
Watermarking Cryptographic Functionalities from

Standard Lattice Assumptions

Sam Kim
Stanford University

skim13@cs.stanford.edu

David J. Wu
Stanford University

dwu4@cs.stanford.edu

Abstract

A software watermarking scheme allows one to embed a “mark” into a program without significantly
altering the behavior of the program. Moreover, it should be difficult to remove the watermark without
destroying the functionality of the program. Recently, Cohen et al. (STOC 2016) and Boneh et al.
(PKC 2017) showed how to watermark cryptographic functions such as PRFs using indistinguishability
obfuscation. Notably, in their constructions, the watermark remains intact even against arbitrary removal
strategies. A natural question is whether we can build watermarking schemes from standard assumptions
that achieve this strong mark-unremovability property.

We give the first construction of a watermarkable family of PRFs that satisfy this strong mark-
unremovability property from standard lattice assumptions (namely, the learning with errors (LWE) and
the one-dimensional short integer solution (SIS) problems). As part of our construction, we introduce
a new cryptographic primitive called a translucent PRF. Next, we give a concrete construction of a
translucent PRF family from standard lattice assumptions. Finally, we show that using our new lattice-
based translucent PRFs, we obtain the first watermarkable family of PRFs with strong unremovability
against arbitrary strategies from standard assumptions.

1 Introduction

A software watermarking scheme enables one to embed a “mark” into a program such that the marked
program behaves almost identically to the original program. At the same time, it should be difficult for
someone to remove the mark without significantly altering the behavior of the program. Watermarking is a
powerful notion that has many applications for digital rights management, such as tracing information leaks
or resolving ownership disputes. Although the concept itself is quite natural, and in spite of its numerous
potential applications, a rigorous theoretical treatment of the notion was given only recently [BGI+01,
HMW07, BGI+12].

Constructing software watermarking with strong security guarantees has proven difficult. Early works
on cryptographic watermarking [NSS99, YF11, Nis13] could only achieve mark-unremovability against
adversaries who can only make a restricted set of modifications to the marked program. The more recent
works [CHN+16, BLW17] that achieve the strongest notion of unremovability against arbitrary adversarial
strategies all rely on heavy cryptographic tools, namely, indistinguishability obfuscation [BGI+01, GGH+13].
In this paper, we focus on constructions that achieve the stronger notion of mark-unremovability against
arbitrary removal strategies.

Existing constructions of software watermarking [NSS99, YF11, Nis13, CHN+16, BLW17] with formal
security guarantees focus primarily on watermarking cryptographic functions. Following [CHN+16, BLW17],
we consider watermarking for PRFs. In this work, we give the first watermarkable family of PRFs from
standard assumptions that provides mark-unremovability against arbitrary adversarial strategies. All previous
watermarking constructions [CHN+16, BLW17] that could achieve this notion relied on indistinguishability
obfuscation. As we discuss in Section 1.2, this notion of software watermarking shares some similarities with

1

program obfuscation, so it is not entirely surprising that existing constructions rely on indistinguishability
obfuscation.

To construct our watermarkable family of PRFs, we first introduce a new cryptographic primitive we
call translucent constrained PRFs. We then show how to use translucent constrained PRFs to build a
watermarkable family of PRFs. Finally, we leverage a number of lattice techniques (outlined in Section 2)
to construct a translucent PRF. Putting these pieces together, we obtain the first watermarkable family of
PRFs with strong mark-unremovability guarantees from standard assumptions. Thus, this work broadens our
abilities to construct software watermarking, and we believe that by leveraging and extending our techniques,
we will see many new constructions of cryptographically-strong watermarking for new functionalities (from
standard assumptions) in the future.

1.1 Background

The mathematical foundations of digital watermarking were first introduced by Barak et al. [BGI+01, BGI+12]
in their seminal work on cryptographic obfuscation. Unfortunately, their results were largely negative, for
they showed that assuming indistinguishability obfuscation, then certain forms of software watermarking
cannot exist. Central to their impossibility result is the assumption that the underlying watermarking
scheme is perfect functionality-preserving. This requirement stipulates that the input/output behavior of the
watermarked program is identical to the original unmarked program on all input points. By relaxing this
requirement to allow the watermarked program to differ from the original program on a small number (i.e.,
a negligible fraction) of the points in the domain, Cohen et al. [CHN+16] gave the first construction of an
approximate functionality-preserving watermarking scheme for a family of pseudorandom functions (PRFs)
using indistinguishability obfuscation.

Watermarking circuits. A watermarking scheme for circuits consists of two algorithms: a marking
algorithm and a verification algorithm. The marking algorithm is a keyed algorithm takes as input a circuit C
and outputs a new circuit C ′ such that on almost all inputs x, C ′(x) = C(x). In other words, the watermarked
program preserves the functionality of the original program on almost all inputs. The verification algorithm
then takes as input a circuit C ′ and either outputs “marked” or “unmarked.” The correctness requirement
is that any circuit output by the marking algorithm should be regarded as “marked” by the verification
algorithm. A watermarking scheme is said to be publicly-verifiable if anyone can test whether a circuit is
watermarked or not, and secretly-verifiable if only the holder of the watermarking key is able to test whether
a program is watermarked.

The primary security property a software watermarking scheme must satisfy is unremovability, which
roughly says that given a watermarked circuit C, the adversary cannot produce a new circuit C̃ whose
functionality is similar to C, and yet is not considered to be marked from the perspective of the verification
algorithm. The definition can be strengthened by also allowing the adversary to obtain marked circuits
of its choosing. A key source of difficulty in achieving unremovability is that we allow the adversary
complete freedom in crafting its circuit C̃. All existing constructions of watermarking from standard
assumptions [NSS99, YF11, Nis13] constrain the output or power of the adversary (e.g., the adversary’s
output must consist of a tuple of group elements). In contrast, the works of Cohen et al. [CHN+16],
Boneh et al. [BLW17], and this work protect against arbitrary removal strategies.

A complementary security property to unremovability is unforgeability, which says that an adversary who
does not possess the watermarking secret key is unable to construct a new program (i.e., one sufficiently
different from any watermarked programs the adversary might have seen) that is deemed to be watermarked
(from the perspective of the verification algorithm). As noted by Cohen et al. [CHN+16], unforgeability
and unremovability are oftentimes conflicting requirements, and depending on the precise definitions, may
not be simultaneously satisfiable. In this work, we consider a natural setting where both conditions are
simultaneously satisfiable (and in fact, our construction achieves exactly that).

Watermarking PRFs. Following Cohen et al. [CHN+16] and Boneh et al. [BLW17], we focus on wa-
termarking cryptographic functions, specifically PRFs, in this work. Previously, Cohen et al. [CHN+16]
demonstrated that many natural classes of functions, such as any efficiently learnable class of functions, cannot

2

be watermarked. A canonical and fairly natural class of non-learnable functionalities are cryptographic ones.
Moreover, watermarking PRFs already suffices for a number of interesting applications; we refer to [CHN+16]
for the full details.

Building software watermarking. We begin by describing the high-level blueprint introduced by Co-
hen et al. [CHN+16] for constructing watermarkable PRFs.1 To watermark a PRF F with key k, the marking
algorithm first evaluates the PRF on several (secret) points h1, . . . , hd to obtain values t1, . . . , td. Then, the
marking algorithm uses the values (t1, . . . , td) to derive a (pseudorandom) pair (x∗, y∗). The watermarked
program is a circuit C that on all inputs x 6= x∗, outputs F (k, x), while on input x∗, it outputs the special
value y∗. To test whether a program C ′ is marked or not, the verification algorithm first evaluates C ′ on the
secret points h1, . . . , hd. It uses the function evaluations to derive the test pair (x∗, y∗). Finally, it evaluates
the program at x∗ and outputs “marked” if C ′(x∗) = y∗; otherwise, it outputs “unmarked.” For this scheme
to be secure against arbitrary removing strategies, it must be the case that the watermarked circuit C hides
the marked point x∗ from the adversary. Moreover, the value y∗ at the “reprogrammed” point should not be
easily identifiable. Otherwise, an adversary can trivially defeat the watermarking scheme by simply producing
a circuit that behaves just like C, but outputs ⊥ whenever it is queried on the special point x∗. In some
sense, security requires that the point x∗ is carefully embedded within the description of the watermarked
program such that no efficient adversary is able to identify it (or even learn partial information about it).
This apparent need to embed a secret within a piece of code is reminiscent of program obfuscation, so not
surprisingly, the existing constructions of software watermarking all rely on indistinguishability obfuscation.

Puncturable and programmable PRFs. The starting point of our construction is the recent watermarking
construction by Boneh et al. [BLW17] (which follows the Cohen et al. [CHN+16] blueprint sketched above).
In their work, they first introduce the notion of a private puncturable PRF. In a regular puncturable
PRF [BW13, KPTZ13, BGI14], the holder of the PRF key can issue a “punctured” key skx∗ such that skx∗
can be used to evaluate the PRF everywhere except at a single point x∗. In a private puncturable PRF, the
punctured key skx∗ also hides the punctured point x∗. Intuitively, private puncturing seems to get us partway
to the goal of constructing a watermarkable family of PRFs according to the above blueprint. After all, a
private puncturable PRF allows issuing keys that agree with the real PRF almost everywhere, and yet, the
holder of the punctured key cannot tell which point was punctured. Unfortunately, standard puncturable
PRFs do not provide an efficient algorithm for testing whether a particular point is punctured or not, and
thus, we do not have a way to determine (given just oracle access to the program) whether the program is
marked or not.

To bridge the gap between private puncturable PRFs and watermarkable PRFs, Boneh et al. introduced
a stronger notion called a private programmable PRF, which allows for arbitrary reprogramming of the
PRF value at the punctured point. This modification allows them to instantiate the Cohen et al. blueprint
for watermarking. However, private programmable PRFs seem more difficult to construct than a private
puncturable PRF, and the construction in [BLW17] relies on indistinguishability obfuscation. In contrast,
Boneh et al. [BKM17] as well as Canetti and Chen [CC17] have recently showed how to construct private
puncturable PRFs (and in the case of [CC17], private constrained PRFs for NC1) from standard lattice
assumptions.

1.2 Our Contributions

While the high-level framework of Cohen et al. [CHN+16] provides an elegant approach for building water-
markable PRFs (and by extension, other cryptographic functionalities), realizing it without relying on some
form of obfuscation is challenging. Our primary contribution in this work is showing that it is possible to
construct a watermarkable family of PRFs (in the secret-key setting) while only relying on standard lattice
assumptions (namely, on the subexponential hardness2 of LWE and 1D-SIS). Thus, this work gives the first

1There are numerous technicalities in the actual construction, but these are not essential to understanding the main intuition.
2The need for the less standard (though still widely used) subexponential hardness is due to the fact that we use “complexity
leveraging” [BB04] to show that our watermarkable family of PRFs satisfies adaptive security. If selective security suffices, then
our construction is secure assuming polynomial hardness of LWE and 1D-SIS.

3

construction of a mathematically-sound watermarking construction for a nontrivial family of cryptographic
primitives from standard assumptions. In this section, we give a brief overview of our main construction and
results. Then, in Section 2, we give a more detailed technical overview of our lattice-based watermarking
construction.

Relaxing programmability. The work of Boneh, Lewi, and Wu [BLW17] introduces two closely-related
notions: private puncturable PRFs and private programmable PRFs. Despite their similarities, private
programmable PRFs give a direct construction of watermarking while private puncturable PRFs do not seem
sufficient. In this work, we take a “meet-in-the-middle” approach. First, we identify an intermediate notion
that interpolates between private puncturable PRFs and private programmable PRFs. For reasons described
below, we refer to our new primitive as a private translucent PRF. The advantages to defining this new
notion are twofold. First, we show how to augment and extend the Boneh et al. [BKM17] private puncturable
PRF to obtain a private translucent PRF from standard lattice assumptions. Second, we show that private
translucent PRFs still suffice to instantiate the rough blueprint in [CHN+16] for building cryptographic
watermarking schemes. Together, these ingredients yield the first (secretly-verifiable) watermarkable family
of PRFs from standard assumptions.3

Private translucent PRFs. The key cryptographic primitive we introduce in this work is the notion of
a translucent puncturable PRF. To keep the description simple, we refer to it as a “translucent PRF” in
this section. As described above, private translucent PRFs interpolate between private puncturable PRFs
and private programmable PRFs. We begin by describing the notion of a (non-private) translucent PRF.
A translucent PRF consists of a set of public parameters pp and a secret testing key tk. Unlike standard
puncturable and programmable PRFs, each translucent PRF (specified by (pp, tk)) defines an entire family of
puncturable PRFs over a domain X and range Y , and which share a common set of public parameters. More
precisely, translucent PRFs implement a SampleKey algorithm which, on input the public parameters pp,
samples a PRF key k from the underlying puncturable PRF family. The underlying PRF family associated
with pp is puncturable, so all of the keys k output by SampleKey can be punctured.

The defining property of a translucent PRF is that when a punctured key skx∗ (derived from some PRF
key k output by SampleKey) is used to evaluate the PRF at the punctured point x∗, the resulting value lies
in a specific subset S ⊂ Y . Moreover, when the punctured key skx∗ is used to evaluate at any non-punctured
point x 6= x∗, the resulting value lies in Y \ S with high probability. The particular subset S is global to all
PRFs in the punctured PRF family, and moreover, is uniquely determined by the public parameters of the
overall translucent PRF. The second requirement we require of a translucent PRF is that the secret testing
key tk can be used to test whether a particular value y ∈ Y lies in the subset S or not. In other words,
given only the evaluation output of a punctured key skx∗ on some input x, the holder of the testing key can
efficiently tell whether x = x∗ (without any knowledge of skx∗ or its associated PRF key k).

In a private translucent PRF, we impose the additional requirement that the underlying puncturable PRF
family is privately puncturable (that is, the punctured keys also hide the punctured point). An immediate
consequence of the privacy requirement is that whenever a punctured key is used to evaluate the PRF at a
punctured point, the output value (contained in S) should look indistinguishable from a random value in the
range Y. If elements in S are easily distinguishable from elements in Y \ S (without tk), then an adversary
can efficiently test whether a punctured key is punctured at a particular point x, thus breaking privacy. In
particular, this means that S must be a sparse hidden subset of Y such that anyone who does not possess
the testing key tk cannot distinguish elements in S from elements in Y. Anyone who possesses the testing
key, however, should be able to tell whether a particular element is contained in S or not. Moreover, all of
these properties should hold even though it is easy to publicly sample elements from S (the adversary can
always sample a PRF key k using SampleKey, puncture k at any point x∗, and then evaluate the punctured
key at x∗). Sets S ⊂ Y that satisfy these properties were referred to as “translucent sets” in the work of
Canetti et al. [CDNO97] on constructing deniable encryption. In our setting, the outputs of the punctured
PRF keys in a private translucent PRF precisely implement a translucent set system, hence the name
“translucent PRF.”
3Another approach for building a watermarkable family of PRFs is to directly construct a private programmable PRF (from
standard assumptions) and then invoke the construction in [BLW17]. We discuss this approach at the end of this section.

4

From private translucency to watermarking. Once we have a private translucent PRF, it is fairly
straightforward to obtain from it a family of watermarkable PRFs. Our construction roughly follows the
high-level blueprint described in [CHN+16]. Take any private translucent PRF with public parameters pp
and testing key tk. We now describe a (secretly-verifiable) watermarking scheme for the family of private
puncturable PRFs associated with pp. The watermarking secret key consists of several randomly chosen
domain elements h1, . . . , hd ∈ X and the testing key tk for the private translucent PRF. To watermark a
PRF key k (output by SampleKey), the marking algorithm evaluates the PRF on h1, . . . , hd and uses the
outputs to derive a special point x∗ ∈ X . The watermarked key skx∗ is the key k punctured at the point
x∗. By definition, this means that if the watermarked key skx∗ is used to evaluate the PRF at x∗, then the
resulting value lies in the hidden sparse subset S ⊆ Y specific to the private translucent PRF.

To test whether a particular program (i.e., circuit) is marked, the verification algorithm first evaluates the
circuit at h1, . . . , hd. Then, it uses the evaluations to derive the special point x∗. Finally, the verification
algorithm evaluates the program at x∗ to obtain a value y∗. Using the testing key tk, the verification algorithm
checks to see if y∗ lies in the hidden set S associated with the public parameters of the private translucent
PRF. Correctness follows from the fact that the punctured key is functionality-preserving (i.e., computes
the PRF correctly at all but the punctured point). Security of the watermarking scheme follows from the
fact that the watermarked key hides the special point x∗. Furthermore, the adversary cannot distinguish the
elements of the hidden set S from random elements in the range Y. Intuitively then, the only effective way
for the adversary to remove the watermark is to change the behavior of the marked program on many points
(i.e., at least one of h1, . . . , hd, x

∗). But to do so, we show that such an adversary necessarily corrupts the
functionality on a noticeable fraction of the domain. In Section 6, we formalize these notions and show that
every private translucent PRF gives rise to a watermarkable family of PRFs. In fact, we show that starting
from private translucent PRFs, we obtain a watermarkable family of PRFs satisfying a stronger notion of
mark-unremovability security compared to the construction in [BLW17]. We discuss this in greater detail in
Section 6 (Remark 6.11).

Message-embedding via t-puncturing. Previous watermarking constructions [CHN+16, BLW17] also
supported a stronger notion of watermarking called “message-embedding” watermarking. In a message-
embedding scheme, the marking algorithm also takes as input a message m ∈ {0, 1}t and outputs a
watermarked program with the message m embedded within it. The verification algorithm is replaced with
an extraction algorithm that takes as input a watermarked program (and in the secret-key setting, the
watermarking secret key), and either outputs “unmarked” or the embedded message. The unremovability
property is strengthened to say that given a program with an embedded message m, the adversary cannot
produce a similar program on which the extraction algorithm outputs something other than m. Existing
watermarking constructions [CHN+16, BLW17] leverage reprogrammability to obtain a message-embedding
watermarking scheme—that is, the program’s outputs on certain special inputs are modified to contain a
(blinded) version of m (which the verification algorithm can then extract).

A natural question is whether our construction based on private translucent PRFs can be extended to
support message-embedding. The key barrier seems to be the fact that private translucent PRFs do not allow
much flexibility in programming the actual value to which a punctured key evaluates on a punctured point.
We can only ensure that it lies in some translucent set S. To achieve message-embedding watermarking, we
require a different method of embedding the message. Our solution contains two key ingredients:

• First, we introduce a notion of private t-puncturable PRFs, which is a natural extension of puncturing
where the punctured keys are punctured on a set of exactly t points in the domain rather than a
single point. Fortunately, for small values of t (i.e., polynomial in the security parameter), our private
translucent PRF construction (Section 5) can be modified to support keys punctured at t points rather
than a single point. The other properties of translucent PRFs remain intact (i.e., whenever a t-punctured
key is used to evaluate at any one of the t punctured points, the result of the evaluation lies in the
translucent subset S ⊂ Y).

• To embed a message m ∈ {0, 1}t, we follow the same blueprint as before, but instead of deriving a single

special point x∗, the marking algorithm instead derives 2·t (pseudorandom) points x
(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t .

5

The watermarked key is a t-punctured key, where the t points are chosen based on the bits of the
message. Specifically, to embed a message m ∈ {0, 1}t into a PRF key k, the marking algorithm

punctures k at the points x
(m1)
1 , . . . , x

(mt)
t . The extraction procedure works similarly to the verification

procedure in the basic construction. It first evaluates the program on the set of (hidden) inputs, and

uses the program outputs to derive the values x
(b)
i for all i = 1, . . . , t and b ∈ {0, 1}. For each index

i = 1, . . . , t, the extraction algorithm tests whether the program’s output at x
(0)
i or x

(1)
i lies within the

translucent set S. In this way, the extraction algorithm is able to extract the bits of the message.

Thus, without much additional overhead (i.e., proportional to the bit-length of the embedded messages), we
obtain a message-embedding watermarking scheme from standard lattice assumption.

Constructing translucent PRFs. Another technical contribution in this work is a new construction of a
private translucent PRF (that supports t-puncturing) from standard lattice assumptions. The starting point of
our private translucent PRF construction is the private puncturable PRF construction of Boneh et al. [BKM17].
We provide a detailed technical overview of our algebraic construction in Section 2, and the concrete details
of the construction (with accompanying security proofs) in Section 5. Here, we provide some intuition on how
we construct a private translucent PRF (for the simpler case of puncturing). Recall first that the construction
of Boneh et al. gives rise to a PRF with output space Zmp . In our private translucent PRF construction, the
translucent set is chosen to be a random noisy 1-dimensional subspace within Zmp . By carefully exploiting
the specific algebraic structure of the Boneh et al. PRF, we ensure that whenever an (honestly-generated)
punctured key is used to evaluate on a punctured point, the evaluation outputs a vector in this random
subspace (with high probability). The testing key simply consists of a vector that is essentially orthogonal to
the hidden subspace. Of course, it is critical here that the hidden subspace is noisy. Otherwise, since the
adversary is able to obtain arbitrary samples from this subspace (by generating and puncturing keys of its
own), it can trivially learn the subspace, and thus, efficiently decide whether a vector lies in the subspace or
not. Using a noisy subspace enables us to appeal to the hardness of LWE and 1D-SIS to argue security of the
overall construction. We refer to the technical overview in Section 2 and the concrete description in Section 5
for the full details.

An alternative approach. An alternative method for constructing a watermarkable family of PRFs is to
construct a private programmable PRF from standard assumptions and apply the construction in [BLW17].
For instance, suppose we had a private puncturable PRF with the property that the value obtained when
using a punctured key to evaluate at a punctured point varies depending on the randomness used in the
puncturing algorithm. This property can be used to construct a private programmable PRF with a single-bit
output. Specifically, one can apply rejection sampling when puncturing the PRF to obtain a key with the
desired value at the punctured point. To extend to multiple output bits, one can concatenate the outputs of
several single-bit programmable PRFs. In conjunction with the construction in [BLW17], this gives another
approach for constructing a watermarkable family of PRFs (though satisfying a weaker security definition as
we explain below). The existing constructions of private puncturable PRFs [BKM17, CC17], however, do not
naturally satisfy this property. While the puncturing algorithms in [BKM17, CC17] are both randomized,
the value obtained when using the punctured key to evaluate at the punctured point is independent of the
randomness used during puncturing. Thus, this rejection sampling approach does not directly yield a private
programmable PRF, but may provide an alternative starting point for future constructions.

In this paper, our starting point is the Boneh et al. [BKM17] private puncturable PRF, and one of our
main contributions is showing how the “matrix-embedding-based” constrained PRFs in [BV15, BKM17]
(and described in Section 2) can be used to construct watermarking.4 One advantage of our approach
is that our private translucent PRF satisfies key-injectivity (a property that seems non-trivial to achieve
using the basic construction of private programmable PRFs described above). This property enables us to
achieve a stronger notion of security for watermarking compared to that in [BLW17]. We refer to Section 4
(Definition 4.15) and Remark 6.11 for a more thorough discussion. A similar notion of key-injectivity was

4In contrast, the Canetti-Chen constrained PRF construction [CC17] builds on secure modes of operation of the Gentry et al.
multilinear map [GGH15].

6

also needed in [CHN+16] to argue full security of their watermarking construction. Moreover, the translucent
PRFs we support allow (limited) programming at polynomially-many points, while the rejection-sampling
approach described above supports programming of at most logarithmically-many points. Although this
distinction is not important for watermarking, it may enable future applications of translucent PRFs. Finally,
we note that our translucent PRF construction can also be viewed as a way to randomize the constraining
algorithm of the PRF construction in [BV15, BKM17], and thus, can be combined with rejection sampling to
obtain a programmable PRF.

Open problems. Our work gives a construction of secretly-verifiable watermarkable family of PRFs from
standard assumptions. Can we construct a publicly-verifiable watermarkable family of PRFs from standard
assumptions? A first step might be to construct a secretly-verifiable watermarking scheme that gives the
adversary access to an “extraction” oracle. The only watermarking schemes (with security against arbitrary
removal strategies) that satisfy either one of these goals are due to Cohen et al. [CHN+16] and rely on
indistinguishability obfuscation. Another direction is to explore additional applications of private translucent
PRFs and private programmable PRFs. Can these primitives be used to base other cryptographic objects on
standard assumptions?

1.3 Additional Related Work

Much of the early (and ongoing) work on digital watermarking have focused on watermarking digital media,
such as images or video. These constructions tend to be ad hoc, and lack a firm theoretical foundation. We
refer to [CMB+07] and the references therein for a comprehensive survey of the field. The work of Hopper,
Molnar, and Wagnar [HMW07] gives the first formal and rigorous definitions for a digital watermarking
scheme, but they do not provide any concrete constructions. In the same work, Hopper et al. also introduce
the formal notion of secretly-verifiable watermarking, which is the focus of this work.

Early works on cryptographic watermarking [NSS99, YF11, Nis13] gave constructions that achieved
mark-unremovability against adversaries who could only make a restricted set of modifications to the marked
program. The work of Nishimaki [Nis13] showed how to obtain message-embedding watermarking using a
bit-by-bit embedding of the message within a dual-pairing vector space (specific to his particular construction).
Our message-embedding construction in this paper also takes a bit-by-bit approach, but our technique is
more general: we show that any translucent t-puncturable PRF suffices for constructing a watermarkable
family of PRFs that supports embedding t-bit messages.

In a recent work, Nishimaki, Wichs, and Zhandry [NWZ16] show how to construct a traitor tracing
scheme where arbitrary data can be embedded within a decryption key (which can be recovered by a tracing
algorithm). Similar notions of embedding data within the decryption key for a public-key encryption scheme
were also considered in the context of leakage-deterring [KT13] and traitor-deterring [KT15] public key
encryption. While these notions of message-embedding traitor tracing are conceptually similar to software
watermarking, the notions are incomparable. In a traitor-tracing (or traitor-deterring) scheme, there is a
single decryption key and a central authority who issues the marked keys. Conversely, in a watermarking
scheme, the keys can be chosen by the user, and moreover, different keys (implementing different functions)
can be watermarked.

PRFs from LWE. The first PRF construction from LWE was due to Banerjee, Peikert, and Rosen [BPR12].
Subsequently, [BLMR13, BP14] gave the first lattice-based key-homomorphic PRFs. These constructions
were then generalized to the setting of constrained PRFs in [BV15, BFP+15, BKM17]. Recently, Canetti and
Chen [CC17] showed how certain secure modes of operation of the multilinear map by Gentry et al. [GGH15]
can be used to construct a private constrained PRF for the class of NC1 constraints (with hardness reducing
to the LWE assumption).

ABE and PE from LWE. The techniques used in this work build on a series of works in the areas
of attribute-based encryption [SW05] and predicate encryption [BW07, KSW08] from LWE. These include
the attribute-based encryption constructions of [ABB10, GVW13, BGG+14, GV15, BV16, BCTW16], and

7

predicate encryption constructions of [AFV11, GMW15, GVW15].5

2 Construction Overview

In this section, we give a technical overview of our private translucent t-puncturable PRF from standard
lattice assumptions. As described in Section 1, this directly implies a watermarkable family of PRFs from
standard lattice assumptions. The formal definitions, constructions and accompanying proofs of security are
given in Sections 4 and 5. The watermarking construction is given in Section 6.

The LWE assumption. The learning with errors (LWE) assumption [Reg05], parameterized by n,m, q, χ,
states that for a uniformly random vector s ∈ Znq and a uniformly random matrix A ∈ Zn×mq , the distribution

(A, sTA + eT) is computationally indistinguishable from the uniform distribution over Zn×mq × Zmq , where e
is sampled from a (low-norm) error distribution χ. To simplify the presentation in this section, we will ignore
the precise generation and evolution of the error term e and just refer to it as “noise.”

Matrix embeddings. The starting point of our construction is the recent privately puncturable PRF of
Boneh, Kim, and Montgomery [BKM17], which itself builds on the constrained PRF construction of Brakerski
and Vaikuntanathan [BV15]. Both of these constructions rely on the matrix embedding mechanism introduced
by Boneh et al. [BGG+14] for constructing attribute-based encryption. In [BGG+14], an input x ∈ {0, 1}ρ is
embedded as the vector

sT
(
A1 + x1 ·G | · · · | Aρ + xρ ·G

)
+ noise ∈ Zmρq , (2.1)

where A1, . . . ,Aρ ∈ Zn×mq are uniformly random matrices, s ∈ Znq is a uniformly random vector, and
G ∈ Zn×mq is a special fixed matrix (called the “gadget matrix”). Embedding the inputs in this way enables
homomorphic operations on the inputs while keeping the noise small. In particular, given an input x ∈ {0, 1}ρ
and any polynomial-size circuit C : {0, 1}ρ → {0, 1}, there is a public operation that allows computing the
following vector from Eq. (2.1):

sT
(
AC + C(x) ·G

)
+ noise ∈ Zmq , (2.2)

where the matrix AC ∈ Zn×mq depends only on the circuit C, and not on the underlying input x. Thus,
we can define a homomorphic operation Evalpk on the matrices A1, . . . ,Aρ where on input a sequence of
matrices A1, . . . ,Aρ and a circuit C, Evalpk(C,A1, . . . ,Aρ)→ AC .

A puncturable PRF from LWE. Brakerski and Vaikuntanathan [BV15] showed how the homomorphic
properties in [BGG+14] can be leveraged to construct a (single-key) constrained PRF for general constraints.
Here, we provide a high-level description of their construction specialized to the case of puncturing. First,
let eq be the equality circuit where eq(x∗, x) = 1 if x∗ = x and 0 otherwise. The public parameters6 of the
scheme in [BV15] consist of randomly generated matrices A0,A1 ∈ Zn×mq for encoding the PRF input x and
matrices B1, . . .Bρ ∈ Zn×mq for encoding the punctured point x∗. The secret key for the PRF is a vector
s ∈ Znq . Then, on input a point x ∈ {0, 1}ρ, the PRF value at x is defined to be

PRF(s, x) := bsT ·Aeq,xep where Aeq,x := Evalpk(eq,B1, . . . ,Bρ,Ax1
, . . . ,Axρ),

where A0,A1,B1, . . . ,Bρ ∈ Zn×mq are the matrices in the public parameters, and b·ep is the component-wise
rounding operation that maps an element in Zq to an element in Zp where p < q. By construction, Aeq,x is a
function of x.

5We note that the LWE-based predicate encryption constructions satisfy a weaker security property (compared to [BW07, KSW08])
sometimes referred to as weak attribute-hiding.

6Since a constrained PRF is a secret-key primitive, we can always include the public parameters as part of the secret key.
However, in the lattice-based constrained PRF constructions [BV15, BFP+15, BKM17], the public parameters can be sampled
once and shared across multiple independent secret keys. Our construction of translucent PRFs will rely on choosing the public
parameter matrices to have a certain structure that is shared across multiple secret keys.

8

To puncture the key s at a point x∗ ∈ {0, 1}ρ, the construction in [BV15] gives out the vector

sT ·
(
A0 + 0 ·G | A1 + 1 ·G | B1 + x∗1 ·G | · · · | Bρ + x∗ρ ·G

)
+ noise. (2.3)

To evaluate the PRF at a point x ∈ {0, 1}ρ using a punctured key, the user first homomorphically evaluates
the equality circuit eq on input (x∗, x) to obtain the vector sT

(
Aeq,x + eq(x∗, x) ·G

)
+ noise. Rounding down

this vector yields the correct PRF value whenever eq(x∗, x) = 0, or equivalently, whenever x 6= x∗, as required
for puncturing. As shown in [BV15], this construction yields a secure (though non-private) puncturable PRF
from LWE with some added modifications.

Private puncturing. The reason the Brakerski-Vaikuntanathan puncturable PRF described here does not
provide privacy (that is, hide the punctured point) is because in order to operate on the embedded vectors,
the evaluator needs to know the underlying inputs. In other words, to homomorphically compute the equality
circuit eq on the input (x∗, x), the evaluator needs to know both x and x∗. However, the punctured point x∗

is precisely the information we need to hide. Using an idea inspired by the predicate encryption scheme of
Gorbunov et al. [GVW15], the construction of Boneh et al. [BKM17] hides the point x∗ by first encrypting
it using a fully homomorphic encryption (FHE) scheme [Gen09] before applying the matrix embeddings
of [BGG+14]. Specifically, in [BKM17], the punctured key has the following form:

sT ·
(
A0 + 0 ·G | A1 + 1 ·G | B1 + ct1 ·G | · · · | Bz + ctz ·G

| C1 + sk1 ·G | · · · | Cτ + skτ ·G
)

+ noise,

where ct1, . . . , ctz are the bits of an FHE encryption ct of the punctured point x∗, and sk1, . . . , skτ are the bits
of the FHE secret key sk. Given the ciphertext ct, the evaluator can homomorphically evaluate the equality
circuit eq and obtain an FHE encryption of eq(x∗, x). Next, by leveraging an “asymmetric multiplication
property” of the matrix encodings, the evaluator is able to compute the inner product between the encrypted
result with the decryption key sk.7 Recall that for lattice-based FHE schemes (e.g. [GSW13]), decryption
consists of evaluating a rounded inner product of the ciphertext with the decryption key. Specifically, the
inner product between the ciphertext and the decryption key results in q

2 + e ∈ Zq for some “small” error
term e.

Thus, it remains to show how to perform the rounding step in the FHE decryption. Simply computing
the inner product between the ciphertext and the secret key results in a vector

sT
(
AFHE,eq,x +

(q
2
· eq(x∗, x) + e

)
·G
)

+ noise,

where e is the FHE noise (for simplicity, by FHE, we always refer to the specific construction of [GSW13]
and its variants hereafter). Even though the error e is small, neither s nor G are low-norm and therefore, the
noise does not simply round away. The observation made in [BKM17], however, is that the gadget matrix G
contains some low-norm column vectors, namely the identity matrix I as a submatrix. By restricting the
PRF evaluation to just these columns and sampling the secret key s from the low-norm noise distribution,
they show that the FHE error term sT · e · I can be rounded away. Thus, by defining the PRF evaluation to
only take these specific column positions of

PRF(s, x) := bsTAFHE,eq,xep,

it is possible to recover the PRF evaluation from the punctured key if and only if eq(x∗, x) = 0.8

7Normally, multiplication of two inputs requires knowledge of both of the underlying inputs. The “asymmetry” in the embedding
scheme of [BGG+14] enables multiplications to be done even if only one of the values to be multiplied is known to the evaluator.
In the case of computing an inner product between the FHE ciphertext and the FHE secret key, the evaluator knows the bits of
the ciphertext, but not the FHE secret key. Thus, the asymmetry enables the evaluator to homomorphically evaluate the inner
product without knowledge of the FHE secret key.

8To actually show that the challenge PRF evaluation is pseudorandom at the punctured point, additional modifications must be
made such as introducing extra randomizing terms and collapsing the final PRF evaluation to be field elements instead of
vectors. We refer to [BKM17] for the full details.

9

Trapdoor at punctured key evaluations. We now describe how we extend the private puncturing
construction in [BKM17] to obtain a private translucent puncturable PRF where a secret key can be used
to test whether a value is the result of using a punctured key to evaluate at a punctured point. We begin
by describing an alternative way to perform the rounding step of the FHE decryption in the construction
of [BKM17]. First, consider modifying the PRF evaluation at x ∈ {0, 1}ρ to be

PRF(s, x) := bsTAFHE,eq,x ·G−1(D)ep,

where D ∈ Zn×mq is a public binary matrix and G−1 is the component-wise bit-decomposition operator on
matrices in Zn×mq .9 The gadget matrix G is defined so that for any matrix A ∈ Zn×mq , G ·G−1(A) = A.
Then, if we evaluate the PRF using the punctured key and multiply the result by G−1(D), we obtain the
following: (

sT
(
AFHE,eq,x +

(q
2
· eq(x∗, x) + e

)
·G
)

+ noise

)
G−1(D)

= sT
(
AFHE,eq,xG

−1(D) +
(q

2
· eq(x∗, x) + e

)
·D
)

︸ ︷︷ ︸
ÃFHE,eq,x

+noise′

= sT ÃFHE,eq,x + noise′

Since D is a low-norm (in fact, binary) matrix, the FHE error component sT · e ·D is short, and thus, will
disappear when we round. Therefore, whenever eq(x∗, x) = 0, we obtain the real PRF evaluation.

The key observation we make is that the algebraic structure of the PRF evaluation allows us to “program”
the matrix ÃFHE,eq,x whenever eq(x∗, x) = 1 (namely, when the punctured key is used to evaluate at the
punctured point). As described here, the FHE ciphertext decrypts to q/2 + e when the message is 1 and e
when the message is 0 (where e is a small error term). In the FHE scheme of [GSW13] (and its variants), it
is possible to encrypt scalar elements in Zq, and moreover, to modify the decryption operation so that it
outputs the encrypted scalar element (with some error). In other words, decrypting a ciphertext encrypting
w ∈ Zq would yield a value w + e for some small error term e. Then, in the PRF construction, instead of
encrypting the punctured point x∗, we encrypt a tuple (x∗, w) where w ∈ Zq is used to program the matrix

ÃFHE,eq,x.10 Next, we replace the basic equality function eq in the construction with a “scaled” equality
function that on input (x, (x∗, w)), outputs w if x = x∗, and 0 otherwise. With these changes, evaluating the
punctured PRF at a point x now yields:11

sT
(
AFHE,eq,xG

−1(D) + (w · eq(x∗, x) + e) ·D
)

+ noise.

Since w can be chosen arbitrarily when the punctured key is constructed, a natural question to ask is whether
there exists a w such that the matrix AFHE,eq,xG

−1(D) +w ·D has a particular structure. This is not possible
if w is a scalar, but if there are multiple w’s, this becomes possible.

To support programming of the matrix ÃFHE,eq,x, we first take N = m · n (public) binary matrices
D` ∈ {0, 1}n×m where the collection {D`}`∈[N] is a basis for the module Zn×mq (over Zq). This means that any

matrix in Zn×mq can be expressed as a unique linear combination
∑
`∈[N] w`D` where w = (w1, . . . , wN) ∈ ZNq

are the coefficients. Then, instead of encrypting a single element w in each FHE ciphertext, we encrypt a
vector w of coefficients. The PRF output is then a sum of N different PRF evaluations:

PRF(s, x) :=

∑
`∈[N]

sTAFHE,eq`,xG
−1(D`)


p

,

9Multiplying by the matrix G−1(D) can be viewed as an alternative way to restrict the PRF to the column positions corresponding
to the identity submatrix in G.

10A similar construction is used in [BKM17] to show security. In their construction, they sample and encrypt a random set of
w’s and use them to blind the real PRF value at the punctured point.

11To reduce notational clutter, we redefine the matrix AFHE,eq,x here to be the matrix associated with homomorphic evaluation
of the scaled equality-check circuit.

10

where the `th PRF evaluation is with respect to the circuit eq` that takes as input a pair (x, (x∗,w)) and
outputs w` if x = x∗ and 0 otherwise. If we now consider the corresponding computation using the punctured
key, evaluation at x yields the vector∑

`∈[N]

sT
(
AFHE,eq`,xG

−1(D`) + (w` · eq(x∗, x) + e) ·D`

)
+ noise (2.4)

The key observation is that for any matrix W ∈ Zn×mq , the puncturing algorithm can choose the coefficients

w ∈ ZNq so that

W =

∑
`∈[N]

AFHE,eq`,x
∗G−1(D`)

+
∑
`∈[N]

w` ·D`. (2.5)

Next, we choose W to be a lattice trapdoor matrix with associated trapdoor z (i.e., Wz = 0 mod q). From
Eq. (2.4) and Eq. (2.5), we have that whenever a punctured key is used to evaluate the PRF at the punctured
point, the result is a vector of the form

⌊
sTW

⌉
p
∈ Zmp . Testing whether a vector y is of this form can be

done by computing the inner product of y with the trapdoor vector z and checking if the result is small. In
particular, when y = bsTWep, we have that〈

bsTWep, z
〉
≈ bsTWzep = 0.

In our construction, the trapdoor matrix W is chosen independently of the PRF key s, and included as part
of the public parameters. To puncture a key s, the puncturing algorithm chooses the coefficients w such that
Eq. (2.5) holds. This allows us to program punctured keys associated with different secret keys si to the
same trapdoor matrix W. The underlying “translucent set” then is the set of vectors of the form bsTi Wep.
Under the LWE assumption, this set is indistinguishable from random. However, as shown above, using a
trapdoor for W, it is easy to determine if a vector lies in this set. Thus, we are able to embed a noisy hidden
subspace within the public parameters of the translucent PRF.

We note here that our construction is not expressive enough to give a programmable PRF in the sense
of [BLW17], because we do not have full control of the value y ∈ Zmp obtained when using the punctured key
to evaluate at the punctured point. We only ensure that y lies in a hidden (but efficiently testable) subspace
of Zmp . As we show in Section 6, this notion suffices for watermarking.

Puncturing at multiple points. The construction described above yields a translucent puncturable PRF.
As noted in Section 1, for message-embedding watermarking, we require a translucent t-puncturable PRF.
While we can trivially build a t-puncturable PRF from t instances of a puncturable PRF by xoring the outputs
of t independent puncturable PRF instances, this construction does not preserve translucency. Notably, we
can no longer detect whether a punctured key was used to evaluate the PRF at one of the punctured points.
Instead, to preserve the translucency structure, we construct a translucent t-puncturable PRF by defining it
to be the sum of multiple independent PRFs with different (public) parameter matrices, but sharing the same
secret key. Then, to puncture at t different points we first encrypt each of the t punctured points x∗1, . . . , x

∗
t ,

each with its own set of coefficient vectors w1, . . . ,wt to obtain t FHE ciphertexts ct1, . . . , ctt. The constrained
key then contains the following components:

sT ·
(
A0 + 0 ·G | A1 + 1 ·G | B1,1 + ct1,1 ·G | · · · | Bt,z + ctt,z ·G

| C1 + sk1 ·G | · · · | Cτ + skτ ·G
)

+ noise.

To evaluate the PRF at a point x ∈ {0, 1}ρ using the constrained key, one evaluates the PRF on each of the t
instances, that is, for all i ∈ [t],

sT

∑
`∈[N]

AFHE,eq`,i,xG
−1(D`) + eq(x∗i , x) ·

∑
`∈[N]

wi,` ·D`

+ noise′.

11

The output of the PRF is the (rounded) sum of these evaluations:

sT

∑
i∈[t]
`∈[N]

(
AFHE,eq`,i,xG

−1(D`)
)

+
∑
i∈[t]

eq(x∗i , x) ·
∑
`∈[N]

wi,` ·D`


+ noise′.

Similarly, the real value of the PRF is the (rounded) sum of the t independent PRF evaluations:

PRF(s, x) :=

sT
∑
i∈[t]
`∈[N]

AFHE,eq`,i,xG
−1(D`)


p

.

If the point x is not one of the punctured points, then eq(x∗i , x) = 0 for all i ∈ [t] and one recovers the
real PRF evaluation at x. If x is one of the punctured points (i.e., x = x∗i for some i ∈ [t]), then the PRF
evaluation using the punctured key yields the vector

sT

∑
i∈[t]
`∈[N]

(
AFHE,eq`,i,xG

−1(D`)
)

+ eq(x∗i , x) ·
∑
`∈[N]

wi,` ·D`

+ noise′.

and as before, we can embed trapdoor matrices Wi∗ for all i∗ ∈ [t] by choosing the coefficient vectors
wi∗ = (wi∗,1, . . . , wi∗,N) ∈ ZNq accordingly:12

Wi∗ =
∑
i∈[t]
`∈[N]

(
AFHE,eq`,i,x

∗
i∗

G−1(D`)
)

+
∑
`∈[N]

wi∗,` ·D`.

A technical detail. In the actual construction in Section 5.1, we include an additional “auxiliary matrix”
Â in the public parameters and define the PRF evaluation as the vector

PRF(s, x) :=

sT

Â +
∑
i∈[t]
`∈[N]

AFHE,eq`,i,xG
−1(D`)



p

.

The presence of the additional matrix Â does not affect pseudorandomness, but facilitates the argument for
some of our other security properties. We give the formal description of our scheme as well as the security
analysis in Section 5.

3 Preliminaries

We begin by introducing some of the notation we use in this work. For an integer n ≥ 1, we write [n] to
denote the set of integers {1, . . . , n}. For a distribution D, we write x← D to denote that x is sampled from

D; for a finite set S, we write x
r← S to denote that x is sampled uniformly from S. We write Funs[X ,Y] to

denote the set of all functions mapping from a domain X to a range Y. For a finite set S, we write 2S to
denote the power set of S, namely the set of all subsets of S.

12For the punctured keys to hide the set of punctured points, we need a different trapdoor matrix for each punctured point. We
provide the full details in Section 5.

12

Unless specified otherwise, we use λ to denote the security parameter. We say a function f(λ) is negligible
in λ, denoted by negl(λ), if f(λ) = o(1/λc) for all c ∈ N. We say that an event happens with overwhelming
probability if its complement happens with negligible probability. We say an algorithm is efficient if it runs
in probabilistic polynomial time in the length of its input. We use poly(λ) to denote a quantity whose value
is bounded by a fixed polynomial in λ, and polylog(λ) to denote a quantity whose value is bounded by a fixed
polynomial in log λ (that is, a function of the form logc λ for some c ∈ N). We say that a family of distributions
D = {Dλ}λ∈N is B-bounded if the support of D is {−B, . . . , B − 1, B} with probability 1. For two families of

distributions D1 and D2, we write D1
c
≈ D2 if the two distributions are computationally indistinguishable

(that is, no efficient algorithm can distinguish D1 from D2, except with negligible probability). We write

D1
s
≈ D2 if the two distributions are statistically indistinguishable (that is, the statistical distance between

D1 and D2 is negligible).

Vectors and matrices. We use bold lowercase letters (e.g., v,w) to denote vectors and bold uppercase
letter (e.g., A,B) to denote matrices. For two vectors v,w, we write IP(v,w) = 〈v,w〉 to denote the inner
product of v and w. For a vector s or a matrix A, we use sT and AT to denote their transposes, respectively.
For an integer p ≤ q, we define the modular “rounding” function

b·ep : Zq → Zp that maps x→ b(p/q) · xe

and extend it coordinate-wise to matrices and vectors over Zq. Here, the operation b·e is the rounding
operation over the real numbers. In this work, we always use the infinity norm for vectors and matrices. For
a vector x, we write ‖x‖ to denote maxi |xi|. Similarly, for a matrix A, we write ‖A‖ to denote maxi,j |Ai,j |.
If x ∈ Zn and A ∈ Zn×m, then

∥∥xTA
∥∥ ≤ n · ‖x‖ · ‖A‖.

Pseudorandom functions. We also review the (formal) definition of a pseudorandom function:

Definition 3.1 (Pseudorandom Function [GGM84]). A pseudorandom function with a key-space K, domain
X , and range Y is a tuple of algorithms ΠPRF = (PRF.KeyGen,PRF.Eval) with the following properties:

• PRF.KeyGen(1λ)→ k: On input the security parameter λ, the key-generation algorithm outputs a key
k ∈ K.

• PRF.Eval(k, x)→ y: On input a PRF key k ∈ K and a point x ∈ X , the evaluation algorithm outputs a
value y ∈ Y.

Definition 3.2 (Pseudorandomness [GGM84]). Fix a security parameter λ and let ΠPRF = (PRF.KeyGen,
PRF.Eval) be a PRF with domain X and range Y. Then ΠPRF is secure if for all efficient adversaries A, and

k ← PRF.KeyGen(1λ), f
r← Funs[X ,Y],∣∣∣Pr[APRF.Eval(k,·)(1λ) = 1]− Pr[Af(·)(1λ) = 1]

∣∣∣ = negl(λ).

3.1 Lattice Preliminaries

In this section, we provide some background on the lattice-based techniques we use in this work.

Learning with errors. The learning with errors (LWE) assumption was first introduced by Regev [Reg05].
In the same work, Regev showed that solving LWE in the average case is as hard as (quantumly) approximating
several standard lattice problems in the worst case. We state the assumption below.

Definition 3.3 (Learning with Errors [Reg05]). Fix a security parameter λ and integers n = n(λ), m = m(λ),
q = q(λ) and an error (or noise) distribution χ = χ(λ) over the integers. Then the (decisional) learning

with errors (LWE) assumption LWEn,m,q,χ states that for A
r← Zn×mq , s

r← Znq , e
r← χm, and u

r← Znq , the
following two families of distributions are computationally indistinguishable:

(A, sTA + eT)
c
≈ (A,u).

13

When the error distribution χ is B-bounded (oftentimes, a discrete Gaussian distribution), and under mild
conditions on the modulus q, the LWEn,m,q,χ assumption is true assuming various worst-case lattice problems

such as GapSVP and SIVP on an n-dimensional lattice are hard to approximate within a factor of Õ(n · q/B)
by a quantum algorithm [Reg05]. Similar reductions of LWE to the classical hardness of approximating
worst-case lattice problems are also known [Pei09, ACPS09, MM11, MP12, BLP+13].

The gadget matrix. We define the “gadget matrix” G = g⊗In ∈ Zn×n·dlog qe
q where g = (1, 2, 4, . . . , 2dlog qe−1).

We define the inverse function G−1 : Zn×mq → Zndlog qe×m
q which expands each entry x ∈ Zq in the input

matrix into a column of size dlog qe consisting of the bits of the binary representation of x. To simplify the
notation, we always assume that G has width m (in our construction, m = Θ(n log q)). Note that this is
without loss of generality since we can always extend G by appending zero columns. We have the property
that for any matrix A ∈ Zn×mq , we have that G ·G−1(A) = A.

The 1D-SIS problem. Following [BV15, BKM17], we also use a special case of the well-known short
integer solution (SIS) problem that was introduced by Ajtai [Ajt96] and studied in a series of works
[Mic04, MR07, MP13].

Definition 3.4 (One-Dimensional Short Integer Solution [Ajt96]). Fix a security parameter λ and integers
m = m(λ), q = q(λ), and β = β(λ). The one-dimensional short integer solution (1D-SIS) problem 1D-SISm,q,β
is defined as follows:

given v
r← Zmq , compute z ∈ Zm such that ‖z‖ ≤ β and 〈v, z〉 = 0 mod q.

The 1D-SISm,q,β assumption states that no efficient adversary is able to solve the 1D-SISm,q,β problem except
with negligible probability.

In this work, we require the following “rounded” variant of the 1D-SIS assumption, which was first intro-
duced in [BV15] for constructing single-key circuit-constrained PRFs and used in [BKM17] for constructing
privately puncturable PRFs. These works also show that this variant of 1D-SIS is at least as hard as 1D-SIS
(for an appropriate choice of parameters).

Definition 3.5 (One-Dimension Rounded Short Integer Solution [BV15, BKM17]). Fix a security parameter
λ and integers m = m(λ), p = p(λ), q = q(λ), and β = β(λ), where q = p ·

∏
i∈[n] pi, and p1 < p2 < · · · < pn

are all coprime and also coprime with p. The one-dimensional rounded short integer solution (1D-SIS-R)
problem 1D-SIS-Rm,p,q,β problem is defined as follows:

given v
r← Zmq , compute z ∈ Zm such that ‖z‖ ≤ β,

and one of the following conditions hold:

〈v, z〉 ∈ [−β, β] + (q/p) · Z or 〈v, z〉 ∈ [−β, β] + (q/p)(Z+ 1/2).13

The 1D-SIS-Rm,p,q,β assumption states that no efficient adversary can solve the 1D-SIS-Rm,p,q,β problem
except with negligible probability.

The works of [BV15, BKM17] show that when m = O(n log q) and p1 ≥ β ·ω(
√
mn log n), the 1D-SIS-Rm,p,q,β

problem is as hard as approximating certain worst-case lattice problems to within a factor of β · Õ(
√
mn).

3.2 Lattice Trapdoors

Although finding a “short vector” in a given lattice is believed to be a hard problem, with some additional
auxiliary information such as a trapdoor (i.e. a set of short generating vectors of the lattice), the problem
becomes easy. Lattice trapdoors have been used in a wide variety of context and are studied extensively in
the literature [Ajt99, GPV08, AP09, MP12, LW15]. Since the specific details of the trapdoor constructions
are not necessary for this work, we highlight only the properties we require in the following theorem.

13Here, we write (q/p)(Z+ 1/2) to denote values of the form bq/2pe+ (q/p) · Z.

14

Theorem 3.6 (Lattice Trapdoors [Ajt99, GPV08, AP09, MP12, LW15]). Fix a security parameters λ, and
lattice parameters n,m, q. Let χ = χ(λ) be a B-bounded error distribution. Then, there exists a polynomial
time algorithm TrapGen:

• TrapGen(1n, q)→ (W, z): On input the parameters n, q ∈ Z, the trapdoor generation algorithm outputs
a matrix W ∈ Zn×mq and a vector z ∈ Zm for some m ∈ N.

Moreover, the TrapGen algorithm satisfies the following properties hold:

• The matrix W is statistically close to uniform.
• The vector z is B-bounded: ‖z‖ ≤ B.
• W · z = 0 mod q.

3.3 (Leveled) Homomorphic Encryption

Following the presentation of [GVW15], we give a minimal definition of leveled homomorphic encryption that
suffices for our construction. Note that a leveled homomorphic encryption scheme is one that only supports
an a priori bounded number of homomorphic operations. This is to contrast it with the notion of a fully
homomorphic encryption scheme (FHE) scheme supports an arbitrary number of homomorphic operations on
ciphertexts.14 A (secret-key) leveled homomorphic encryption scheme over a message space {0, 1}ρ is a tuple
of polynomial-time algorithms ΠHE = (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec) defined as follows:

• HE.KeyGen(1λ, 1d, 1ρ) → sk: On input the security parameter λ, a depth bound d, and a message
length ρ, the key generation algorithm outputs a secret key sk.

• HE.Enc(sk, µ) → ct: On input a secret key sk and a message µ ∈ {0, 1}ρ, the encryption algorithm
outputs a ciphertext ct.

• HE.Eval(C, ct) → ct′: On input a circuit C : {0, 1}ρ → {0, 1} of depth at most d and a ciphertext ct,
the homomorphic evaluation algorithm outputs another ciphertext ct′.

• HE.Dec(sk, ct)→ b: On input a secret key sk and a ciphertext ct, the decryption algorithm outputs a
bit b.

Note that we can also define leveled (and fully) homomorphic encryption schemes where the plaintext space
is a ring or a finite field. All of the definitions translate analogously.

Definition 3.7 (Correctness). Fix a security parameter λ. A leveled homomorphic encryption scheme
ΠHE = (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec) is (perfectly) correct if for all positive integers d = d(λ),
ρ = ρ(λ), and all messages µ ∈ {0, 1}ρ, all Boolean circuits C : {0, 1}ρ → {0, 1} of depth at most d, setting
sk← HE.KeyGen(1λ, 1d, 1ρ), we have that

Pr [HE.Dec(sk,HE.Eval(C,HE.Enc(sk, µ))) = C(µ)] = 1,

Definition 3.8 (Semantic Security). Fix a security parameter λ, and let d = d(λ), ρ = ρ(λ). Then, a leveled
homomorphic encryption scheme ΠHE = (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec) is semantically secure if for
all efficient adversaries A and setting sk← HE.KeyGen(1λ, 1d, 1ρ),∣∣∣Pr[AO0(sk,·,·)(1λ) = 1]− Pr[AO1(sk,·,·)(1λ) = 1]

∣∣∣ = negl(λ),

where for b ∈ {0, 1}, Ob(sk, ·, ·) is the encryption oracle that on input m0,m1 ∈ {0, 1}ρ, outputs HE.Enc(sk,mb).

14Since these two notions are syntactically similar, we often write FHE as shorthand to also refer to leveled homomorphic
encryption. All of the constructions in this paper only rely on leveled (rather than fully) homomorphic encryption.

15

Homomorphic encryption from LWE. There are numerous instantiations of leveled (and fully) homo-
morphic encryption based on the LWE assumption [BV11, BGV12, Bra12, GSW13, BV14, AP14, CM15,
MW16, PS16, MW16]. A key property of existing FHE constructions that we leverage in this work is the
asymmetric noise growth when performing homomorphic operations [BV14]. Typically, when two ciphertexts
are homomorphically multiplied, the noise in the resulting ciphertext scales proportionally to the size of
the underlying plaintext. Thus, plaintexts are usually restricted to be “small” elements (e.g., bits) in Zq.
However, the noise growth of the homomorphic encryption construction of [GSW13] and its variants enjoy an
asymmetric property where the noise scales proportionally to only one of the underlying plaintext elements
being multiplied. Thus, it is possible to encrypt and homomorphically compute on Zq elements; correctness is
preserved as long as two (large) Zq elements are never multiplied together. This is the property we leverage
in our construction of translucent PRFs in Section 5.1. There, the plaintext space of the homomorphic
encryption scheme is more naturally written as {0, 1}ρ0 × Zρ1q and the circuits that we homomorphically
evaluate have the property that they never multiply two (non-binary) elements in Zq. We can view the
plaintext space as Zρq for ρ = ρ0 + ρ1, but it will be useful in distinguishing between the inputs that are
binary-valued and those that are field elements. Moreover, in the description below (and in our construction),
we only require a relaxed version of correctness. On input a ciphertext ct encrypting a field element w ∈ Zq, we
require that the decryption function HE.Dec outputs a value that is “close” to w (rather than the exact value
of w). We summarize the formal properties of the homomorphic encryption construction based on [GSW13]
(and its variants) in the following theorem.

Theorem 3.9 (Homomorphic Encryption from LWE [GSW13, BV14, adapted]). Fix a security parameter
λ and lattice parameters n,m, q. Let χ = χ(λ) be a B-bounded error distribution. There is a leveled
homomorphic encryption scheme ΠHE = (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec) for (arithmetic) circuits of
depth d = d(λ) over the plaintext space {0, 1}ρ0 × Zρ1q with the following properties:

• HE.KeyGen(1λ, 1d, 1ρ) outputs a secret key sk ∈ Zτq where ρ = ρ0 + ρ1 and τ = poly(λ).

• HE.Enc takes a message (µ,w) ∈ {0, 1}ρ0 × Zρ1q and outputs a ciphertext ct ∈ {0, 1}z where z =
poly(λ, d, ρ, log q).

• HE.Eval takes an arithmetic circuit C : {0, 1}ρ0 × Zρ1q → Zq and a ciphertext ct ∈ {0, 1}z and outputs a
ciphertext ct′ ∈ {0, 1}τ .

• On input an arithmetic circuit C : {0, 1}ρ0×Zρ1q → Zq of depth at most d, HE.Eval(C, ·) can be computed
by a Boolean circuit of depth poly(d, log z), where z is the length of the ciphertexts output by HE.Enc.

• Let C : {0, 1}ρ0 × Zρ1q → Zq be an arithmetic circuit of depth at most d such that the inputs to every

multiplication gate in C contains at most a single non-binary value. Let sk← HE.KeyGen(1λ, 1d, 1ρ) and
take a message (µ,w) ∈ {0, 1}ρ0 × Zρ1q . Let ct← HE.Eval(C,HE.Enc(sk, (µ,w))). If C(µ,w) = w ∈ Zq,
then with overwhelming probability,

HE.Dec(sk, ct) = 〈ct, sk〉 =
∑
k∈[τ]

skk · ctk ∈ [w − E,w + E]

for some E = B ·mO(d).

• The scheme ΠHE is secure under the LWEn,q,χ assumption where n = poly(λ) and q > B ·mO(d).

3.4 Embedding Circuits into Matrices

A core ingredient in our construction is the ability to embed bits x1, . . . , xρ ∈ {0, 1} into matrices A1, . . . ,Aρ ∈
Zn×mq and subsequently evaluate a circuit on these matrices. This technique was first introduced by
Boneh et al. [BGG+14], for constructing attribute-based encryption for arithmetic circuits, and has sub-
sequently found applications in other lattice-based constructions such as predicate encryption [GVW15],

16

constrained PRFs [BV15], and private puncturable PRFs [BKM17]. In this work, we rely on the extended
matrix embedding for the class of circuits of the form IP ◦ C used in [GVW15, BKM17]. Specifically, if
C : {0, 1}ρ → {0, 1}τ is a Boolean circuit, then the circuit IP ◦ C : {0, 1}ρ × Zτq → Zq is defined by

(IP ◦ C)(x,y) = IP(C(x),y) = 〈C(x),y〉 ∈ Zq,

Our presentation of the matrix embedding is largely adapted from [GVW15, BKM17], and we refer readers
there for a more detailed description. The matrix embedding consists of the following two algorithms
(Evalpk,Evalct):

• The deterministic algorithm Evalpk takes as input a circuit IP◦C : {0, 1}ρ×Zτq → Zq and ρ+ τ matrices

A1, . . . ,Aρ, Ã1, . . . , Ãτ ∈ Zn×mq and outputs a matrix AIP◦C ∈ Zn×mq .

• The deterministic algorithm Evalct takes as input a circuit IP ◦ C : {0, 1}ρ × Zτq → Zq and matrices

A1, . . . ,Aρ, Ã1, . . . , Ãτ ∈ Zn×mq as in Evalpk, and in addition, a bit-string x ∈ {0, 1}ρ, and ρ+ τ LWE

samples b1, . . . ,bρ, b̃1, . . . , b̃τ ∈ Znq , associated with the bits of x ∈ {0, 1}ρ and components of some

vector y ∈ Zτq , respectively. Specifically, for i ∈ [ρ] and j ∈ [τ], we can write bi and b̃j as

bi = sT (Ai + xiG) + eTi and b̃j = sT (Ãj + yjG) + ẽTj .

where the noise vectors {ei}i∈[ρ], {ẽj}j∈[τ] are sampled from the noise distribution χm. The output
of Evalct is an LWE sample sT (AIP◦C + (IP ◦ C)(x,y) ·G) + eIP◦C associated with the output matrix
AIP◦C and output value (IP ◦ C)(x,y). Critically, the input to Evalct just includes x ∈ {0, 1}`, and not

y ∈ Zτq . For notational convenience, when the matrices A1, . . . ,Aρ, Ã1, . . . , Ãτ are clear from context,
we will not explicitly include them as part of the arguments to Evalct.

Next, we state the formal properties satisfied by (Evalpk,Evalct).

Theorem 3.10 (Matrix Embeddings [BGG+14, GVW15]). Fix a security parameter λ, and lattice parameters

n,m, q. There exists algorithms (Evalpk,Evalct) such that for all matrices A1, . . .Aρ, Ã1, . . . , Ãτ ∈ Zn×mq , for
all inputs (x,y) ∈ {0, 1}ρ × Zτq , and for all Boolean circuits C : {0, 1}ρ → {0, 1}τ of depth d, if

bi = sT (Ai + xiG) + eTi ∀i ∈ [ρ] and b̃j = sT (Ãj + yjG) + ẽTj ∀j ∈ [τ],

for some vector s ∈ Znq , and ‖ei‖ , ‖ẽj‖ ≤ B for all i ∈ [ρ], j ∈ [τ], where B = B(λ) is a noise bound such

that B ·mO(d) < q, then the following properties hold

• Letting
bIP◦C = Evalct(x, IP ◦ C,A1, . . . ,Aρ, Ã1, . . . , Ãτ ,b1, . . . ,bρ, b̃1, . . . , b̃τ),

then
bIP◦C = sT (AIP◦C + (IP ◦ C)(x,y) ·G) + eIP◦C ,

where AIP◦C = Evalpk(IP ◦ C,A1, . . . ,Aρ, Ã1, . . . , Ãτ) and ‖eIP◦C‖ ≤ B ·mO(d).

• There exists a collection of (efficiently-computable) matrices R1, . . . ,Rρ, R̃1, . . . , R̃τ ∈ Zm×mq such that

bTIP◦C =
∑
i∈[ρ]

bTi Ri +
∑
j∈[τ]

b̃Tj R̃j ,

where AIP◦C = Evalpk(IP ◦ C,A1, . . . ,Aρ, Ã1, . . . , Ãτ) and ‖Ri‖, ‖R̃j‖ ≤ mO(d) for all i ∈ [ρ], j ∈ [τ].

17

4 Translucent Constrained PRFs

In this section, we formally define our notion of a translucent constrained PRFs. Recall first that in a
constrained PRF [BW13], the holder of the master secret key for the PRF can issue constrained keys which
enable PRF evaluation on only the points that satisfy the constraint. Now, each translucent constrained
PRF actually defines an entire family of constrained PRFs (see the discussion in Section 1.2 and Remark 4.2
for more details). Moreover, this family of constrained PRFs has the special property that the constraining
algorithm embeds a hidden subset. Notably, this hidden subset is shared across all PRF keys in the constrained
PRF family; the hidden subset is specific to the constrained PRF family, and is determined wholly by the
parameters of the particular translucent constrained PRF. This means that whenever an (honestly-generated)
constrained key is used to evaluate at a point that does not satisfy the constraint, the evaluation lies within
this hidden subset. Furthermore, the holder of the constrained key is unable to tell whether a particular
output value lies in the hidden subset or not. However, anyone who possesses a secret testing key (specific
to the translucent constrained PRF) is able to identify whether a particular value lies in the hidden subset
or not. In essence then, the set of outputs of all of the constrained keys in a translucent constrained PRF
system defines a translucent set in the sense of [CDNO97]. We now give our formal definitions.

Definition 4.1 (Translucent Constrained PRF). Let λ be a security parameter. A translucent constrained
PRF with domain X and range Y is a tuple of algorithms ΠTPRF = (TPRF.Setup,TPRF.SampleKey,TPRF.Eval,
TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) with the following properties:

• TPRF.Setup(1λ)→ (pp, tk): On input a security parameter λ, the setup algorithm outputs the public
parameters pp and a testing key tk.

• TPRF.SampleKey(pp)→ msk: On input the public parameter pp, the key sampling algorithm outputs a
master PRF key msk.

• TPRF.Eval(pp,msk, x)→ y: On input the public parameters pp, a master PRF key msk and a point in
the domain x ∈ X , the PRF evaluation algorithm outputs an element in the range y ∈ Y.

• TPRF.Constrain(pp,msk, S)→ skS : On input the public parameters pp, a master PRF key msk and a
set of points S ⊆ X , the constraining algorithm outputs a constrained key skS .

• TPRF.ConstrainEval(pp, skS , x) → y: On input the public parameters pp, a constrained key skS , and
a point in the domain x ∈ X , the constrained evaluation algorithm outputs an element in the range
y ∈ Y.

• TPRF.Test(pp, tk, y′)→ {0, 1}: On input the public parameters pp, a testing key tk, and a point in the
range y′ ∈ Y, the testing algorithm either accepts (with output 1) or rejects (with output 0).

Remark 4.2 (Relation to Constrained PRFs). Every translucent constrained PRF defines an entire family of
constrained PRFs. In other words, every set of parameters (pp, tk) output by the setup function TPRF.Setup
of a translucent constrained PRF induces a constrained PRF family (in the sense of [BW13, §3.1]) for the same
class of constraints. Specifically, the key-generation algorithm for the constrained PRF family corresponds to
running TPRF.SampleKey(pp). The constrain, evaluation, and constrained-evaluation algorithms for the con-
strained PRF family correspond to TPRF.Constrain(pp, ·), TPRF.Eval(pp, ·, ·), and TPRF.ConstrainEval(pp, ·, ·),
respectively.

Correctness. We now define two notions of correctness for a translucent constrained PRF: evaluation
correctness and verification correctness. Intuitively, evaluation correctness states that a constrained key
behaves the same as the master PRF key (from which it is derived) on the allowed points. Verification
correctness states that the testing algorithm can correctly identify whether a constrained key was used
to evaluate the PRF at an allowed point (in which case the verification algorithm outputs 0) or at a
restricted point (in which case the verification algorithm outputs 1). Like the constrained PRF constructions
of [BV15, BKM17], we present definitions for the computational relaxations of both of these properties.

18

Definition 4.3 (Correctness Experiment). Fix a security parameter λ, and let ΠTPRF = (TPRF.Setup,
TPRF.SampleKey,TPRF.Eval,TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) be a translucent constrained
PRF (Definition 4.1) with domain X and range Y. Let A = (A1,A2) be an adversary and let S ⊆ 2X be a
set system. The (computational) correctness experiment ExptΠTPRF,A,S is defined as follows:

Experiment ExptΠTPRF,A,S(λ):

1. (pp, tk)← TPRF.Setup(1λ)
2. msk← TPRF.SampleKey(pp)
3. (S, stA)← A1(1λ, pp) where S ∈ S
4. Output (x, S) where x← A2(stA, sk) and sk← TPRF.Constrain(pp,msk, S)

Definition 4.4 (Correctness). Fix a security parameter λ, and let ΠTPRF = (TPRF.Setup,TPRF.SampleKey,
TPRF.Eval,TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) be a translucent constrained PRF with domain
X and range Y . We say that ΠTPRF is correct with respect to a set system S ⊆ 2X if it satisfies the following
two properties:

• Evaluation correctness: For all efficient adversaries A and setting (x, S)← ExptΠTPRF,A,S(λ),

Pr[x ∈ S and TPRF.ConstrainEval(pp, skS , x) 6= TPRF.Eval(pp,msk, x)] = negl(λ).

• Verification correctness: For all efficient adversaries A and taking (x, S)← ExptΠTPRF,A,S(λ),

Pr[x ∈ X \ S and TPRF.Test(pp, tk,TPRF.ConstrainEval(pp, skS , x)) = 1] = 1− negl(λ)

and
Pr[x ∈ S and TPRF.Test(pp, tk,TPRF.ConstrainEval(pp, skS , x)) = 1] = negl(λ).

Remark 4.5 (Selective Notions of Correctness). In Definition 4.3, the adversary is able to choose the set
S ∈ S adaptively, that is, after seeing the public parameters pp. We can define a weaker (but still useful)
notion of selective correctness, where the adversary is forced to commit to its set S before seeing the public
parameters. The formal correctness conditions in Definition 4.4 remain unchanged. For certain set systems
(e.g., when all sets S ∈ S contain a polynomial number of points), complexity leveraging [BB04] can be used
to boost a scheme that is selectively correct into one that is also adaptively correct, except under a possibly
super-polynomial loss in the security reduction. For constructing a watermarkable family of PRFs (Section 6),
a selectively-correct translucent PRF already suffices.

Remark 4.6 (Evaluation Correctness for a Random Point). A useful corollary of evaluation correctness that
comes in handy is that whenever the set S of allowed points is a non-negligible fraction of the domain X ,
(selective) evaluation correctness implies that

Pr
x

r←X
[TPRF.ConstrainEval(pp, skS , x) 6= TPRF.Eval(pp,msk, x)] = negl(λ),

provided that pp,msk, skS are generated using the honest algorithms. In other words, when the set S of
allowed points is large, the constrained key agrees with the master PRF key at a random domain element
with overwhelming probability.

Translucent puncturable PRFs. A special case of a translucent constrained PRF is a translucent
puncturable PRF. Recall that a puncturable PRF [BW13, KPTZ13, BGI14] is a constrained PRF where the
constrained keys enable PRF evaluation at all points in the domain X except at a single, “punctured” point
x∗ ∈ X . We can generalize this notion to a t-puncturable PRF, which is a PRF that can be punctured at t
different points. Formally, we define the analog of a translucent puncturable and t-puncturable PRFs.

Definition 4.7 (Translucent t-Puncturable PRFs). We say that a translucent constrained PRF over a
domain X is a translucent t-puncturable PRF if it is constrained with respect to the set system S(t) = {S ⊆
X : |S| = |X | − t}. The special case of t = 1 corresponds to a translucent puncturable PRF.

19

4.1 Security Definitions

We now introduce several security requirements a translucent constrained PRF should satisfy. First, we
require that Eval(pp,msk, ·) implements a PRF whenever the parameters pp and msk are honestly generated.
Next, we require that given a constrained key skS for some set S, the real PRF values Eval(pp,msk, x)
for points x /∈ S remain pseudorandom. This is the notion of constrained pseudorandomness introduced
in [BW13]. Using a similar argument as in [BKM17, Appendix A], it follows that a translucent constrained
PRF satisfying constrained pseudorandomness is also pseudorandom. Finally, we require that the key skS
output by Constrain(pp,msk, S) hides the constraint set S. This is essentially the privacy requirement in a
private constrained PRF [BLW17].

Definition 4.8 (Pseudorandomness). Let λ be a security parameter, and let ΠTPRF = (TPRF.Setup,
TPRF.SampleKey,TPRF.Eval,TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) be a translucent constrained
PRF with domain X and range Y. We say that ΠTPRF is pseudorandom if for (pp, tk) ← TPRF.Setup(1λ),
the tuple (KeyGen,Eval) is a secure PRF (Definition 3.2), where KeyGen(1λ) outputs a fresh draw k ←
TPRF.SampleKey(pp) and Eval(k, x) outputs TPRF.Eval(pp, k, x). Note that we implicitly assume that the
PRF adversary in this case also is given access to the public parameters pp.

Definition 4.9 (Constrained Pseudorandomness Experiment). Fix a security parameter λ, and let ΠTPRF =
(TPRF.Setup,TPRF.SampleKey,TPRF.Eval,TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) be a translucent
constrained PRF with domain X and range Y. Let A = (A1,A2) be an adversary, S ⊆ 2X be a set system,

and b ∈ {0, 1} be a bit. The constrained pseudorandomness experiment CExpt
(b)
ΠTPRF,A,S(λ) is defined as

follows:

Experiment CExpt
(b)
ΠTPRF,A,S(λ):

1. (pp, tk)← TPRF.Setup(1λ)
2. msk← TPRF.SampleKey(pp)

3. (S, stA)← ATPRF.Eval(pp,msk,·)
1 (1λ, pp) where S ∈ S

4. Output b′ ← ATPRF.Eval(pp,msk,·),Ob(·)
2 (stA, sk) where sk← TPRF.Constrain(pp,msk, S) and the

challenge oracle Ob is defined as follows:

• O0(·) = TPRF.Eval(pp,msk, ·)
• O1(·) = f(·) where f

r← Funs[X ,Y] is chosen (and fixed) at the beginning of the experiment.

Definition 4.10 (Constrained Pseudorandomness [BW13, adapted]). Fix a security parameter λ, and let
ΠTPRF = (TPRF.Setup,TPRF.SampleKey,TPRF.Eval,TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) be a
translucent constrained PRF with domain X and range Y . We say that an adversary A is admissible for the
constrained pseudorandomness game if all of the queries x that it makes to the evaluation oracle TPRF.Eval
satisfy x ∈ S and all of the queries it makes to the challenge oracle (O0 or O1) satisfy x /∈ S.15 Then, we say
that ΠTPRF satisfies constrained pseudorandomness if for all efficient and admissible adversaries A,∣∣∣Pr

[
CExpt

(0)
ΠTPRF,A,S(λ) = 1

]
− Pr

[
CExpt

(1)
ΠTPRF,A,S(λ) = 1

]∣∣∣ = negl(λ).

Theorem 4.11 (Constrained Pseudorandomness Implies Pseudorandomness [BKM17]). Let ΠTPRF be a
translucent constrained PRF. If ΠTPRF satisfies constrained pseudorandomness (Definition 4.10), then it
satisfies pseudorandomness (Definition 4.8).

Proof. Follows by a similar argument as that in [BKM17, Appendix A].

15In the standard constrained pseudorandomness game introduced in [BW13], the adversary is also allowed to make evaluation
queries on values not contained in S. While our construction can be shown to satisfy this stronger property, this is not needed
for our watermarking construction. To simplify the presentation and security analysis, we work with this weaker notion here.

20

Definition 4.12 (Privacy Experiment). Fix a security parameter λ, and let ΠTPRF = (TPRF.Setup,
TPRF.SampleKey,TPRF.Eval,TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) be a translucent constrained
PRF with domain X and range Y . Let A = (A1,A2) be an adversary, S ⊆ 2X be a set system, and b ∈ {0, 1}
be a bit. The privacy experiment PExpt

(b)
ΠTPRF,A,S(λ) is defined as follows:

Experiment PExpt
(b)
ΠTPRF,A,S(λ):

1. (pp, tk)← TPRF.Setup(1λ)
2. (S0, S1, stA)← A1(1λ, pp) where S0, S1 ∈ S
3. skb ← TPRF.Constrain(pp,msk, Sb) where msk← TPRF.SampleKey(pp)
4. Output b′ ← A2(stA, skb)

Definition 4.13 (Privacy [BLW17, adapted]). Fix a security parameter λ. Let ΠTPRF = (TPRF.Setup,
TPRF.SampleKey,TPRF.Eval,TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) to be a translucent constrained
PRF with domain X and range Y. We say that ΠTPRF is private with respect to a set system S ⊆ 2X if for
all efficient adversaries A,∣∣∣Pr

[
PExpt

(0)
ΠTPRF,A,S(λ) = 1

]
− Pr

[
PExpt

(1)
ΠTPRF,A,S(λ) = 1

]∣∣∣ = negl(λ).

Remark 4.14 (Selective vs. Adaptive Security). We say that a scheme satisfying Definition 4.10 or
Definition 4.13 is adaptively secure if the adversary chooses the set S (or sets S0 and S1) after seeing the
public parameters pp for the translucent constrained PRF scheme. As in Definition 4.5, we can define a
selective notion of security where the adversary commits to its set S (or S0 and S1) at the beginning of the
game before seeing the public parameters.

Key injectivity. Another security notion that becomes useful in the context of watermarking is the notion
of key injectivity. Intuitively, we say a family of PRFs satisfies key injectivity if for all distinct PRF keys
k1 and k2 (not necessarily uniformly sampled from the key-space), the value of the PRF under k1 at any
point x does not equal the value of the PRF under k2 at x with overwhelming probability. We note that
Cohen et al. [CHN+16] introduce a similar, though incomparable, notion of key injectivity16 to achieve
their strongest notions of watermarking (based on indistinguishability obfuscation). We now give the exact
property that suffices for our construction:

Definition 4.15 (Key Injectivity). Fix a security parameter λ and let ΠTPRF = (TPRF.Setup,TPRF.SampleKey,
TPRF.Eval,TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) be a translucent constrained PRF with do-
main X . Take (pp, tk) ← TPRF.Setup(1λ), and let K = {Kλ}λ∈N be the set of possible keys output by
TPRF.SampleKey(pp). Then, we say that ΠTPRF is key-injective if for all keys msk1,msk2 ∈ K, and any x ∈ X ,

Pr[TPRF.Eval(msk1, x) = TPRF.Eval(msk2, x)] = negl(λ),

where the probability is taken over the randomness used in TPRF.Setup.

5 Translucent Puncturable PRFs from LWE

In this section, we describe our construction of a translucent t-puncturable PRF. After describing the main
construction, we state the concrete correctness and security theorems for our construction. We defer their
formal proofs to Appendix A. Our scheme leverages a number of parameters (described in detail at the
beginning of Section 5.1). We give concrete instantiations of these parameters based on the requirements of
the correctness and security theorems in Section 5.2.

16Roughly speaking, Cohen et al. [CHN+16, Definition 7.1] require that for a uniformly random PRF key k, there does not exist
a key k′ and a point x where PRF(k, x) = PRF(k′, x). In contrast, our notion requires that any two PRF keys do not agree at
any particular point with overwhelming probability.

21

5.1 Main Construction

In this section, we formally describe our translucent t-puncturable PRF (Definition 4.7). Let λ be a security
parameter. Additionally, we define the following scheme parameters:

• (n,m, q, χ) - LWE parameters
• ρ - length of the PRF input
• p - rounding modulus
• t - the number of punctured points (indexed by i)
• N - the dimension of the coefficient vectors w1, . . . ,wt (indexed by `). Note that N = m · n.
• Btest - norm bound used by the PRF testing algorithm

Let ΠHE = (HE.KeyGen,HE.Enc,HE.Enc,HE.Dec) be the (leveled) homomorphic encryption scheme with
plaintext space {0, 1}ρ × ZNq from Theorem 3.9. We define the following additional parameters specific to the
FHE scheme:

• z - bit-length of a fresh FHE ciphertext (indexed by j)
• τ - bit-length of the FHE secret key (indexed by k)

Next, we define the equality-check circuit eq` : {0, 1}ρ × {0, 1}ρ × ZNq → Zq where

eq`(x, (x
∗,w)) =

{
w` if x = x∗

0 otherwise,
(5.1)

as well as the circuit C
(`)
Eval : {0, 1}z × {0, 1}ρ → {0, 1}τ for homomorphic evaluation of eq`:

C
(`)
Eval(ct, x) = HE.Eval(eq`(x, ·), ct). (5.2)

Finally, we define the following additional parameters for the depths of these two circuits:

• deq - depth of the equality-check circuit eq`
• d - depth of the homomorphic equality-check circuit C

(`)
Eval

For ` ∈ [N], we define the matrix D` to be the `th elementary “basis matrix” for the Zq-module Zn×mq . More
concretely,

D`[a, b] =

{
1 if am+ b = `

0 otherwise.

In other words, each matrix D` has its `th component (when viewing the matrix as a collection of N = mn
entries) set to 1 and the remaining components set to 0.

Translucent PRF construction. The translucent t-puncturable PRF ΠTPRF = (TPRF.Setup,TPRF.Eval,
TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) with domain {0, 1}ρ and range Zmp is defined as follows:

• TPRF.Setup(1λ): On input the security parameter λ, the setup algorithm samples the following matrices
uniformly at random from Zn×mq :

– Â: an auxiliary matrix used to provide additional randomness
– {Ab}b∈{0,1}: matrices to encode the bits of the input to the PRF
– {Bi,j}i∈[t],j∈[z]: matrices to encode the bits of the FHE encryptions of the punctured points
– {Ck}k∈[τ]: matrices to encode the bits of the FHE secret key

It also samples trapdoor matrices (Wi, zi)← TrapGen(1n, q) for all i ∈ [t]. Finally, it outputs the public
parameters pp and testing key tk:

pp =
(
Â, {Ab}b∈{0,1}, {Bi,j}i∈[t],j∈[z], {Ck}k∈[τ], {Wi}i∈[t]

)
tk = {zi}i∈[t].

22

• TPRF.SampleKey(pp): On input the public parameters pp, the key generation algorithm samples a PRF
key s← χn and sets msk = s.

• TPRF.Eval(pp,msk, x): On input the public parameters pp, the PRF key msk = s, and an input
x = x1x2 · · ·xρ ∈ {0, 1}ρ, the evaluation algorithm first computes

B̃i,` ← Evalpk
(
C`,Bi,1, . . . ,Bi,z,Ax1

, . . . ,Axρ ,C1, . . . ,Cτ

)
for all i ∈ [t] and ` ∈ [N], and where C` = IP ◦C(`)

Eval. Finally, the evaluation algorithm outputs the value

yx =

sT

Â +
∑
i∈[t]
`∈[N]

B̃i,` ·G−1(D`)



p

.

• TPRF.Constrain(pp,msk,T):17 On input the public parameters pp, the PRF key msk = s and the set of
points T = {x∗i }i∈[t] to be punctured, the constraining algorithm first computes

B̃i,i∗,` ← Evalpk(C`,Bi,1, . . . ,Bi,z,Ax∗
i∗,1

, . . . ,Ax∗
i∗,ρ

,C1, . . . ,Cτ)

for all i, i∗ ∈ [t] and ` ∈ [N] where C` = IP ◦ C(`)
Eval. Then, for each i∗ ∈ [t], the puncturing algorithm

computes the (unique) vector wi∗ = (wi∗,1, . . . , wi∗,N) ∈ ZNq where

Wi∗ = Â +
∑
i∈[t]
`∈[N]

B̃i,i∗,` ·G−1(D`) +
∑
`∈[N]

wi∗,` ·D`.

Next, it samples an FHE key HE.sk← HE.KeyGen(1λ, 1deq , 1ρ+N), and for each i ∈ [t], it constructs the
ciphertext cti ← HE.Enc(HE.sk, (x∗i ,wi)) and finally, it defines ct = {cti}i∈[t]. It samples error vectors
e0 ← χm, e1,b ← χm for b ∈ {0, 1}, e2,i,j ← χm for i ∈ [t] and j ∈ [z], and e3,k ← χm for k ∈ [τ] and
computes the vectors

âT = sT Â + eT0
aTb = sT (Ab + b ·G) + eT1,b ∀b ∈ {0, 1}
bTi,j = sT (Bj + cti,j ·G) + eT2,i,j ∀i ∈ [t],∀j ∈ [z]

cTk = sT (Ck + HE.skk ·G) + eT3,k ∀k ∈ [τ].

Next, it sets enc =
(
â, {ab}b∈{0,1}, {bi,j}i∈[t],j∈[z], {ck}k∈[τ]

)
. It outputs the constrained key skT =

(enc, ct).

• TPRF.ConstrainEval(pp, skT, x): On input the public parameters pp, a constrained key skT = (enc,
ct), where enc =

(
â, {ab}b∈{0,1}, {bi,j}i∈[t],j∈[z], {ck}k∈[τ]

)
, ct = {cti}i∈[t], and a point x ∈ {0, 1}ρ, the

constrained evaluation algorithm computes

b̃i,` ← Evalct((cti, x), C`,bi,1, . . . ,bi,z,ax1
, . . . ,axρ , c1, . . . , cτ)

for i ∈ [t] and ` ∈ [N], and where C`(ct, x) = IP ◦ C(`)
Eval. Then, it computes and outputs the value

yx =

â +
∑
i∈[t]
`∈[N]

b̃Ti,` ·G−1(D`)


p

.

17For notational convenience, we modify the syntax of the constrain algorithm to take in a set T of t punctured points rather
than a set of allowed points.

23

• TPRF.Test(pp, tk,y): On input the testing key tk = {zi}i∈[t] and a point y ∈ Zmp , the testing algorithm
outputs 1 if 〈y, zi〉 ∈ [−Btest, Btest] for some i ∈ [t] and 0 otherwise.

Correctness theorem. We now state that under the LWE and 1D-SIS assumptions (with appropriate param-
eters), our translucent t-puncturable PRF ΠTPRF satisfies (selective) evaluation correctness and verification
correctness (Definition 4.4, Remark 4.5). We give the formal proof in Appendix A.2.

Theorem 5.1 (Correctness). Fix a security parameter λ, and define parameters n,m, p, q, χ, t, z, τ, Btest as
above (such that Theorems 3.9 and 3.10 hold). Let B be a bound on the error distribution χ, and suppose

Btest = B(m+1), p = 2ρ
(1+ε)

for some constant ε > 0, and q
2pmB > B ·mO(d). Then, take m′ = m ·(3+t ·z+τ)

and β = B ·mO(d). Under the LWEn,m′,q,χ and 1D-SIS-Rm′,p,q,β assumptions, ΠTPRF is (selectively) correct.

Security theorems. We now state that under the LWE assumption (with appropriate parameters), our
translucent t-puncturable PRF ΠTPRF satisfies selective constrained pseudorandomness (Definition 4.10),
selective privacy (Definition 4.13) and weak key-injectivity (Definition 4.15). We give the formal proofs
in Appendix A.3. As a corollary of satisfying constrained pseudorandomness, we have that ΠTPRF is also
pseudorandom (Definition 4.8, Theorem 4.11).

Theorem 5.2 (Constrained Pseudorandomness). Fix a security parameter λ, and define parameters
n,m, p, q, χ, t, z, τ as above (such that Theorems 3.9 and 3.10 hold). Let m′ = m · (3 + t(z + 1) + τ),
m′′ = m · (3 + t · z + τ) and β = B ·mO(d) where B is a bound on the error distribution χ. Then, under
the LWEn,m′,q,χ and 1D-SIS-Rm′′,p,q,β assumptions, ΠTPRF satisfies selective constrained pseudorandomness
(Definition 4.10).

Corollary 5.3 (Pseudorandomness). Fix a security parameter λ, and define the parameters n,m, p, q, χ, t, z, τ
as above. Under the same assumptions as in Theorem 5.2, ΠTPRF satisfies selective pseudorandomness
(Definition 4.8).

Theorem 5.4 (Privacy). Fix a security parameter λ, and define parameters n,m, q, χ, t, z, τ as above (such
that Theorems 3.9 and 3.10 hold). Let m′ = m · (3 + t(z + 1) + τ). Then, under the LWEn,m′,q,χ assumption,
and assuming the homomorphic encryption scheme ΠHE is semantically secure, ΠTPRF is selectively private
(Definition 4.13).

Theorem 5.5 (Key-Injectivity). If the bound B on the error distribution χ satisfies B < p̂/2 where p̂ is the
smallest prime dividing the modulus q, and m = ω(n), then the translucent t-puncturable PRF ΠTPRF satisfies
key-injectivity (Definition 4.15).

5.2 Concrete Parameter Instantiations

In this section, we give one possible instantiation for the parameters for the translucent t-puncturable PRF
construction in Section 5.1. We choose our parameters so that the underlying LWE and 1D-SIS assumptions
that we rely on are as hard as approximating worst-case lattice problems to within a subexponential factor

2Õ(n1/c) for some constant c (where n is the lattice dimension). Fix a constant c and a security parameter λ.

• We set the PRF input length ρ = λ. Then, the depth deq of the equality check circuit eq` satisfies
deq = O(log ρ) = O(log λ).

• We set the lattice dimension n = λ2c.

• The noise distribution χ is set to be the discrete Gaussian distribution DZ,
√
n. Then the FHE

ciphertext length z and the FHE secret key length τ is determined by poly(λ, deq, ρ, log q) = poly(λ). By
Theorem 3.9, the depth of the FHE equality check circuit is d = poly(deq, log z) = polylog(λ). Finally,
we set Btest = B · (m+ 1).

24

• We choose the modulus q to be large enough to be able to invoke Theorems 3.9 and 3.10. If the initial
error distribution χ is B-bounded, then Theorem 3.9 requires that q > mO(deq) and Theorem 3.10
requires that q > mO(d). Furthermore, for the 1D-SIS-R assumption, we need q to be the product of λ

primes p1, . . . , pλ. For each i ∈ [λ], we set the primes pj = 2O(n1/2c) such that p1 < · · · < pλ.

• We set p = 2n
1/2c+ε

for any ε > 0, so the condition in Theorem 5.1 is satisfied.

• We set m = Θ(n log q), and Btest = B · (m+ 1). For these parameter settings, mO(d) = mpolylog(λ) and

q = 2Õ(n1/2c) = 2Õ(λ).

Under these parameter setting, the private translucent t-puncturable PRF in Section 5.1 is selectively secure
assuming the polynomial hardness of approximating worst-case lattice problems over an n-dimensional lattice

to within a subexponential approximation factor 2Õ(n1/2c). Using complexity leveraging [BB04], the same
construction is adaptively secure assuming subexponential hardness of the same worst-case lattice problems.

6 Watermarkable PRFs from Translucent PRFs

In this section, we formally introduce the notion of a watermarkable family of PRFs. Our definitions are
adapted from those of [CHN+16, BLW17]. Then, in Section 6.2, we show how to construct a secretly-
extractable, message-embedding watermarkable family of PRFs from translucent t-puncturable PRFs. Com-
bined with our concrete instantiation of translucent t-puncturable PRFs from Section 5, this gives the first
watermarkable family of PRFs (with security against arbitrary removal strategies) from standard assumptions.

6.1 Watermarking PRFs

We begin by introducing the notion of a watermarkable PRF family.

Definition 6.1 (Watermarkable Family of PRFs [BLW17, adapted]). Fix a security parameter λ and a
message space {0, 1}t. Then, a secretly-extractable, message-embedding watermarking scheme for a PRF
ΠPRF = (PRF.KeyGen,PRF.Eval) is a tuple of algorithms ΠWM = (WM.Setup,WM.Mark,WM.Extract) with
the following properties:

• WM.Setup(1λ)→ msk: On input the security parameter λ, the setup algorithm outputs the watermarking
secret key msk.

• WM.Mark(msk, k,m)→ C: On input the watermarking secret key msk, a PRF key k (to be marked),
and a message m ∈ {0, 1}t, the mark algorithm outputs a marked circuit C.

• WM.Extract(msk, C ′) → m: On input the master secret key msk and a circuit C ′, the extraction
algorithm outputs a string m ∈ {0, 1}t ∪ {⊥}.

Definition 6.2 (Circuit Similarity). Fix a circuit class C on n-bit inputs. For two circuits C,C ′ ∈ C and for
a non-decreasing function f : N→ N, we write C ∼f C ′ to denote that the two circuits agree on all but an
1/f(n) fraction of inputs. More formally, we define

C ∼f C ′ ⇐⇒ Pr
x

r←{0,1}n
[C(x) 6= C ′(x)] ≤ 1/f(n)

We also write C �f C ′ to denote that C and C ′ differ on at least a 1/f(n) fraction of inputs.

Remark 6.3 (Public vs. Secret Extraction). Definition 6.1 defines a secretly-extractable watermarking
scheme, which means that only those who possess the secret key msk are able to extract the message from
a marked circuit. A stronger notion of watermarking is publicly-extractable watermarking, which means
that anyone can test whether a particular program is watermarked or not (and if so, extract the embedded

25

message). Publicly-extractable software watermarking was first introduced by Cohen et al. [CHN+16], who
in the same work, gave the first construction of a publicly-extractable watermarking construction for PRFs
using indistinguishability obfuscation. While the construction we present operates in the secret-key setting
(see Remark 6.4 for a discussion of some of the challenges we encounter when attempting to extend our
construction), we stress that even in the secret-key setting, all software watermarking schemes prior to this work
(satisfying the strongest notion of unremovability against arbitrary strategies) relied on indistinguishability
obfuscation [CHV15, NW15, BLW17]. Our construction is the first software watermarking construction (of
any kind) that is robust against arbitrary removal strategies from standard assumptions.

Remark 6.4 (Difficulty with Public Extraction). It appears difficult to extend our construction to support
public extraction. Extending our construction to support public extraction seems to require the contradictory

property that the set of “marked points” x
(mi)
i for a circuit is unknown to the adversary (even given the

extraction key), and yet, there is an efficient algorithm to sample a sequence of marked points (to run the
extraction algorithm). Otherwise, if the public extraction key allows the adversary to efficiently tell whether
a particular point is marked, then it can trivially remove the watermark. Cohen et al. [CHN+16] solve this
problem by encrypting the marked points (which themselves constitutes a sparse, pseudorandom subset of the
domain) and embedding a decryption key inside the (obfuscated) watermarked program. When the program
is invoked on an encrypted marked point, the obfuscated program instead outputs a reprogrammed value that
can be used to recover the message. We leave as an open problem the construction of a publicly-extractable
watermarking scheme from standard assumptions.

Correctness. The correctness property for a watermarking scheme for a PRF family consists of two
requirements. The first requirement is that a watermarked key behaves like the original (unmarked) key
almost everywhere. In particular, the watermarked key must agree with the unmarked key on all but a
negligible fraction of points. While we might desire correctness on all points, Barak et al. [BGI+12] previously
showed that assuming indistinguishable obfuscation, perfect functionality-preserving watermarking is generally
impossible. Thus, in some sense, approximate correctness is the best we could hope to achieve, and indeed,
this is the notion satisfied by existing watermarking candidates [CHN+16, BLW17]. The second correctness
requirement is that if we embed a message into a key, then the extraction algorithm should be able to extract
the embedded message from the key. We now give the formal definition.

Definition 6.5 (Watermarking Correctness). Fix a security parameter λ. We say that a watermarking
scheme ΠWM = (WM.Setup,WM.Mark,WM.Extract) for a PRF ΠPRF = (PRF.KeyGen,PRF.Eval) with domain
{0, 1}n is correct if for all messages m ∈ {0, 1}t, and setting msk ← WM.Setup(1λ), k ← PRF.KeyGen(1λ),
and C ←WM.Mark(msk, k,m), the following two properties hold:

• Functionality-preserving: C(·) ∼f PRF.Eval(k, ·) where 1/f(n) = negl(λ) with overwhelming proba-
bility.

• Extraction correctness: Pr[WM.Extract(msk, C) = m] = 1− negl(λ).

Remark 6.6 (Stronger Correctness Notions). We note that the correctness properties we introduced in
Definition 6.5 are only required to hold when the underlying PRF key is sampled honestly (i.e., using the
PRF.KeyGen algorithm). This is also the notion considered in [BLW17] (in fact, in their construction, the
only keys that can be watermarked are those sampled using the honest PRF key-generation algorithm).
In contrast, using indistinguishability obfuscation, Cohen et al. [CHN+16] achieve a stronger notion of
correctness where functionality-preserving and extraction correctness hold (with high probability) even if
the PRF key to be watermarked is chosen maliciously. The reason our construction is unable to achieve
the strengthened correctness notion is because our translucent t-puncturable PRF from Section 5.1 only
satisfies a computational notion of correctness (rather than a statistical notion). This seems to be a limitation
present in several lattice-based constrained PRF constructions [BV15, BKM17] (though not the construction
in [CC17]). It is an interesting problem to construct translucent t-puncturable PRFs that achieve statistical
correctness; such a construction would give rise to watermarkable PRFs with stronger correctness properties.

26

Finally, it is important to note that our notion of correctness suffices for most, if not all, of the applications
of watermarking for PRFs. After all, if the PRF key is not chosen honestly, then the underlying PRF itself is
no longer secure.

Security. Following [CHN+16, BLW17], we introduce two different security notions for a watermarking
scheme. The first notion is unremovability, which states that no efficient adversary should be able to remove
a watermark from a watermarked program without significantly modifying the behavior of the program.
The second notion is unforgeability, which states that no efficient adversary should be able to produce a
watermarked program that is substantially different from the watermarked program it already possesses. We
begin by defining the watermarking experiment.

Definition 6.7 (Watermarking Experiment [BLW17, adapted]). Fix a security parameter λ. Let ΠWM =
(WM.Setup,WM.Mark,WM.Extract) be a watermarking scheme for a PRF ΠPRF = (PRF.KeyGen,PRF.Eval)
with key-space K, and let A be an adversary. Then the watermarking experiment ExptΠWM,A(λ) proceeds as

follows. The challenger begins by sampling msk←WM.Setup(1λ). The adversary A is then given access to
the following oracles:

• Marking oracle. On input a message m ∈ {0, 1}t and a PRF key k ∈ K, the challenger returns the
circuit C ←WM.Mark(msk, k,m) to A.

• Challenge oracle. On input a message m ∈ {0, 1}t, the challenger samples a key k ← PRF.KeyGen(1λ),
and returns the circuit C ←WM.Mark(msk, k,m) to A.

Finally, A outputs a circuit C ′. The output of the experiment, denoted ExptΠWM,A(λ), is WM.Extract(msk, C ′).

Definition 6.8 (Unremovability [CHN+16, BLW17]). Fix a security parameter λ. For a watermarking scheme
ΠWM = (WM.Setup,WM.Mark,WM.Extract) for a PRF ΠPRF = (PRF.KeyGen,PRF.Eval) and an adversary A,
we say that A is unremoving-admissible if the following conditions hold:

• The adversary A makes exactly one query to the challenge oracle.

• The circuit C̃ that A outputs satisfies C̃ ∼f Ĉ, where Ĉ is the circuit output by the challenge oracle
and 1/f = negl(λ).

Then, we say that ΠWM is unremovable if for all efficient and unremoving-admissible adversaries A,

Pr[ExptΠWM,A(λ) 6= m̂] = negl(λ),

where m̂ is the message A submitted to the challenge oracle in ExptΠWM,A(λ).

Definition 6.9 (δ-Unforgeability [CHN+16, BLW17]). Fix a security parameter λ. For a watermarking
scheme ΠWM = (WM.Setup,WM.Mark,WM.Extract) for a PRF ΠPRF = (PRF.KeyGen,PRF.Eval) and an
adversary A, we say that A is δ-unforging-admissible if the following conditions hold:

• The adversary A does not make any challenge oracle queries.

• The circuit C̃ that A outputs satisfies C̃ 6∼f C` for all ` ∈ [Q], where Q is the number of queries A
made to the marking oracle, C` is the output of the marking oracle on the `th query, and 1/f > δ.
Moreover, C̃ 6∼f PRF.Eval(k`, ·), where k` is the key the adversary submitted on its `th query to the
marking oracle.

Then, we say that ΠWM is δ-unforgeable if for all efficient and δ-unforging-admissible adversaries A,

Pr[ExptΠWM,A(λ) 6= ⊥] = negl(λ).

27

Remark 6.10 (Giving Access to an Extraction Oracle). As noted in [CHN+16], in the secret-key setting,
the watermarking security game (Definition 6.7) can be augmented to allow the adversary oracle access to
an extraction oracle (which implements WM.Extract(msk, ·)). It is an open problem to construct secretly-
extractable watermarking from standard assumptions where the adversary is additionally given access to a
extraction oracle. The only known constructions today [CHN+16] rely on indistinguishability obfuscation.

Remark 6.11 (Marking Oracle Variations). In the watermarking security game (Definition 6.7), the adversary
can submit arbitrary keys (of its choosing) to the marking oracle. Cohen et al. [CHN+16] also consider
a stronger notion where the adversary is allowed to submit arbitrary circuits (not corresponding to any
particular PRF) to the marking oracle. However, in this model, they can only achieve lunch-time security
(i.e., the adversary can only query the marking oracle before issuing its challenge query). In the model where
the adversary can only query the marking oracle on valid PRF keys, their construction achieves full security
(assuming the PRF family satisfies a key-injectivity property). Similarly, our construction achieves full
security in this model (in the secret-key setting), and also relies on a key-injectivity property on the underlying
PRF. Our notion is strictly stronger than the notion in [BLW17]. In the Boneh et al. model [BLW17], the
adversary cannot choose the key for the marking oracle. Instead, the marking oracle samples a key (honestly)
and gives both the sampled key as well as the watermarked key to the adversary. In contrast, in both our
model as well as that in [CHN+16], the adversary is allowed to see watermarked keys on arbitrary keys of its
choosing. The key difference in our security analysis that enables us to achieve this stronger security notion
(compared to [BLW17]) is the new key-injectivity property on the underlying translucent PRF. Instantiating
the construction in [BLW17] with a private programmable PRF satisfying key-injectivity should also yield a
watermarkable family of PRFs under our strengthened definition.

Remark 6.12 (Unforgeability and Correctness). The admissibility requirement in the δ-unforgeability game
(Definition 6.9) says that the “forged” program the adversary outputs must differ (by at least a δ-fraction)
from both the marked programs output by the marking oracle as well as the original programs it submitted
to the marking oracle. If all of the PRF keys given to the marking oracle are honestly generated, then by
correctness of the watermarking scheme, the marked program and the original program differ only on a
negligible fraction of points. In this case, it is redundant to separately require the adversary’s program to
differ from the unmarked programs. However, for adversarially-chosen keys, it is possible that the unmarked
program and the marked program differ on a large fraction of points. While this does not lead to a trivial
attack on the scheme, it becomes significantly more difficult to reason about security in these cases. Thus,
we relax the unforgeability requirement slightly to require that the adversary produces a circuit that is
substantially different from any program it submits or receives from the marking oracle. We note here
that if the watermarking scheme satisfies a statistical notion of correctness (similar to [CHN+16]), then
this definition becomes equivalent to just requiring that the adversary’s program be different only from the
marked programs it receives from the marking oracle.

6.2 Watermarking Construction

In this section, we show how any translucent t-puncturable PRF can be used to obtain a watermarkable
family of PRFs. Combined with our construction of a translucent t-puncturable PRF from Section 5.1, we
obtain the first watermarkable family of PRFs from standard assumptions. We conclude by stating our
correctness and security theorems.

Construction 6.13. Fix a security parameter λ and a positive real value δ < 1 such that d = λ/δ = poly(λ).
Let {0, 1}t be the message space for the watermarking scheme. Our construction relies on the following two
ingredients:

• Let ΠTPRF = (TPRF.Setup,TPRF.SampleKey,TPRF.Eval,TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test)
be a translucent t-puncturable PRF (Definition 4.7) with key-space K, domain {0, 1}n, and range
{0, 1}m.

• Let ΠPRF = (PRF.KeyGen,PRF.Eval) be a secure PRF with domain ({0, 1}m)d and range ({0, 1}n)2t.

28

We require n,m, t = ω(log λ). The secretly-extractable, message-embedding watermarking scheme ΠWM =
(WM.Setup,WM.Mark,WM.Extract) for the PRF associated with ΠTPRF is defined as follows:

• WM.Setup(1λ): On input the security parameter λ, the setup algorithm runs (pp, tk)← TPRF.Setup(1λ).

Next, for each j ∈ [d], it samples hj
r← {0, 1}n. It also samples a key k∗ ← PRF.KeyGen(1λ). Finally, it

outputs the master secret key msk = (pp, tk, h1, . . . , hd, k
∗).

• WM.Mark(msk, k,m): On input the master secret key msk = (pp, tk, h1, . . . , hd, k
∗), a PRF key k ∈ K

to be marked, and a message m ∈ {0, 1}t, the marking algorithm proceeds as follows:

1. For each j ∈ [d], set yj ← TPRF.Eval(pp, k, hj). Let y = (y1, . . . , yd).

2. Compute points x =
(
x

(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t

)
← PRF.Eval(k∗,y).

3. Compute the t-punctured key skS ← TPRF.Constrain(pp, k, S), where the set S is given by

S = {x ∈ {0, 1}n : x 6= x
(mi)
i ∀i ∈ [t]},

4. Output the circuit C where C(·) = TPRF.ConstrainEval(pp, skS , ·).

• WM.Extract(msk, C): On input the master secret key msk = (pp, tk, h1, . . . , hd, k) and a circuit C :
{0, 1}n → {0, 1}m, the extraction algorithm proceeds as follows:

1. Compute points x =
(
x

(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t

)
← PRF.Eval(k∗, C(h1), . . . , C(hd)).

2. For each i ∈ [t], and b ∈ {0, 1}, compute z
(b)
i = TPRF.Test(pp, tk, C(x

(b)
i)).

3. If there exists some i for which z
(0)
i = z

(1)
i , output ⊥. Otherwise, output the message m ∈ {0, 1}t

where mi = 0 if z
(0)
i = 1 and mi = 1 if z

(1)
i = 1.

Security analysis. We now state the correctness and security theorems for our construction, but defer their
formal proofs to Appendix B

Theorem 6.14. If ΠTPRF is a secure translucent t-puncturable PRF, and ΠPRF is a secure PRF, then the
watermarking schemeΠWM in Construction 6.13 is correct.

Theorem 6.15. If ΠTPRF is a selectively-secure translucent t-puncturable PRF, and ΠPRF is secure, then the
watermarking schemeΠWM in Construction 6.13 is unremovable.

Theorem 6.16. If ΠTPRF is a selectively-secure translucent t-puncturable PRF, and ΠPRF is secure, then the
watermarking schemeΠWM in Construction 6.13 is δ-unforgeable.

Acknowledgments

We thank Vinod Vaikuntanathan and Daniel Wichs for pointing out the connection between private pro-
grammable PRFs and private puncturable PRFs. We thank Yilei Chen for many helpful discussions about
watermarking. This work was funded by NSF, DARPA, a grant from ONR, and the Simons Foundation.
Opinions, findings and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of DARPA.

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model.
In EUROCRYPT, 2010.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In CRYPTO, 2009.

29

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional encryption for
inner product predicates from learning with errors. In ASIACRYPT, 2011.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC, 1996.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP, 1999.

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In STACS,
2009.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In CRYPTO,
2014.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In EUROCRYPT, 2004.

[BCTW16] Zvika Brakerski, David Cash, Rotem Tsabary, and Hoeteck Wee. Targeted homomorphic
attribute-based encryption. In TCC, 2016.

[BFP+15] Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak, and Sophie Stevens.
Key-homomorphic constrained pseudorandom functions. In TCC, 2015.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In EUROCRYPT, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2), 2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In PKC, 2014.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryp-
tion without bootstrapping. In ITCS, 2012.

[BKM17] Dan Boneh, Sam Kim, and Hart Montgomery. Private puncturable PRFs from standard lattice
assumptions. In EUROCRYPT, 2017.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomorphic
prfs and their applications. In CRYPTO, 2013.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In STOC, 2013.

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately. In
PKC, 2017.

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudorandom
functions. In CRYPTO, 2014.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In
EUROCRYPT, 2012.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp.
In CRYPTO, 2012.

30

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In FOCS, 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In ITCS,
2014.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs from standard
lattice assumptions - or: How to secretly embed a circuit in your PRF. In TCC, 2015.

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-abe from LWE: unbounded attributes and
semi-adaptive security. In CRYPTO, 2016.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In
TCC, 2007.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
ASIACRYPT, 2013.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for nc1 from LWE. In EURO-
CRYPT, 2017.

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In
CRYPTO, 1997.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs.
Watermarking cryptographic capabilities. In STOC, 2016.

[CHV15] Aloni Cohen, Justin Holmgren, and Vinod Vaikuntanathan. Publicly verifiable software water-
marking. IACR Cryptology ePrint Archive, 2015, 2015.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE from learning
with errors. In CRYPTO, 2015.

[CMB+07] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital water-
marking and steganography. Morgan Kaufmann, 2007.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices.
In TCC, 2015.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. In
FOCS, 1984.

[GMW15] Romain Gay, Pierrick Méaux, and Hoeteck Wee. Predicate encryption for multi-dimensional
range queries from lattices. In PKC, 2015.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

[GV15] Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry: Efficient ABE for
branching programs. In ASIACRYPT, 2015.

31

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits
from LWE. In CRYPTO, 2015.

[HMW07] Nicholas Hopper, David Molnar, and David Wagner. From weak to strong watermarking. In
TCC, 2007.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In CCS, 2013.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In EUROCRYPT, 2008.

[KT13] Aggelos Kiayias and Qiang Tang. How to keep a secret: leakage deterring public-key cryptosystems.
In ACM CCS, 2013.

[KT15] Aggelos Kiayias and Qiang Tang. Traitor deterring schemes: Using bitcoin as collateral for digital
content. In ACM CCS, 2015.

[LW15] Vadim Lyubashevsky and Daniel Wichs. Simple lattice trapdoor sampling from a broad class of
distributions. In PKC, 2015.

[Mic04] Daniele Micciancio. Almost perfect lattices, the covering radius problem, and applications to
ajtai’s connection factor. SIAM J. Comput., 34(1), 2004.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In CRYPTO, 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT, 2012.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters. In
CRYPTO, 2013.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput., 37(1), 2007.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE.
In EUROCRYPT, 2016.

[Nis13] Ryo Nishimaki. How to watermark cryptographic functions. In EUROCRYPT, 2013.

[NSS99] David Naccache, Adi Shamir, and Julien P. Stern. How to copyright a function? In PKC, 1999.

[NW15] Ryo Nishimaki and Daniel Wichs. Watermarking cryptographic programs against arbitrary
removal strategies. IACR Cryptology ePrint Archive, 2015, 2015.

[NWZ16] Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor tracing: How to embed
arbitrary information in a key. In EUROCRYPT, 2016.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC,
2009.

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from lwe, revisited. In TCC, 2016.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC,
2005.

32

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005.

[YF11] Maki Yoshida and Toru Fujiwara. Toward digital watermarking for cryptographic data. IEICE
Transactions, 94-A(1), 2011.

A Translucent PRF Correctness and Security Analysis

In this section, we give the formal correctness and security analysis of the private translucent t-puncturable
PRF construction from Section 5.1. Our analysis leverages a number of similar components. To streamline
the presentation in Appendices A.2 and A.3, we first introduce a set of auxiliary algorithms that we will
use throughout the analysis in Appendix A.1. We then give the correctness proof in Appendix A.2 and the
security proofs in Appendix A.3.

A.1 Correctness and Security Analysis: Auxiliary Algorithms

In this section, we introduce the auxiliary algorithm that will be used in the correctness and security proofs
in the subsequent sections.

• Setup∗(1λ,T)→ (pp∗,msk∗): On input the security parameter λ, and the set T = {x∗i }i∈[t] of punctured

points, the auxiliary setup algorithm first samples matrices Â, {A′b}b∈{0,1}, {B′i,j}i∈[t],j∈[z], and
{C′k}k∈[τ] uniformly at random from Zn×mq and sample vectors {wi}i∈[t] uniformly at random from

Znq . Then, it generates an FHE secret key HE.sk ← HE.KeyGen(1λ, 1deq , 1ρ+N), and for all i ∈ [t], it
constructs ciphertexts cti ← HE.Enc(HE.sk, (x∗i ,wi)). It sets ct = {cti}i∈[t]. Then, it defines

Ab = A′b − b ·G ∀b ∈ {0, 1}
Bi,j = B′i,j − cti,j ·G ∀i ∈ [t], j ∈ [z]
Ck = C′k − HE.skk ·G ∀k ∈ [τ].

Next, for each i, i∗ ∈ [t] and ` ∈ [N], the auxiliary setup algorithm computes

B̃i,i∗,` ← Evalpk(C`,B
′
i,1, . . . ,B

′
i,z,A

′
x∗
i∗,1

, . . . ,A′x∗
i∗,ρ

,C′1, . . . ,C
′
τ)

and sets the trapdoor matrices as

Wi∗ = Â +
∑
i∈[t]
`∈[N]

B̃i,i∗,` ·G−1(D`) +
∑
`∈[N]

wi∗,` ·D`.

Finally, it samples a secret key s from the error distribution s← χn and returns

pp∗ =
(
Â, {Ab}b∈{0,1}, {Bi,j}i∈[t],j∈[z], {Ck}k∈[τ], {Wi}i∈[t]

)
msk∗ = (s,HE.sk, ct,T, {wi}i∈[t]).

• Constrain∗1(pp∗,msk∗)→ sk∗T: On input the auxiliary public parameters pp∗ and an auxiliary PRF key
msk∗ = (s,HE.sk, ct,T, {wi}i∈[t]), the auxiliary constraining algorithm samples error vectors e0 ← χm,
e1,b ← χm for b ∈ {0, 1}, e2,i,j ← χm for i ∈ [t] and j ∈ [z], and e3,k ← χm for k ∈ [τ] and computes
the vectors

âT = sT Â + eT0
aTb = sT (Ab + b ·G) + eT1,b ∀b ∈ {0, 1}
bTi,j = sT (Bj + cti,j ·G) + eT2,i,j ∀i ∈ [t],∀j ∈ [z]

cTk = sT (Ck + HE.skk ·G) + eT3,k ∀k ∈ [τ].

It sets enc =
(
â, {ab}b∈{0,1}, {bi,j}i∈[t],j∈[z], {ck}k∈[τ]

)
and outputs sk∗T = (enc, ct).

33

• Constrain∗2(pp∗,msk∗) → sk∗T: On input the auxiliary public parameters pp∗ and an auxiliary PRF
key msk∗ = (s,HE.sk, ct,T, {wi}i∈[t]), the auxiliary constraining algorithm instantiates the encoding

enc =
(
â, {ab}b∈{0,1}{bi,j}i∈[t],j∈[z], {ck}k∈[τ]

)
with uniformly random vectors in Zmq and outputs

sk∗T = (enc, ct).

• Eval∗1(pp∗,msk∗, sk∗T, x) → ỹ: On input the auxiliary public parameters pp∗, an auxiliary PRF key
msk∗ = (s,HE.sk, ct,T, {wi}i∈[t]), the auxiliary constrained key sk∗T = (enc, ct) for some set T =
{x∗i }i∈[t], and an evaluation point x ∈ {0, 1}ρ, the auxiliary evaluation algorithm first parses enc =(
â, {ab}b∈{0,1}, {bi,j}i∈[t],j∈[z], {ck}k∈[τ]

)
and computes the vector

b̃i,` ← Evalct((cti, x), C`,bi,1, . . . ,bi,z,ax1 , . . . ,axρ , c1, . . . , cτ)

for i ∈ [t] and ` ∈ [N]. It then checks if x = x∗i∗ for some i∗ ∈ [t]. If this is not the case, then it returns
the value

ỹ =

â +
∑
i∈[t]
`∈[N]

b̃Ti,` ·G−1(D`)


p

.

Otherwise, if there exists an i∗ ∈ [t] such that x = x∗i∗ , it samples an error vector e← χm and returns

ỹ =

â +
∑
i∈[t]
`∈[N]

b̃Ti,` ·G−1(D`)− sT
∑
`∈[N]

wi∗,`D` − eT


p

.

• Eval∗2(pp∗,msk∗, sk∗T, x) → ỹ: On input the public parameters pp∗, the auxiliary PRF key msk∗ =
(s,HE.sk, ct,T, {wi}i∈[t]), the auxiliary constrained key sk∗T for some set T = {x∗i }i∈[t], and an evaluation
point x ∈ {0, 1}ρ, the auxiliary evaluation algorithm first checks if x = x∗i∗ for some i∗ ∈ [t]. If not, it

returns ⊥. Otherwise, it samples a uniformly random vector d
r← Zmq and returns ỹ = bdep.

A.2 Correctness Analysis

In this section, we give the formal proof of Theorem 5.1, which states that the translucent t-puncturable
PRF in Section 5.1 satisfies both (selective) evaluation correctness and (selective) verification correctness
(Definition 4.4). We show the two properties separately in Appendices A.2.1 and A.2.2.

A.2.1 Proof of Selective Evaluation Correctness

In the selective evaluation correctness game, the adversary A begins by committing to a set T = {x∗i }i∈[t] of

t distinct points in the domain of ΠTPRF. Next, let (pp, tk)← TPRF.Setup(1λ), msk← TPRF.SampleKey(pp),
and skT ← TPRF.Constrain(msk,T). Adversary A is then given the public parameters pp and the constrained
key skT, and outputs an element in the domain x ∈ {0, 1}ρ. Without loss of generality, we can assume that
x /∈ T, or equivalently x 6= x∗i for all i ∈ [t], since otherwise, the adversary’s advantage is 0. We now bound
the probability that the value yx = TPRF.ConstrainEval(pp, skT, x) obtained using the constrained evaluation
algorithm at x differs from the real PRF value y′x = TPRF.Eval(pp,msk, x) at x. To argue this, we first recall
that the key punctured at T = {x∗i }i∈[t] contains the following encodings:

âT = sT Â + eT0
aTb = sT (Ab + b ·G) + eT1,b ∀b ∈ {0, 1}
bTi,j = sT (Bj + cti,j ·G) + eT2,i,j ∀i ∈ [t],∀j ∈ [z]

cTk = sT (Ck + HE.skk ·G) + eT3,k ∀k ∈ [τ].

34

as well as FHE ciphertexts {cti}i∈[t] where cti is an FHE encryption of (x∗i ,wi). The constrained evaluation

algorithm then computes the vectors b̃i,`

b̃i,` ← Evalct((cti, x), C`,bi,1, . . . ,bi,z,ax1
, . . . ,axρ , c1, . . . , cz)

for i ∈ [t] and ` ∈ [N] and returns

yx =

âT +
∑
i∈[t]
`∈[N]

b̃Ti,` ·G−1(D`)


p

. (A.1)

Next, by Theorem 3.10, we have that for all i ∈ [t] and ` ∈ [N],

b̃Ti,` = sT (B̃i,` + 〈HE.Eval(eq`(x, ·), cti),HE.sk〉 ·G) + eTi,`

= sT (B̃i,` + (eq`(x, (x
∗
i ,wi)) + εi,`) ·G) + eTi,`

= sT (B̃i,` + εi,` ·G) + eTi,`,

where
B̃i,` = Evalpk

(
C`,Bi,1, . . . ,Bi,z,Ax1 , . . . ,Axρ ,C1, . . . ,Cτ

)
,

and we used Theorem 3.9 in the second equality and the fact that eq`(x, (x
∗
i ,wi)) = 0 when x∗i 6= x in the

third equality. Moreover, by Theorem 3.9, |εi,`| ≤ B ·mO(deq) and by Theorem 3.10, ‖ei,`‖ ≤ B ·mO(d). Then,

âT +
∑
i∈[t]
`∈[N]

b̃Ti,` ·G−1(D`) =
(
sT Â + eT0

)
+
∑
i∈[t]
`∈[N]

(
sT (B̃i,` + εi,` ·G) + eTi,`

)
G−1(D`)

= sT

Â +
∑
i∈[t]
`∈[N]

B̃i,` ·G−1(D`)

+ ẽT

︸ ︷︷ ︸
ξTx

= ξTx (A.2)

where

‖ẽ‖ =

∥∥∥∥∥∥∥∥e
T
0 +

∑
i∈[t]
`∈[N]

(eTi,` ·G−1(D`) + εi,` · sT ·D`)

∥∥∥∥∥∥∥∥ ≤ B ·m
O(d),

using the fact that B,m,N = poly(λ). Thus, combining Eq. (A.1) and (A.2), we have that yx = bξTx ep. Next,
by definition, the output y′x = TPRF.Eval(pp,msk, x) of the evaluation algorithm is given by

y′x =

sT

Â +
∑
i∈[t]
`∈[N]

B̃i,` ·G−1(D`)



p

= bξTx − ẽT ep, (A.3)

where ξx is the quantity defined in Eq. (A.2). Thus yx = y′x as long as ξx does not contain any “borderline”
components that can be rounded in the “wrong direction” due to the additional error ẽ. Let Borderlinex be
the event that there exists an index η ∈ [m] such that ξTxuη ∈ [−E,E] + (q/p) · (Z+ 1/2), where uη is the
ηth basis vector, and E = B ·mO(d) is a bound on ‖ẽ‖. To prove the theorem, it suffices to show that it is
computationally hard for an adversary to find a point x such that Borderlinex occurs. To do this, we proceed
via a hybrid argument. First, we define our sequence of hybrid experiments.

35

• Hybrid H0: This is the real experiment. In particular, the adversary begins by committing to
a set T = {x∗i }i∈[t] of punctured points. The challenger then computes (pp, tk) ← TPRF.Setup(1λ),
msk← TPRF.SampleKey(pp), and skT = (enc, ct)← TPRF.Constrain(pp,msk,T). Finally, the challenger
gives (pp, skT) to the adversary.

• Hybrid H1: Same as H0, except the challenger generates the public parameters and PRF key using
the auxiliary setup algorithm: (pp∗,msk∗)← Setup∗(1λ,T), where T = {x∗i }i∈[t] is the set of punctured
points to which the adversary committed. The challenger generates the constrained key as sk∗T ←
Constrain∗1(pp∗,msk∗), and gives (pp∗, sk∗T) to the adversary.

• Hybrid H2: Same as H1, except the challenger generates the constrained key sk∗T ← Constrain∗2(pp∗,msk∗)
using the second auxiliary constraining algorithm. It gives (pp∗, sk∗T) to the adversary.

For a hybrid experiment H and an adversary A, we write H(A) to denote the indicator random variable
for whether the event Borderlinex occurred in H. We now show that the outputs in each consecutive pair of
hybrid experiments are statistically or computationally indistinguishable. This in particular implies that

|Pr[H0(A) = 1]− Pr[H2(A) = 1]| = negl(λ).

To finish the proof, we then show that Pr[H2(A) = 1] = negl(λ).

Lemma A.1. For all adversaries A, |Pr[H0(A) = 1]− Pr[H1(A) = 1]| = negl(λ).

Proof. We first show that the distribution of the public parameters pp in H0 is statistically indistinguishable
from the distribution of the auxiliary public parameters pp∗ in H1.

• In hybrid H0, the matrices Â, {Ab}b∈{0,1}, {Bi,j}i∈[t],j∈[z], {Ck}k∈[τ] are uniform and independent over
Zn×mq , and the matrices {Wi}i∈[t] are independent and statistically close to uniform over Zn×mq by
properties of the trapdoor generation algorithm (Theorem 3.6).

• In hybrid H1, by definition of the auxiliary setup algorithm Setup∗, the matrices Â, {Ab}b∈{0,1},
{Bi,j}i∈[t],j∈[z], {Ck}k∈[τ] are independent and uniform over Zn×mq . We conclude by arguing that the
matrices Wi for all i ∈ [t] are distributed independently and uniformly over Zn×mq . By definition,
Setup∗ first computes the matrices

B̃i,i∗,` ← Evalpk(C`,Bi,1, . . . ,Bi,z,Ax∗
i∗,1

, . . . ,Ax∗
i∗,ρ

,C1, . . . ,Cτ)

for i, i∗ ∈ [t], ` ∈ [N], and defines

Wi∗ = Â +
∑
i∈[t]
`∈[N]

B̃i,i∗,` ·G−1(D`) +
∑
`∈[N]

wi∗,` ·D`︸ ︷︷ ︸
D̃i

,

where wi∗
r← ZNq for all i∗ ∈ [t]. Thus, each matrix D̃i is a random linear combination of basis elements

of Zn×mq and distributed independently and uniformly. We conclude that the distribution of pp is
statistically indistinguishable from that of pp∗.

To complete the proof, we argue that the distribution of the components in the constrained key skT = (enc, ct) in

H0 is statistically indistinguishable from sk∗T in H1. This follows from the fact that the matrices Â, {Ab}b∈{0,1},
{Bi,j}i∈[t],j∈[z], {Ck}k∈[τ], and {Wi}i∈[t] are statistically indistinguishable in H0 and H1. In particular, this
means that the coefficients wi ∈ ZNq in H0 and H1 are statistically indistinguishable. Since the ciphertexts
ct = {cti}i∈[t] are generated in the exact same manner in H0 and H1, we conclude that they are statistically
indistinguishable in the two experiments. Finally, since the public matrices, the FHE secret key, and the
ciphertexts are either identically distributed or statistically indistinguishable between the two experiments,
the encoding enc is statistically indistinguishable between the two experiments and we conclude that the
distribution of (pp, skT) in H0 is statistically indistinguishable from the distribution of (pp∗, sk∗T) in H1.

36

Lemma A.2. Under the LWEn,m′,q,χ assumption (where m′ = m(3 + t · z + τ)), for all efficient adversaries
A, |Pr[H1(A) = 1]− Pr[H2(A) = 1]| = negl(λ).

Proof. Suppose there exists an adversary A that can distinguish H1 from H2 with some non-negligible
probability ε. We use A to construct an algorithm B that breaks the LWEn,m,q,χ assumption. Algorithm B
works as follows:

1. First, it receives a challenge (Â, â), {(A′b,a′b)}b∈{0,1}, {(B′i,j ,b′i,j)}i∈[t],j∈[z], and {(C′k, c′k)}k∈[τ] from
the LWE challenger.

2. Algorithm B starts running A. When A commits to its set T = {x∗i }i∈[t], algorithm B runs the auxiliary

setup algorithm Setup∗, except it uses the matrices Â, {A′b}b∈{0,1}, {B′i,j}i∈[t],j∈[z], and {C′k}k∈[τ] from
the LWE challenge in place of the corresponding matrices in Setup∗. It generates the rest of the public
parameters pp∗ as described in Setup∗.

3. To simulate the constrained key sk∗T, algorithm B sets enc =
(
â, {a′b}b∈{0,1}, {b′i,j}i∈[t],j∈[z], {c′k}k∈[τ]

)
to be the vectors from the LWE challenge. The ciphertexts ct are constructed exactly as in H1 and H2 (as
described in Setup∗). Finally, B gives the public parameters pp∗ and the constrained key sk∗T = (enc, ct)
to A.

4. At the end of the game, A outputs a vector x. Algorithm B computes ξx as defined in Eq. (A.2), and
outputs 1 if ξTxuη ∈ [−E,E] + (q/p) · (Z+ 1/2) where uη is the ηth basis vector, and 0 otherwise.

It is easy to see that if the challenge consists of valid LWE challenge vectors, then B has perfectly simulated H1,
whereas if the challenge consists of uniformly random vectors, then B has perfectly simulated H2. Moreover,
algorithm B outputs 1 if and only if the adversary’s output x triggers the Borderlinex event. By assumption
then, B is able to break the LWEn,m′,q,χ assumption with the same probability ε.

Lemma A.3. Under the 1D-SIS-Rm′,p,q,β assumption (where m′ = m(3 + t · z + τ) and β = B ·mO(d)), for
all efficient adversaries, A, Pr[H2(A) = 1] = negl(λ).

Proof. We begin with a high-level overview of the proof. In H3, the encoding enc in the punctured key is
uniformly random, and thus, can be viewed as the challenge vector v in a 1D-SIS-R instance (Definition 3.5).
Next, according to Theorem 3.10, the constrained evaluation algorithm TPRF.ConstrainEval is effectively
computing a “short” linear combination of the vectors in enc. Thus, if an adversary is able to find a point x
such that the constrained evaluation algorithm yields a boundary value, then the same point x is a solution
to the 1D-SIS-R instance.

Formally, suppose there exists an adversary A that outputs a point x ∈ {0, 1}ρ such that Borderlinex
occurs with non-negligible probability ε. We use A to construct an algorithm B that breaks 1D-SIS-Rm′,p,q,β .

At the beginning of the game, algorithm B is given its 1D-SIS-R challenge vector v ∈ Zm′q . Then, B begins
simulating H3 algorithm A. At the beginning of the game, A commits to a set T = {x∗i }i∈[t] of punctured

points. Algorithm B then runs Setup∗(1λ,T) to obtain the public parameters pp∗. When simulating the
Constrain∗2 algorithm, algorithm B substitutes the challenge vector v for enc (in particular, B treats v as the
concatenation of the vectors â, {ab}, {bi,j}, {ck}). The other components of the secret key are constructed
exactly as in H3. It then gives pp∗ and skT = (enc, ct) to the adversary and receives A’s guess x. Since v is
uniformly distributed, algorithm B perfectly simulates H3 for A. By assumption then, with probability ε, A
outputs a point x such that Borderlinex occurs. This means that there exists some η ∈ [m] such that

ξTxuη =

âT +
∑
i∈[t]
`∈[N]

b̃Ti,` ·G−1(Di)

uη ∈ [−E,E] +
q

p
· (Z+ 1/2). (A.4)

37

where E = B ·mO(d) and uη ∈ Zmq is the ηth canonical basis vector. By Theorem 3.10, we have that for all
i ∈ [t] and ` ∈ [N],j

b̃Ti,` =
∑

b∈{0,1}

aTb R
(1)
b,i,` +

∑
j∈[z]

bTi,jR
(2)
i,j,` +

∑
k∈[τ]

cTkR
(3)
k,i,`

for some matrices {R(1)
b,`,i}b∈{0,1}, {R

(2)
j,`,i}j∈[z], {R

(3)
k,`,i}k∈[τ] where

∥∥∥R(1)
b,`,i

∥∥∥,
∥∥∥R(2)

j,`,i

∥∥∥,
∥∥∥R(3)

k,`,i

∥∥∥ ≤ mO(d). This

means that we can write ξx as

ξTx = âT +
∑
i∈[t]
`∈[N]

b̃Ti,` ·G−1(Di) = vTR.

for some R ∈ Zm′×mq where ‖R‖ ≤ mO(d). Substituting into Eq. (A.4), we have that

ξTxuη = vTR · uη = 〈v,R · uη〉 ∈ [−E,E] +
q

p
· (Z+ 1/2).

Moreover, ‖R · uη‖ ≤ ‖R‖ ≤ mO(d) = β, and so the vector R ·uη is a valid solution to the 1D-SIS-R challenge.
We conclude that B succeeds in breaking the 1D-SIS-Rm′,p,q,β with the same (non-negligible) advantage ε.
The claim follows.

Combining Lemmas A.1 through A.3, we conclude that under the LWE and 1D-SIS-R assumptions (for
the parameters given in Theorem 5.1), no efficient adversary is able to find an input x /∈ T such that the
Borderlinex event occurs. Equivalently, no efficient adversary can find an x /∈ T where TPRF.Eval(pp,msk, x) 6=
TPRF.ConstrainEval(pp, skT, x). Thus ΠTPRF satisfies (selective) evaluation correctness.

A.2.2 Proof of Selective Verification Correctness

In the selective verification correctness game, the adversary A first commits to a set T = {x∗i }i∈[t] of punctured
points. It is then provided with the public parameters pp and the constrained key skT. Finally, A wins the
game if at least one of the following conditions is satisfied:

• Case 1: it outputs a point x ∈ T such that the testing algorithm rejects:

TPRF.Test(pp, tk,TPRF.ConstrainEval(pp, skT, x
∗
i)) = 0.

• Case 2: it outputs a point x /∈ T such that the testing algorithm accepts:

TPRF.Test(pp, tk,TPRF.ConstrainEval(pp, skT, x)) = 1.

We define Bad1 to be the event that an adversary outputs a point x that satisfies the first case. We define
the event Bad2 analogously. We now show that for all efficient adversaries A, the probability of either Bad1

or Bad2 occurring is negligible.

Lemma A.4. Under the parameter settings given in Theorem 5.1, for all adversaries A, Pr[Bad1] = 0.

Proof. Let x ∈ X be the output of A, and suppose x ∈ T. Then, there exists an index i∗ ∈ [t] such that
x = x∗i∗ . On input the public parameters pp, the constrained key skT, and the point x∗i∗ , the constrained
evaluation algorithm first computes

b̃i,` ← Evalct((ct, x
∗
i∗), C`,bi,1, . . . ,bi,z,ax∗i∗,1 , . . . ,ax

∗
i∗,ρ

, c1, . . . , ct)

for i ∈ [t] and ` ∈ [N] and the returns the value

yx∗
i∗

=

âT +
∑
i∈[t]
`∈[N]

b̃Ti,` ·G−1(D`)


p

. (A.5)

38

By Theorems 3.9 and 3.10, the vectors b̃i,` can be written as

b̃i,` = sT
(
B̃i,` + (eq(x∗i∗ , x

∗
i) · wi,` + εi,`) ·G

)
+ eTi,`,

where
B̃i,` = Evalpk(C`,Bi,1, . . . ,Bi,z,Ax∗

i∗,1
, . . . ,Ax∗

i∗,ρ
,C1, . . . ,Cτ),

and |εi,`| ≤ B ·mO(deq) and ‖ei,`‖ ≤ B ·mO(d). Substituting into Eq. (A.5), we have

yx∗
i∗

=

(sT Â + eT0

)
+
∑
i∈[t]
`∈[N]

(
sT
(
B̃i,` ·G−1(D`) + eq(x∗i∗ , x

∗
i) · wi,` ·D` + εi,` ·D`

)
+ eTi,` ·G−1(D`)

)
p

=

sT

Â +
∑
i∈[t]
`∈[N]

(
B̃i,` ·G−1(D`) + eq(x∗i∗ , x

∗
i) · wi,` ·D`

)+ eT


p

=

sT

Â +
∑
i∈[t]
`∈[N]

(
B̃i,` ·G−1(D`)

)
+
∑
`∈[N]

wi∗,` ·D`

+ eT


p

where
eT = eT0 +

∑
i∈[t]
`∈[N]

(
εi,` · sT ·D` + eTi,` ·G−1(D`)

)
,

and ‖e‖ ≤ B ·mO(d). Now, by construction of the TPRF.Constrain algorithm, the vector wi∗ ∈ ZNq is chosen
such that

Wi∗ = Â +
∑
i∈[t]
`∈[N]

B̃i,` ·G−1(D`) +
∑
`∈[N]

wi∗,` ·D`

and so we have
yx∗

i∗
=
⌊
sTWi∗ + eT

⌉
p
.

Next, the testing algorithm TPRF.Test computes the inner product〈
yx∗

i∗
, zi∗

〉
=
⌊
sTWi∗ + eT

⌉
p
· zi∗

=
⌊
sTWi∗zi∗ + eT zi∗

⌉
p

+ ẽ

=
⌊
eT zi∗

⌉
p

+ ẽ

where |ẽ| ≤ B · (m+ 1) = Btest is the rounding error. Here, we used the fact that zi∗ is a (short) trapdoor
vector for Wi∗ (Theorem 3.6), as well as the fact that the rounding operation b·ep is almost additively
homomorphic in that for any x, y ∈ Zq, we have that bx + yep = bxep + byep + b for b ∈ {0, 1}. Since
‖e‖ ≤ B · mO(d) and zi∗ is B-bounded, we have that

∣∣eT zi∗
∣∣ < q

2p , in which case
⌊
eT zi∗

⌉
p

= 0. Thus,

〈yx, zi∗〉 = ẽ ∈ [−Btest, Btest]. In this case, TPRF.Test outputs 1 with probability 1, and the claim follows.

Lemma A.5. Under the parameter settings given in Theorem 5.1, and the LWEn,m′,q,χ and 1D-SIS-Rm′,p,q,β
assumptions (where m′ = m(3+t·z+τ) and β = B ·mO(d)), for all efficient adversaries A, Pr[Bad2] = negl(λ).

39

Proof. In the correctness experiment, the challenger samples (pp, tk) ← TPRF.Setup(1λ) and msk ←
TPRF.SampleKey(pp). We first show that over the random choices of these algorithms

Pr[∃x ∈ {0, 1}ρ : TPRF.Test(pp, tk,TPRF.Eval(pp,msk, x)) = 1] = negl(λ). (A.6)

As we subsequently show, the claim then follows by invoking evaluation correctness. To show Eq. (A.6), we
union bound over all x ∈ {0, 1}ρ. First, take any x ∈ {0, 1}ρ and let yx = TPRF.Eval(pp,msk, x). Consider
the probability that TPRF.Test(pp, tk,yx) = 1. By definition,

yx = bsT (Â + B′)ep where B′ =
∑
i∈[t]
`∈[N]

B̃i,` ·G−1(D`).

Now, the matrix Â is sampled uniformly at random over Zn×mq . Since s is non-zero with overwhelming
probability, there is at least a single entry i ∈ [n] such that si 6= 0. Moreover, since s is sampled from a

B-bounded distribution, |si| ≤ B. In particular, this means that si is invertible over Zq.18 Since Â is sampled

uniformly and independently of B′, Â + B′ is also distributed uniformly at random. Since si is invertible
over Zq (and independent of Â + B′), this implies that the product sT (Â + B′) is a uniformly random vector

in Zmq . Finally, since q is a multiple of p, we conclude that yx = bsT Â + B′ep is uniform over Zmp .
Consider now the output TPRF.Test(pp, tk,yx). Let tk = {zi}i∈[t]. Since yx is distributed uniformly over

Zmp and independent of zi for all i ∈ [t], then for any i ∈ [t], we have that

Pr[〈yx, zi〉 ∈ [−Btest, Btest]] = 2Btest/p.

Union bounding over all i ∈ [t], we have that

Pr[TPRF.Test(pp, tk,yx) = 1] = Pr[∃i ∈ [t] : 〈yx, zi〉 ∈ [−Btest, Btest]] ≤
2 ·Btest · t

p
.

Finally, to show Eq. (A.6), we union bound over all x ∈ {0, 1}ρ to argue that over the randomness used to

sample the public parameters (in particular, the matrix Â),

Pr[∃x ∈ {0, 1}ρ : TPRF.Test(pp, tk,TPRF.Eval(pp,msk, x)) = 1] ≤ 2ρ+1 ·Btest · t
p

= negl(λ),

since p = 2(ρ1+ε), and Btest, t = poly(λ). Thus, we conclude that if the adversary outputs a point x /∈ T
where TPRF.ConstrainEval(pp, skT, x) = TPRF.Eval(pp,msk, x), then with overwhelming probability (over the
randomness used to sample the public parameters),

Pr[TPRF.Test(pp, tk,TPRF.ConstrainEval(pp, skT, x)) = 1] = negl(λ).

However, by evaluation correctness (shown in Appendix A.2.1), with overwhelming probability, no effi-
cient adversary in the correctness game can find a point x /∈ T where TPRF.ConstrainEval(pp, skT, x) 6=
TPRF.Eval(pp,msk, x). The claim follows.

Combining Lemmas A.4 and A.5, we have that A wins the game with negligible probability. We conclude
that ΠTPRF satisfies selective verification correctness.

A.3 Security Analysis

In this section, we give the formal proofs of the security theorems from Section 5.1 (Theorems 5.2, 5.4,
and 5.5). Note that Corollary 5.3 follows immediately from Theorems 4.11 and 5.2.

18Recall that q is a product of primes pj such that pj > B.

40

A.3.1 Proof of Theorem 5.2

Let A be an adversary and S(t) be the set system corresponding to the family of t-puncturable constraints
(Definition 4.7). We begin by defining a sequence of hybrid experiments:

• Hybrid H0: This is the real experiment CExpt
(0)

ΠTPRF,A,S(t) (Definition 4.9). Specifically, the adver-

sary A begins by committing to a set T = {x∗i }i∈[t] of t distinct points in the domain of ΠTPRF.

The challenger then samples (pp, tk) ← TPRF.Setup(1λ), msk ← TPRF.SampleKey(pp), and skT ←
TPRF.Constrain(msk,T). Then, the adversary is given pp, skT, access to an honest evaluation oracle
TPRF.Eval(msk, ·) for points x /∈ T, and access to a challenge evaluation oracle for points x ∈ T. In

CExpt
(0)

ΠTPRF,A,S(t) , the challenge evaluation oracle outputs the PRF value TPRF.Eval(msk, ·).

• Hybrid H1: Same as H0, except that the challenger generates the public parameters pp∗ and the PRF
key msk∗ using the auxiliary setup algorithm: (pp∗,msk∗)← Setup∗(1λ,T), where T = {x∗i }i∈[t] is the
set of points the adversary commits to at the beginning of the experiment. In addition, the challenger
generates the constrained key as sk∗T ← Constrain∗1(pp∗,msk∗), and gives (pp∗, sk∗T) to the adversary.
Both the evaluation and challenge queries are handled as in H0: on a query x ∈ X , the challenger
replies with TPRF.Eval(pp∗,msk∗, x).

• Hybrid H2: Same as H1, except that the challenger answers the evaluation and challenge queries using
the auxiliary evaluation algorithm Eval∗1. Specifically, on an evaluation or a challenge query x ∈ X , the
challenger replies with Eval∗1(msk∗, sk∗T, x).

• Hybrid H3: Same as H2, except that the challenger generates the constrained key using the auxiliary
constraining algorithm Constrain∗2: skT ← Constrain∗2(msk∗). Moreover, the challenger answers the
challenge queries using the auxiliary evaluation algorithm Eval∗2. In particular, on a challenge query
x ∈ T, the challenger replies with Eval∗2(msk∗, sk∗T, x). The evaluation queries are handled as in H2

(using Eval∗1).

• Hybrid H4: Same as H3, except the challenger generates the constrained key using the auxiliary
constraining algorithm Constrain∗1: skT ← Constrain∗1(msk∗). Both the evaluation and the challenge
oracle queries are handled as in H3.

• Hybrid H5: Same as H4, except the challenger answers the evaluation queries using the real evaluation
algorithm TPRF.Eval(pp,msk, ·). The challenge queries are handled as in H4 (using Eval∗2).

• Hybrid H6: Same as H5, except the challenger generates the public parameters pp and the constrained
key skT honestly using (pp, tk)← TPRF.Setup(1λ), msk← TPRF.SampleKey(pp), and skT = (enc, ct)←
TPRF.Constrain(pp,msk,T). This is the experiment CExpt

(1)

ΠTPRF,A,S(t) (Definition 4.9).

For a hybrid experiment H and an adversary A, we write H(A) to denote the random variable for the output
of A in hybrid H. We now show that the distribution of the adversary’s outputs in each consecutive pair of
hybrid experiments is either statistically or computationally indistinguishable.

Lemma A.6. For all adversaries A, |Pr[H0(A) = 1]− Pr[H1(A) = 1]| = negl(λ).

Proof. The only difference between H0 and H1 is that the public parameters and the constrained key are
generated according to the auxiliary algorithms Setup∗ and Constrain∗1 in H1, respectively, rather than the
real algorithms. By the same argument as in the proof of Lemma A.1 (for evaluation correctness), we have
that the distribution of (pp, skT) in H0 is statistically indistinguishable from the distribution of (pp∗, sk∗T) in
H1. Finally, since the evaluation oracle queries are handled identically in the two experiments, we conclude
that the adversary’s view in H0 and H1 is statistically indistinguishable. The lemma follows.

Before showing that hybrid H1 and H2 are computationally indistinguishable (Lemma A.8), we first show
that hybrids H2 and H3 are computationally indistinguishable (Lemma A.7). This will greatly simplify the
argument needed to show indistinguishability of hybrids H1 and H2 in Lemma A.8.

41

Lemma A.7. Under the LWEn,m′,q,χ assumption (where m′ = m(3+t(z+1)+τ)), for all efficient adversaries
A, |Pr[H2(A) = 1]− Pr[H3(A) = 1]| = negl(λ).

Proof. Our argument is very similar to the proof of Lemma A.2, with the exception that we additionally
have to reason about the challenge oracle queries in this case. In particular, we show that if there exists an
adversary A that can distinguish H2 from H3 with some non-negligible probability, then we can use A to
construct an algorithm B that breaks the LWEn,m′,q,χ assumption with the same probability. Algorithm B
behaves as follows:

1. First, B receives a challenge (Â, â), {(A′b,a′b)}b∈{0,1}, {(B′i,j ,b′i,j)}i∈[t],j∈[z], {(C′k, c′k)}k∈[τ], and
{(H′i,h′i)}i∈[t] from the LWE challenger.

2. Algorithm B starts running A. When A commits to its set T = {xi∗}i∈[t], algorithm B runs the auxiliary
setup algorithm Setup∗, except it instantiates pp∗ as follows:

• It uses the matrices Â, {A′b}b∈{0,1}, {B′i,j}i∈[t],j∈[z], and {C′k}k∈[τ] from the LWE challenge in
place of the corresponding matrices in Setup∗.

• It uses the matrices H′i from the LWE challenge to instantiate the vectors {wi}i∈[t]. Namely, it
sets w` such that H′i =

∑
`∈[N] wi,`D`.

Finally, B constructs the remaining components of pp∗ and msk∗ exactly as described in Setup∗ algorithm,
with the exception that it does not sample a secret key s in msk∗.

3. To simulate the constrained key sk∗T, algorithm B sets enc =
(
â, {a′b}b∈{0,1}, {b′i,j}i∈[t],j∈[z], {c′k}k∈[τ]

)
to be the vectors from the LWE challenge. The ciphertexts ct are constructed exactly as described in
Setup∗. Finally, B gives the public parameters pp∗ and the constrained key sk∗T = (enc, ct) to A.

4. To simulate the honest evaluation queries for x /∈ T, B computes the vector

b̃i,` ← Evalct((cti, x), C`,bi,1, . . . ,bi,z,ax1
, . . . ,axρ , c1, . . . , cτ)

for i ∈ [t] and ` ∈ [N] and returns the value

ỹ =

â +
∑
i∈[t]
`∈[N]

b̃Ti,` ·G−1(D`)


p

.

5. Whenever A makes a challenge oracle query on a point x ∈ T (in particular, this means that x = xi∗

for some i∗ ∈ [t]), algorithm B responds as follows. It first computes the vector

b̃i,` ← Evalct((cti, x), C`,bi,1, . . . ,bi,z,ax1
, . . . ,axρ , c1, . . . , cτ)

for i ∈ [t] and ` ∈ [N] and returns the value

ỹ =

â +
∑
i∈[t]
`∈[N]

b̃Ti,` ·G−1(D`)− h′i∗


p

.

6. Finally, B outputs whatever A outputs.

We now argue that the public parameters pp∗, the constrained key sk∗T, the honest evaluation queries, and
the challenge oracle queries are correctly simulated.

42

• By definition, the matrices Â, {A′b}b∈{0,1}, {B′i,j}i∈[t],j∈[z], and {C′k}k∈[τ] are distributed uniformly
and independently over Zn×mq , exactly as those sampled by Setup∗. In addition, since each H′i is also

uniformly random over Zn×mq , it follows that each wi is uniform over ZNq (since the collection {D`}`∈[N]

constitutes a basis for Zn×mq). Thus, algorithm B perfectly simulates the behavior of Setup∗ in H2 and
H3 (except it does not explicitly sample a secret vector s).

• Next, if the challenge vectors
(
â, {a′b}b∈{0,1}, {b′i,j}i∈[t],j∈[z], {c′k}k∈[τ]

)
are LWE samples, then B has

correctly simulated the distribution of sk∗T in H2. If instead they are uniformly random, then B has
correctly simulated the distribution of sk∗T in H3.

• For the honest evaluation queries for x /∈ T, it is easy to see that the simulation is correct since B is
simply computing the auxiliary evaluation function Eval∗1, which is used in both hybrid experiments.

• For the challenge queries, if {h′i}i∈[t] are LWE samples, then we have for all i∗ ∈ [t],

h′i∗ = sTH′i∗ + eTi∗ = sT
∑
`∈[N]

wi∗,`D` + eTi∗ ,

where s is the LWE secret and ei is an error term. Therefore, the value

ỹ =

â +
∑
i∈[t]
`∈[N]

b̃Ti,` ·G−1(D`)− h′i∗


p

.

is a perfect simulation of Eval∗1 in H2. Alternatively, if the vectors h′i∗ are uniformly random, then B
correctly simulates the challenge oracle responses with Eval∗2 according to H3.

We conclude that if algorithm B obtains samples from the LWE distribution, then the view it simulates for A
is identical to the view of A in H2. Otherwise, if B obtains samples from a uniformly random distribution,
then the view it simulates for A is identical to the view of A in H3. Thus, we conclude that if A is able to
distinguish H2 from H3 with non-negligible probability, B can break the LWEn,m′,q,χ assumption with the
same probability.

Lemma A.8. Under the LWEn,m′,q,χ assumption (where m′ = m(3 + t(z + 1) + τ)), and 1D-SIS-Rm′′,p,q,β
assumptions (where m′′ = m(3 + t · z + τ) and β = B ·mO(d)) for all efficient adversaries A, we have that
|Pr[H1(A) = 1]− Pr[H2(A) = 1]| = negl(λ).

Proof. The only difference between hybrids H1 and H2 is that in H2, the honest evaluation and challenge
queries are answered using the auxiliary evaluation algorithm Eval∗1(pp∗,msk∗, sk∗T, ·) rather than the real
evaluation algorithm TPRF.Eval(pp∗, sk∗T, ·). For clarity of presentation, we consider the case for the evaluation
queries and challenge queries separately.

Evaluation oracle queries. By the admissibility condition, the adversary is only allowed to query the
evaluation oracle on inputs x /∈ T. In this case, the auxiliary evaluation algorithm Eval∗1(pp∗,msk∗, sk∗T, x)
simply implements the constrained evaluation algorithm TPRF.ConstrainEval(pp∗, sk∗T, x) using the auxiliary
public parameters and constrained key. As long as TPRF.Eval(pp∗, sk∗T, x) = TPRF.ConstrainEval(pp∗, sk∗T, x),
the distribution of the evaluation queries in both H1 and H2 are identical. However, this is precisely the
guarantee provided by evaluation correctness (Definition 4.4). More precisely, we can apply the same argument
as in the proof of Theorem 5.1 in Appendix A.2.1 to show that the constrained evaluation agrees with the
true evaluation. Thus, we conclude that the responses to all (admissible) evaluation oracle queries in H1 and
H2 are identical with overwhelming probability.

Challenge oracle queries. We now consider the challenge oracle queries. In particular, we argue that
the outputs of Eval∗1(pp∗,msk∗, sk∗T, ·) and TPRF.Eval(pp∗, sk∗T, ·) on the challenge queries x ∈ T are computa-
tionally indistinguishable. We start by recalling how the challenge queries are handled in the two hybrid
experiments:

43

• In H1, on input a point x, the challenger computes

B̃i,` ← Evalpk(C`,Bi,1, . . . ,Bi,z,Axi,1 , . . . ,Axi,ρ ,C1, . . . ,Cτ).

for i ∈ [t], ` ∈ [N] and returns the value

yx =

sT

Â +
∑
i∈[t]
`∈[N]

B̃i,` ·G−1(D`)



p

• In H2, on input a point x = x∗i∗ , for some i∗ ∈ [t], the challenger computes ỹ = Eval∗1(pp∗,msk∗, sk∗T, x)
by first computing

b̃i,` ← Evalct((cti, x), C`,bi,1, . . . ,bi,z,ax1
, . . . ,axρ , c1, . . . , cτ)

for i ∈ [t] and ` ∈ [N]. It then samples an error vector e← χm and returns

ỹ =

â +
∑
i∈[t]
`∈[N]

b̃Ti,` ·G−1(D`)− sT
∑
`∈[N]

wi∗,`D` − eT


p

.

By Theorems 3.9 and 3.10 and the definition of {Ab}b∈{0,1}, {Bi,j}i∈[t],j∈[z], and {Ck}k∈[τ] in Setup∗,
we can write

b̃Ti,` = sT
(
B̃i,` + (eq(x, x∗i) · wi,` + εi,`) ·G

)
+ eTi,`

for ‖ei,`‖ ≤ B ·mO(d). Since eq(x, x∗i) = 0 for i 6= i∗ and eq(x, x∗i∗) = 1, we can rewrite ỹ as follows

ỹ =

â +
∑
i∈[t]
`∈[N]

[
sT
(
B̃T
i,` ·G−1(D`) + εi,`D`

)
+ eTi,`G

−1(D`)
]

+ sT
∑
`∈[N]

(wi∗,`D` − wi∗,`D`)− eT


p

=

sT

Â +
∑
i∈[t]
`∈[N]

B̃T
i,` ·G−1(D`)

+ ẽT


p

,

where ẽT =
∑
i∈[t],`∈[N]

(
εi,` · sTD` + eTi,`G

−1(D`)
)
− eT . Note that ‖ẽ‖ ≤ B ·mO(d).

For notational convenience, define ξx ∈ Zmq to be the “unrounded” PRF value in H2:

ξTx = sT

Â +
∑
i∈[t]
`∈[N]

B̃T
i,` ·G−1(D`)

+ ẽT .

Then, we can write ỹx = bξTx ep and yx = bξTx − ẽT ep. Thus, we see that yx = ỹx as long as the vector ξx
does not contain any “borderline” components that can be rounded in the wrong direction due to ẽ. Similar
to the proof of evaluation correctness in Appendix A.2.1, we define Borderlinex to be the event that there
exists an index η ∈ [m] such that

44

ξTxuη ∈ [−E,E] +
q

p
· (Z+ 1/2)

where E = mO(d) is a bound on ‖ẽ‖ and uη is the ηth basis vector. To conclude the proof, we show
that Pr[Borderlinex] = negl(λ) in H2. Our argument consists of two steps. First, we argue that in H3, the
“unrounded” PRF evaluation does not contain any borderline components. This in turn implies that in H2,
the unrounded PRF value ξx does not contain any borderline components—otherwise, algorithm B from the
proof of Lemma A.7 can be used to distinguish H2 from H3, in violation of Lemma A.7. We now show this
more formally.

• In hybrid H3, on a challenge query x = x∗i , the response is computed by first sampling d
r← Zmq and

then rounding ỹx = bdep. Since E · p/q = negl(λ), we conclude that for each η ∈ [m],

Pr[dTuη ∈ [−E,E] + (q/p) · (Z+ 1/2)] = negl(λ).

Thus, with overwhelming probability, d does not contain any borderline components.

• Suppose in H2 that the vector ξx contains a borderline component with non-negligible probability. But
then the algorithm B from the proof of Lemma A.7 can be used to distinguish H2 from H3: the algorithm
B simply outputs 1 if the unrounded vector contains a borderline component. From our analysis in
Lemma A.7, the unrounded vector ξx is distributed exactly as in H2 if B received samples from the
LWE distribution whereas the unrounded vector ξx is distributed as in H3 if B received samples from
the uniform distribution. Thus, under LWEn,m′,q,χ, it must be the case that ξx does not contain any
borderline components with overwhelming probability.

Under the LWEn,m′,q,χ assumption, we have that Pr[Borderlinex] = negl(λ). In this case, yx = ỹx. We
conclude that the distributions of responses to the challenge queries in H1 and H2 are computationally
indistinguishable.

Lemma A.9. Under the LWEn,m′,q,χ assumption (where m′ = m(3+t(z+1)+τ)), for all efficient adversaries
A, |Pr[H3(A) = 1]− Pr[H4(A) = 1]| = negl(λ).

Proof. Follows from a similar argument as Lemma A.7 (except the behavior of the challenge oracle is identical
in the two experiments).

Lemma A.10. Under the LWEn,m′,q,χ assumption (where m′ = m(3+ t(z+1)+τ)) and the 1D-SIS-Rm′′,p,q,β
(where m′′ = m(3 + tz + τ)) for all efficient adversaries A, |Pr[H4(A) = 1]− Pr[H5(A) = 1]| = negl(λ).

Proof. Follows from a similar argument as Lemma A.8, except we only have to reason about how the evaluation
oracle queries are handled. The challenge queries are handled identically in the two experiments.

Lemma A.11. For all adversaries A, |Pr[H5(A) = 1]− Pr[H6(A) = 1]| = negl(λ).

Proof. Follows from the same argument as Lemma A.6.

Combining Lemmas A.6 through A.11, we conclude that ΠTPRF satisfies (selective) constrained pseudoran-
domness.

A.3.2 Proof of Theorem 5.4

Recall first that a constrained key skT = (enc, ct) for a set T = {x∗i }i∈[t] consists of two components: a set of
encodings enc and a collection of ciphertexts ct = {cti}i∈[t]. In our proof of constrained pseudorandomness
(Theorem 5.2, Appendix A.3.1), we demonstrated that the set of encodings enc in the constrained key is
indistinguishable from a collection of random vectors. Together with semantic security of the FHE ciphertexts
cti, we have that the constrained key skT hides the set T.

45

Formally, we proceed with a hybrid argument. Let A be an adversary and S(t) be the set system
corresponding to the family of t-puncturable constraints (Definition 4.7). In the proof, we show the selective
notion of privacy (Remark 4.14) where we assume that the adversary commits to its two challenge sets S0

and S1 at the beginning of the experiment. We now introduce our hybrid experiments.

• Hybrid H0: This is the real experiment PExpt
(0)

ΠTPRF,A,S(t) where the challenger, on input two sets

S0, S1 ∈ S(t), gives the adversary the constrained key sk0 = (enc, ct) ← TPRF.Constrain(pp,msk, S0),
where pp and msk are sampled exactly as in the real experiment.

• Hybrid H1: Same as H0, except the encodings in sk0 are replaced by a uniformly random string.
More precisely, the challenger first computes (enc, ct)← TPRF.Constrain(pp,msk, S0). Then, it samples

r
r← {0, 1}|enc| and returns sk0 = (r, ct) to the adversary.

• Hybrid H2: Same as H1, except that the challenger computes (enc, ct)← TPRF.Constrain(pp,msk, S1).

Then, it samples r
r← {0, 1}|enc| and returns sk1 = (r, ct) to the adversary.

• Hybrid H3: This is the real experiment PExpt
(1)

ΠTPRF,A,S(t) , where the challenger, on input two sets

S0, S1 ∈ S(t), replies to the adversary with the constrained key sk1 ← TPRF.Constrain(pp,msk, S1).

Lemma A.12. Under the LWEn,m′,q,χ assumption (where m′ = m(3 + t(z + 1) + τ)), for all efficient
adversaries A, |Pr[H0(A) = 1]− Pr[H1(A) = 1]| = negl(λ).

Proof. The lemma follows directly by the indistinguishability of hybrid experiments H0 and H3 in the proof
of Theorem 5.2 in Appendix A.3.1 (Lemmas A.6, A.7, and A.8). In particular, note that the adversary in the
(selective) privacy game is strictly weaker than the adversary in the (selective) constrained pseudorandomness
game since it is not give access to either a challenge oracle or an evaluation oracle. Thus, we can invoke
the corresponding lemmas from Appendix A.3.1. Moreover, we note that the 1D-SIS-R assumption needed
in Lemma A.8 is not necessary in the case of privacy because the challenger does not need to simulate the
evaluation oracle queries. In Lemma A.8, the 1D-SIS-R assumption is needed to argue that the evaluation
questions are properly simulated.

Lemma A.13. If ΠHE is semantically secure (Definition 3.8), then for all efficient adversaries A, it follows
that |Pr[H1(A) = 1]− Pr[H2(A) = 1]| = negl(λ).

Proof. We argue that by semantic security of ΠHE, the adversary’s views in H1 and H2 are computationally
indistinguishable. First, the public parameters pp are identically distributed in the two distributions. Let
sk0 = (r0, ct0) and sk1 = (r1, ct1) be the constrained keys the adversary receives in H1 and H2, respectively.
By construction, r0 and r1 are uniform over {0, 1}|enc| and independent of all other parameters. Thus, it
suffices to argue that the ciphertexts ct0 and ct1 are computationally indistinguishable. But since ct0 and
ct1 consists of a (polynomial-sized) collection of ciphertexts encrypted under ΠHE (with a secret key that is
unknown to the adversary A), semantic security of ΠHE implies that the distribution of ct0 is computationally
indistinguishable from the distribution of ct1. The claim follows.

Lemma A.14. Under the LWEn,m′,q,χ assumption (where m′ = m(3 + t(z + 1) + τ)), for all efficient
adversaries A, |Pr[H2(A) = 1]− Pr[H3(A) = 1]| = negl(λ).

Proof. Follows from the same argument as Lemma A.12.

Combining Lemmas A.12 through A.14, we have that experiments PExpt
(0)

ΠTPRF,A,S(t) and PExpt
(1)

ΠTPRF,A,S(t) are

computationally indistinguishable. Thus, ΠTPRF is (selectively) private.

46

A.3.3 Proof of Theorem 5.5

Let (pp, tk)← TPRF.Setup(1λ) and take any msk = s ∈ [−B,B]n. Take x ∈ {0, 1}ρ. Then, to compute the
PRF value at x, the evaluation algorithm TPRF.Eval(msk, x) first computes the matrices

B̃i,` ← Evalpk(C`,Bi,1, . . . ,Bi,`,Ax1
, . . . ,Axρ ,C1, . . . ,Cτ)

for all i ∈ [t] and ` ∈ [N]. It then outputs the vector

yx =

sT

Â +
∑
i∈[t]
`∈[N]

B̃i,` ·G−1(D`)



p

.

To simplify notation, let B′ =
∑
i∈[t],`∈[N] B̃i,` ·G−1(D`). Now, suppose that there are two keys msk1 =

s1,msk2 = s2 ∈ [−B,B]n where TPRF.Eval(msk1, x) = TPRF.Eval(msk2, x) for some x ∈ {0, 1}ρ. Then,⌊
sT1

(
Â + B′

)⌉
p

=
⌊
sT2

(
Â + B′

)⌉
p
.

This means that the vectors sT1 (Â + B′) and sT2 (Â + B′) are “close” or more precisely,

sT1 (Â + B′)− sT2 (Â + B′) = (sT1 − sT2)(Â + B′) ∈ [−B′, B′]m,

where B′ = q
2p . To complete the proof, we show that such a vector ŝ = (s1 − s2) exists in Znq with only

negligible probability over the randomness used to sample the public parameter matrices (specifically, over

the choice of the random coins used to sample Â).

Lemma A.15. Fix any matrix B′ ∈ Zn×mq where m = ω(n). Then, if the bound B on the error distribution
χ satisfies B < p̂/2, where p̂ is the smallest prime dividing the modulus q, and B′ = q/2p, we have that

Pr
Â

r←Zn×mq

[
∃ ŝ ∈ [−2B, 2B]n \ {0} : ŝT (Â + B′) ∈ [−B′, B′]m

]
= negl(λ).

Proof. We bound the probability that there exists a non-zero ŝ ∈ [−2B, 2B]n such that ŝT Â = −ŝTB′ + eT

where e ∈ [−B′, B′]m. Take any non-zero ŝ ∈ [−2B, 2B]n. Since ŝ 6= 0, there exists an index i ∈ [n] such that

ŝi 6= 0. Moreover, since |ŝi| ≤ 2B < p̂, ŝi is invertible over Zq. Since Â is sampled uniformly at random, the

relation ŝT Â = −ŝTB′ + eT is satisfied for some e ∈ [−B′, B′]n with probability at most (2B′/q)m = (1/p)m.
The claim then follows if we take a union bound over the (4B)n possible vectors ŝ ∈ [−2B, 2B]n.

We conclude that for any x, with overwhelming probability over the choice of Â, there does not exist a
pair of keys s1 and s2 such that sT1 (Â + B′) and sT2 (Â + B′) are close. In particular this means that
with overwhelming probability, TPRF.Eval(msk1, x) 6= TPRF.Eval(msk2, x) for any x ∈ {0, 1}ρ. Thus, ΠTPRF

satisfies key-injectivity.

B Watermarking Correctness and Security Analysis

In this section, we give the formal correctness and security analysis of the watermarking scheme described in
Construction 6.13.

47

B.1 Proof of Theorem 6.14

Take any message m ∈ {0, 1}t. Let msk = (pp, tk, h1, . . . , hd, k
∗)←WM.Setup(1λ) be the master secret key

for the watermarking scheme. Take k ← TPRF.SampleKey(pp) and let C ←WM.Mark(msk, k,m) be the wa-
termarked key. By construction C(·) = TPRF.ConstrainEval(pp, skS , ·) where skS = TPRF.Constrain(pp, k, S)
and S ⊆ {0, 1}n is a set of 2n − t points. We now show each of the requirements separately:

• Functionality-preserving: Let T ⊆ S be the set of points x where C(x) 6= TPRF.Eval(pp, k, x). By
evaluation correctness of ΠTPRF, no efficient adversary is able to find any such x ∈ T , except with
negligible probability. In particular, this means that |T | /2n = negl(λ). Finally, since C(·) can differ
from TPRF.Eval(pp, k, ·) on at most |T |+ t points and t = poly(λ), we conclude that C(·) agrees with
TPRF.Eval(pp, k, ·) on all but a negligible fraction of points.

• Extraction correctness: First, define x =
(
x

(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t

)
as in WM.Mark (that is, as the

output of PRF.Eval(k∗, ·)). By construction, {0, 1}n \ S ⊂ {x(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t }. Since ΠPRF is

secure and n = ω(log λ), it follows that Pr[x
(b)
i = hj] = negl(λ) for all j ∈ [d], i ∈ [t], and b ∈ {0, 1}.

Since d, t = poly(λ), we conclude via a union bound that with overwhelming probability, hj 6= x
(b)
i

for all j ∈ [d], i ∈ [t], and b ∈ {0, 1}. Equivalently, h1, . . . , hd ∈ S with overwhelming probability.
Since h1, . . . , hd are chosen uniformly over {0, 1}n and independently of all other parameters, we invoke
evaluation correctness of ΠTPRF and Remark 4.6 to conclude that with overwhelming probability,
C(hj) = TPRF.Eval(pp, k, hj) for each j ∈ [d]. Since d = poly(λ), we apply a union bound to conclude
that with overwhelming probability, the extraction algorithm WM.Extract will derive the same tuple x
as WM.Mark. The claim now follows from verification correctness of ΠTPRF.

B.2 Proofs of Theorem 6.15 and 6.16

Our unremovability and unforgeability proofs for our watermarking scheme follow a similar structure as the
proofs in [BLW17, Appendix I], who construct a watermarkable family of PRFs from private programmable
PRFs. However, we require a more intricate argument to handle adversarial marking oracle queries (where
the adversary is allowed to choose the key to be watermarked) as well. Moreover, relying on private
translucent t-puncturable PRFs rather than private programmable PRFs (the former provides a much weaker
programmability property) also require modifying the hybrid structure in [BLW17].

Our security proofs consist of a sequence of hybrid experiments between a challenger and an adversary
A. In each experiment, the adversary A is given access to a marking oracle and a challenge oracle. We
now define our initial hybrid experiment, denoted H0, which is identical to the watermarking experiment
ExptΠWM,A (Definition 6.7). Note that we isolate this particular hybrid because it will be useful in both the
proofs of Theorem 6.15 as well as Theorem 6.16. In this section, for a hybrid experiment H, we write H(A) to
denote the output distribution of H when interacting with an adversary A.

Definition B.1 (Hybrid H0). Fix a security parameter λ. Let ΠWM = (WM.Setup,WM.Mark,WM.Extract)
be the watermarking scheme from Construction 6.13, and let A be a watermarking adversary. Hybrid H0(A)
corresponds to the watermarking experiment ExptΠWM,A(λ). For clarity, we describe the experiment with
respect to the concrete instantiation described in Construction 6.13.

1. Setup phase: The challenger begins by sampling (pp, tk)← TPRF.Setup(1λ), a tuple (h1, . . . , hd)
r←

({0, 1}n)d and a PRF key k∗ ← PRF.KeyGen(1λ). It sets msk = (pp, tk, h1, . . . , hd, k
∗) and gives pp to

the adversary.

2. Query phase: The adversary can now make queries to a marking oracle or a challenge oracle. The
challenger responds to the oracle queries as follows:

• Marking oracle: On input a message m ∈ {0, 1}t and a PRF key k ∈ K to be marked, the
challenger computes yj ← TPRF.Eval(pp, k, hj) for each j ∈ [d]. Next, it sets y = (y1, . . . , yd), and

48

computes x =
(
x

(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t

)
← PRF.Eval(k∗,y). Then, it constructs the t-punctured

key skS ← TPRF.Constrain(pp, k, S) where S = {x ∈ {0, 1}n : x 6= x
(mi)
i ∀i ∈ [t]}. Finally, it replies

with the circuit C to the adversary, where C(·) = TPRF.ConstrainEval(pp, skS , ·).
• Challenge oracle: On input a message m̂ ∈ {0, 1}t, the challenger samples a key k̂ ←
TPRF.SampleKey(pp). Next, for each j ∈ [d], it computes ŷj ← TPRF.Eval(pp, k̂, hj), sets ŷ =

(ŷ1, . . . , ŷd), and computes x̂ =
(
x̂

(0)
1 , x̂

(1)
1 , . . . , x̂

(0)
t , x̂

(1)
t

)
← PRF.Eval(k∗, ŷ). Then, it constructs

the t-punctured key skŜ ← TPRF.Constrain(pp, k̂, Ŝ) where Ŝ = {x ∈ {0, 1}n : x 6= x̂
(m̂i)
i ∀i ∈ [t]}.

It replies with Ĉ to the adversary where Ĉ(·) = TPRF.ConstrainEval(pp, skŜ , ·).

3. Challenge phase: The adversary outputs a circuit C̃.

4. Extraction phase: The challenger first computes the tuple ỹ = (C̃(h1), . . . , C̃(hd)). Then, it sets

x̃ =
(
x̃

(0)
1 , x̃

(1)
1 , . . . , x̃

(0)
t , x̃

(1)
t

)
← PRF.Eval(k∗, ỹ). For each i ∈ [t] and b ∈ {0, 1}, the challenger

computes z̃
(b)
i = TPRF.Test

(
pp, tk, C̃(x̃

(b)
i)
)
. If there exists some i ∈ [t] for which z̃

(0)
i = z̃

(1)
i , the

experiment outputs ⊥. Otherwise, for each i ∈ [t], the challenger sets m̃i = 0 if z̃
(0)
i = 1, and m̃i = 1

otherwise. Finally, the experiment outputs m̃ ∈ {0, 1}t.

B.2.1 Proof of Theorem 6.15

We begin by defining our sequence of hybrid experiments:

• Hybrid H1: Same as H0 (Definition B.1), except the challenger begins by choosing a random function
f : ({0, 1}m)d → ({0, 1}n)2t during the setup phase. Then, whenever the challenger needs to evaluate
PRF.Eval(k∗, ·) in the remainder of the experiment, it instead evaluates f(·).

• Hybrid H2: Same as H1, except at the beginning of the game, the challenger initializes a table T ← ∅
to maintain mappings of the form K → ({0, 1}n)2t, where K is the key-space of the PRF. Then, in the
query phase, the challenger responds to the oracle queries as follows:

– Marking oracle: Same as H1, except on input a message m ∈ {0, 1}t and a PRF key k ∈ K, if k
is already present in T , then the challenger sets x = T [k] and proceeds as in H1. Otherwise, it

samples x
r← ({0, 1}n)2t, add the mapping (k 7→ x) to T . The remainder of the query processing

is handled as in H1.

– Challenge oracle: On input a message m̂ ∈ {0, 1}t, the challenger first samples a key k̂ ←
TPRF.SampleKey(pp). It then checks to see if k̂ is already present in T . If so, the challenger sets

x̂ = T [k̂] and proceeds as in H1. Otherwise, it samples x̂
r← ({0, 1}n)2t, adds the mapping (k̂ 7→ x̂)

to T and continues as in H1.

Let Q be the number of marking and challenge queries the adversary makes, y1, . . . ,yQ be the vectors y
(and ŷ) the challenger computes when responding to the marking and challenger oracles during the query
phase, and let k1, . . . , k` be the keys the adversary provided to the marking oracle (or sampled by the
challenge oracle) in those queries. During the extraction phase, if there are distinct indices `1, `2 ∈ [Q]
such that k`1 6= k`2 , but y`1 = y`2 , then the challenger aborts the experiment and outputs Bad1.
Otherwise, the challenger computes ỹ as in H1. Then, if ỹ = y` for some ` ∈ [Q], the challenger sets

x̃ = T [k`]. Otherwise, it samples x̃
r← ({0, 1}n)2t. The rest of the extraction step is unchanged.

• Hybrid H3: Same as H2 except when simulating the challenge oracle, the challenger always samples

x̂
r← ({0, 1}n)2t. Moreover, the challenger only adds the mapping (k̂ 7→ x̂) to T at the beginning of the

extraction phase (rather than the query phase).

• Hybrid H4: Same as H3 except during the extraction phase, if there exists some j ∈ [d] where

Ĉ(hj) 6= TPRF.Eval(pp, k̂, hj), then the challenger aborts and outputs Bad2.

49

• Hybrid H5: Same as H4 except during the extraction phase, the challenger aborts the experiment and
outputs Bad3 if there exists j ∈ [d] where C̃(hj) 6= TPRF.Eval(pp, k̂, hj). Otherwise, the challenger sets
x̃ = x̂ and continues with the extraction phase as in H4.

• Hybrid H6: Same as H5 except during the extraction phase, the challenger also checks (after checking

for Bad1, Bad2, and Bad3) whether C̃
(
x̂

(b)
i

)
= Ĉ

(
x̂

(b)
i

)
for all i ∈ [t] and b ∈ {0, 1}. If the check passes,

the challenger aborts and outputs m̂. Otherwise, it follows the same extraction phase of H5.

• Hybrid H7: Same as H6 except when the challenger responds to the challenge oracle, it first chooses

d distinct random points α1, . . . , αd
r← {0, 1}n and then sets Ŝ = {α1, . . . , αd} when generating the

constrained key skŜ .

We now proceed in a sequence of lemmas to show that for each consecutive pair of hybrid experiments H`,H`+1,
|Pr[H`(A) 6= m̂]− Pr[H`+1(A) 6= m̂]| = negl(λ), where A is an efficient adversary for the unremovability game
(Definition 6.8) and m̂ ∈ {0, 1}t is the message the adversary submits to the challenge oracle. In the
final hybrid H7, we show that Pr[H7(A) 6= m̂] = negl(λ), which proves the theorem. Recall that in the
unremovability game, the adversary makes exactly one challenge query during the query phase.

Lemma B.2. If ΠPRF is secure, then for all efficient adversaries A,

|Pr[H0(A) 6= m̂]− Pr[H1(A) 6= m̂]| = negl(λ).

Proof. The only difference between H0 and H1 is that invocations of PRF.Eval(k∗, ·) where k∗ ← PRF.KeyGen(1λ)

are replaced by invocations of f(·) where f
r← Funs[({0, 1}m)d, ({0, 1}n)2t]. The claim follows immediately

by security of ΠPRF. Specifically, any distinguisher for the distributions H0(A) and H1(A) can be used to
distinguish the outputs of the PRF from those of a truly random function.

Lemma B.3. If ΠTPRF is key-injective (Definition 4.15), then for all adversaries A,

|Pr[H1(A) 6= m̂]− Pr[H2(A) 6= m̂]| = negl(λ).

Proof. It is easy to see that as long as the vectors y and ŷ are unique (for distinct keys) in the marking
and challenge queries, then H1 and H2 are identically distributed (in this case, the procedure in H2 just
corresponds to a lazy sampling of the random function f). To show that the vectors y and ŷ for different
keys are unique with overwhelming probability, we define a sequence of intermediate hybrid experiments:

• Hybrid H1,0: Same as H1.

• Hybrid H1,`: Same as H1 except at the beginning of the game, the challenger initializes a table
T ← ∅ to maintain mappings of the form K → ({0, 1}n)2t. For the first ` marking or challenge queries,
the challenger responds according to the specification in H2 (updating the table T accordingly). Let
k1, . . . , k` be the keys appearing in the first ` queries, and let (y1,x1), . . . , (y`,x`) be the vectors the
challenger uses to answer the first ` queries. When answering all of the subsequent queries and in the
extraction phase, after the challenger computes y (analogously, ŷ or ỹ), it first checks to see if y = y`∗

for some `∗ ∈ [`] (choosing one arbitrarily if there are multiple). If so, it sets x = x`∗ when answering
the query. Otherwise, it sets x = f(y) as in H1. If there exist distinct `1, `2 ∈ [`] where k`1 6= k`2 , but
y`1 = y`2 , then during the extraction phase, the challenger aborts and outputs Bad1.

Let Q be the number of marking or challenge queries the adversary makes. We now show that

H1(A) ≡ H1,0(A)
s
≈ H1,1(A)

s
≈ · · ·

s
≈ H1,Q(A) ≡ H2(A)

By definition, H1 ≡ H1,0 and H1,Q ≡ H2, so it suffices to show that for all ` ∈ [Q], H1,`−1(A)
s
≈ H1,`(A).

First, we note that the behavior of H1,`−1 and H1,` differ only on how the `th query is handled. In both
experiments, the adversary’s view after the first `− 1 queries is independent of the query points h1, . . . , hd

50

(since the vectors x as well as x̂ that occur in the first `− 1 queries are chosen independently and uniformly of
h1, . . . , hd). Thus, in hybrids H1,`−1 and H1,`, the challenger can defer the sampling of h1, . . . , hd until after
the adversary has committed to its `th query. Let k1, . . . , k` be the keys the adversary submits in its first `
queries. Since h1, . . . , hd are sampled after the adversary has chosen k1, . . . , k`, we conclude that h1, . . . , hd
are distributed uniformly and independently of k1, . . . , k` (as well as the public parameter pp). There are
now two possibilities to consider

• If k` = k`∗ for some `∗ < `, then y` = y`∗ . In H1,`−1, the adversary sets x = x`∗ when answering the
query. Note that this holds only if there does not exist two indices `1, `2 < ` where y` = y`1 = y`2 , but
k`1 6= k`2 . If this were to happen, then both H1,`−1 and H1,` output Bad1. Otherwise in hybrid H1,`,
since k` = k`∗ , the challenger sets x` = T [k`] = x`∗ . In either case, the challenger’s response to the `th

query is identically distributed in H1,`−1 and H1,`.

• If k` 6= k`∗ for all `∗ 6= `, then by key injectivity, for all `∗ < ` and all j ∈ [d],

Pr[TPRF.Eval(k`, hj) = TPRF.Eval(k`∗ , hj)] = negl(λ),

where the probability is taken over the randomness used to sample the parameters in WM.Setup. We
conclude that for all `∗ < `,

Pr[∀j ∈ [d] : TPRF.Eval(k`, hj) = TPRF.Eval(k`∗ , hj)] = negl(λ).

Union bounding over all `− 1 ≤ Q = poly(λ) queries, we conclude that with overwhelming probability,
y` 6= y`∗ for all `∗ < `. This means that in H1,`−1, the vector x` used to answer the `th query is given by
the output of f(y`), where f is a truly random function (and independent of the challenger’s responses
in all previous queries). Thus, x` in H1,`−1 is independently and uniformly distributed over ({0, 1}n)2t,
which is precisely the distribution from which it is sampled in H1,`. Thus, the challenger’s responses in
the first ` queries are identically distributed in H1,`−1 and H1,`.

Finally, we note that the probability that H1,` outputs Bad1 can only be negligibly greater than that in H1,`−1.
To see this, observe that if there exists `1, `2 ∈ [`− 1] such that y`1 = y`2 , then both H1,`−1 and H1,` output
Bad1. The only scenario where H1,` outputs Bad1 (and H1,`−1 does not) is if y` = y`∗ and k` 6= k`∗ for some
`∗ < `. But by the key-injectivity argument above, this happens with negligible probability. Conditioned on
Bad1 not happening, the outputs of experiments H1,`−1 and H1,` are identically distributed. We conclude

that H1,`−1(A)
s
≈ H1,`(A) for all ` ∈ [Q]. This proves the claim.

Lemma B.4. If ΠTPRF satisfies selective constrained pseudorandomness (Definition 4.10), then for all
efficient adversaries A,

|Pr[H2(A) 6= m̂]− Pr[H3(A) 6= m̂]| = negl(λ).

Proof. By construction, hybrids H2 and H3 are identical experiments as long as the adversary never queries
the marking oracle on the key k̂ (the key the challenger samples during the challenge phase). Thus, the
only possible way the adversary can obtain a nonzero advantage in distinguishing hybrids H2 and H3 is
if it is able to query the marking oracle on k̂, or equivalently, “guess” the master secret key sampled by
the challenger given only the public parameters and the constrained key. Certainly, this completely breaks
(selective) constrained pseudorandomness. More formally, let A be an efficient adversary that is able to
distinguish H2 from H3 with some non-negligible probability ε. We use A to construct an adversary B that
breaks the (selective) constrained pseudorandomness of ΠTPRF with advantage ε/Q where Q is the number of
marking oracle queries A makes during the query phase. Algorithm B works as follows:

1. At the beginning of the game, B samples t points x̂1, . . . , x̂t
r← {0, 1}n. It sends the t-puncturing set Ŝ =

{x ∈ {0, 1}n : x 6= x̂i ∀i ∈ [t]} to the selective constrained pseudorandomness challenger. The constrained
pseudorandomness challenger then samples the public parameters (pp, tk)← TPRF.Setup(1λ) and a se-
cret key msk← TPRF.SampleKey(pp). It constructs the constrained key skŜ ← TPRF.Constrain(pp,msk, Ŝ).
The challenger gives pp and skŜ to B.

51

2. Algorithm B starts running A and starts simulating hybrids H2 and H3 for A. In the setup phase, B
gives pp to A. The other components of the setup phase are simulated exactly as described in H2 and
H3. Note that simulating the evaluations of the truly random function f can be done by lazily sampling
the outputs of f on an as-needed basis.

3. During the query phase, whenever A makes an marking oracle query, B simulates the response exactly
as described in H3. This is possible because answering the marking queries only requires knowledge of
the public parameters pp. When A makes it challenge query, B response with the constrained key skŜ
it received from the constrained pseudorandomness challenger.

4. Let k1, . . . , kQ ∈ K be the keys A submitted to the marking oracle during the query phase. At the end

of the query phase, B chooses an index i
r← [Q], and computes y = TPRF.Eval(pp, ki, x̂1). In addition,

it makes a challenge oracle query to the constrained pseudorandomness challenger at the punctured
point x̂1. The constrained pseudorandomness challenger responds with a value ŷ. Finally, B outputs 1
if y = ŷ and 0 otherwise.

By construction, B perfectly simulates H3 for A. Here, the key msk sampled by the constrained pseudoran-
domness challenger plays the role of the key sampled by the challenger in response to the challenge oracle in
H3. Now, as stated above, H2 and H3 are identical experiments unless the adversary queries the marking
oracle on msk during the query phase. Since A is able to distinguish H2 from H3 with probability ε, it must
be the case that with probability ε, on one of its marking oracle queries, it submits msk. Moreover, up until
making this query, B perfectly simulates both H2 and H3 for A. This means that with probability ε, one of
the keys k1, . . . , kQ that appears in the marking oracle queries of A is actually msk. We consider two cases,
depending on whether the constrained pseudorandomness challenger replies with the real value of the PRF or
a random value in response to the challenger queries:

• Suppose the constrained pseudorandomness challenger replies with the value TPRF.Eval(pp,msk, x̂1).
With probability ε/Q, we have that ki = msk, in which case y = ŷ, and B outputs 1. Thus, in this case,
B outputs 1 with probability at least ε/Q.

• If the constrained pseudorandomness challenger replies with a random value ŷ
r← {0, 1}m, then y = ŷ

with probability 1/2m = negl(λ).

Thus, B is able to break constrained pseudorandomness of ΠTPRF with advantage ε/Q− negl(λ). Since ε is
non-negligible and Q = poly(λ), this is non-negligible. The claim follows.

Lemma B.5. If ΠTPRF satisfies (selective) evaluation correctness, then for all adversaries A,

|Pr[H3(A) 6= m̂]− Pr[H4(A) 6= m̂]| = negl(λ).

Proof. We show that for all adversaries A, H4(A) outputs Bad2 with negligible probability. By definition, we
have that Ĉ(·) = TPRF.ConstrainEval(pp, skŜ , ·). In H3 and H4, the points h1, . . . , hd are sampled uniformly
from the domain {0, 1}n of ΠTPRF and independently of all other parameters. By evaluation correctness of

ΠTPRF and Remark 4.6, we conclude that for all j ∈ [d], Pr[Ĉ(hj) 6= TPRF.Eval(pp, k̂, hj)] = negl(λ). Since
d = poly(λ), we conclude that H4 outputs Bad2 with negligible probability. Since H3 and H4 are identical
experiments with the only exception being H4 could output Bad2, we conclude that H3(A) and H4(A) in the
two experiments are statistically indistinguishable, and the claim follows.

Lemma B.6. For all unremoving-admissible adversaries A (Definition 6.8),

|Pr[H4(A) 6= m̂]− Pr[H5(A) 6= m̂]| = negl(λ).

Proof. We show that the output distributions H4(A) and H5(A) are statistically indistinguishable. Since the
conditions for outputting Bad1 and Bad2 are identical in H4 and H5, it suffices to only reason about the case
where Bad1 and Bad2 are not set. Our proof consists of two pieces.

52

• We first show that H4 outputs Bad3 with negligible probability assuming A is unremoving-admissible.
Observe that in H5, the challenger’s behavior (and correspondingly, the adversary’s view) during the
query phase is independent of h1, . . . , hd. Thus, in H5, it is equivalent for the challenger to defer
sampling h1, . . . , hd until the extraction phase, and in particular, after the adversary has output
its challenge circuit C̃. By unremoving-admissibility, C̃ ∼f Ĉ where 1/f = negl(λ). Since for

all j ∈ [d], hj is sampled uniformly from {0, 1}n and independent of both Ĉ and C̃, we have that

Pr[C̃(hj) 6= Ĉ(hj)] ≤ 1/f = negl(λ). Next, d = poly(λ), so we conclude via a union bound that for

all j ∈ [d], C̃(hj) = Ĉ(hj). Finally, since Bad2 is not set, we have that Ĉ(hj) = TPRF.Eval(pp, k̂, hj)
for all j ∈ [d], and so, H5 outputs Bad3 with negligible probability.

• To conclude the proof, we show that the distributions of outputs in the extraction phases of H4 and
H5 are statistically indistinguishable. First, we note that the condition for outputting Bad3 depends
only on the adversary’s output in the challenge phase. By construction, the adversary’s outputs in the
challenge phase of H4 and H5 are identically distributed. By our previous argument, the condition for
outputting Bad3 is satisfied with negligible probability in H5, and so, the same condition is satisfied with
negligible probability in H4 (otherwise, the condition associated with Bad3 can be used to distinguish

the adversary’s output in the challenge phase of H4 and H5). Thus, in H4, C̃(hj) = TPRF.Eval(pp, k̂, hj)
for all j ∈ [d] with overwhelming probability. This means that for all j ∈ [d],

ỹj = C̃(hj) = TPRF.Eval(pp, k̂, hj) = ŷj ,

or equivalently, ỹ = ŷ. This means that in the extraction step of H4, the challenger sets x̃ = x̂ (by
assumption, it does not output Bad1) with overwhelming probability. But this is precisely the behavior
in H5. Since the rest of the extraction step in H4 and H5 is the same, we conclude that the distribution
of outputs in H4 is statistically indistinguishable from that in H5.

Lemma B.7. If ΠTPRF satisfies (selective) verification correctness, then for all adversaries A,

|Pr[H5(A) 6= m̂]− Pr[H6(A) 6= m̂]| = negl(λ).

Proof. We show that the distributions H5(A) and H6(A) are statistically indistinguishable. Hybrids H5 and

H6 are identical experiments unless C̃(x̂
(b)
i) = Ĉ(x̂

(b)
i) for all i ∈ [t] and b ∈ {0, 1}. We consider the output in

H5 when this is the case. Without loss of generality, we just consider the case where Bad3 does not occur. In

this case, the challenger sets x̃ = x̂. It follows that C̃(x̃
(b)
i) = C̃(x̂

(b)
i) = Ĉ(x̂

(b)
i) for all i ∈ [t] and b ∈ {0, 1}.

Then,

z̃
(b)
i = TPRF.Test

(
pp, tk, C̃(x̃

(b)
i)
)

= TPRF.Test
(
pp, tk, Ĉ(x̂

(b)
i)
)
.

By definition, Ĉ(x̂
(b)
i) = TPRF.ConstrainEval

(
pp, skŜ , x̂

(b)
i

)
. For each i ∈ [t], we have that x̂

(m̂i)
i ∈ Ŝ, so by

verification correctness of ΠTPRF, TPRF.Test
(
pp, tk, C̃(x̃

(m̂i)
i)

)
= 1 with overwhelming probability. On the

other hand, since x̂
(1−m̂i)
i /∈ Ŝ (with overwhelming probability), and moreover, x̂

(1−m̂i)
i is independently and

uniformly random over {0, 1}n, with overwhelming probability, TPRF.Test
(
pp, tk, C̃(x̃

(1−m̂i)
i)

)
= 0. Thus,

with overwhelming probability, the challenger sets m̃i = m̂i in H5. Since t = poly(λ), we have that with
overwhelming probability m̃ = m̂. We conclude that the output of H5 when the condition is satisfied is m̂
with overwhelming probability.

Lemma B.8. If ΠTPRF is selectively-private (Definition 4.13), then for all efficient unremoving-admissible
(Definition 6.8) adversaries A,

|Pr[H6(A) 6= m̂]− Pr[H7(A) 6= m̂]| = negl(λ).

Moreover, under the same assumptions, Pr[H7(A) 6= m] = negl(λ).

53

Proof. First, we show that Pr[H7(A) 6= m̂] = negl(λ). It suffices to consider the case where H7 does not
output one of the flags Bad1, Bad2, or Bad3, since we previously showed in Lemmas B.3 through B.7
that each hybrid outputs these flags with negligible probability. In H7, the setup and query phases are

completely independent of the points x̂
(b)
i for all i ∈ [t] and b ∈ {0, 1}. Thus, it is equivalent to sample

x̂
(b)
i at the extraction phase, after the adversary has output its challenge circuit C̃. Since x̂

(b)
i are sampled

uniformly from {0, 1}n and independently of C̃, by unremoving-admissibility of A, we have that for all i ∈ [t],

Pr[C̃(x̂
(b)
i) 6= Ĉ(x̂

(b)
i)] = 1/f = negl(λ). Since t = poly(λ), it follows that with overwhelming probability,

C̃(x̂
(b)
i) = Ĉ(x̂

(b)
i) for all i ∈ [t] and b ∈ {0, 1}. Thus, with overwhelming probability, H7 outputs m̂.

Now, suppose there exists an efficient adversary A such that |Pr[H6(A) 6= m̂]− Pr[H7(A) 6= m̂]| is non-
negligible. Since Pr[H7(A) 6= m̂] = negl(λ), this must mean that Pr[H6(A) 6= m̂] = ε for some non-negligible
ε. We now use A to build an efficient adversary B that can break the (selective) privacy of ΠTPRF with the
same advantage ε. Algorithm B works as follows:

1. At the beginning of the game, B chooses values x̂1, . . . , x̂t
r← {0, 1}n and α1, . . . , αt

r← {0, 1}n. It then
constructs two sets S0 = {x ∈ {0, 1}n : x 6= x̂i ∀i ∈ [t]} and S1 = {x ∈ {0, 1}n : x 6= αi ∀i ∈ [t]}.
Algorithm B submits sets S0 and S1 to the challenger.

2. The privacy challenger replies to B with the public parameters pp for ΠTPRF and a constrained key skβ
where β ∈ {0, 1}.

3. Algorithm B starts running A. In the setup phase, B chooses the watermarking secret key components

h1, . . . , hd
r← {0, 1}n and k

r← K for itself. It gives pp to A in the setup phase.

4. In the query phase, B answers the queries as follows:

• Marking oracle: Algorithm B answers these queries exactly as in H6 and H7. This is possible
since none of the queries depend on knowing tk, and algorithm B knows all of the other components
of the watermarking secret key msk.

• Challenge oracle: On input the challenge message m̂ ∈ {0, 1}t, algorithm B sets x̂
(m̂i)
i = x̂i and

samples x̂
(1−m̂i)
i

r← {0, 1}n. It replies with Ĉ(·) = TPRF.ConstrainEval(pp, skβ , ·).

5. After the adversary finishes making its oracle queries, it outputs its challenge circuit C̃. Algorithm B
then simulates the extraction phase as follows. First, it checks whether there exists i ∈ [t] and b ∈ {0, 1}
such that C̃(x̂

(b)
i) 6= Ĉ(x̂

(b)
i). If so, B halts the experiment and outputs 1. Otherwise, B outputs 0.

First, observe that in the reduction, the values x̂i play the role of x̂
(m̂i)
i . We now consider the two cases β = 0

and β = 1.

• If β = 0, then B perfectly simulates H6 for A. In H6, if C̃(x̂
(b)
i) = Ĉ(x̂

(b)
i) for all i ∈ [t] and b ∈ {0, 1},

then by construction, H6(A) outputs m̂. Since Pr[H6(A) 6= m̂] = ε, with probability at least ε, there

exists some i ∈ [t] and b ∈ {0, 1} for which C̃(x̂
(b)
i) 6= Ĉ(x̂

(b)
i). Thus, with probability ε, B outputs 1.

• If β = 1, then B perfectly simulates H7 for A. We previously showed that in hybrid H7, C̃(x̂
(b)
i) = Ĉ(x̂

(b)
i)

for all i ∈ [t] and b ∈ {0, 1} with overwhelming probability. Thus, in this case, B outputs 1 with
negligible probability.

We conclude that B is able to win the selective privacy game for ΠTPRF with advantage ε− negl(λ), which is
non-negligible, as required.

Combining Lemmas B.2 through B.8, we conclude that as long as ΠPRF is secure and ΠTPRF is a selectively-
private translucent t-puncturable PRF that satisfies key injectivity, then the watermarking scheme ΠWM is
unremovable.

54

B.2.2 Proof of Theorem 6.16

We begin by defining our sequence of hybrid experiments:

• Hybrid H1: This is the same hybrid as H1 from the proof of Theorem 6.15.

• Hybrid H2: This is the same hybrid as H2 from the proof of Theorem 6.15.

• Hybrid H3: Same as H2 except in the extraction step, after computing the tuple ỹ = (C̃(h1), . . . , C̃(hd)),
the challenger aborts the experiment and outputs Bad2 if ỹ ∈ Z (where Z is the set of tuples y that
appeared in a marking oracle query). Otherwise, it proceeds as in H2.

As in the proof of Theorem 6.15, we proceed in a sequence of lemmas and show that for each consecutive pair
of hybrid experiments H`,H`+1, it is the case that |Pr[H`(A) 6= ⊥]− Pr[H`+1(A) 6= ⊥]| = negl(λ), where A
is an efficient adversary for the δ-unforgeability game (Definition 6.9). Finally, in the final hybrid H3, we
show that Pr[H4(A) 6= ⊥] = negl(λ), which proves the theorem. Recall that in the δ-unforgeability game, the
adversary does not make any queries to the challenge oracle.

Lemma B.9. If ΠPRF is a secure PRF, then for all efficient adversaries A,

|Pr[H1(A) 6= ⊥]− Pr[H2(A) 6= ⊥]| = negl(λ).

Proof. Follows by the exact same argument as that given in the proof of Lemma B.2.

Lemma B.10. If ΠTPRF satisfies key injectivity (Definition 4.15), then for all adversaries A,

|Pr[H1(A) 6= m̂]− Pr[H2(A) 6= m̂]| = negl(λ).

Proof. Follows by the exact same argument as that given in the proof of Lemma B.3.

Lemma B.11. If ΠTPRF satisfies evaluation correctness, then for all δ-unforging-admissible adversaries A
(Definition 6.9) where δ = 1/poly(λ),

|Pr[H2(A) 6= ⊥]− Pr[H3(A) 6= ⊥]| = negl(λ).

Proof. We show that the distributions H2(A) and H3(A) are statistically indistinguishable. By construction,
the adversary’s view in the setup and query phases of H2 and H3 are identically distributed. To show the
lemma, it suffices to argue that H3 does not output Bad2 in the extraction phase. Let Q = poly(λ) be
the number of marking queries the adversary made and for ` ∈ [Q], let k` be the PRF key the adversary
submitted to the marking oracle on the `th query. For ` ∈ [Q], let T` be the set of points on which C̃(·) and
TPRF.Eval(pp, k`, ·) differ, where C̃ is the circuit output by the adversary at the end of the challenge phase.
Since A is δ-unforging-admissible, we have that |T`| /2n ≥ δ. Next, we note that in H3, the query phase does
not depend on h1, . . . , hd. Thus, we can defer the sampling of h1, . . . , hd until the extraction phase, after the
adversary has output its challenge circuit C̃. Since each of the hj is drawn uniformly and independently from
{0, 1}n, we have for all j ∈ [d] and ` ∈ [Q], Pr[hj ∈ T`] = |T`| /2n ≥ δ. It follows that for all ` ∈ [Q]

Pr[∀j ∈ [d] : hj /∈ T`] =

(
1− |T`|

2n

)d
≤ (1− δ)λ/δ ≤ e−λ = negl(λ),

where we have used the fact that d = λ/δ and δ = 1/poly(λ). Since this holds for all ` ∈ [Q], we conclude that
with overwhelming probability, it is the case that for all ` ∈ [Q], there exists some j ∈ [d] such that hj ∈ T`,
or equivalently, that C̃(hj) 6= TPRF.Eval(pp, k`, hj). By construction of the marking algorithm this means
that ỹ 6= y` for all ` ∈ [Q]. We conclude that ỹ /∈ Z, and so H3 outputs Bad2 with negligible probability.

Lemma B.12. For all adversaries A, Pr[H3(A) 6= ⊥] = negl(λ).

55

Proof. It suffices to consider the case where H3 does not output Bad1 and Bad2 (as argued in Lemmas B.10
and B.11, these events occur with negligible probability). Conditioned on H3 not outputting Bad2, the
test vector x̃ is sampled uniformly and independently from ({0, 1}n)2t after the adversary has output

its challenge circuit C̃. Now, for each i ∈ [t] and b ∈ {0, 1}, the extraction algorithm computes z̃
(b)
i =

TPRF.Test(pp, tk, C̃(x̃
(b)
i)). Since the test points x̃

(0)
i and x̃

(1)
i are chosen uniformly and independently from

{0, 1}n after the adversary has committed to C̃, we have that Pr[z̃
(0)
i 6= z̃

(1)
i] ≤ 1/2 for all i ∈ [t], irrespective

of C̃. Since t = ω(log λ), with overwhelming probability, there exists some i ∈ [t] where z̃
(0)
i = z̃

(1)
i , in which

case, the extraction algorithm outputs ⊥.

Combining Lemmas B.9 through B.12, we conclude that as long as ΠPRF is secure, and ΠTPRF is a translucent
t-puncturable PRF that satisfies key injectivity, the watermarking scheme ΠWM is δ-unforgeable.

56

	Introduction
	Background
	Our Contributions
	Additional Related Work

	Construction Overview
	Preliminaries
	Lattice Preliminaries
	Lattice Trapdoors
	(Leveled) Homomorphic Encryption
	Embedding Circuits into Matrices

	Translucent Constrained PRFs
	Security Definitions

	Translucent Puncturable PRFs from LWE
	Main Construction
	Concrete Parameter Instantiations

	Watermarkable PRFs from Translucent PRFs
	Watermarking PRFs
	Watermarking Construction

	Translucent PRF Correctness and Security Analysis
	Correctness and Security Analysis: Auxiliary Algorithms
	Correctness Analysis
	Proof of Selective Evaluation Correctness
	Proof of Selective Verification Correctness

	Security Analysis
	Proof of Theorem 5.2
	Proof of Theorem 5.4
	Proof of Theorem 5.5

	Watermarking Correctness and Security Analysis
	Proof of Theorem 6.14
	Proofs of Theorem 6.15 and 6.16
	Proof of Theorem 6.15
	Proof of Theorem 6.16

