal number of times or the non-repeating part of the computation is relatively
small.®

7.2 Comparison with Related Work

We also compared our prototype to three related high-performance open-source implementa-
tions of malicious-secure 2PC. All experiments use the same hardware configuration described
at the beginning of this section. For all experiments we have tried tuning the calling param-
eters of each implementation to obtain the best performance.

When reporting performance of our DUPLO protocol, we split the offline part of the com-
putation into an independent preprocessing (Setup + PreprocessComponent + PrepareCom-
ponents) whenever our analysis shows that dividing the computation into subcomponents is

S This is not the case for the AES-128 circuit as the non-repeating part consists of around 40% of
the entire computation.

18

optimal — i.e., when evaluating AES-128 we do not have any function-independent prepro-
cessing since the optimal configuration is to let the component consist of the entire circuit.
We summarize our measured timings for all the different protocols in Table 2, and now go

into more detail:

Protocol Settine N AES CBC-MAC-16 Mat-Mul
rotocol - oethng Ind.Prep Offline Online|Ind.Prep Offline Online|Ind.Prep Offline Online
LAN 1 X (X)) 125 X (X 1,177 X (X)) 43,930
[WMKL7T] N1 X (X) 2,112 X (X) 11,443 X (X) 368,190
1 X 198 883 X 3,495 35.52 X120,200 913

AN 32 X 6777 3.60 X 1296 20.71 X 36,437 1,247

128 X 4070 2.86 X 863 18.38 - . ;

1024 X 2490 3.06 X 471 17.48 - - -

[RR16] 1 X 941 527 X 12039 565 X 467,711 1,550
WAN 32 X 311 472 X 4202 471 X 157,928 1,677

128 X 192 557 X 2743 573 X - -

1024 X 115 577 X 1762 597 X - -

1 1,506 22.34 2.54| 2594 230 18.14 - . ;

AN 32 119 2.42 0.22 965 38.63 1.34 - - -

128 | 75.64 2.08 0.16 922 37.90 0.87 - . §

1024 60.48 1.85 0.14 ; . - - . -

[NST17] 1 9,325 223 195 13812 699 210 - - -
WAN 52 599 15.17 6.71| 4,158 151 8.54 - . -

128 341 12.75 6.24| 3,810 148 7.15 - . -

1024| 256 11.81 5.56 - - - - - -

1 X 371 8.62 799 29.83 41.94| 10,268 569 118

AN 32 X 47.03 0.65 303 10.18 3.72| 7,124 331 83.73

128 X 2777 041 213 11.54 2.49| 6,260 303 58.65

1024 X 1758 0.30 175 13.30 1.61 - . ;

DUPLO 1 X 7,391 585 8,970 1,370 620 50,856 1,775 744
waN 32 X 347 19.37| 1,477 49.21 23.62| 32,098 517 135

128 X 148 5.55 990 22.23 8.85| 27,613 388 101

1024 X 74.03 1.53 733 15.93 3.83 - - -

Table 2. All timings are ms per circuit. Best results are

setting not supported. Cells with “-” denote program out of memory.

marked in bold. Cells with “X” denote

Better Amortization by Subdivision. The protocol of Rindal & Rosulek (RR in our tables)
[RR16] is currently the fastest malicious-secure 2PC protocol in the multi-execution setting.
The protocol of Nielsen et al. (NST) [NST17] is the fastest that allow for function-independent
preprocessing, using the LEGO paradigm.”

The general trend in Table 2 is that as the total complexity (combined cost of all compu-
tations) grows, the efficiency of the DUPLO approach becomes more and more apparent. For
example, DUPLO is 1.5x times faster (counting total offline+online time) than RR whole-
circuit C&C for 1024 AES-128 LAN. For the larger CBC-MAC-16 scenario, the difference

" The recent 2PC protocol of [KRW17] appears to surpass NST in terms of performance in this
setting, but as this implementation is not publicly available at the time of writing we do not
consider it for these experiments.

19

2.5x. For the even larger case of 32 Mat-Mul executions, the difference is 5x. Our experiments
clearly confirm that DUPLO scales significantly better than state-of-the-art amortizing pro-
tocols.

When comparing to the LEGO C&C protocol of NST things are harder to compare as
they use a much slower BaseOT implementation than we do (1200ms vs. 200ms) which
especially matters for lower complexity computations. However even when accounting for this
difference, in total time, our approach has 2-3x better total performance for AES-128. We
note that if Ind. Prep. is applicable for an application then DUPLO cannot compete with
NST for small computations, but as demonstrated from our CBC-MAC-16 experiments, once
the computation reaches a certain size and we can decompose the target circuit into smaller
subcomponents, DUPLO overtakes NST in performance by a factor 5x.

It is interesting to note that the online time of NST is vastly superior to RR and DUPLO,
especially for small circuits (2-4x). This is due to the difference between whole-circuit C&C
and gate-level C&C where the NST bucket size is relatively small (and thus online compu-
tation) even for a single circuit, whereas it needs to be 5-10x larger for the whole-circuit
approach. As the number of executions increase we however see that this gap decreases sig-
nificantly. We believe the reason why NST still outperforms DUPLO in all online running
times is that the NST implementation is RAM only, whereas DUPLO writes components and
solderings to disk in the offline phases and reads them in the online phase as needed. For RR
we notice some anomalies for their online times that we cannot fully explain. We conclude
that the throughput measured and reported in our experiments might not be completely fair
towards the RR protocol, but might be explained by implementation decisions that work
poorly for our particular scenarios. In any case, we do expect DUPLO to perform as fast or
faster than RR in the online phase due to less online rounds and data transfer.

CBC-MAC-32| CBC-MAC-64 |CBC-MAC-128| CBC-MAC-256 CBC-MAC-1024

Protocol Setting Offline Online| Offline Online| Offline Online| Offline Online‘ Offline Online

[WMK17] |\ o (X) 2,298 (X) 4,539] (X) 9,029 (X) 18,003] (X) 71,787
DUPLO 1,211 68.29| 1,877 104 2,991 196| 5,072 274[14,167 1,003
[WMK17] (0 (X) 21,460| (X) 41,114 (X) 79,157 (X) 155,995| (X) 606,329
DUPLO 12,269 656|15,039 698/19,089 793|27,093 910(81,883 1,733

Table 3. Comparison for CBC-MAC-XX. All timings are ms per circuit. Best results are marked
in bold. “(X)” denotes the setting is supported, but we only ran the “everything online” version of
WMK.

Amortized-grade Performance for Single-FExecution. The current fastest protocol for single-
execution 2PC is due to Wang et al. (WMK) [WMK17]. When comparing to their protocol,
we ran all experiments using the “everything online” version of their code since this typically
gives the best overall running time. We stress however that the protocol also supports a
function-dependent preprocessing phase, but since this is not the primary goal of that work
we omit it here.

Unsurprisingly, the protocols designed for the multi-execution settings (including DUPLO)
are significantly faster than WMK when considering several executions. However, even in the
single-execution setting, we see that DUPLO scales better and eventually catches up to the
performance of WMK for large computations. WMK is 3x faster than DUPLO when the
subcomponent is an entire AES-128 circuit. Then, already for CBC-MAC-16 the ability to

20

decompose this into 16 independent AES-128 circuits yields around 1.4x factor improvement
over WMK. We further explore this comparison in Table 3, by evaluating even larger circuits
in the single-execution setting. For larger CBC-MAC circuits, DUPLO is around 4.7x faster
on LAN and 7.4x on WAN.

Protocol #Execs Ind. Prep Dep. Prep Online

[WMK17] 1 X X 9.66 MB
32 X 3.75MB 25.76kB
[RR16] 128 X 25MB21.31kB
1024 X 1.56MB 16.95kB
1 14.94 MB 226.86 kB 16.13kB
32 8.74 MB 226.86 kB 16.13kB
[NST17] g 7.22MB 226.86 kB 16.13kB
1024 6.42MB 226.86 kB 16.13kB
1 2.86MB 570kB 4.86 kB
32 2.64MB 570kB 4.86kB
[KRWIT] 2.0MB 570kB 4.86 kB
1024 2.0MB 570kB 4.86kB
1 X 12.94MB 19.36kB
32 X 2.60MB 18.97kB
DUPLO g X 1.96MB 18.96kB
1024 X 1.59MB 18.96kB

Table 4. Comparison of the data sent from constructor to evaluator AES-128 with k£ = 128 and
s = 40. All numbers are per AES-128. Best results marked in bold.

Bandwidth Comparison As a final comparison we also consider the bandwidth require-
ments of the different protocols. In addition to the previous three protocols we here also
include the recent work of Wang et al. (WRK) [KRW17]. To directly compare we report on
the data required to transfer from constructor to receiver in Table 4 for different number
of AES-128 executions. We stress that these numbers are all from the same AES-128 cir-
cuit [ST17] and not from our optimized Frigate version. As already established for AES-128,
DUPLO performs best by treating the entire circuit as a single component, hence we do
not distinguish between Ind. Prep and Dep. Prep in the table. However we do stress that
DUPLO only requires solderings from the input-wires to the output-wires of potentially large
components, so for applicable settings we expect the Dep. Prep of DUPLO to be much lower
than that of NST and WRK as they require solderings for each gate. It can be seen that for
a single AES-128 component DUPLO cannot compare with the protocol of WRK in terms
of overall bandwidth. This is natural as the replication factor is much lower for gate-level
C&C in this case. However as the number of circuits grows we see that DUPLO’s bandwidth
requirement decreases significantly per AES-128 to a point where it is actually better than
WRK by a factor 1.6x at 1024 executions. For the online phase it is clear that WRK’s band-
width is better than our protocol as we require decommitting the garbled input keys for the
evaluator which induces some overhead. However we note that our implementation is not op-
timal in terms of online bandwidth in that we have chosen flexibility over minimizing rounds
and bandwidth. For a dedicated application DUPLQO’s online bandwidth can be reduced by
around 2x by combining the evaluate and decode phases and running batch-decommit of the
evaluator input wires along with the output indicator bits.

21

References

[AHMR15] Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. How to efficiently

[AMPR14]

[AO12]

[BCCSS]

[BHR12]

[BLN*15]
[BMRO0]
[BPOY]

[Bral3]

[Can01]

[CDD*16]

[CKKZ12]

[DKL*13]

[DLT14]

[DNNR16]

[DPSZ12]

[DRO2]

evaluate RAM programs with malicious security. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 702-729. Springer,
April 2015.

Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald,
editors, FUROCRYPT 2014, volume 8441 of LNCS, pages 387-404. Springer, May 2014.
Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public
verifiability. In Xiaoyun Wang and Kazue Sako, editors, ASTACRYPT 2012, volume 7658
of LNCS, pages 681-698. Springer, December 2012.

Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci., 37(2):156-189, 1988.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 784—796.
ACM Press, October 2012.

Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian Nordholt,
Claudio Orlandi, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. High performance
multi-party computation for binary circuits based on oblivious transfer. Cryptology
ePrint Archive, Report 2015/472, 2015.

Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC 1990, pages 503-513. ACM Press, May 1990.
Joan Boyar and Rene Peralta. New logic minimization techniques with applications to
cryptology. Cryptology ePrint Archive, Report 2009/191, 2009.

Luis T. A. N. Brand&o. Secure two-party computation with reusable bit-commitments,
via a cut-and-choose with forge-and-lose technique - (extended abstract). In Kazue Sako
and Palash Sarkar, editors, ASITACRYPT 2013, Part II, volume 8270 of LNCS, pages
441-463. Springer, December 2013.

Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In FOCS 2001, pages 136—145. IEEE Computer Society Press, October 2001.
Ignacio Cascudo, Ivan Damgard, Bernardo David, Nico Déttling, and Jesper Buus
Nielsen. Rate-1, linear time and additively homomorphic UC commitments. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 179—-207. Springer, 2016.

Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the
security of the “free-XOR” technique. In Ronald Cramer, editor, TCC 2012, volume
7194 of LNCS, pages 39-53. Springer, March 2012.

Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.
Smart. Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ
limits. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013,
volume 8134 of LNCS, pages 1-18. Springer, September 2013.

Ivan Damgard, Rasmus Lauritsen, and Tomas Toft. An empirical study and some im-
provements of the MiniMac protocol for secure computation. In Michel Abdalla and
Roberto De Prisco, editors, SCN 201/, volume 8642 of LNCS, pages 398-415. Springer,
September 2014.

Ivan Damgard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. Gate-
scrambling revisited - or: The tinytable protocol for 2-party secure computation. Cryp-
tology ePrint Archive, Report 2016/695, 2016.

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643—-662. Springer, August
2012.

Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced En-
cryption Standard. Information Security and Cryptography. Springer, 2002.

22

[DZ13]

[DZ16]

[FINT13]

[FINT15]

[FINT16]

[FN13]

[GLMY16]

[GMS08]

[GMW87]

[HEKM11]

[HFKV12]

[HKE13]

[HKK*14]

[HMsG13]

[KM15]

[KMRR15]

[KOS15]

Ivan Damgard and Sarah Zakarias. Constant-overhead secure computation of Boolean
circuits using preprocessing. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS,
pages 621-641. Springer, March 2013.

Ivan Damgard and Rasmus Winther Zakarias. Fast oblivious AES A dedicated applica-
tion of the MiniMac protocol. In AFRICACRYPT 2016, volume 9646 of LNCS, pages
245-264. Springer, 2016.

Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Sebas-
tian Nordholt, and Claudio Orlandi. MiniLEGO: Efficient secure two-party computation
from general assumptions. In Thomas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 537-556. Springer, May 2013.

Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto Tri-
filetti. TinyLEGO: An interactive garbling scheme for maliciously secure two-party com-
putation. Cryptology ePrint Archive, Report 2015/309, 2015.

Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto Tri-
filetti. On the complexity of additively homomorphic UC commitments. In Eyal Kushile-
vitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 542-565.
Springer, January 2016.

Tore Kasper Frederiksen and Jesper Buus Nielsen. Fast and maliciously secure two-party
computation using the GPU. In Michael J. Jacobson Jr., Michael E. Locasto, Payman
Mohassel, and Reihaneh Safavi-Naini, editors, ACNS 2013, volume 7954 of LNCS, pages
339-356. Springer, June 2013.

Adam Groce, Alex Ledger, Alex J. Malozemoff, and Arkady Yerukhimovich. CompGC:
Efficient offline/online semi-honest two-party computation. Cryptology ePrint Archive,
Report 2016/458, 2016.

Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and multi party
computation against covert adversaries. In Nigel P. Smart, editor, FEUROCRYPT 2008,
volume 4965 of LNCS, pages 289-306. Springer, April 2008.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, STOC
1987, pages 218-229. ACM Press, May 1987.

Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security 2011. USENIX Association,
2011.

Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. Secure two-party
computations in ANSI C. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 2012, pages 772—783. ACM Press, October 2012.

Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computa-
tion using symmetric cut-and-choose. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 18-35. Springer, August 2013.
Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J. Mal-
ozemoff. Amortizing garbled circuits. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 458-475. Springer, August 2014.
Nathaniel Husted, Steven Myers, abhi shelat, and Paul Grubbs. GPU and CPU paral-
lelization of honest-but-curious secure two-party computation. In Charles N. Payne Jr.,
editor, ACSAC 2013, pages 169-178. ACM, 2013.

Vladimir Kolesnikov and Alex J. Malozemoff. Public verifiability in the covert model
(almost) for free. In Tetsu Iwata and Jung Hee Cheon, editors, ASTACRYPT 2015, Part
II, volume 9453 of LNCS, pages 210-235. Springer, November / December 2015.
Vladimir Kolesnikov, Payman Mohassel, Ben Riva, and Mike Rosulek. Richer effi-
ciency/security trade-offs in 2PC. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part I, volume 9014 of LNCS, pages 229-259. Springer, March 2015.
Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension
with optimal overhead. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 724-741. Springer, August 2015.

23

[KOS16]

[KRW17]

[KS08]

[KsS12]

[KSS13]

[Lin13]

[LOS14]

[LPO7]

[LP11]

[LPSO08]

[LPSY15]

[LR14]

[LR15]

[LSS16]

[LWN*15]

[MF06]

[MGBF14]

Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arith-
metic secure computation with oblivious transfer. In ACM CCS 2016, pages 830-842.
ACM Press, 2016.

Jonathan Katz, Samuel Ranellucci, and Xiao Wang. Authenticated garbling and
communication-efficient, constant-round, secure two-party computation. Cryptology
ePrint Archive, Report 2017/030, 2017.

Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates
and applications. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magnis M.
Halldérsson, Anna Ing6lfsdéttir, and Igor Walukiewicz, editors, ICALP 2008, Part II,
volume 5126 of LNCS, pages 486-498. Springer, July 2008.

Benjamin Kreuter, abhi shelat, and Chih-Hao Shen. Billion-gate secure computation
with malicious adversaries. In USENIX Security 2012. USENIX Association, 2012.
Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical actively
secure MPC with dishonest majority. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 2013, pages 549-560. ACM Press, November 2013.
Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 1-17. Springer, August 2013.

Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest majority multi-
party computation for binary circuits. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 495-512. Springer, August 2014.
Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In Moni Naor, editor, EUROCRYPT 2007,
volume 4515 of LNCS, pages 52—78. Springer, May 2007.

Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose
oblivious transfer. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 329—
346. Springer, March 2011.

Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. Implementing two-party computation
efficiently with security against malicious adversaries. In Rafail Ostrovsky, Roberto De
Prisco, and Ivan Visconti, editors, SCN 2008, volume 5229 of LNCS, pages 2—20. Springer,
September 2008.

Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant
round multi-party computation combining BMR and SPDZ. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
319-338. Springer, August 2015.

Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 476-494. Springer, August 2014.
Yehuda Lindell and Ben Riva. Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors,
ACM CCS 2015, pages 579-590. ACM Press, October 2015.

Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient constant-
round multi-party computation from BMR and SHE. In Martin Hirt and Adam D.
Smith, editors, Theory of Cryptography - 14th International Conference, TCC 2016-B,
Beijing, China, October 31 - November 3, 2016, Proceedings, Part I, volume 9985 of
Lecture Notes in Computer Science, pages 554-581, 2016.

C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A programming framework
for secure computation. In 2015 IEEE Symposium on Security and Privacy, pages 359—
376, May 2015.

Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for malicious two-party
computation. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
PKC 2006, volume 3958 of LNCS, pages 458—-473. Springer, April 2006.

Benjamin Mood, Debayan Gupta, Kevin R. B. Butler, and Joan Feigenbaum. Reuse
it or lose it: More efficient secure computation through reuse of encrypted values. In
Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 201/, pages 582-596.
ACM Press, November 2014.

24

[MGC*16] B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor. Frigate: A validated, ex-

[MNPS04]

[MR13]

[NNOB12]

[NO09]

[NR16]

[NST17]

[PSSW09)

[Rab77]

[Rin17]
[RR16]
[RT17]

[SHS*15)

[sS11]

[sS13]

[ST17]

[TJ11]

tensible, and efficient compiler and interpreter for secure computation. In 2016 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 112127, March 2016.
Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay—a secure two-
party computation system. In USENIX Security 2004. USENIX Association, 2004.
Payman Mohassel and Ben Riva. Garbled circuits checking garbled circuits: More effi-
cient and secure two-party computation. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 36-53. Springer, August 2013.
Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
681-700. Springer, August 2012.

Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.
In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 368-386. Springer,
March 2009.

Jesper Buus Nielsen and Samuel Ranellucci. Reactive garbling: Foundation, instantiation,
application. In ASTACRYPT 2016, Part II, LNCS, pages 1022-1052. Springer, December
2016.

Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round mali-
ciously secure 2PC with function-independent preprocessing using LEGO. In 24. Annual
Network and Distributed System Security Symposium (NDSS’17). The Internet Society,
February 26-March 1, 2017.

Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-
party computation is practical. In Mitsuru Matsui, editor, ASTACRYPT 2009, volume
5912 of LNCS, pages 250-267. Springer, December 2009.

Michael O. Rabin. Digitalized signatures. Foundations of secure computation. In Richard
AD et al. (eds): Papers presented at a 3 day workshop held at Georgia Institute of Tech-
nology, Atlanta, pages 155-166. Academic, New York, 1977.

Peter Rindal. 1ibOTe: an efficient, portable, and easy to use Oblivious Transfer Library.
https://github.com/osu-crypto/1ib0Te, 2017.

Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with on-
line/offline dual execution. In USENIX Security 2016. USENIX Association, 2016.
Peter Rindal and Roberto Trifiletti. Splitcommit: Implementing and analyzing homo-
morphic uc commitments. Cryptology ePrint Archive, Report 2017/407, 2017.
Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi, Thomas Schneider, and
Farinaz Koushanfar. TinyGarble: Highly compressed and scalable sequential garbled cir-
cuits. In 2015 IEEE Symposium on Security and Privacy, pages 411-428. IEEE Computer
Society Press, May 2015.

abhi shelat and Chih-Hao Shen. Two-output secure computation with malicious adver-
saries. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages
386—405. Springer, May 2011.

abhi shelat and Chih-Hao Shen. Fast two-party secure computation with minimal as-
sumptions. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 20183, pages 523-534. ACM Press, November 2013.

Nigel Smart and Stefan Tillich. Circuits of Basic Functions Suitable For MPC and FHE,
2017.

Henk C. A. Tilborg and Sushil Jajodia. Encyclopedia of Cryptography and Security.
Springer Publishing Company, Incorporated, 2nd edition, 2011.

[WGMK16] Xiao Shaun Wang, S. Dov Gordon, Allen McIntosh, and Jonathan Katz. Secure compu-

[WMK17]

[Yao86]

tation of MIPS machine code. In ESORICS 2016, Part 11, LNCS, pages 99-117. Springer,
September 2016.

Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. Faster secure two-party computa-
tion in the single-execution setting. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, volume 10212 of LNCS, pages 399424, 2017.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS 1986, pages 162-167. IEEE Computer Society Press, October 1986.

25

[ZE15] Samee Zahur and David Evans. Obliv-C: A language for extensible data-oblivious com-
putation. Cryptology ePrint Archive, Report 2015/1153, 2015.

[ZH17] Ruiyu Zhu and Yan Huang. Faster lego-based secure computation without homomorphic
commitments. Cryptology ePrint Archive, Report 2017/226, 2017.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220-250. Springer,
April 2015.

A Protocol Details

We describe and analyse the protocol in the UC framework. We will here give an abstract
description that lends itself to a security analysis. In Section 6.1 we describe some of the
optimisations that were done in the implementation and why they do not affect the security
analysis. We describe the protocol for two parties, the garbler G and the evaluator E. We
will describe the protocol in the hybrid model with ideal functionalities Fycom and Fot for
xor-homomorphic commitment and one-out-of-two oblivious transfer. The precise description
of the ideal functionalities are standard by now and can be found in [FINT16] and [KOS15].
Here we will denote the use of the functionalities by some pseudo-code conventions. When
using Fuycom it is G that is the committer and E that is the receiver. When G executes
ComMIT(cid, z) for cid € {0,1}* and = € {0,1}"*, then Fycom stores (cid, zgq) (where zgq =)

and outputs cid to E. When G executes OPEN(cidy, . ..,cid.), where each cid; was output to
E at some point, then Fycom outputs (cidy,...,cid., B5_;2cq,) to E. When G executes an
open command, then the commitment identifies (cidy,...,cid.) are always already known by

E. If Fucom outputs(cid], ..., cid., ®S_,7q4,) where some cid; # cid; then E always tacitly
aborts the protocol. Similarly the cid used in the commit command is always known and E
aborts if G uses a wrong one. When using Fort it is G that is the sender and E that is the
receiver. We assume that we have access to a special OT which has a special internal state
A € {0,1}", which is chosen by G once and for all at the initialisation of the ideal functionality
by executing OTINIT(A). After that, when G executes OTSEND(id, z) for id € {0,1}* and
xo € {0,1}" and E executes OTRECEIVE(id, b) for b € {0,1}, then Fot outputs (id, z3) to E,
where x1 = 2o ® A. If the protocol specifies that G is to execute OTRECEIVE(id,b) and it
does not or uses a wrong id, then E will always detect this and will tacitly abort.

When we instruct a party to send a value, we tacitly assume the receiver stores it under
the same name when it is received.

When we instruct a party to check a condition, we mean that the party will abort if the
condition is false.

When a variable like Kjq is created in our pseudo-code, it can be accessed by another
routine at the same party using the same identifier. Sometimes we use the store and retrieve
key-words to explicitly do this. To save on notation, it will sometimes be done more implicitly,
when it cannot lead to ambiguity. In general, if an uninitialised variable like K4 is used in a
protocol, then there is an implicit "retrieve Kjyq” in the line before.

We assume that we have a free-xor garbling scheme (Gb, Ev) which has correctness, obliv-
iousness and authenticity. We recall these notions now. The key length is some «. The input
to Gb is a poly-sized circuit C' computing a function C' : {0,1}" — {0,1}™ along with
(KY,...,K% A) € ({0,1}%)"*1 where Isb(A) = 1. The output is (LY,...,L%) € ({0,1}%)™
and a garbled circuit F. Here F is the garbled version of C. Define K}! = K? & A. For
x € {0,1}™ define K* = (K7*,..., KZ). This is the garbled input, i.e., the garbled version
of x. Define L} = LY & A. For y € {0,1}™ define LY = (LY*,...,LY"). This is the garbled
output. The input to Ev is a garbled circuit F and a garbled input (K1, ..., K,) € ({0,1}*)™.

26

The output is L or a garbled output (Lq,...,Ly) € ({0,1}*)™. The scheme being free-xor
means the inputs and outputs are of the above form. Correctness says that if you do garbled
evaluation, you get the correct output. Obliviousness says that if you are given F' but not
given (K7,..., K2, A), then the garbled input leaks no information on the plaintext input (or
output). Authenticity says that if you are given only a garbled circuit for C' and a garbled
input for z, then you cannot compute the garbled output for any other value than the correct
value C(z). These notions have been formalized in [BHR12]. Here we recall them in the detail
we need here and specialized to free-xor garbling schemes.

correctness Vz € {0,1}" and V(KY,..., K% A) € ({0,1}*)""! with Isb(A) = 1 it holds for
(LY,...,L% F)=Gb(KY?, ..., K°, A) that Ev(F, K*) = L¢®),

obliviousness For uniformly random (K?,..., K2, A) € ({0,1}%)"*! with Isb(A) = 1 and
(+F) + Gb(KY,..., K9, A) and any xo,z; € {0,1}" it holds that (F, K*) and (F, K*!)
are computationally indistinguishable.

authenticity Let A be a probabilistic poly-time interactive Turing machine. Run A to get
a circuit C': {0,1}" — {0,1}™ and an input = € {0, 1}". Sample uniformly random (K7,
ooy, KO A) € ({0,13%)" L with 1sb(A) = 1 and ((LY,...,L%), F) < Gb(KY{, ..., K?,
A) and input (F, K*) to A. Let y = C(x). Run A to get (Ly,...,Ly) € ({0,1}%)™ and
y € {0,1}™. If i #y and L = LY, then A wins. Otherwise A loses. We require that the
probability that any PPT A wins is negligible.

We will in fact require extended versions of these notions as we use a reactive garbling scheme
in the sense of [NR16]. In a reactive garbling scheme one can make several independent
garblings and then later solder an output wire id with keys (K3, K;) onto an input wire
id" with keys (K, K/) in another circuit. This involves releasing some information to the
evaluator which allows the evaluator later to compute K f"j, from K i% for either b=0o0r b = 1.
The notion of reactive garbling scheme is given in [NR16]. We will use the reactive garbling
scheme from [AHMR15]. We will later describe how to solder in [AHMR15] and we then recall
the notion of reactive garbling scheme from [NR16] to the detail that we need in our proofs.

We finally assume that we have access to a programable random oracle H : {0,1}* —
{0,1}*. Note that this in particular implies that H is collision resistant.

We assume that we are to securely compute one circuit C which consist of sub-circuits
C and solderings between input wires and output wires of these sub-circuits. We call the
position in C in which a sub-circuit C' is sitting a slot and each slot is identified by some
identifier id. There is a public mapping from identifiers id to the corresponding sub-circuit C'.
If C:{0,1}™ — {0,1}™, then the inputs wires and output wires of the slot are identified by
id.in.1, ... id.in.n and id.out.1, ..., id.out.m. Sub-circuits sitting at a slot are called functional
sub-circuits. There are also some special sub-circuits:

— E in-gates, with n = 0 and m = 1. These are for letting E input a bit. The output wire is
identified by id.out.1.

G in-gates, also with n = 0 and m = 1. These are for letting G input a bit. The output
wire is identified by id.out.1.

E out-gates, with n = 1 and m = 0. These are the output gates of E. The input wire is
identified by id.in.1.

G out-gates, with n = 1 and m = 0. These are the output gates of G. The input wire is
identified by id.in.1.

Besides a set of named sub-circuits, the circuit C also contains a set S of solderings
(idy,ids), where id; is the name of an output wire of a sub-circuit and ids is the name of an
input wire of a sub-circuit. We require that all input wires of all sub-circuits are soldered
to exactly one output wire of a sub-circuit and that there are no loops. This ensures we

27

can plaintext evaluate the circuit as follows. For each in-gate id assign a bit zjq and say that
id.out.1 was evaluated. Now iteratively: 1) for each soldering (idy,id2) where id; was evaluated,
let x4, = g, and say ids was evaluated, and 2) for each sub-circuit where all input wires were
evaluated, run C on the corresponding bits, assign the result to the output wires and say they
are evaluated. This way all out-gates will be assigned a unique bit. The goal of our protocol
is to let both parties learn their own output bits without learning any other information. We
assume some given evaluation order of the sub-circuits that allows to plaintext evaluate in
that order.

We assume that we have two functions L!',a! : N — N for setting the parameters of
the cut-and-choose. Consider the following game parametrised by n € N. First the adversary
picks L = L'(n) balls. Let o = al(n). Some of them are green and some are red. The
adversary picks the colours. Then we sample uniformly at random L — an of the balls. If any
of the sampled balls are red, the adversary immediately loses the game. Then we uniformly
at random throw the remaining an balls into n buckets of size a. The adversary wins if there
is a bucket with only red balls. We assume that L' and o' have been fixed such that the
probability that any adversary wins the game is 27°, where s is the security parameter. Note
that the functions depend on s, but we ignore this dependence in the notation. We assume
that we have two other functions L?,a? : N = N. We consider a game similar to the above,
but where the adversary wins if all sampled balls are green and there is a bucket with a
majority of red balls. We assume that L? and o have been fixed such that the probability
that any adversary wins the game is 27°.

Overview of Notation

— id: generic identifier, just a bit-string naming an object.

— Ayq: the difference with identifier id. Defined to be the value in the commitment with
identifier id.dif. It should hold that lsb(A4) = 1.

— 0yq: the indicator bit with identifier id. Defined to be the value in the commitment with
identifier id.ind.

— K3°: base-key with identifier id. Defined to be the value in the commitment with identifier
id.base. It should hold that Isb(K) = 0.

— Kiz_”‘d: esab-key with identifier id. Defined to be K¢ @ Ajg.

— Ki%: 0-key with identifier id.

— Kl: 1-key with identifier id.

— Kiq: key held by E. It should hold that Ky € {KJ, K}

— L'(n): total number of objects to create when one component should be good per bucket
and n buckets are needed.

— a'(n): bucket size when one component should be good per bucket and n buckets are
needed.

— L?%(n): as above, but majority in each bucket is good.

— a?(n): as above, but majority in each bucket is good.

— Par(id): mapping from input wire id to the unique parent output wire. This is well-defined
given the soldering set S.

— rco: A special wire index used in recovering inputs of a corrupted G.

Main Structure The main structure of the protocol will be as follows.
function MAIN(C)
PREPROCESSKA()
PREPROCESSINKA ()
PREPROCESSOTINIT()

28

PREPROCESSSUB()

ASSEMBLESUBS()

ATTACHINKAS()

for all sub-circuit id in evaluation order do
if id is a G in-gate then INPUTG(id)
else if id is an E in-gate then INPUTE(id)
else if id is a G in-gate then OUTPUTG(id)
else if id is a E out-gate then OUTPUTE(id)
else EvSuBs(id)
end if

end for

end function

We assume that E knows an input bit zjq for each E in-gate id before it is evaluated and
that G knows an input bit x;q for each G in-gate id before it is evaluated. The inputs are
allowed to depend adaptively on previous outputs. At the end of the protocol E knows an
output bit yq for each E out-gate id and G knows an output bit y4 for each G out-gate id.

During the pre-processing G will commit to key material for all wires. The keys Ki?j and
K, will be well defined from these committed values, even if G is corrupt. We then implement
the input protocols and the evaluation protocols such that it is guaranteed that for each wire,
E will learn Kigq € {K2, K}

We then implement the input protocols such that it is guaranteed that for each G-input
gate id the evaluator will learn some Kiq € {KQ, K;4}. This holds even if G or E is corrupted.
If G is honest, it is guaranteed that Kiq = Kg*. If G is corrupted, then zjq is defined by
Kiq = Kij¢. Furthermore, for each E-input gate E will learn Kiq € {KY, K}}. This holds even
if G or E is corrupted. If E is honest, it is guaranteed that Kig = Ki4. If E is corrupted, then
xig is defined by Kiq = K4°. This ensures that after the input protocols, an input bit zj4 is
defined for each input wire, called the plaintext value of the wire. This allows us to mentally
do a plaintext evaluation of the circuits, which gives us a plaintext bit for each output wire
and input wire of all components. We denote the bit defined for wire id by z;y. We call this
the correct plaintext value of the wire. Note that this value might be known to neither E nor
G. However, by security of the input protocols E will learn the correct key K;j¢ for in-gates.
We then implement the evaluation protocol such that E iteratively will also learn the correct
keys K3 for all internal wires id. For the G-output wires, the evaluator E will just send K3
to G who knows (K. i%, K i}j) and can decode to zjq. By authenticity E cannot force an incorrect
output. For the E-output wires, the evaluator E will be given the indicator bit for the keys
which will allow to compute exactly zig from K. That the evaluator learns nothing else will
follow from obliviousness of the garbling scheme.

We first describe some small sub-protocols and then later stitch them together to the sub-
protocol used above. During the presentation of the sub-protocols we will argue correctness
of the protocols, i.e., that they compute the correct keys K. In the following section we
will then give a more detailed security analysis of the protocol.

Key Authenticators and Input The following protocol is used to assign key material to
an identifier id.

function GENWIRE(id, K, A) > Require: Isb(A) =1
G Ky+ K > the 0-key
G: Ay A > the difference
G K+ K)o Ay > the 1-key
G: 0ig + 1sb(KY) > the indicator bit

G: ComMIT(id.dif, Aig)

29

G: ComMIT(id.ind, oig)
G: CommIT(id.base, K})
end function
The key K will be used to represent the plaintext value b. From Isb(A) = 1 it follows
that Isb(K2) = Isb(K}) & 1. We set oiq = Isb(KY). So, if Isb(KJ) = 0, then oiy = 0 and
hence Isb(KJ¢) = 0. And if 1sb(K3) = 1, then gy = 1 and hence Isb(K3¢) = Isb(K}) =
Isb(K2) &1 = 0. So in both cases
Isb(K3¢) =0,

as required. From setting oiq = Isb(KY) it also follows that oiq @& 1 = Isb(K};), which implies
that
ISb(KllZi) =be Jid ,

i.e., the last bit in the key is a one-time pad encryption of the plaintext value of the key
with the indicator bit. In particular, given a key and the indicator bit, one can compute the
plaintext value of the key as

b=Isb(KY) @ oig -

The next protocol allows to verify key material associated with an identifier.

function VERWIRE(id)

: OPEN(id.dif); E: receive Ay

: check Isb(Ay) =1

: OPEN(id.ind); E: receive oyq

: OPEN(id.base); E: receive K"
: check Isb(K}*) =0

LKL KO @ A

: store Ki%, Ki}M Aida Oid

end function

mmmeaoaoMmao

We say that the key material associated with an identifier is correct if it would pass the
verification protocol given that G opens all commitments. This just means that when KJ,
Ag and oyq are defined to be the values in the respective commitments and K3, is defined to
be KI% @ Aiq, then

ISb(Aid) =1

and
Isb(K3¢) =0 .

Note the key material generated with GENWIRE is correct. For brevity we will just say that
id is correct when the key material associated with id is correct.
The following protocol reveals information that is used to solder two independent key
materials. It will allow to translate a key for id; to a key for ids.
function GENSOLD(idy, ids)
G: OPEN(id;.ind, id2.ind); E: receive oig, id,
if Oidy,idy = 0 then
G: OPEN(id;.base, ids.base)

else
G: OPEN(id;.base, ids.base, ids .dif)
end if

E: receive Kig, 4,
G: OPEN(id; .dif, ids.dif)
E: receive Ay, d,
check ISb(Aidl,idg) =0

30

check 1sb(Kid, idy) = Oidy ids
end function

The last two checks ensure that if one of the key materials are correct, then the other one is
correct too. To see this, assume that id; is correct. This just means that

Isb(Aig,) =1
Isb(Kg") =0 .
From lsb(Aig,) = 1, 1sb(Ajg, i0,) = 0 and Ayg, id, = Aig, ® Ajg, it follows that
Isb(Ag,) =1
We have by construction that
Kid, id, = Ki?fl @ Ki?;z ® Tid, idy Aidy -
Since we already established that lsb(Ajy,) = 1 and we assumed that lsb(KiZifl) = 0, we have

that |
18b(Kig, ja,) = 0@ Isb(K 32) & 01, ia, -

Since E checks that 1sb(Kid, idy) = Tidy idy» it follows that
Tid
Isb(Kiy,?) =0.

Hence ids is correct. Showing that id; is correct if ids is correct follows a symmetric argument.
Note then that if both key materials are correct, then

Kid, ,id, = Kizifl) K{Zisz ® 0id, ,ids Aid,
= K, ® 0ia, Aig, © Ky, ® 0id, Aid, © Ty iy A,
= Kia, ® 010, Mg, & K, @ 01, Aig,
= K, ® Kj), ® 014, (Aig, ® Aiay)
= K, ® K, ® 0ig, Aid, id -

We use this later.

The following protocol shows how to use the soldering information. It assumes that E
already knows a key Kjq for wire id. This key is either Ki% or K&h but E might not know the
plaintext value, so we use the generic name K4 for the key.

function EvSoLp(idy, ids, K)
E: return K @ K4, id, ® Isb(K)Ajg, id,
end function
function EvSoLD(idy, id2)
E: retrieve Kiq,
E: Kid2 — EVSOLD(idl,id27Kid1)
end function
Note that if both key material is correct and Kiq, = Ki’él = Ki%l @ bAj4,, then

Ky, @ Kid],idz =
(K, ©bdia,) © (K, © Kig, © 0ia, Mg, ja) =
KY @ bAg, ® 0, Aid, ids -

31

It is easy to see that when the key materials are correct then lsb(K4,) = b@® 0i4,, from which
it follows that
Oidy Aidy iy P 18b(Kid,) Aidy idy = bAid, idy -

So,

Kig, = Kj, ® bAig, ® bAi, g,
= KI%'z b bAid2
= KII()'JQ ’

S0 Kilzjl is mapped to Kiléz, as intended.

Lemma 1 (correctness of soldering). If either idy is correct or ids is correct and idy has
been soldered onto idy without E aborting, then both of them are correct and

EvSoLp(ids, ids, Ky) = Kby,
forb=0,1.

The next protocol is used to generate key authenticators.

function GENKEYAUTH(id)
G: K3+ {0,1}"
G: Aig « {0,131 x {1}
G: GENWIRE(id, K, AY)
G: Aig < {H(KY), H(Kgq)}
G: send Ay
end function
Given a value A = {hy,hs} and a key K we write A(K) = T if H(K) € A. Otherwise we
write A(K) = L. This protocol allows to verify a key authenticator.
function VERKEYAUTH(id)
VERWIRE(id)
E: check Ay = {H(KY), H(K})}
end function
We call a key authenticator with identifier id correct if it would pass the verification algorithm.
Note that if it is correct, then Ay = {H(KY), H(KY)} and E knows K9 and K}j as KJ°
and Ajy were input to the commitment functionality. It therefore follows from the collision
resistance of H that if A(K) = T for a key K computed in polynomial time, then K €
{KY, KL} except with negligible probability. Furthermore, if in addition A(K’) = T and
K’ # K, then KoK = Ay.
When we generate key authenticators for input gates, we will use the special form that
K = H(Ay).
function GENINKEYAUTH(id)
Aig {0,131 x {1}
KI% — H(A,d)
GENWIRE(id, K, AY)
Aig {H(Ky), H(Kg)}
G sends Ay
end function

To verify this special form we use this protocol.
function VERINKEYAUTH(id)

32

VERKEYAUTH(id)
E: check Ky = H(Ayq)
end function
Note that if we are given a key Ki% and Ajy for an input gate, then we can compute b as
follows. First compute K = H(Ai). If K = K, then b = 0. Otherwise b = 1.
The following sub-protocol prepares a lot of key authenticators and uses cut-and-choose
to verify that most are correct. The unopened key authenticators are put into buckets with a
majority of correct ones in each bucket.
function PREPROCESSKA
{ < #output wires of all functional sub-circuits
Let L = L2(¢) > # KAs generated
Let aya = a2(¥) > bucket size
VL | . GENKEYAUTH(preka.i)
E: Sample V' C [L] uniform of size L — aa?.
E: send V
Viev : VERKEYAUTH(preka.)
for all functional sub-circuits id do
for all j =1,...,mjq do
pick ay, uniform, fresh KAs i ¢ V
rename them to ids id.ka.1, ..., id.ka.cy,.
Ve, © GENSOLD(id.ka.1, id.ka.7)
end for
end for
end function

We call id.ka.1, ... id.ka.ay, a KA bucket, and we identify it by id.ka. We call id.ka KM
correct if the key material associated with each id.ka.j is correct. We call it KA correct if
it is KM correct and furthermore a majority of the KAs are correct, as defined above. By
definition of L? and a? it follows that for each id.ka there will be a majority of id.ka.j for
which the key material is correct, so there is in particular at least one for which this is true
(except with negligible probability). By Lemma 1 this implies that the bucket is KM correct.
By definition of L? and o? it then follows that it is additionally KA correct. We get that:

Lemma 2 (robustness of KA buckets). If E is honest and G is honest or corrupted, then
except with negligible probability each KA bucket id.ka is KA correct.

We also use protocols PREPROCESSINK A, which work exactly as PREPROCESSK A, except
that in PREPROCESSINKA we let £ be the number of input wires in C, we pre-process the
key authenticators using GENINKEYAUTH instead, we verify using VERINKEYAUTH, and we
associated the unopened key authenticators to the identifiers of the input wires instead. For
an input wire id the identifiers of the key authenticator will be id.ka.1, ..., id.ka.cjnka-

The following protocol evaluates a key authenticator. It selects from a set of keys, namely
the keys that are accepted by a majority of the key authenticators. If G is corrupted, then E
might end up in the situation where it learns both a 0-key and a 1-key for a wire, if both of
these are in the input key set. In that case we use a special recovery procedure RECOVER.
This procedure will recover the plaintext input of E and use it to do a plaintext evaluation of
the circuit instead of garbled evaluation. How this is done is described later.

function EVKASs(id, Ki4)

QA 4 Qa > if generated using PREPROCESSK A
O 4 Qlinka > if gen. using PREPROCESSINK A
>t A Aidkai > get key authenticators

33

L0
for K € Kiq do
K=K
V¢, K; = EvSoLp(id.ka.1, id.ka.i, K)
if #{i e {1,...,0} | Ai(K;) =T} > /2 then
L+ LU{K}
end if
end for
if £={K} then return K
else if £ = {Ky, K} then
A KO D K1
RECOVER(id, A)
else abort
end if
end function

Note that if id.ka is KA correct, then a majority of the key authenticators are correct and all
the key materials are correct. Therefore, if a key is put in £, then it is was accepted by at
least one correct key authenticator. So, if a key K is in £, then by the properties of correct
key authenticators and Lemma 1, it follows that K € {KJ . 1, K} ., 1} except with negligible
probability. So, assuming that K ., € Kig the outcome of the protocol is either to return
Kb ., or to call the recover protocol with the correct A = Aig ka1, except with negligible

probability.

Lemma 3 (robustness of EvKASs). IfE is honest and G is honest or corrupted, the follow-
ing holds except with negligible probability. If for some b € {0,1} it holds that K:bd.kal € Kiq,
then EVKAS returns Kb, | or calls RECOVER(id, A) with A = Aigka1. If for no b€ {0,1}
it holds that K ., € Kig, then EVKAS aborts.

The following protocol allows E to learn K3 for a G in-gate, where G has input x;, without
E learning z;.

function INPUTG(id) > id is an ID of a G in-gate
G: retrieve the input bit x4 for id
G K - Ko,
G: send K
E: Kig + EVKAS(id, {K})
E: store Kjq

end function

Definition 1. If G is corrupted and E is honest, then after an execution of INPUTG/(id),
define ziq as follows. If id.ka is KA correct, then define xig by K%, = Kiq. Otherwise let
Tig= L.

By Lemma 3, if G sends a key not from {K2 ., ;, K}, 1}, then the procedure aborts.
Otherwise it outputs that key.

Lemma 4 (robustness of InputG). If G is corrupted and E is honest, then after an
execution of INPUTG(id) that did not abort, it holds except with negligible probability that
zig € {0,1} and it holds for the key Kiq then stored by E that Kiq = K"

It is more complicated to give input to E as G is not to learn which key was received. To
prepare for this oblivious input delivery we set up the oblivious transfer functionality such
that G is also committed to the A chosen for the OT.

34

function PREPROCESSOTINIT

G:
G:
G:

Ao + {0,1}"7
ComMMIT(ot, Aet)
OTINIT(Aet)

for i € [s] do

G: R; < {0,1}", OTSEND(R;, ot;)
G: ComMIT(ot;, R;)
E: b; + {0,1}, Ry, + OTRECEIVE(b;, ot;)
E: send (Ry,,b;)
G: receive (R;,b;); check R; = Ry,
if b, = 0 then
G: OPEN(ot;)
else
G: OPEN(ot;, ot)
end if
E: receive Rl
E: check R; = Ry,

end for
end function

The PREPROCESSOTINIT procedure ensures that the commitment to the identifier ot is a
commitment to the difference Ay which G chose for the OT functionality. It was proven in
[NST17] that the protocol is sound except with probability 27° and that it is straight-line
zero-knowledge when the simulator controls the commitment functionality.

The following protocol allows E to learn K3;* for an E in-gate, where E has input x;,

without G learning x; and without E learning anything else.

function INPUTE(id)

maommMmea o

: Rot, < {0,1}*, OTSEND(Rot,, Otid)

: COMMIT(otid, Rot,)

tboty < {0, 1}, Ry, ¢~ OTRECEIVE(bo,, oti)
: retrieve the input bit x;q for id

:send fiq = Tig D bot,

:eid = fid D oid

sid" « id.ka.1

if €id = 0 then

G: OPEN(id/, Otid)

else
G: OPEN(id’, otig, ot)
end if
E: receive D = K,y & Rot, P €idlot
G: OPeN(id’.dif, ot); E : receive Sig = Aig © Aot
G: OpEN(id.ind); E : receive oig
EEK=D® Rbotid ©® (xid ® Uid)Sid
E: Kig « BEVKASs(id, {K})
E: check 1Sb(Kid/) = Tiq © 0Oid
E: store Ky

end function

35

> id is an ID of an E in-gate

Then identify the output wire id.1 with id.ka.1, such that Ky = K,q . If G in the above commits
honestly to the value Ro, he also inputs to the OT functionality then we indeed see that

Kig =D & Ry, @ (Tia ® 0id)Sia
= (Kig' ® Roty ® €iqQot) ® Ry, , @ (Zid B 0id) (Aigr @ Aot)
= (Kig' @ boty Aot © €idAot) © (Tid @ 0ig) (Aigr © Aot)
= Kig' ® (7ig @ 0id) Aot © (Tig ® i) (AQigr © Aot)
= Kig © (wig @ 0id) A’
= KT = K3
If instead G cheats and commits to a value R # Roy, then

K=KX®F,

where -
F=R® Ry, .

Note that when G is honest, then F' = 0 and therefore K = Kj?. If G uses F' ¢ {0, Ajg }, then
K ¢ {Kiy, Ky}

so by Lemma 3 it holds that except with negligible probability the procedure aborts. Impor-
tantly, this happens independent of the value of ziy. If G uses F = A;y/, then

K=K & Ay = K™ .
so by Lemma 3 it holds that

Koo = K197 |

As we have ensured that lsb(A;y) = 1 for all KA buckets except with negligible probability
(by Lemma 2) it follows from the check Isb(Kiy) = xiq @ g that when K = K&ﬂawid, then the
procedure aborts. So, all in all, if a cheating E uses F' # 0, then the procedure aborts except
with negligible probability, independently of the value of xiq.

Lemma 5 (robustness of InputE). The following holds except with negligible probability.
If G is corrupted and E is honest, then an execution of INPUTE(id) will abort or not indepen-
dently of the value of x;y. Furthermore, when it does not abort, then it holds for the key Kiq
stored by E that Kijg = K.

Functional Sub-Circuits The following protocol generates a garbled circuit of circuit C
and generates the key material for all input wires and output wires. All these wires share the
same difference.
function GENSUB(id, C) > C:{0,1}" — {0,1}™
G: (Kla RS Kn) — ({0’ 1}n)n
G: Ay {0, 1}5_1 X {1}
G: (L17 ey Lm7 Ed) — Gb([(l7 . 7Kn, Aid)
G: send Fiy
VI, : GENWIRE(id.in.i, K;, Aiq)
VI, : GENWIRE(id.out.i, L;, Ajg)
end function
The following protocol allows to verify that the garbling was done correctly.

36

function VERSUB(id, C) >C:{0,1}" — {0,1}™
VI, : VERWIRE(id.in.q)
V™, : VERWIRE(id.out.i)
: Aig + Aidina

E

E: ;7‘:2 : check Aid.in.i = Aid
E: ;-11 : check Aid.out.i = Aid
E: VIl K Kg i

E: v?il : Ll « Ki%.out.i

E

: check (Ll, ey Lm;Ed) = Gb(f(l7 cee ,Kn, Aid)
end function
We call a generated garbled sub-circuit with identifier id correct if it would pass the above
verification protocol. Notice that if it is correct, then for all x € {0,1}" and y = C(z) it holds
that Ev(Fq4, K3 ;,) = K .,» Which shows that the following protocol works as intended.
function EvVSUB(id)
E: V!, : K; « retrieve Kigin.;
E: (Ll, ey Lm) — EV(F}d7K1, - 7Kn)
E: V2, : store Kig.out.i < L;
end function

Lemma 6 (correctness of EvSub). If Kigin; = K, . fori=1,...,n and id is correct,
then after an execution of EVSUB(id) it holds that Kigout: = K2 ,,ps fori=1,...,m, where

y = C(x).

The following protocol will generate garblings of all the needed types of sub-circuits. It
will generate more than needed. Some of these will be opened and checked. The rest will be
assigned at random into buckets. Each slots id will be assigned some «;q unopened circuits.

function PREPROCESSSUB
for all sub-circuit types C' do
Let ¢ be the number of times C is used.
Let L = L'(¢) > #circuits generated
Let aig = al(¢) > bucket size
vE | . GENSUB(C.pre.i, C)
E: Sample V' C [L] uniform of size L — cig.
E: send V
Viev : VERSUB(C.pre.i, C)
for all slots id where C' occurs do
pick ajq uniform, fresh circuits i ¢ V
rename them to have ids id.1,...,id.aiq.
Vo, : GENSOLDSUB(id.1, id.4)
end for
end for
end function
By fresh we mean that no circuit is assigned to more than one slot. We used this sub-protocol.
function GENSOLDSUB(idy, ids)
™, : GENSoLD(id;.in.7, idg.in.7)
V™, : GENSOLD(ids.out.i, id; .out.7)
V™, : GENSoOLD(id.1.out.7,id.1.out.i.ka.1)
end function

After all sub-circuits have been preprocessed the below procedure can be applied to stitch
them all together to compute the final functionality C.

37

function ASSEMBLESUBS
for all functional sub-circuits id do
VI ¢ idpar.; < Par(id.1.in.q)
VI, : GENSOLD(idpar.;, id.1.in.q)
end for
end function

If the linking of components are done adaptively, the above soldering is done only when
needed.

The following procedure is used to evaluate a bucket of garbled sub-circuits that have been
soldered together. Since each sub-circuit might give different output keys (if G is corrupted)
the output for each output wire might not be a single key, but a set of keys. We therefore use
the associated KAs to reduce this set to one key. If the reduced set contains two keys we will
again call the recovery mechanism, which we are still to describe.

function EvSUBs(id)
> Evaluate first circuit in bucket
V7t idpar.j < Par(id.1.in.j)
"_1 : EVSoLD(idpar.j,1d.1.in.5)
V;-‘zl : retrieve Kig.1.in;
EvSus(id.1)
V;”Zl : retrieve Kig1.out.j
Vi, : EvSoLp(id.1.out.j,id.1.out.j.ka.1)
VIt Ky < {Kid.1.outjka1} > key sets
> Evaluate remaining circuits in bucket
for i =2,...,ajq do E:
V?_; : EvSoLp(id.L.in.j, id.i.in.j)
EvSus(id.i)
V™, : EvSoLD(id.i.out.j,id.1.out.j)
™, : EvSoLD(id.1.out.j,id.1.out.j.ka.1)
Vi K = Kj U{Kid1.0ut.jka.1}
end for
vgnzl : Kid.l.outj «— EVKAS(kaja ’CJ)
end function

Lemma 7 (robustness of EvSubs). If G is corrupt and E is honest and the sub-circuit
for id is C, then the following holds except we negligible probability. If K4, , = Kff,ia,_j for
j=1,...,n, then after an execution of EvSUBS(id) that did not call RECOVER it holds that
Kid1.outj = Ki,‘flvout'j forj=1,....m, where y = C(x).

Proof. All the following statements hold except with negligible probability, assuming the
premise of the above lemma. As we argued when we established Lemma 3, we can argue
that all the key material used in EVSUBS is correct. This follows from Lemma 1 as all the
key material sits in buckets that are soldered and each bucket contains at least one correct
key material by construction. It then follows from Lemma 1 that Kiq.1.in; = Ki?.’l.in.j' By
definition of L' and o' we have that at least one circuit id.i is correct. By Lemma 1 and
Lemma 3 it therefore follows that Kiq.1.0u.; € K;. By Lemma 3 it then follows that either

RECOVER is called, or Kig.1.0ut.; = Kiﬂfl‘out.j. O
Output The following protocol allows E to get an output.
function OuTPUTE(id) > id: ID of an E output gate

38

E: retrieve soldering (idy,id.out.1) from C.
E: retrieve Kiq, .
G: OPEN(id;.ind); E: receive oy,
E: yig « 1sb(Kig,) ® i, -
end function

Lemma 8 (robustness of OutputE). If G is corrupt and E is honest and Kiq, = K,-Zl,
then after an execution of OUTPUTE that does not abort, it holds that yi; = b. Furthermore,
whether or not the protocol aborts is independent of yiq.

The first part of the lemma follows from lsb(Kizl) = b ® 04, . The second part is obvious
as the protocol aborts only if the commitment is not opened, which is the choice of G, and G
does not know 4.

The following protocol allows G to get an output.

function OuTpPUTG(id) > id: ID of an G output gate
: retrieve soldering (idy,id.out.1) from C

: retrieve Kiq,

: send Kig,

: receive Kiq,

: check Kig, € {K , Ky }

: Yid < b where Kizl = Kiq, -

end function

O Oommm

Correctness follows from authenticity of the garbling scheme. Even a corrupt E will know
some key Kig, € {K3 , Ky } and this by correctness of the circuits and solderings is the
right one. Sending another key K’ € {Ki%1 , Ki}jl} would break authenticity. Security against
E follows from obliviousness.

The following results is immediate by inductively applying the above lemmas.

Lemma 9 (robustness without recover). If G is corrupt and E is honest and the protocol
does not abort and does not call RECOVER, then the following holds except with negligible
probability. For each input gate id the evaluator holds Kig = K . For E-in-gates x; is the
correct input of E. Furthermore, for each output gate id , the evaluator E holds Ky = K}’Lj}
where y; is the plaintext value obtained by evaluating C in plaintext on the input values xjq4.
Furthermore, the probability that the protocol aborts is independent of the inputs of E.

Notice that it might not be the case that whether or not RECOVER is called is independent
of the inputs of E. It is in fact easy for a corrupt G to construct garblings for which we go
into recovery mode if and only if some internal wire has plaintext value 1. This is called a
selective attack.

Recovery The description of the above procedures for evaluation and output assume that
RECOVER has not been called. We now describe what happens when RECOVER is called.
Recall that RECOVER is called in EVKAS when that procedure learns both the 0-key K and
the 1-key K; for some wire id. The issue is that the procedure then cannot know which key
is the right one, as it does not know the plaintext value x;y nor does it know which key is the
0-key.

When the procedure is called, it is called as RECOVER(id, A), where id.ka.1, ... id.ka.«
are the identifier of key authenticators that have been produced using PREPROCESSKA or
PREPROCESSINKA. Furthermore, A is the difference for the key authenticator id.ka.1

39

Let &£ be the set of identifiers id for which id is an in-gate. This implies that if id € £, then
id.ka.1,...id.ka.ajnka are identifiers of input key authenticators. By construction a majority
of them are correct except with negligible probability.

Let Z be the set of identifiers id with which RECOVER could be called but which are not
in &, these are internal wires (non-input wires) with associated KA buckets. This implies that
if id € Z, then id.ka.1, ..., id.ka.ajnks are identifiers of key authenticators. By construction a
majority of them are correct except with negligible probability.

As a simple motivating example assume that recover is called with an identifier from &.
The following procedure shows how this allows to recover the plaintext value ziq.

function RECOVERINPUTBIT(id, A) > A= Aqgkal
id" + id.ka
Al — A
Q<= (linka
Vj_, retrieve K; < Ky j;
Vi, retrieve Aiy a0 j; A « A 1iar; & Ai
it #{j €{1,...,a}|H(4;) = K;} > a/2 then
Tid < 0
else z;q + 1
end if
end function

Lemma 10. If G is corrupt and E is honest, the following holds except with negligible prob-
ability. If Kiqg = K,% and A = Ajg ka1, then after an execution of RECOVERINPUTBIT(id, A)
it holds that xjg = b.

Proof. The following statements hold except with negligible probability. By premise there
exists b such that K; = Kf for all j. By Lemma 2 it holds that A; = Ay ; for all j. This
implies that for the majority of correct input key authenticators it holds that H(4;) = K; if
and only if K; = K. Hence, if b = 0, it will hold for a majority of j that H(4;) = Kj, and
if b =1 it will hold for a majority of j that H(A;) # K. O

Consider then the case where RECOVER is called with id € £. We want to ensure that
if G is caught cheating, then E can recover all inputs of G and then evaluate C in plaintext.
For this we only have to ensure that if RECOVER is called with id € Z, then it can call
RECOVERINPUTBIT with all id € £. To facilitate this, we are going to create on special wire
rco and solder all id € Z onto rco and solder rco onto all id € £. For security reasons we do
not do full solderings, we only release the difference between the A values. That way, if we
learn the difference for any id € Z, we can learn the difference for all id € £, and we are done.

The following procedure will be run together with all the other preprocessing protocols.

function PREPROCESSRECOVERY
G: Ao < {0,1}%
G: COMMIT(rco, Areo)
G: Vid € ZU &: OpPEN(id.ka.1.dif, rco)
E: Vid € ZUE: receive Aig o
G: Vid € £: OPEN(rco, id.ka.1.dif)
E: Vid € £: receive A d

end function

The following procedure uses the A-solderings to recover all the inputs.
function RECOVERINPUTBITS(id, A) > A= Agkal

retrieve Ay cecov
Ao Aid,rco ©A

40

for all id’ € £ do
retrieve A, i’
Aid’ — Arco,id' S Arco
RECOVERINPUTBIT(id’, Aig/)
end for
end function

The following result is immediate.

Lemma 11. If G is corrupt and E is honest, the following holds except with negligible prob-
ability. If Ky = KZ?" for all input gates id and A = Aigar, then after an execution of
RECOVERINPUTBITS(id, A) it holds that xjy = bjy for all input gates id .

Notice that RECOVERINPUTBITS not only computes zxjq for all input gates. It can also
compute the key Ki% and the difference Ajy. From the inputs x;q it can compute the correct
plaintext value x;q for all wires id. From the keys Ki% and the differences Ay it can use Gb
iteratively to compute also the correct key K and the correct difference Ay for all sub-
sequence wires id, as it has all the information it needs to compute the garblings the way G
ought to have done it if it started from the computed inputs keys and differences. This will
in particular allow E to compute for each G-output gate id the plaintext output zjy and the
key Kiq = K% @ xigAig. This is how the outputs will be computed in recovery mode.

function RECOVER(id, A) > A= Aqgka1
RECOVERINPUTBITS(id, A)
go to recovery mode

end function

function OuTpPUTG(id) > In recovery mode
E: retrieve soldering (idy,id.out.1) from C
E: retrieve ziq,
E: retrieve Ki?il
E: retrieve AY
E: send K{Zifl

end function

function OuTPUTE(id) > In recovery mode
E: retrieve soldering (idy,id.out.1) from C.
E: retrieve ziq, .
E: yig < Tig, -

end function

The following result follows from the above discussion.

Lemma 12 (robustness with recover). If G is corrupt and E is honest and the protocol
calls RECOVER, then the following holds except with negligible probability. For each input gate
id the evaluator holds Ky = K. For E-in-gates x; is the correct input of E. Furthermore,
for each output gate id , the evaluator E holds Ky = K}’(j; where y; is the plaintext value
obtained by evaluating C in plaintext on the input values xiy. Furthermore, the probability that
the protocol aborts is independent of the inputs of E.

By combining Lemma 9 and Lemma 12 we get:

Theorem 2 (robustness). If G is corrupt and E is honest and the protocol does not abort,
then the following holds except with negligible probability. For each input gate id the evaluator
holds Kiq = K. For E-in-gates x; is the correct input of E. Furthermore, for each output gate
id', the evaluator E holds Kig = K, where y; is the plaintext value obtained by evaluating
C in plaintext on the input values x;q. Furthermore, the probability that the protocol aborts is
independent of the inputs of E.

41

Recall the issue with the selective attack that a corrupt G can ensure that RECOVER is
called based on for instance the value of an internal wire. We now see that this is handled by
making sure that in recovery mode, we return the exact same values to G as we would when
we are not in recovery mode,

B Analysis

Our proof follows the proofs in [NST17] and [AHMR15] closely. Redoing the proofs in the
full, glorious detail in the UC model would have us reiterate much of the proofs in these
papers. We will instead sketch the overall structure of the formal proof and point to [NST17]
and [AHMR15] for the details. We realize that this means that only the reader which is
familiar with the UC model and and the mentioned papers may completely verify the proofs.
However, since the UC model and our the proof techniques are standard by now we find this
a reasonable level of proof detail.

B.1 Corrupt G

We first prove security for the case where G is corrupt and E is honest.

Without going into the details of the UC framework, let us just recall that the proof tasks
as usual are as follows. When G is corrupted and E is honest, we should present a poly-time
simulator S. It plays the role of E in the protocol. But as opposed to E it is not being given the
inputs zg of E. Instead it has access to an oracle O (-) containing xg. The simulator might
once supply a possible set of inputs zg of G to the oracle and learn the outputs yg = O, (z¢)
that G would have if C was evaluated on the xg in the oracle and the provided xzg.

The simulator & proceeds as follows. It runs as the honest E would do, but with two
modifications. 1) It uses dummy inputs x4 = 0 for all E-in-gates and 2) there is a modification
in OUTPUTG, which we describe below.

For all G-in-gates id it inspects the commitment functionality and learns K and Ag
and computes K&j from these. From all G-in-gates it can then retrieve Ky = Kigfj‘" which is
well defined by Theorem 2. This defined the inputs xjq of G. Then it calls its oracle with
those input bits of G and for all G-out-gates id it receives from the oracle O the output yig
obtained by running C in plaintext with those inputs z;q and the unknown input bits of E.
If the protocol aborts, then the simulator aborts too. If the protocol reaches an execution of
OuTpPUTG, then the simulator will send the key Kiﬁifl computed as in recovery mode. Note
that it can do this as it knows all the keys and therefore can compute K. i?il and Kél exactly
as in recovery mode, and it was given yiq from the oracle. It follows directly from Theorem 2
that the real protocol and the simulation aborts with the same probability and that when
they do not abort, then the key returned to G from the simulator is the same that the honest
E would have sent, except with negligible probability.

B.2 Corrupt E

We then prove security for the case where G is honest and E is corrupt.

Without going into the details of the UC framework, let us just recall that the proof tasks
as usual are as follows. When E is corrupted and G is honest, we should present a poly-time
simulator S. It plays the role of G in the protocol. But as opposed to G it is not being given
the input zg of G. Instead it has access to an oracle O, (:) containing zg. The simulator
might once supply a possible input zg of E to the oracle and learn the outputs ye = O, (xg)
that E would have if C was evaluated on the xg in the oracle and the provided zg.

42

The simulator S proceeds as follows. It runs as the honest G would do, but with two
modifications. 1) It uses dummy inputs z{; = 0 for all G-in-gates and 2) there is a modification
in OuTPUTE, which we describe below.

For all E-in-gates id it inspects the commitment functionality and learns K and Ajq and
computes K&i from these. From all E-in-gates it can then retrieve Kijq = K;j which is well
defined as G is honest and therefore followed the protocol. This defined the inputs x;q of E.
Then it calls its oracle with those input bits of E and for all E-out-gates id it receives from
the oracle the output yiq obtained by running C in plaintext with those inputs x;q and the
unknown input bits of G.

If the protocol aborts, then the simulator aborts too.

If the protocol reaches an execution of OUTPUTE, then the simulator will retrieve the

output yiq learned from O, (xg). Then it retrieves the key K4, and computes
O'ild1 = ISb(Kid) D Yiq -

Then it runs OUTPUTE as in the protocol. To understand why we make this change, recall
that S ran G with dummy inputs, so it might be the case that Kj41 encodes a different output
than y;q. Therefore, sending oiq.1 might result in E getting a wrong output, which would allow
it to learn that it is in the simulation.

We should now argue that the value seen by E in the simulation and in the real execution
are computationally indistinguishable. Notice that if we ran the simulation but using the real
inputs xg for G instead of dummy inputs, then in all executions of OUTPUTE it would be
the case that o4, = 1sb(Kiq) ® yia = 0ig, for all E-out-gates. Therefore there is not really a
modification of the commitment functionality when OUTPUTE is simulated. Therefore, the
simulation run with real inputs is just the real protocol. This means that it is sufficient to
argue that the values seen by E in the simulation with dummy input z¢ and with real input
xg are computationally indistinguishable.

We do that via a reduction to obliviousness of the reactive garbling scheme and the fact
that H is a random oracle. The reduction will have access to the real input of z¢ and an oracle
producing garbled circuits along with encodings of either dummy inputs or the real inputs. It
will then augment these to make them look like a run of the simulation with dummy inputs
or real inputs.

In a bit more detail, in the obliviousness game in [NR16] we will have access to an oracle
Oy for a uniformly random bit b. We can give O, a command of the form (garble,id,C).
Then it garbles C' and gives us Fiy, keeping the keys secret. If we later give the command
(reveal,id), then we are given all keys used in garbling Fig. We can also give the command
(link,idy,41,idz2,42). The oracle will release the information used to solder output wire i in
Fi4, onto input wire iy in Fiy, as specified in GENSOLD. We can also give the command
(input, id, i, g,). The oracle will compute the keys K and K! for input wire i in Fig. It
then gives us K**. There are some natural restrictions. There is not allowed to be any loops
in linking wires between circuits. No identifier is allowed to occur in both a REVEAL and a
LINK command. No wire (ida, i2) is allow to occur in two different call to (input,ids, g, -, -) or
two calls to (link, -, -, id2,i2). No input wire is allowed to occur in both a call (input, ids, i2, -,)
and a call (link, -, -, id2,45). At the end we have to make a guess at b. The security definition
says that no poly-time adversary can guess b with better than negligible probability. The
definition of authenticity say that the adversary cannot for some wire id compute both Ki%
and K ib given the information it receives in the game.

In fact, the definition in [NR16] does not have the REVEAL command. We add this com-
mand here, getting a notion of adaptive, reactive garbling. It is straight forward to verify that
the scheme in [AHMR15] is an adaptive, reactive garbling scheme in the above sense. This is
achieved by using the strong programmable random oracle model.

43

We need to add an additional command (difdif, idy, id2). In response to this the oracle will
release Aig, ® Aig,, where Ajqy, is the difference used to garble Fiq,. No identifier is allowed to
occur in both a DIFDIF and a REVEAL command, i.e., one is only allowed to learn Ay, & Ajq,
when both Ay, and Ay, are unknown. It is straight forward to verify that the scheme in
[AHMRI15] is an adaptive, reactive garbling scheme even when this command is added. The
scheme would trivially still be secure if the same A was used on two unrevealed garblings, i.e.,
if Aig, = A and Ajq, = A for random A. To see this, consider garbling two circuits C; and
C5 by garbling the circuit C1||Ce which runs the two circuits in parallel. This would exactly
provide garblings of C; and C5 with a common A. It is straight forward to go through the
proof of [AHMR15] and verify that first garbling using independent A4, and Ay, and then
releasing A4, ® Ajq, does not break the security. To see this note that in the proof, when id;
and idy are unrevealed, then the distribution of Ay, is statistically close to uniform, except
that lIsb(Aiy,) = 1. Furthermore, the security depends only on Ay, being statistically close
to uniform, not that the Ay, are independent, which is what allows that Ay, = Ajg,. This
means we can simulate Ay, & Ajg, by a uniformly random value A with 1sb(A) = 0, as it is
still ensured that each A4, has full entropy given A.

We will go over each of the sub-protocols and argue how to simulate the values sent to E.

When the simulation is run with dummy inputs for G, we call it the dummy mode. When
the simulation is run with real inputs for G, we call it the real mode.

When we say that a protocol is trivial to simulate it means that the protocol sends no
values to E, so there are no values to simulate.

>GenWire(id, K, A): When this sub-simulator is called the key material (K, Aiq) is already
defined and sitting inside O as part of some circuit. This also defines K} and oig. The simulator
is not given these values. We then simulate the commitments by sending E notifications that
the commitments were done. These value are clearly the same in the dummy and the real
mode. Notice that by this way of simulating, it holds that for each wire id which has associated
key material in the protocol, the oracle Oy will hold this key material, so we can work on it
using the interface of Oy.

>VerWire(id): Here we send all the key material to E. The simulator will ask its oracle Oy to
reveal the circuit that (KJ, Ai) is part of. This will give it the needed key material. Then it
patches the commitment functionality to open to those values before decommitting.

>GenSold(idy,id2): The values sent to E here are exactly the soldering values of the reactive
garbling scheme [AHMRI15]. The simulator can therefore request to get the values from its
oracle.

>EvSold(idy, ids, K): Trivial.

> GenKeyAuth(id): The simulator will first ask its oracle O, to make a garbling of a circuit
with one input wire and one output wire and one gate which is the identity gate. Such a
garbling consist simply of K and Aj4. So now the key material (K3, Aiq) is defined and
sitting inside O as part of some circuit. We call the simulator for GENWIRE on these. We
additionally have to simulate the value Ay = {H(KY), H(KY)}. This is complicated by the
fact that S does not know K or K}, as the key material is sitting inside Oy. Recall, however,
that we assume a programable random oracle. We can therefore simply sample two uniformly
random value h,h’ < {0,1}" and let Ajq = {h, h'}. If E later queries H in an unrevealed key
authenticator on its key Kiq € {KY, K}, then we return h. Except with negligible probability
it will never query on the other key, as this would break authenticity. Notice that we did not
pick whether H(KY) = h or H(KY) = I/. We do not need to do this as Ajq is sent as a set.
This is important as we do not know the value of K.

>VerKeyAuth(id): Here we first simulate VERWIRE and learn K2 and K. Then define
H(KY) = h or H(K}) := I. If the oracle had been called on K or K before, this might

44

give an inconsistent simulation. However, if the oracle had been called on Ki% or Kib before,
then E guessed one of the keys without being given any information about the key. Since the
keys are uniformly random this happens with negligible probability.

> GenlnKeyAuth(id): This protocol is simulated as GENKEYAUTH, but we additionally have
to ensure that H(A;4) = KY. The values Aiq and K} are not known to S, as they are sitting
inside Op. But we can still define that H(A;4) = K. We will only have to return K if H
is ever evaluated on H(Ajq). If id is never verified, this would involve E guessing Ay after
being given only one key, which would break authenticity of the garbling scheme. For the case
where id is verified, see below.

> VerlnKeyAuth(id): Simulated as VerlnKeyAuth. This lets S learn K and Ay. Then it pro-
grams H to H(Ay) = Ki%. If the oracle had been called on Ajy before, this might give an
inconsistent simulation. However, if the oracle had been called on A;q before the wire it veri-
fied, then E guessed this value without being given any information about Ayy. Since Ajq has
% — 1 bits of min-entropy this happens with negligible probability.

> PreProcessKA(): The protocol is simulated by running honestly and simulating all the calls
to GENKEYAUTH, VERKEYAUTH and GENSOLD. No additional values are sent.

> EvKAs(id, ICi¢): Trivial.

> InputG(id): Let 2{; = 0 be the input bit of G in dummy mode and let g be the input bit
of G in real mode. Ask the oracle Oy to get the encoded input for id.ka.1. Submit the bit-pair
(xly, ziq). The simulator learns K = K3 . |, where x = 2/, if b = 0 and = = =g if b = 1. Send
K to E. The distribution of K is exactly as in dummy mode when b = 0 and exactly as in
real mode when b= 1.

> PreProcessOTInit(): It was shown in [NST17] how to simulate this protocol. This can be
done without knowing A.:. This is important as we need to implicitly define Ay below.

>InputE(id): When running this protocol the simulator will pick Ry, uniformly a random
and output this to E from the OT. This is needed as the simulator does not know A:. Now
E receives the values D, ojq an Sy along with some notification values there are trivial to
simulate. It is therefore enough to show how to simulate these three values. Let bot, be the
choice bit of E in the call to the OT. The simulator can inspect the ideal functionality and
learn this value. Let fiq be the bit sent by E. Let xig <= fig @ bot,. Define this to be the input
of E. Ask the oracle Oy to get the encoded input for id’. Submit the bit-pair (zid, xig). The
simulator learns K = K. By definition we have that Isb(Kiq) = xig @ 0iq, which allows to
simulate o;q as

oid = Isb(Kiq') @ ia ,

as the simulator knows K,y and z;q. To simulate Sy we send a uniformly random value. This
will implicitly define Ay by At = Sig ® Aigr, where the simulator does not know Ay as
it is sitting inside 0. A little more care must be done. The above simulation of Siy works
for the first call to INPUTG. For the next call (with identifier id say) we should ensure that
A\ot = S5 ® Ay becomes defined to the same Ao as when we simulated for id. This means
that we should ensure that Siq ® Ajgr = Sy ® Ay, which is equivalent to Sg = Sia ® Ajg © Ay
To ensure this the simulator ask O, for Ay @ Ard/ using the DIFDIF-command and computes
Sq as required. By inspection of the protocol we see that K = D@ Rbotid @ (g @ 0id)Sig. This
allows to simulate D as

D=K& Rbotid D (xid D Uid)Sid ,

as the simulator can compute K, Ry, Tid, 0id and Sig at the time where it needs to send D.
It compute K as K = Kiq . It picked Rbotid itself. It already computed zig and oiq and Siq.

45

>GenSub(id, C): We simulate by asking O to generate and give us Fj4. This also defines key
materials (K;, Aig)?; and (L;, Aiq)I™, sitting inside O. We call the simulator for GENWIRE
to simulate these.

>VerSub(id, C): We simulate by asking Op to reveal Fi4. This gives us the key materials
(K, Aig)_y and (L;, Aig)™, sitting inside O. We call the simulator for VERWIRE with these.

>EvSub(id): Trivial.
> PreProcessSub(): This protocol including the call to GENSOLDSUB is simulated by simu-

lating the calls to GENSUB, VERSUB and GENSOLD as described above. No further messages
are sent.

> AssembleSubs(): This protocol is simulated by simulating the calls to GENSOLD as described
above. No further messages are sent.

>EvSubs(id): Trivial.

>OutputE(id): Recall that here the simulator will retrieve the output 4 learned from O, (xg)
and the key Kjq held by E and send Ji’dl = 1sb(Kiq) ®yiq to E. We do the same in the reduction.
>OutputG(id): Trivial.

> RecoverlnputBit: Trivial.

> PreProcessRecovery: Here we have to give away all the differences A, iq and Aig rco-
Consider the first id € £UZ. We need to compute Aig rco = Aid.ka.1 ® Areo for an unknown
Aid.ka.1- We do this by picking Ajg o uniformly at random and defining

Areo = Aidka1 B Aidreo -

This is posg,jble as we never have to release A, so we do not need to know it. Consider the
remaining id € £ UZ. We need to compute

= Ai?j.kai & Aveo
= AiAd.ka.l ® Aigka1 D Aid,rco .

id,rco

We can do this as we can get Ag . | ® Ajd ka1 using the DIFDIF-command and we know Aig rco-

We compute the values A jq similarly.
> RecoverlnputBits: Trivial.

It now follows that if b = 0, then the distribution of the reduction is exactly that of the
dummy model and if b = 1, then the distribution of the reduction is exactly that of the real

model. Since we only allowed queries to Op, it follows that the dummy mode and the real are
computationally indistinguishable.

46

