Practical Evaluation of Masking Software
Countermeasures on an IoT processor

David McCann and Elisabeth Oswald
firstname.lastname@bristol.ac.uk

University of Bristol

Abstract. Implementing cryptography on Internet-of-Things (IoT) de-
vices, that is resilient against side channel analysis, has so far been a task
only suitable for specialist software designers in interaction with access
to a sophisticated testing facility. Recently a novel tool has been devel-
oped, ELMO, which offers the potential to enable non-specialist software
developers to evaluate their code w.r.t. power analysis for a popular IoT
processor. We explain a crucial extension of ELMO, which enables a user
to test higher-order masking schemes much more efficiently than so far
possible as well as improve the ease and speed of diagnosing masking
errors.

1 Introduction

Since the discovery by Kocher et al. [6] that the power consumption or EM field
of a device can be used as a side channel to determine secret information being
processed by a device, understanding and securing cryptographic devices against
power analysis attacks has become an important design consideration. This is
particularly true where a potential adversary has physical access to the device,
such as with the emerging Internet of Things (IoT) devices.

Despite the threat and significance of power analysis attacks, the number
of easy to use tools available to developers to aid them in understanding the
vulnerability of their implementations to these attacks remains limited. Whilst
there has been some progress towards automating the evaluation of leakage of
implementations by analysing certain properties of the code for leakage vulner-
abilities ([9] [1] [3] [4] [2] [11]), these methods are limited by the fact that they
do not consider the leakage of the actual device itself, but rather work on an
assumption about the leakage of it (such as that it will leak via a given leakage
model) which may or may not reflect the real world leakage of the device.

Hence, specialist evaluation labs need to be consulted by developers who
are concerned about the risks of power analysis attacks. These labs take real
world traces from devices and perform their own evaluation methods on the
measured traces [5] [13], which incurs a significant time and cost overhead. This
demonstrates a clear need for a set of techniques (tools, methods) that Internet
of Things developers can use to test their own code (at least for some attacks),
without having to consult a specialist lab.



Recent work by McCann et al. [8], has provided a novel methodology for
profiling a microprocessor at the instruction level. The resulting leakage profiles
allow a user to generate accurate real world power traces of a given device stat-
ically (see Section 2.1 and [8]). The authors implement their approach for the
ARM Cortex-MO0 processor (this results in a tool called ELMO), and demon-
strate the accuracy and usefulness of their tool. One of the examples that they
include in their work is that of testing a masked implementation of the Advanced
Encryption Standard (AES).

We believe that ELMO offers a wealth of potential applications for automat-
ing the leakage detection of code, in particular the testing of the popular mask-
ing countermeasure. Recent work makes progress along these lines: [11] point
out that rather than utilising complex formal verification techniques to vali-
date masking countermeasures, one could ‘simply’ apply a leakage detection
technique to a masked implementation. Their approach then utilises an ad-hoc
power model, which may or may not accurately reflect the reality of an imple-
mentation on a real device. This is clearly a shortcoming of their proposal and
can be addressed (in the case of the M0) by utilising ELMO. However, a more
important problem remains unsolved: testing masked implementations of order
d requires (before statistical leakage detection can take place) to compute the
product of the power consumption of all d mask-related intermediate values.
However these mask related intermediate values are not necessarily known and
thus strictly speaking one needs to compute the product of all combinations
of d points across an entire trace. This effort grows exponentially with d, and
this means leakage detection even for low leakage orders is computationally very
expensive and thus seemingly unsuitable for any ‘nice’ push button solution.

Our Contributions

In this paper, we propose to mine some of the potential of ELMO by imple-
menting our own mask flow methodology that automatically detects the number
of masks being used in an implementation and the specific instructions (which
correspond to power points) that use the individual masks. This allows us to
only choose the power leakages related to the same (set of) masks, thus
significantly reducing the complexity and time taken to perform the higher order
leakage detection test, as well as provide mask information of an implementation
that could be used be used by a developer to debug masked implementations.
As a demonstrator we provide an automated first order and a highly efficient
second order leakage detection tool for the ARM Cortex-MO.

1.1 Previous Work

As well as our work building on [8], previous work on automating leakage detec-
tion includes [1], where the flow of key bits covering each bit of the state is traced
through an implementation and the number of key bits used in the computation
of each state bit used as a measure of security. In a similar way, [9] also provide



an information flow method of tracing secret information through the state of
an implementation, albeit for the purposes of identifying instructions to mask.

Work that also aims to automate the robustness of masked implementations
includes [3] which provides a tool that identifies operations dependent upon
secret key information but also those which are dependent on additional random
information (as would be the case with masked operations) and uses a SAT solver
to determine if the masking scheme has been applied correctly. [4] also pursues
a similar approach based on SMT solvers to develop a metric for the security
of masking schemes and [2] provides an approach using EasyCrypt to verify the
implementation of higher order masking schemes.

The closest work to that in this paper known to the authors is [11], where
traces are simulated based on a given leakage model and then the fixed vs random
leakage detection test used on those traces. Although this method uses simulated
power traces, the traces are generated according to a pre-defined leakage model
which must be chosen by the developer and which may or may not accurately
reflect a given real world device.

2 Background

2.1 ELMO

ELMO [8] is a tool that provides accurate albeit simulated traces for a subset of
the Thumb instruction set for the ARM Cortex-M0 processor. ELMO draws on
parametrised models (derived from carefully analysing the MO0) that correspond
to the sequences of three instructions. These models are then used with an
emulator of the Thumb instruction set, which provides the data flow information
and instruction types, with which the models can be instantiated.

ELMO traces therefore offer a unique advantage in that they provide ease
of use and timing accuracy, however they also display the real world hardware
leakage of an actual device in the same way as measured traces.

2.2 Leakage Detection

Leakage detection methods are ways of analysing code to determine if the code
will leak information. A popular leakage detection method is known as the fixed
vs random test [5]. This method compares a set of traces with a fixed key and a
fixed input with a set of traces of the same size with the same fixed key but with
random inputs. The sets can be compared using Welch t-test which is given in
Eq. 1, where X4 and Xp are the averages of the two sets of traces A and B,
S4 and Sp the respective standard deviations and N4 and Np the respective
number of traces in each set.

X4—X

f— AT 4B (1)
5% . 5%
~Na TN,



If the resulting test statistic ¢ is greater than a given confidence threshold,
the null hypothesis that the two sets are taken from the same sample can be
said to be rejected and thus the implementation (or part of the implementation)
is considered leaky. The fixed vs random test is useful in determining whether a
given implementation leaks information or not, however it is worth noting that
it does not provide information on how this information leaks and via which
leakage model. It can only capture leakage in the first moment in the traces, and
thus, when higher order masking is analysed, traces need to be preprocessed (i.e.
traces need to produced that contain the product of all combinations of d trace
points).

2.3 Masking

A popular countermeasure against differential power analysis attacks is known
as masking. Masking provides security by making the power consumption of the
state of the cryptographic algorithm independent of the sensitive intermediate
values that are being processed. This is achieved through combining the state of
the algorithm with random data (the masks) such that the power consumption
of the sensitive state becomes masked, and thus the implementation becomes
provably secure [12] [10]. The number of masks per intermediate value determines
the masking order d.

Although masking provides provable security against power analysis attacks
up to the masking order d, masked implementations are still vulnerable to power
analysis attacks targeting an order higher than d. In these attacks, multiple
power points that represent separate values of the state using the same mask
are exploited to remove the random independence on the power consumption
provided by the mask and thus allow the sensitive values of the state to be
exploited.

3 Automating Leakage Detection

In the following two sections we provide details on the extensions we make to
elmo and how these extensions can be used first for automating a simple first
order fixed vs random test and then for performing higher order leakage detection
tests against masking. Irrespective of which of these masking orders is being
evaluated, the first stage of performing a leakage detection test is to generate
the necessary traces to be tested.

3.1 Generating Traces

In our extension of ELMO, the generation of the traces and the selection of the
plaintexts, keys and masks (if they are used) are left to the programmer and so
need to be programmed into the Thumb binary file. In order for a developer to
do this, we have developed a number of built in functions to ELMO that enable
a developer to start and stop the trigger (which indicates when to start and stop



the trace) as well as call the fixed vs random test routine. In addition to these,
there are also functions to read data into the Thumb program from ELMO and
vice versa to enable a developer to supply data to and from the program at
runtime.

In order to perform a fixed vs random test, traces with a fixed key and fixed
plaintext must be generated as well as an equal number of traces with a fixed
key and random plain texts. For ELMO to recognise which traces are which, the
traces must be generated with the first half of the acquisition being the traces
with a fixed key and fixed plaintext (as specified by the programmer) and the
second half the traces with a fixed key and random plaintext, where the start
and end of the trace is determined by calling the start trigger and end trigger
functions respectively.

As well as being responsible for generating the order of the traces, the devel-
oper also has the responsibility of specifying how many traces are to be used in
the analysis by starting and stopping the trigger the correct number of times.
ELMO automatically takes this number to be half of the total number of times
the trigger was started and stopped (with the first half being the fixed traces
and the second the random traces). Following the generation of the two blocks
of traces, the function to call the fixed vs random test routine should be called.

3.2 Automated Fixed vs Random

When ELMO encounters the function to call the fixed vs random test routine,
it automatically performs a t-test on the fixed and random traces. The results
of the fixed vs random test are generated and stored in a file which has each
output value of the t-test (corresponding to each instruction) as a line in the file.
As ELMO also outputs the instructions that were executed, instructions which
are identified as being leaky (by having a t-test value of either > 4.5 or < —4.5,
which for large N (> 5000) means the null hypothosis is rejected at the 99.999%
confidence interval) can be easily traced to the exact instruction.

3.3 Spotting Flaws in Countermeasures

Carrying out the fixed vs random test in this way easily enables a developer to
see how leaky the code he or she is trying to develop is and which instruction
sequence the leakage is coming from. Another advantage of this method however,
as highlighted in [11], is that it allows the developer to assess the implementation
of side channel countermeasures and whether these have been applied properly.
If a first order countermeasure (such as first order boolean masking) has been
implemented and leakage is detected in the (first order) fixed vs random test, this
suggests that the countermeasure has not been implemented correctly. Using the
leakage information produced by ELMO in this way developers can also easily
assess the robustness of their countermeasures.



4 Evaluating Higher Order Leakages Against Masking

Where masking countermeasures are used, evaluating second order leakages
against the masks requires preprocessing of the points of the trace which use
the same mask. One method of doing this is to multiply the points of the trace
which use the mask together [7].

Because normally one does not know which trace points correspond to which
masks, one has to exhaustively compute all combinations of d trace points (ex-
cluding symmetries). Thus already in the case of a simple first order masking
scheme, where only combinations of two points need to be considered, the length
of preprocessed traces grows to (n? +n)/2 (where n is the length of the original
traces).

ELMO traces however are different to real world traces in this respect as, al-
though containing the leakage of multiple points in the traces, each leakage point
is specifically for a triplet of instructions. This means that we can be certain of
the time point of the data dependant power consumption of a single instruction
and thus if that instruction is masked, the time point at which any mask depen-
dent power consumption occurs. Another feature is that we are emulating the
functionality of the program being evaluated and so we can easily create a data
flow model to map the flow of masks through the program and so be able to
automatically detect which instructions (and thus corresponding power points)
are masked with the same mask.

This means that we can significantly reduce the complexity of carrying out
higher order leakage evaluations by using our own mask flow method to map
the flow of masks through the program. By automatically detecting how many
masks are used in the program and which instructions they are used with we
can efficiently perform a fixed vs random test on only the relevant points for all
masks that are present, greatly reducing the value of n. This provides a robust
and efficient method of higher order leakage detection.

4.1 Mask Flow

The mask flow method works by modelling each mask as a boolean matrix of
n x 32 bits, where 32 is the word size of the ARM Cortex-MO0 and n is the number
of possible independent mask bits that could mask each bit of the word size. A 1
in the matrix indicates that a specific random bit (as determined by the location
on the y-axis) masks the corresponding bit of the word on the x-axis. A 0 means
that it does not. One matrix is generated for each operand of an instruction and
as each matrix contains all the masking information of each bit of the operand,
each unique mask, and it’s level of security (as understood through the number
of independent random bits masking each bit of the word), can be deduced for
each instruction.

To model the flow of masks through the program, a n x 32 bit matrix needs to
be generated and stored for each operand of each instruction. This is easily done
by including two matrices (one for each of the operands) in ELMO’s linked list
structure of the data flow model that stores the information of the data being



processed by each of the operands and the instruction type of each instruction
that is used in simulating the power consumption of the instructions.

This matrix is able to store the mask information for each instruction’s
operands, however if we are to map the flow of the masks through the pro-
gram, we also need to have a method of mapping the flow of masks through the
state of the program. This includes the registers in which the output of opera-
tions are stored as well as RAM where data can be written or stored to. This is
achieved by generating n x 32 bit matrices for each register in which we store
the output mask information. We also generate an n by m matrix, where m is
the size of RAM, in which we store the mask information for each bit of the
state which is stored to memory. In this way, when data is read from or written
to memory, the corresponding mask information for each bit of memory being
read from or written to is also operated on in the same way as the data.

Finally, we need to adopt a set of rules which describe how an operation on
two masked operands affects the mask of the output. These rules need to allow
the masks to be tracked properly through the program in such a way that the
output model of the mask, in the form of its matrix, correctly represents mask
of the output.

We implement our mask flow analysis for use with boolean masking, where
the random masks are added and removed from the state using the exclusive-or
operation. We therefore adopt the rules shown in Table 1 to model the different
instructions according to their types.

Operation Matrix Returned

Load Load mask matrix from memory into register.

Store Store mask matrix in register to memory matrix.

Shift Left Shift matrix left by value of data shift.

Shift Right Shift matrix right by value of data shift.

Rotate Right Rotate matrix right by value of data rotation.

Exclusive-Or Exclusive-or operation of all corresponding bits
of the two operand matricies.

Other Arithmetic Operations | Zero matrix containing no mask information.

Table 1: Rules for mask matrix output for operations on mask matricies.

For memory operations the mask information is simply loaded or stored to
the memory matrix, ensuring that mask information is not lost during memory
operations. For shift and rotate instructions the mask simply shifts with the data
to ensure that the mask reflects the correct bits of the data which are masked. As
we are analysing boolean masking, the exclusive-or operation exclusively-ors all
bits of the two mask matricies of the operands. This insures that all operations
that would lead to the addition, subtraction or changing of a mask are taken
into consideration. As we are only considering boolean masking, for simplicity
all other arithmetic instructions return a zero mask matrix.



4.2 How to use the mask flow

The first stage of using the mask flow analysis is to initialise the matrix of the
memory location of the mask in RAM. This is essential as it introduces the mask
into the program. In order to do this, we developed an inbuilt function in ELMO
that initialises the mask flow (the initialise mask flow function). This function
assumes an 8 bit mask where each bit in the mask is random and independent
of all other bits in the mask. This assumption is important for the mask flow
analysis as it needs to know whether each bit of the mask applied to each bit of
the state is the same random bit used elsewhere or a new random mask bit as
this will affect the security level of the mask.

The initialise mask flow function therefore effectively creates a diagonal line
of ones in the matrix which is eight bits by eight bits. This indicates that each of
the eight bits of the memory location are masked by one bit of an independent
mask. In order to specify different random masks, we developed a related ELMO
function that specifies the bit number to start from on the y axis of the matrix
(the mask flow start function). This allows multiple independent mask bits to
mask a single bit of the state by recalling the function but specifying a different
start point.

This is shown in Figure 1 and Figure 2. Both of these show the mask matrix
of a 32 bit operand with n (the size of the number of possible mask bits) equal
to 16. Figure 1 shows 32 bits of memory or a register or operand that is masked
with a single 16 bit mask that is used twice so that a single bit of the mask is
used on two bits of the 32 bit state. The overall effect here is that each bit is
masked with a single bit however the same mask bits are only reused once. To
initialise this mask configuration, you could run the initialise mask flow function
four times for the memory address of each byte, using the set mask flow start
function to change the start point for the initialisation to 8 from 0 for bytes 2
and 4.

Figure 2 shows the state when the 16 bit mask shown in Figure 1 is split into
two eight bit masks. Here there are still 16 bits of random mask but, unlike in the
other case, the same masks are used four times so that four bits of the state are
covered by the same mask bits. The advantage of this method however is that
each bit of the state is now covered by two mask bits rather than 1. The result
of this is that the secret is divided into three shares, which can provide higher
levels of security. This configuration could be created by calling the initialise
mask flow function eight times, twice for each byte of the 32 bits with each time
having a start point of 0 and 8 respectively.

Once the mask flow has been initialised, traces can start to be taken for the
program to be evaluated. For the first trace generated, each instruction stores the
two matrices associated with each operand in the linked list structure that stores
the data flow and instruction type information. After the first trace has ended
(as signalled by the end trigger function), the mask information is then analysed
to detect if and where any of the same masks are used in the program, where an
instruction is deemed to use the mask if at least one of its operands does. As our
trace generating method uses the data of the previous instruction operands to



00000000000000010000000000000001
00000000000000100000000000000010
00000000000001000000000000000100
00000000000010000000000000001000
00000000000100000000000000010000
00000000001000000000000000100000
00000000010000000000000001000000
00000000100000000000000010000000
00000001000000000000000100000000
00000010000000000000001000000000
00000100000000000000010000000000
00001000000000000000100000000000
00010000000000000001000000000000
00100000000000000010000000000000
01000000000000000100000000000000
10000000000000001000000000000000

00000001000000010000000100000001
00000010000000100000001000000010
00000100000001000000010000000100
00001000000010000000100000001000
00010000000100000001000000010000
00100000001000000010000000100000
01000000010000000100000001000000
10000000100000001000000010000000
00000001000000010000000100000001
00000010000000100000001000000010
00000100000001000000010000000100
00001000000010000000100000001000
00010000000100000001000000010000
00100000001000000010000000100000
01000000010000000100000001000000
10000000100000001000000010000000

11111111111111111111111111111111

Fig. 1: Single 16 bit mask

22222222222222222222222222222222

Fig.2: Two 8 bit mask

determine its power consumption, the instruction following a masked instruction
will also be influenced by its masked data. For this reason we also include the
masked instruction’s subsequent instruction in the masked instruction index list.

Once this list is compiled and we have the indexes of the masked instructions
and their respective masks, we can then use this information to ensure that only
instructions affected by the same masks are included in the preprocessed traces
for higher order analysis. If masks are detected, this happens automatically after
the first order fixed vs random where a fixed vs random test is carried out on
the preprocessed traces for each of the masks. If no masks are found, then the
analysis ends after the initial first order fixed vs random test.

4.3 Other uses of mask flow output

As well as being a useful tool in making the preprocessing stage less computa-
tionally intensive for higher order leakage evaluation, the output of the mask
flow analysis also provides useful information for debugging a masked imple-
mentation by providing a list of the mask numbers used in each operand of each
instruction. Using this information along with the assembly instructions of the
program, a developer is able to see exactly which instruction has used which
mask. If first order leakages are detected in a masked implementation, a devel-
oper can assess which instruction is leaking and which masks (if any) are being
used for the instruction.

In addition to this, ELMO can print the matrix output of each mask found
during the mask flow analysis to a file. This allows a developer to see the ex-
act nature of the masks and whether implementation errors have inadvertently
changed their configuration to produce errors in the code or render it less secure.



5 Examples of use

We here provide an example of how ELMO works by using it to analyse one
round of AES masked with two 8 bit masks (one for the key byte, my, and one
for the state byte, m,) that is implemented in Thumb assembly. The masking
method works by first recomputing the SBox to ensure that when the SBox value
is loaded, the correct SBox value and mask is returned for the masked statebyte,
before calling the AES round function a single time. The trigger is started and
stopped before and after calling the AES round function.

The traces are taken in two sections, the first with the fixed key and plaintext
and the second for the fixed key and random plaintext. The masks and random
data that is used is stored in the file which is accessed using the read data
function which reads data into the program from a given file. The file is reset
using the reset datafile function after taking the first section of traces (the fixed
traces) to ensure that the masks used for both sets of traces are the same.

The mask information is set for each of the masks using the initialise mask
flow function with the addresses of the two masks. The set mask flow start
function is also used to identify these two different masks as independent masks
that provide an independent random mask bit for each state bit that is masked.
In this implementation the start bit of the initialisation was set to 0 for m, and
8 for my,.

Once the program has been compiled into a Thumb binary, it can be run by
ELMO which immediately begins the process of generating the traces. The mask
flow analysis is only carried out after the first trace where the number of masks
used and their respective instructions used with is determined and then stored
for the later analysis. After the traces have been generated the fixed vs random
analysis is carried out as indicated by the call to the fixed vs random function.

First Order Leakage Detection Once the traces have been generated, the
first order leakage detection test begins and informs us if any leaky instructions
have been found. The results are also printed to a file which can be used in
conjunction with the assembly program file and mask information file to debug
the source code.

In the case of our example we are told that 22 instructions leak via first order
leakage. This might seem surprising as we have an implementation that should be
masked to protect the implementation against first order attacks, indicating that
there is either a bug in the implementation of masking or there are other factors
contributing to leakage that the developer did not take in to account. Table 2
shows one of these leaky instructions (shown in red) with the instruction before
and after (as ELMO analyses instructions in sequences of three) along with the
masks used on each of the operands of the instruction.

By examining this sequence we can see that both operands of the eors in-
struction are masked with masks 3 and 2 respectively which, if we take the
instruction insolation, should eliminate all leakage from the instruction itself. If
however we examine the prior instruction (the 1drb), we can see that the mask

10



Instruction | Operand 1 Mask | Operand 2 Mask
ldrb 0 2
eors 3 2
ldrb 0 3

Table 2: Leaky instruction triplet with leaky instruction in red.

for operand 2 is the same as that for operand 2 of the eors instruction (mask
number 2). We could therefore conclude that it is likely that interactions between
the hamming distance of these two operands has caused the masks to intereact
in such a way that the underlying data is leaked. This could then be amended by,
for example, inserting a dummy instruction that does not use masked operands
between the first 1drb and the eors instructions, preventing this interaction
of the masks and the resulting leakage. In this way the mask flow analysis of
ELMO can be used to easily understand and help remove subtle flaws in masking
implementations.

Second Order Leakage Detection If masks are identified, ELMO will pro-
ceed to preprocess and evaluate the traces mask by mask. In the case of our
example a number of distinct masks are found as the implementation works
with a number of representations of the two masks we defined at the beginning
of the program. We select mask number 3 to evaluate which represents the single
mask byte m,, in our example which masks the plaintext.

Without the mask flow analysis, the preprocessing stage would require each
instruction’s power profile to be multiplied by every other instruction’s, leading
to extremely large traces of size (n?+mn)/2. In our case the size of the trace is 452
and so we would end up with preprocessed traces of size 102378. However, as our
mask flow analysis identifies where the masks are used in the trace, we are able
to only carry out the preprocessing on only the relevant masked instructions.
For mask number 3, this gives us a trace size of 6441, around 16 times smaller
than preprocessing in the naive way. This much reduced size of the the trace to
be evaluated makes the second order analysis significantly faster and requires
significantly less memory.

Carrying out the fixed vs random test on these preprocessed traces, ELMO
informs us of the number of preprocessed points which leak. In our case for
mask number 3 this number is 600. The output of the t-test is stored to a file
and can then be used along with the assembly output and mask information
files to identify the specific instruction pairs and thus the instructions that are
leaking. This can be done for all detected masks in the program.

6 Conclusion

Testing implementations of (higher-order) masking is very costly if the associa-
tion between (sets of) masks and leakage points is unknown, which is normally

11



the case. However, we observed that using our extended version of ELMO enables
a developer to determine this association and thus leakage detection testing as
means to verify masking implementations can be done efficiently in this context,
with a novel mask flow technique that we introduce in this paper. Furthermore,
we show that by using the mask flow and leakage detection output from ELMO,
subtle errors in masking schemes can be more easily identified, understood and
ultimately resolved.

References

1.

10.

G. Agosta, A. Barenghi, M. Maggi, and G. Pelosi. Compiler-based side channel
vulnerability analysis and optimized countermeasures application. In The 50th
Annual Design Automation Conference 2018, DAC 18, Austin, TX, USA, May
29 - June 07, 2013, pages 81:1-81:6. ACM, 2013.

G. Barthe, S. Belaid, F. Dupressoir, P. Fouque, B. Grégoire, and P. Strub. Verified
proofs of higher-order masking. In E. Oswald and M. Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science,
pages 457-485. Springer, 2015.

A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne. Sleuth: Automated verification
of software power analysis countermeasures. In G. Bertoni and J. Coron, editors,
Cryptographic Hardware and Embedded Systems - CHES 2018 - 15th International
Workshop, Santa Barbara, CA, USA, August 20-23, 2013. Proceedings, volume
8086 of Lecture Notes in Computer Science, pages 293-310. Springer, 2013.

H. Eldib, C. Wang, M. M. 1. Taha, and P. Schaumont. QMS: evaluating the side-
channel resistance of masked software from source code. In The 51st Annual Design
Automation Conference 2014, DAC ’14, San Francisco, CA, USA, June 1-5, 2014,
pages 209:1-209:6. ACM, 2014.

G. Goodwill, J. J. B. Jun, and P. Rohatgi. A testing methodology for side channel
resistance validation. NIST non-invasive attack testing workshop, 2008.

P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. J. Wiener,
editor, Advances in Cryptology — CRYPTO 99, volume 1666 of LNCS, pages 388
397. Springer, 1999.

S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, 2007.

D. McCann, C. Whitnall, and E. Oswald. ELMO: emulating leaks for the ARM
cortex-m0 without access to a side channel lab. JACR Cryptology ePrint Archive,
2016:517, 2016.

A. Moss, E. Oswald, D. Page, and M. Tunstall. Compiler assisted masking. In
E. Prouff and P. Schaumont, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2012 - 14th International Workshop, Leuven, Belgium, September
9-12, 2012. Proceedings, volume 7428 of Lecture Notes in Computer Science, pages
58-75. Springer, 2012.

E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security
proof. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology - EURO-
CRYPT 2013, 32nd Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 142—-159. Springer, 2013.

12



11.

12.

13.

O. Reparaz. Detecting flawed masking schemes with leakage detection tests. In
T. Peyrin, editor, Fast Software Encryption - 23rd International Conference, FSE
2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers, volume
9783 of Lecture Notes in Computer Science, pages 204—222. Springer, 2016.

M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In S. Man-
gard and F. Standaert, editors, Cryptographic Hardware and Embedded Systems,
CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-
20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer Science, pages
413-427. Springer, 2010.

T. Schneider and A. Moradi. Leakage assessment methodology - A clear roadmap
for side-channel evaluations. In T. Giineysu and H. Handschuh, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2015 - 17th International Work-
shop, Saint-Malo, France, September 13-16, 2015, Proceedings, volume 9293 of
Lecture Notes in Computer Science, pages 495-513. Springer, 2015.

13



