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Abstract. Argon2i is a data-independent memory hard function that
won the password hashing competition. The password hashing algorithm
has already been incorporated into several open source crypto libraries
such as libsodium. In this paper we analyze the cumulative memory cost
of computing Argon2i. On the positive side we provide a lower bound
for Argon2i. On the negative side we exhibit an improved attack against
Argon2i which demonstrates that our lower bound is nearly tight. In
particular, we show that
(1) An Argon2i DAG is

(
e,O

(
n3/e3

))
)-reducible.

(2) The cumulative pebbling cost for Argon2i is at most O
(
n1.768

)
. This

improves upon the previous best upper bound of O
(
n1.8

)
[AB17].

(3) Argon2i DAG is
(
e, Ω̃

(
n3/e3

))
-depth robust. By contrast, analysis

of [ABP17a] only established that Argon2i was
(
e, Ω̃

(
n2/e2

))
-depth

robust.
(4) The cumulative pebbling complexity of Argon2i is at least Ω̃

(
n1.75

)
.

This improves on the previous best bound of Ω
(
n1.66

)
[ABP17a] and

demonstrates that Argon2i has higher cumulative memory cost than
competing proposals such as Catena or Balloon Hashing.

We also show that Argon2i has high fractional depth-robustness which
strongly suggests that data-dependent modes of Argon2 are resistant to
space-time tradeoff attacks.

1 Introduction

Memory-hard functions (MHFs) are a promising primitive to help protect low
entropy user passwords against offline attacks. MHFs can generally be divided
into two categories: data-dependent (dMHF) and data-independent (iMHF). A
data-independent MHF (iMHF) is characterized by the property that the memory-
access pattern induced by an honest evaluation algorithm is not dependent on
the input to the function (e.g., the password). In contexts such as password
hashing, iMHFs are useful for their resistance to side-channel attacks such as
cache-timing [Ber]1.

1 Unfortunately, this resistance to side-channel attacks has a price; we now know that
the dMHFs scrypt enjoys strictly greater memory-hardness [ACP+17] than can
possibly be achieved for a very broad class of iMHFs [AB16].



Both in theory and in practice, iMHFs (e.g.,[BDK16,CGBS16,CJMS14,Cox14,Wu15,Pin14,AABSJ14])
can be viewed as a directed acyclic graph (DAG) which describes how inputs and
outputs of various calls to an underlying compression function are related. That
is, the function fG,h can be fully specified in terms of a DAG G and a round
function h. The input to the function is the label of the source node(s) and the
output of the function is the label of the sink node(s). The label of node v is
computed by applying the round function h to the labels of v’s parents.

The goal of a MHF is to ensure that it is cost prohibitive for an attacker to
evaluate fG,t millions or billions of times even if the attacker can use customized
hardware (e.g., FPGAs, ASICs). Thus, we wish to lower bound the “cumulative
memory complexity” or “amortized area-time complexity” of any algorithm that
computes fG,h.

1.1 iMHFs, Graph Pebbling and Depth-Robustness

In the parallel random oracle model, the memory hardness of the iMHF fG,h
can be characterized using the parallel black pebbling game on the graph
G [AS15,CGBS16,FLW13]. In particular, the “cumulative memory complexity”
or “amortized area-time complexity” of fG,h is (essentially) equivalent to the
cumulative cost of any legal black pebbling of G in the parallel Random Oracle
Model (pROM) [AS15]. Given a directed acyclic graph (DAG) G = (V,E), the
goal of the (parallel) black pebbling game is to place pebbles on all sink nodes of
G (not necessarily simultaneously). The game is played in rounds and we use
Pi ⊆ V to denote the set of currently pebbled nodes on round i. Initially all nodes
are unpebbled, P0 = ∅, and in each round i ≥ 1 we may only include v ∈ Pi if all
of v’s parents were pebbled in the previous configuration (parents(v) ⊆ Pi−1) or
if v was already pebbled in the last round (v ∈ Pi−1). The cumulative cost of the
pebbling is defined to be |P1|+ . . .+ |Pt|.

Graph pebbling is a particularly useful as a tool to analyze the security of
an iMHF [AS15]. A pebbling of G naturally corresponds to an algorithm to
compute the iMHF. Alwen and Serbinenko [AS15] proved that in the parallel
random oracle model (pROM) of computation, any algorithm evaluating such an
iMHF could be reduced to a pebbling strategy with (approximately) the same
cumulative memory cost.

Recently it has been shown that for a DAG G to have high “amortized area-
time complexity” it is both necessary [ABP17a] and sufficient [AB16] for G to be
very depth-robust, where an (e, d, b)-block depth robust DAG G has the property
that after removing any subset S ⊆ V (G) of up to e blocks of b-consecutive
nodes (and adjacent edges) there remains a directed path of length d in G− S
(when b = 1 we simply say that G is (e, d)-depth robust). It is particularly
important to understand the depth-robustness and cumulative pebbling cost of
iMHF candidates.



1.2 Argon2i

Of particular importance is the iMHF candidate Argon2i [BDK15], winner of the
password hashing competition. Argon2i is being considered for standardization
by the Cryptography Form Research Group (CFRG) of the IRTF [BDKJ16] 2.

While significant progress has been made in the last two years in understanding
the depth-robustness and cumulative pebbling complexity of candidate iMHFs
(e.g., see Table 1) there is still a large gap in the lower and upper bounds for
Argon2i, which is arguably the most important iMHF candidate to understand.
A table summarizing the asymptotic cumulative complexity of various iMHFs
can be found in Table 1.

Algorithm Lowerbound Upperbound Appearing In

Argon2i-A Ω̃
(
n1.6̄

)
Õ
(
n1.708

)
[ABP17a]

Argon2i-B O
(
n1.8

)
[AB17]

Argon2i-B Ω̃
(
n1.6̄

)
[ABP17a]

Argon2i-B Ω̃
(
n1.75

)
O
(
n1.767

)
This Work

Balloon-Hashing Ω̃
(
n1.5

)
Õ
(
n1.625

)
[ABP17a]

Balloon-Hashing: Single Buffer (SB) Ω̃
(
n1.6̄

)
Õ
(
n1.708

)
[ABP17a]

Catena Ω̃
(
n1.5

)
Õ
(
n1.625

)
[ABP17a]

(Existential Result) Ω
(

n2

logn

)
[ABP17a]

DRSample Ω
(

n2

logn

)
[ABH17]

Arbitrary iMHF O
(
n2 log logn

logn

)
[AB16]

Table 1. Overview of the asymptotic cumulative complexity of various iMHF.

1.3 Results

We first completely characterize the depth-robustness of Argon2i in Theorem 1,
and then apply our bounds to develop (nearly tight) upper and lower bounds on
the cumulative pebbling cost of Argon2i — see Theorem 2 and Theorem 3. For
comparison, the previous best known upper bound for Argon2i was O

(
n1.8

)
and

2 The specification of Argon2i has changed several times. Older versions of the specifi-
cation constructed G by sampling edges uniformly at random, while this distribution
has been modified to a non-uniform distribution in newer versions. Following [AB17]
we use Argon2i-A to refer to all (older) versions of the algorithm that used a uniform
edge distribution. We use Argon2i-B to refer to all versions of the algorithm that
use the new non-uniform edge distribution (including the current version that is
being considered for standardization by the Cryptography Form Research Group
(CFRG) of the IRTF[BDKJ16]). Since we are primarily interested in analyzing the
current version of the algorithm we will sometimes simply write Argon2i instead of
Argon2i-B. By contrast, we will always write Argon2i-A whenever we refer to the
earlier version.



the best known lower bound was Ω
(
n5/3

)
. Our new bounds are O

(
n1.7676

)
and

Ω̃
(
n7/4

)
respectively.

Interestingly, Theorem 1 shows that Argon2i is more depth-robust than
Argon2i-A as well as other competing iMHFs such as Catena [FLW13] or Balloon
Hashing [CGBS16]3. Furthermore, Theorem 2 in combination with attacks of
Alwen et al. [ABP17a] show that Argon2i enjoys strictly greater cumulative
memory complexity than Catena [FLW13] or Balloon Hashing [CGBS16] as well
as the earlier version Argon2i-A.

Theorem 1. Argon2i is
(
e, Ω̃(n3/e3), Ω(n/e)

)
-block depth robust with high

probability.

Theorem 2. For any ε > 0 the cumulative pebbling cost of a random Ar-

gon2i DAG G is at most Π
‖
cc(G) = O(n1+a+ε) with high probability, where

a =
1/3+
√

1+4/9

2 ≈ 0.7676.

Theorem 3. With high probability, the cumulative pebbling cost of a random

Argon2i DAG G is at least Π
‖
cc(G) = Ω̃

(
n7/4

)
with high probability.

Theorem 4. If G contains all of the edges of the form (i− 1, i) for 1 < i ≤ n
and is (e, d, b)-block depth robust, then G is

(
e
2 , d,

eb
2n

)
-fractional depth robust.

Techniques To upper bound the depth-robustness of Argon2i we use the layered
attack of [AB16]. Once we know that Argon2i is depth-reducible for multiple
different points (ei, di) along a curve, then we can apply a recursive pebbling
attack of Alwen et al. [ABP17a] to obtain the upper bounds on cumulative
pebbling complexity from Theorem 2.

Lower bounding the depth-robustness of Argon2i is significantly more chal-
lenging. We adapt and generalize techniques from Erdos et al.[EGS75] to reason
about the depth-robustness of meta-graph Gm of an Argon2i DAG G (essentially,
the meta-graph is formed by compressing each group of m sequential nodes in
G into a single point to obtain a new graph with n′ = n/m nodes). We prove
that for appropriate choice of m and r∗ that the meta-graph is a local expander
meaning that for every r ≥ r∗ every node x ≤ (n/m)+1−2r the sets [x, x+r−1]
and [x+ r, x+ 2r − 1] are connected by an expander graph. We then use local
expansion to lower bound the depth-robustness of Gm. Finally, we can apply a
result of Alwen et al. [ABP17a] to translate this bound to a lower bound on the
block depth robustness of Gm.

Finally, we extend ideas from [ABP17a] to lower bound the cumulative
pebbling complexity of an Argon2i DAG. Essentially, we show that any pebbling
strategy must either keep Ω̃

(
n0.75

)
pebbles on the graph during most pebbling

rounds or repebble a
(
Ω̃
(
n0.75

)
, Ω̃
(
n0.75

))
-depth robust graph Ω̃

(
n0.25

)
times.

3 Argon2i is not as depth-robust as the theoretically optimal constructions of [ABP17a],
but at the moment this construction is purely theoretical while Argon2i has been
deployed in crypto libraries such as libsodium



In the first case the cumulative cost is at least Ω
(
n× n0.75

)
since we have at least

n pebbling rounds and in the second case we also have that cumulative cost is at

least Ω
(
n0.25 × n1.5

)
since the cost to repebble a

(
e = Ω̃

(
n0.75

)
, d = Ω̃

(
n0.75

))
-

depth robust graph is at least ed [ABP17a].

2 Related Work

[ABW03] noticed that that cache-misses are more egalitarian than computation
and therefore proposed the use of functions which maximize the number of
expensive cache misses, “memory-bound” functions. Percival [Per09] observed
that memory costs seemed to be more stable across different architectures and
proposed the use of memory-hard functions (MHFs) for password hashing. Since
the cost of computing the function is primarily memory related (storing/retrieving
data values) and cannot be significantly reduced by constructing an ASIC, there
presently seems to be a consensus that memory hard functions are the “right
tool” for constructing moderately expensive functions. In fact, all entrants in the
password hashing competition claimed some form of memory hardness [PHC].
Percival [Per09] introduced a candidate memory hard function called scrypt,
which has subsequently been shown to be vulnerable to side-channel attacks
as its computation yields a memory access pattern that is data-dependent (i.e.,
depends on the secret input/password). On the positive side this function has
been shown to require maximum possible cumulative memory complexity to
evaluate [ACP+17].

Alwen and Blocki [AB16] gave an attack on Argon2i-A (an earlier version of
Argon2i) with cumulative memory complexity O(n1.75 log n) as well as several
other iMHF candidates. They later extended the attack to Argon2i-B (the current
version) showing that the function has complexity O(n1.8) [AB17]. Alwen and
Blocki [AB16] also showed that any iMHF has cumulative memory complexity at

most O
(
n2 log logn

logn

)
, and Alwen et al. [ABP17a] later constructed a graph with

cumulative pebbling complexity at least Ω
(
n2 log logn

logn

)
. Alwen et al. [ABP17a]

also found a “recursive version” of the [AB16] attack which further reduced the
cumulative memory complexity of Argon2i-A to Õ

(
n1.708

)
. At the same time

they established a lower bound of Ω̃
(
n1.6̄

)
for Argon2i-A and Argon2i-B.

Depth-robust graphs have found several applications in theoretical computer
science e.g., proving lowerbounds on circuit complexity and Turing machine
time [Val77,PR80,Sch82,Sch83]. [MMV13] constructed proofs of sequential work
using depth-robust graph and more recently depth-robust graphs were used
to prove lower bounds in the domain of proof complexity [AdRNV16]. Recent
results [AB16,ABP17a] demonstrate that depth-robustness is a necessary and
sufficient property for a secure iMHF. Several constructions of graphs with low
indegree exhibiting this asymptotically optimally depth-robustness are given
in the literature [EGS75,PR80,Sch82,Sch83,MMV13,ABP17b] but none of these
constructions are suitable for practical deployment.



3 Preliminaries

Let N denote the set {0, 1, . . .} and N+ = {1, 2, . . .}. Let N≥c = {c, c+1, c+2, . . .}
for c ∈ N. Define [n] to be the set {1, 2, . . . , n} and [a, b] = {a, a+ 1, . . . , b} where
a, b ∈ N with a ≤ b.

We say that a directed acyclic graph (DAG) G = (V,E) has size n if |V | = n.
We shall assume that G is labeled in topological order. A node v ∈ V has indegree
δ = indeg(v) if there exist δ incoming edges δ = |(V × {v}) ∩ E|. More generally,
we say that G has indegree δ = indeg(G) if the maximum indegree of any node of
G is δ. A node with indegree 0 is called a source node and a node with no outgoing
edges is called a sink. We use parentsG(v) = {u ∈ V : (u, v) ∈ E} to denote the
parents of a node v ∈ V . In general, we use ancestorsG(v) =

⋃
i≥1 parents

i
G(v) to

denote the set of all ancestors of v — here, parents2G(v) = parentsG (parentsG(v))
denotes the grandparents of v and parentsi+1

G (v) = parentsG
(
parentsiG(v)

)
. When

G is clear from context we will simply write parents (ancestors). We denote
the set of all sinks of G with sinks(G) = {v ∈ V : @(v, u) ∈ E} — note that
ancestors (sinks(G)) = V . We often consider the set of all DAGs of equal size
Gn = {G = (V,E) : |V | = n} and often will bound the maximum indegree
Gn,δ = {G ∈ Gn : indeg(G) ≤ δ}. For directed path p = (v1, v2, . . . , vz) in G, its
length is the number of nodes it traverses, length(p) := z. The depth d = depth(G)
of DAG G is the length of the longest directed path in G.

We will often consider graphs obtained from other graphs by removing subsets
of nodes. Therefore if S ⊂ V , then we denote by G− S the DAG obtained from
G by removing nodes S and incident edges. The following is a central definition
to our work.

Definition 1 (Block Depth-Robustness). Given a node v, let N(v, b) = {v−
b+1, . . . , v} denote a segment of b consecutive nodes ending at v. Similarly, given
a set S ⊆ V , let N(S, b) = ∪v∈SN(v, b). We say that a DAG G is (e, d, b)-block-
depth-robust if for every set S ⊆ V of size |S| ≤ e, we have depth(G−N(s, b)) ≥ d.
If b = 1, we simply say G is (e, d)-depth-robust and if G is not (e, d)-depth-robust,
we say that G is (e, d)-depth-reducible.

Observe when b > 1 (e, d, b)-block-depth robustness is a strictly stronger notion
that (e, d)-depth-robustness since the set N(S, b) of nodes that we remove may
have size as large as |N(S, b)| = eb. Thus, (e, d, b ≥ 1)-block depth robustness
implies (e, d)-depth robustness. However, (e, d)-depth robustness only implies
(e/b, d, b)-block depth robustness.

We fix our notation for the parallel graph pebbling game following [AS15].

Definition 2 (Parallel/Sequential Graph Pebbling). Let G = (V,E) be a
DAG and let T ⊆ V be a target set of nodes to be pebbled. A pebbling configuration
(of G) is a subset Pi ⊆ V . A legal parallel pebbling of T is a sequence P =
(P0, . . . , Pt) of pebbling configurations of G where P0 = ∅ and which satisfies
conditions 1 & 2 below.



(1) At some step every target node is pebbled (though not necessarily simultane-
ously).

∀x ∈ T ∃z ≤ t : x ∈ Pz.

(2) Pebbles are added only when their predecessors already have a pebble at the
end of the previous step.

∀i ∈ [t] : x ∈ (Pi \ Pi−1) ⇒ parents(x) ⊆ Pi−1.

We denote with PG,T (and P‖G,T ) the set of all legal (parallel) pebblings of G with
target set T . We will be mostly interested in the case where T = sinks(G) and

then will simply write P‖G.

We remark that in the sequential black pebbling game, we face the additional
restriction that at most one pebble is place in each step (∀i ∈ [t] : |Pi\Pi−1| ≤ 1),
while in the parallel black pebbling game there is no such restriction. The

cumulative complexity of a pebbling P = {P0, . . . , Pt} ∈ P‖G is defined to be
Πcc(P ) =

∑
i∈[t] |Pi|. The cumulative cost of pebbling a graph G a target set

T ⊆ V is defined to be

Π‖cc(G,T ) = min
P∈P‖G,T

Πcc(P ) .

When T = sinks(G), we simplify notation and write Π
‖
cc(G) = min

P∈P‖G
Πcc(P ).

3.1 Edge Distribution of Argon2i-B

Definition 3 gives the edge distribution for the single-lane/single-pass version of
Argon2i-B. The definition also captures the core of the Argon2i-B edge distribution
for multiple lane/multiple-pass variants of Argon2i-B. While we focus on the
single-lane/single-pass variant for ease of exposition, we stress that all of our
results can be extended to multiple-lane/multiple-pass versions of Argon2i-B
provided that the parameters τ, ` = O(1) are constants. Here, ` is the number
of lanes and τ is the number of passes and in practice these parameters ` and τ
will be always be constants.

Definition 3. The Argon2i-B is a graph G = (V = [n], E), where E = {(i, i+
1) : i ∈ [n− 1]} ∪ {(r(i), i)}, where r(i) is a random value distributed as follows:

Pr[r(i) = j] = Pr
x∈[N ]

[
i

(
1− x2

N2

)
∈ (j − 1, j]

]
,

since i
(

1− x2

N2

)
is not always an integer. Note that we assume n� N . In the

current Argon2i-B implementation we have, N = 232. By contrast, we will have
n ≤ 224 in practice.



3.2 Metagraphs

We will use the notion of a metagraph in our analysis. Fix an arbitrary integer
m ∈ [n] and set n′ = bn/mc. Given a DAG G, we will define a DAG Gm called
the metagraph of G. For this, we use the following sets. For all i ∈ [n′], let
Mi = [(i − 1)m + 1, im] ⊆ V . Moreover, we denote the first and last thirds
respectively of Mi with

MF
i =

[
(i− 1)m+ 1, (i− 1)m+

⌊m
3

⌋]
⊆Mi ,

and

ML
i =

[
(i− 1)m+

⌈
2m

3

⌉
+ 1, im

]
⊆Mi .

We define the metagraph Gm = (Vm, Em) as follows:

Nodes: Vm contains one node vi per set Mi. We call vi the simple node and Mi

its meta-node.

Edges: If the end of a meta-node ML
i is connected to the beginning MF

j of
another meta-node we connect their simple nodes.

Vm = {vi : i ∈ [n′]} Em = {(vi, vj) : E ∩ (ML
i ×MF

j ) 6= ∅}.

Claim 1 is a simple extension of a result from [ABP17a], which will be useful in
our analysis.

Claim 1 ([ABP17a], Claim 1) If Gm is (e, d)-depth robust, then G is
(
e
2 ,

dm
3 ,m

)
-

block depth robust.

4 Depth-Reducibility of Argon2iB

In this section, we show that the Argon2i-B is depth reducible with high probabil-
ity. Then, using results from previous layered attacks (such as [AB16], [ABP17a]),
we show an upper bound on the computational complexity of Argon2i-B.

Theorem 5. With high probability, the Argon2i-B graph is
(
e,Ω

((
n
e

)3))
-depth

reducible.

Proof. Recall that for node i, Argon2i-B creates an edge from i to parent node

i
(

1− x2

N2

)
, where x ∈ [N ] is picked uniformly at random. Suppose we remove

a node between every g nodes, leaving gap size g. Suppose also that we have L
layers, each of size n

L . Let i be in layer α, so that i ∈
[
(α− 1) nL , α

n
L

]
. Then the



probability that the parent of i is also in layer α, for α > 1, is

Pr

[
(α− 1)

n

L
≤ i
(

1− x2

N2

)]
≤ Pr

[
(α− 1)

n

iL
≤
(

1− x2

N2

)]
= Pr

[(
x2

N2

)
≤ iL− (α− 1)n

iL

]
≤ Pr

[(
x2

N2

)
≤ αn− (α− 1)n

iL

]
≤ Pr

[(
x2

N2

)
≤ n

(α− 1)n

]
≤ 1√

α− 1

Thus, the expected number of in-layer edges is at most

n

L

(
1 +

1√
1

+
1√
2

+
1√
3

+ . . .

)
<
n

L

(
2

∫ L

1

1√
α− 1

dα

)
= 4

n√
L
.

Hence, if we remove a node between every g nodes, as well as all in-layer edges,
we have e = n

g + 4n√
L

. We can apply standard concentration bounds to show

that the number of in-layer edges is tightly concentrated around the mean. As a
result, the depth is at most g nodes each gap over all L layers, d = gL. Therefore,

Argon2i-B is
(
n
g + 4n√

L
, gL

)
depth reducible. Setting g =

√
L shows

(
5n√
L
, L3/2

)
depth reducibility. Consequently, for e = 5n√

L
, then L3/2 =

(
5n
e

)3
, and the result

follows.

Given function f , we say that G is f -reducible if G is (f(d), d)-reducible for each

value d ∈ [n]. Theorem 6, due to Alwen et al. [ABP17a], upper bounds Π
‖
cc(G)

for any f -reducible DAG.

Theorem 6 ([ABP17a], Theorem 8). Let G be a f-reducible DAG on n
nodes then if f(d) = Õ

(
n
db

)
for some constant 0 < b ≤ 2

3 then for any constant

ε > 0, the cumulative pebbling cost of G is at most Π
‖
cc(G) = O(n1+a+ε), where

a = 1−2b+
√

1+4b2

2 .

Reminder of Theorem 2. For any ε > 0 the cumulative pebbling cost of a

random Argon2i DAG G is at most Π
‖
cc(G) = O(n1+a+ε) with high probability,

where a =
1/3+
√

1+4/9

2 ≈ 0.7676.

Proof of Theorem 2: By Theorem 5, the Argon2i-B graph is f -reducible for
b = 1

3 with high probability, and the result follows. 2



5 Depth-Robustness for Argon2iB

In this section we show the general block-depth robustness curve of a random
Argon2i-B DAG. We will ultimately use these results to lower bound the cumula-
tive pebbling of an Argon2i-B DAG in Section 6. Interestingly, our lower bound
from Theorem 1 matches the upper bound from Theorem 5 in the last section
up to logarithmic factors. Thus, both results are essentially tight.

Reminder of Theorem 1. Argon2i is
(
e, Ω̃(n3/e3), Ω(n/e)

)
-block depth

robust with high probability.
The notion of a (δ, r∗)-local expander will be useful in our proofs. Definition 4
extends the basic notion of a δ-local expander from [EGS75]. [EGS75] showed
that for a sufficiently small constant δ, any δ-local expander is (Ω(n), Ω(n))-depth
robust.

Definition 4. A directed acyclic graph G (with n nodes) is a (δ, r∗)-local ex-
pander if for all r ≥ r∗ and for all x ≤ n− 2r+ 1 and all A ⊆ {x, . . . , x+ r− 1},
B ⊆ {x+ r, . . . , x+ 2r− 1} such that |A|, |B| ≥ δr, we have E(G)∩ (A×B) 6= ∅.
That is, there exists an edge from some node in A to some node in B. If r∗ = 1,
then we say G is a δ-local expander.

Proof Overview: We set m = Ω(n/e) and construct a metagraph Gm for a
random Argon2i-B graph, and bound the probability that two metanodes in Gm
are connected, using Claim 2 and Claim 3. Using these bounds, we show that
the metagraph Gm for a random Argon2i-B graph is a (δ, r∗)-local expander
with high probability for r∗ = Ω̃(e3/n2) (we will be interested in the realm
where e = Ω(n2/3)) and some suitably small constant δ > 0. We then divide the
metagraph into several layers. With respect to a set S, we call a layer “good” if
S does not remove too many elements from the layer. We then show that there
exists a long path between these layers, which indicates that the remaining graph
has high depth.

We now show that the Argon2i-B class of graphs is a (δ, r∗)-local expander
with high probability. Given a directed acyclic graph G with n nodes sampled
from the Argon2i-B distribution, let Gm be the graph with the metanodes of G,

where each metanode has size m = 6n1/3 log n, so that Gm has n
m = n2/3

6 logn nodes.
First, given two metanodes x, y ∈ Gm with x < y, we bound the probability that
for node i in metanode y, there exists an edge from x to i.

Claim 2 For each x, y ∈ Gm with y > x and node i in metanode y, there exists
an edge from the last third of metanode x to node i with probability at least

1
12
√
y
√
y−x+1

.

Claim 3 For any two metanodes x, y ∈ Gm with x < y, the last third of x is

connected to the first third of y with probability at least m
√
m

m
√
m+36

√
n(y−x+1)

.

This allows us to show that the probability there exist subsets A ⊆ [x, x+ r − 1]
and B ⊆ [x+ r, x+ 2r − 1] of size δr such that A has no edge to B is at most



e−δr log(1+
√

logn)
(
r
δr

)2
. We then use Stirling’s approximation to show this term

is negligible, and then apply the union bound over all vertices x and all r ≥ r∗,
which shows that the metagraph Gm (for Argon2i) is a (δ, r∗)-local expander
with high probability.

Lemma 1. Let m = n/(20000e) then for r∗ = Ω̃(e3/n2) = Ω̃(n/m3) the meta-
graph Gm (for Argon2i) is a (δ, r∗)-local expander with high probability.

We now divide Gm into layers L1, L2, . . . Ln/(mr∗) of size r∗ each. Say that a
layer Li is c-good with respect to a subset S ⊆ V (Gm) if for all t ≥ 0 we have∣∣∣∣∣∣S ∩

i+t−1⋃
j=i

Lj

∣∣∣∣∣∣ ≤ c
∣∣∣∣∣∣
i+t−1⋃

j=i

Lj

∣∣∣∣∣∣ , and

∣∣∣∣∣∣S ∩
 i⋃
j=i−t+1

Lj

∣∣∣∣∣∣ ≤ c
∣∣∣∣∣∣
 i⋃
j=i−t+1

Lj

∣∣∣∣∣∣ ,
We ultimately want to argue that Gm − S has a path through these good layers.

Claim 4 If |S| < n/(10000m) then at least half of the layers L1, L2, . . . Ln/(mr∗)
are (1/1000)-good with respect to S.

Fixing a set S let H1,S , H2,S , . . . , denote the c-good layers and let R1,S = H1,S−S
and let Ri+1,S = {x ∈ Hi+1,S x can be reached from some y ∈ Ri,S in Gm−S}.

Lemma 2. Suppose that for any S with |S| ≤ e and i ≤ n/(2mr∗), the set
Ri,S 6= ∅. Then Gm is (e = n/(10000m), n/(2mr∗))-depth robust and G is
(e = n/(20000m), n/(6r∗),m)-block depth robust.

Proof. Removing any e = n/(10000m) nodes from Gm, there is still a path
passing through each good layer since Ri,S 6= ∅ and there are at least n/(2mr∗)
good layers. Thus, Gm is (e = n/(10000m), n/(2mr∗))-depth robust. Then block
depth robustness follows from Claim 1. Intuitively, removing e = n/(20000m)
blocks of nodes of size m from G can affect at most n/(10000m) metanodes.
Thus, there is a path of length (m/3)n/(2mr∗) = n/(6r∗) through G, and so G
is (e = n/(20000m), n/(6r∗),m)-block depth robust.

We now show that the number of nodes in each reachable good layer Ri,S is
relatively high, which allows us to construct a path through the nodes in each
of these layers. We first show that if two good layers Hi,S and Hi+1,S are close
to each other, then no intermediate layer contains too many nodes in S, so we
can use expansion to inductively argue that each intermediate layer has many
reachable nodes from Ri,S , and it follows that Ri+1,S is large. On the other
hand, if Hi,S and Hi+1,S have a large number of intermediate layers in between,
then the argument becomes slightly more involved. However, we can use local
expansion to argue that most of the intermediate layers have the property that
most of the nodes in that layer are reachable. We then use a careful argument
to show that as we move close to layer Hi+1,S , the density of layers with this
property increases. It then follows that Ri+1,S is large. See Figure 1 for example.



Lemma 3. Suppose that Gm is a (δ, r∗)-local expander with δ = 1/16 and let
S ⊆ V (Gm) be given such that |S| ≤ n/(10000m). Then, |Ri,S | ≥ 7r∗/8.

Proof of Theorem 1: Let m = n/20000e and let G be a random Argon2i
DAG. Lemma 1 shows that the metagraph Gm of a random Argon2i DAG G is a
(δ, r∗)-local expander with high probability for r∗ = Ω̃

(
e3/n2

)
. Now fix any set

S ⊆ Gm of size |S| ≤ e. Claim 4 now implies we have at least n/(2mr∗) good
layers H1,S , . . . ,Hn/(2mr∗). Theorem 1 now follows by applying Lemma 3 and
Lemma 2. 2

6 Cumulative Pebbling Cost of Argon2iB

We now use the depth-robust results to show a lower bound on the cumulative
pebbling complexity of Argon2iB. Given a pebbling of G, we show in Theorem 7
that if at any point the number of pebbles on G is low, then we must completely
re-pebble a depth-robust graph. We then appeal to a result which provides a
lower bound on the cost of pebbling a depth-robust graph.

Theorem 7. Suppose G is a DAG that has an edge from [i, i + b − 1] to[
j, j + 128n logn

b

]
for all n

2 ≤ j ≤ n − 128n logn
b and 1 ≤ i ≤ n

2 − b + 1. If

the subgraph induced by nodes
[
1, n2

]
is (e, d, b)-block depth robust, then the cost

to pebble G is at least min
(
en
8 ,

edb
1024 logn

)
.

First, we exhibit a property which occurs if the number of pebbles on G is low:

Lemma 4. Suppose G is a DAG that has an edge from [i, i+b−1] to
[
j, j + 128n logn

b

]
for all n2 ≤ j ≤ n−

128n logn
b and 1 ≤ i ≤ n

2 −b+1. Suppose also that the subgraph
induced by nodes

[
1, n2

]
is (e, d, b)-block depth robust. For a subset S ⊂

[
1, n2

]
, if

|S| < e
2 , then H = ancestorsG−S

([
j, j + 128n logn

b

])
is
(
e
2 , d
)
-depth robust.

Proof. Let G1 denote the subgraph induced by first n
2 nodes. Note that H

contains the graph W = G1 −
⋃
x∈S [x− b+ 1, x] since there exists an edge from

each interval [x− b+ 1, x]. Moreover, W is
(
e
2 , d, b

)
-block depth robust since G1

is (e, d, b)-block depth robust contains only e
2 additional blocks. Finally, since W

is a subgraph of H, then H is
(
e
2 , d
)
-depth robust.

Lemma 5 ([ABP17a], Corollary 2). Given a DAG G = (V,E) and subsets
S, T ⊂ V such that S ∩ T = ∅, let G′ = G− (V/ancestorsG−S(T )). If G′ is (e, d)-

depth robust, then the cost of pebbling G−S with target set T is Π
‖
cc(G−S, T ) > ed.

We now prove Theorem 7.

Proof of Theorem 7: For each interval of length 256n logn
b , let t1 denote the

first time we pebble the first node, let t2 denote the first time we pebble the
middle node of the interval, and let t3 denote the first time we pebble the last
node of the interval. We show

∑
t∈[t1,t3] |Pt| ≥ min{en log(n)/(2b), ed/2}. Then

a pebbling do at least one of the following:



(1) Keep e
2 pebbles on G for at least 128n logn

b steps (i.e., during the entire interval
[t1, t2])

(2) Pay
(
e
2

)
d to repebble a (e/2, d)-depth robust DAG during before round t3.

(Lemma 4)

In the first case, |Pt| ≥ e
2 for each t ∈ [t1, t2], which is at least 128n logn

b time
steps. In the second case, there exists t ∈ [t1, t2] such that |Pt| < e

2 . Then by

Lemma 4 and Lemma 5,
∑
t∈[t1,t3] |Pt| ≥

ed
2 . The cost of the first case is 64en logn

b

and the cost of the second case is ed
2 . Since the last n/2 nodes can be partitioned

into (n/2)/(256(n/b) log n) = b/(512 log n) such intervals, then the cost is at least(
b

512 logn

)
min

(
64en logn

2b , ed2

)
, and the result follows. 2

We now provide a lower bound on the probability that there exists an edge
between two nodes in the Argon2iB graph.

Claim 5 Let i, j ∈ [n] be given (i 6= j) and let G be a random Argon2iB DAG
on n nodes. There exists an edge from node j to i in G with probability at least
1

4n .

Using the bound on the probability of two nodes being connected, we can also
lower bound the probability that two intervals are connected in the Argon2iB
graph.

Lemma 6. Let b ≥ 1 be a constant. Then with high probability, an Argon2iB
DAG has the property that for all pairs i, j such that n

2 ≤ j ≤ n−
128n logn

b and

1 ≤ i ≤ n
2 − b+ 1 there is an edge from [i, i+ b− 1] to

[
j, j + 128n logn

b

]
.

Proof. By Claim 5, the probability that there exists an edge from a specific node

y ∈ [i, i + b − 1] to a specific node x ∈
[
j, j + 128n logn

b

]
is at least 1

4n . Then

the expected number of edges from [i, i+ b− 1] to
[
j, j + 128n logn

b

]
is at least

1
4n (128n log n) = 32 log n. By Chernoff bounds, the probability that there exists

no edge from [i, i + b − 1] to
[
j, j + 128n logn

b

]
is at most 1

n4 . Taking a union

bound over all possible intervals, the graph of Argon2iB is a DAG that has an

edge from [i, i + b − 1] to
[
j, j + 128n logn

b

]
and all n

2 + j ≤ n − 128n logn
b and

1 ≤ i ≤ n
2 − b+ 1 with probability at least 1− 1

n2 .

We now have all the tools to lower bound the computational complexity of
Argon2iB.
Reminder of Theorem 3. With high probability, the cumulative pebbling cost

of a random Argon2i DAG G is at least Π
‖
cc(G) = Ω̃

(
n7/4

)
with high probability.

Proof of Theorem 3: The result follows Theorem 7, Lemma 6, and setting
e = d = n3/4 and b = n1/4. 2



7 Fractional Depth-Robustness

Thus far, our analysis has focused on Argon2i, the data-independent mode of
operation for Argon2. In this section, we argue that our analysis of the depth-
robustness of Argon2i has important security implications for both data-dependent
modes of operation: Argon2 and Argon2id. In particular, we prove a generic
relationship between block-depth robustness and fractional depth-robustness
of any block-depth robust DAG such as Argon2i. Intuitively, fractional depth-
robustness says that even if we delete e vertices from the DAG that a large
fraction of the remaining vertices have depth ≥ d in the remaining graph.

In the context of a dMHF fractional depth-robustness is a significant metric
because the attacker will be repeatedly challenged for a random data-label.
Intuitively, if the attacker reduces memory usage and only stores e data labels,
then there is a good chance that the attacker will need time ≥ d to respond to
each challenge. It is known that SCRYPT has cumulative memory complexity
Ω(n2). However, SCRYPT allows for dramatic space-time trade-off attacks (e.g.,
attackers could evaluate SCRYPT with memory O(1) if they are willing to run in
time O(n2)). Our results are compelling evidence for the hypothesis that similar
time space-trade offs are not possible for Argon2 or Argon2id without incurring a
dramatic increase in cumulative memory complexity (We believe that providing
a formal proof of this claim could be a fruitful avenue of future research). In
particular, our results provide strong evidence that any evaluation algorithm
either (1) requires space Ω

(
n0.99

)
for at least n steps, or (2) has cumulative

memory complexity ω
(
n2
)

since it should take time Ω̃
(
n3/e3

)
= Ω̃

(
n2ε × n

e

)
on

average to respond to a random challenge on with any configuration with space
e = O(n1−ε). By contrast for SCRYPT, it may only take time Ω(n/e) to respond
to a random challenge starting from a configuration with space e — while this is
sufficient to ensure cumulative memory complexity Ω(n2), it does not prevent
space-time trade-off attacks.

Definition 5. Recall that the depth of a specific vertex v in graph G, denoted
depth(v,G) is the length of the longest path to v in G. We say that a DAG
G = (V,E) is (e, d, f)-fractionally depth robust if for all S ⊆ V with |S| ≤ e, we
have

|{v ∈ V : depth(v,G− S) ≥ d}| ≥ f · n.

Then we have the following theorem which relates fractional depth-robustness
and block depth-robustness.

Reminder of Theorem 4. If G contains all of the edges of the form (i− 1, i)
for 1 < i ≤ n and is (e, d, b)-block depth robust, then G is

(
e
2 , d,

eb
2n

)
-fractional

depth robust.

Proof of Theorem 4: Suppose, by way of contradiction, that G is not(
e
2 , d,

eb
2n

)
-fractionally depth robust. Then let S be a set of size e

2 such that at

most eb
2n nodes in G have depth at least d. Now consider the following procedure:



Let S′ = ∅.
Repeat until depth

(
G−

(⋃
v∈S′ [v, v + b− 1] ∪ S

))
< d:

(1) Let v be the topologically first node s.t

depth

(
v,G−

(
S ∪

⋃
v∈S′

[v, v + b− 1]

))
≥ d .

(2) Set S′ = S′ ∪ {v}.

Return S′ ∪
(
S \

⋃
v∈S′ [v, v + b− 1]

)
.

We remark that during round i, the interval [v, v + b− 1] either (1) covers b
nodes at depth at least d in G−Si, or (2) covers some node in the set S0. Since at
most eb

2 nodes in G− (Si ∪ S) have depth at least d the first case can happen at
most e/2 times. Similarly, the second case can happen at most |S| = e

2 times, and
each time we hit this case we decrease the size of the set

∣∣S \⋃v∈S′ [v, v + b− 1]
∣∣

by at least one. Thus, the above procedure returns a set S′ of size |S′| ≤ e such
that depth(G−

⋃
v∈S′ [v, v+b−1]) < d. But then, the longest path in the resulting

graph is at most d− 1, which contradicts that G is (e, d, b)-block depth robust. 2

Corollary 1. Argon2i is
(
e, Ω̃(n3/e3), Ω(1)

)
-fractional depth robust with high

probability.
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AS15. Joël Alwen and Vladimir Serbinenko. High Parallel Complexity Graphs
and Memory-Hard Functions. In Proceedings of the Eleventh Annual ACM
Symposium on Theory of Computing, STOC ’15, 2015. http://eprint.

iacr.org/2014/238.

BDK15. Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Fast and tradeoff-
resilient memory-hard functions for cryptocurrencies and password hashing.
Cryptology ePrint Archive, Report 2015/430, 2015. http://eprint.iacr.

org/2015/430.

BDK16. Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2 pass-
word hash. Version 1.3, 2016. https://www.cryptolux.org/images/0/0d/
Argon2.pdf.

BDKJ16. Alex Biryukov, Daniel Dinu, Dmitry Khovratovich, and Simon Josefs-
son. The memory-hard Argon2 password hash and proof-of-work function.
Internet-Draft draft-irtf-cfrg-argon2-00, Internet Engineering Task Force,
March 2016.

Ber. Daniel J. Bernstein. Cache-Timing Attacks on AES.

CGBS16. Henry Corrigan-Gibbs, Dan Boneh, and Stuart Schechter. Balloon hashing:
Provably space-hard hash functions with data-independent access patterns.
Cryptology ePrint Archive, Report 2016/027, Version: 20160601:225540,
2016. http://eprint.iacr.org/.

CJMS14. Donghoon Chang, Arpan Jati, Sweta Mishra, and Somitra Kumar Sanadhya.
Rig: A simple, secure and flexible design for password hashing version 2.0.
2014.

Cox14. Bill Cox. Twocats (and skinnycat): A compute time and sequential memory
hard password hashing scheme. Password Hashing Competition. v0 edn.,
2014.

EGS75. Paul Erdös, Ronald L. Graham, and Endre Szemeredi. On sparse graphs
with dense long paths. Technical report, Stanford, CA, USA, 1975.

http://eprint.iacr.org/2017/443
http://eprint.iacr.org/2014/238
http://eprint.iacr.org/2014/238
http://eprint.iacr.org/2015/430
http://eprint.iacr.org/2015/430
https://www.cryptolux.org/images/0/0d/Argon2.pdf
https://www.cryptolux.org/images/0/0d/Argon2.pdf
http://eprint.iacr.org/


FLW13. Christian Forler, Stefan Lucks, and Jakob Wenzel. Catena: A memory-
consuming password scrambler. IACR Cryptology ePrint Archive, 2013:525,
2013.

MMV13. Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable
proofs of sequential work. In Robert D. Kleinberg, editor, Innovations
in Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA, January
9-12, 2013, pages 373–388. ACM, 2013.

Per09. C. Percival. Stronger key derivation via sequential memory-hard functions.
In BSDCan 2009, 2009.

PHC. Password hashing competition. https://password-hashing.net/.

Pin14. Krisztián Pintér. Gambit – A sponge based, memory hard key derivation
function. Submission to Password Hashing Competition (PHC), 2014.
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A Missing Proofs

Reminder of Claim 2. For each x, y ∈ Gm with y > x and node i in metanode
y, there exists an edge from the last third of metanode x to node i with probability
at least 1

12
√
y
√
y−x+1

.

Proof of Claim 2: Recall that for node i, Argon2iB creates an edge from i to

parent node i
(

1− k2

N2

)
, where k ∈ [N ] is picked uniformly at random. Thus, for

nodes i, j ∈ G with i > j, there exists an edge from node j to i with probability
at least

https://password-hashing.net/


Pr

[
(x− 1)m+ 1 ≤ i

(
1− k2

N2

)
≤
(
x− 1 +

1

3

)
m

]
= Pr

[(
x− 1 +

1

6

)
m ≤ ym

(
1− k2

N2

)
≤
(
x− 1 +

1

3

)
m

]
≥ Pr

[
y − x+ 5

6

y
≥ k2

N2
≥
y − x+ 2

3

y

]

≥

√
y − x+ 5

6

y
−

√
y − x+ 2

3

y

≥ 1

6
√
y(2
√
y − x+ 1)

=
1

12
√
y
√
y − x+ 1

.

2

Reminder of Claim 3. For any two metanodes x, y ∈ Gm with x < y,
the last third of x is connected to the first third of y with probability at least

m
√
m

m
√
m+36

√
n(y−x+1)

.

Proof of Claim 3: Let p be the probability that the final third of x is
connected to the first third of y. Let Ei be the event that the ith node of
metanode y is the first node in y to which there exists an edge from the last
third of metanode x, so that by Claim 2, Pr [E1] ≥ 1

12
√
y
√
y−x+1

. Note that

furthermore, Pr [Ei] is the probability that there exists an edge from the last
third of metanode x to the ith node of metanode y and no previous metanode of
y. Hence, Pr [Ei] ≥ 1

12
√
y
√
y−x+1

(1− p). Thus,

p = Pr [E1] + Pr [E2] + . . .+ Pr
[
Em/3

]
≥
(m

3

) 1

12
√
y
√
y − x+ 1

(1− p).

Setting α =
(
m
3

)
1

12
√
y
√
y−x+1

, then it follows that p+ αp ≥ α, so that p ≥ α
1+α .

Since y ≤ n
m ,

p ≥ m/36√
y(y − x+ 1) +m/36

≥ m
√
m

m
√
m+ 36

√
n(y − x+ 1)

2

Reminder of Lemma 1. Let m = n/(20000e) then for r∗ = Ω̃(e3/n2) =
Ω̃(n/m3) the metagraph Gm (for Argon2i) is a (δ, r∗)-local expander with high
probability.

Proof of Lemma 1: Let r ≥ r∗ and A ⊆ {x, . . . , x+r−1}, B ⊆ {x+r, . . . , x+
2r−1} be subsets of size δr, for some x ≤ n−2r+1. By Stirling’s approximation,

√
2πrr+1/2e−r ≤ r! ≤ err+1/2e−r.



Then it follows that(
r

δr

)
≤ err+1/2e−r

2π(δr)δr+1/2(r − δr)r−δr+1/2e−r

≤ e

2πδδr+1/2(1− δ)r−δr+1/2
√
r

=
e1+δr log 1

δ+(r−δr) log 1
1−δ

2π
√
rδ(1− δ)

For two specific metanodes in A and B, the probability the pair is connected

is at least m
√
m

m
√
m+36

√
nr

by Claim 3. For 36
√
nr ≥ m

√
m, the probability is at least

m
√
m

72
√
nr

(otherwise, for 36
√
nr < m

√
m, the probability is at least 1

2 > m
√
m

72
√
nr

).

Now, let p be the probability that there exists an edge from A to a specific
metanode in B. Furthermore, let Ei be the event that the ith metanode of A is
the first node from which there exists an edge from a specific metanode of B, so

that, Pr [E1] ≥ m
√
m

72
√
nr

. For Ei to occurs, that must exist an edge from the last

third of metanode x to the ith node of metanode y and no previous metanode of

y, so then Pr [Ei] ≥ m
√
m

72
√
nr

(1− p). Thus,

p = Pr [E1] + Pr [E2] + . . .+ Pr
[
E|A|

]
≥ (δr)

m
√
m

72
√
nr

(1− p).

Since r ≥ r∗ = Ω̃(n/m3), it follows for an appropriate choice of r′ that p ≥√
log n(1 − p). Thus, p ≥

√
logn

1+
√

logn
is the probability that there exists an edge

from A to a specific metanode in B.
Now, taking the probability over all δr metanodes in B, the probability that

A and B are not connected is at most

(1− p)δr =

(
1

1 +
√

log n

)δr
= e−δr log(1+

√
logn)

Since there are
(
r
δr

)2
such sets A and B, the probability that there exists A

and B in the above intervals which are not connected by an edge is at most

e−δr log(1+
√

logn)

(
r

δr

)2

by a simple union bound. Then from the above Stirling approximation, the
probability is at most

exp

(
2 + 2δr log

1

δ
+ 2(r − δr) log

1

1− δ
− δr log(1 +

√
log n)

)
1

4π2rδ(1− δ)
,



where −δr log(1 +
√

log n) is the dominant term in the exponent. Again taking

r ≥ r∗ = Ω
(
n logn
m3

)
, the probability that Gm is not a δ-local expander is at

most

Pr [∃r ≥ r∗, x, A,B with no edge] ≤ n
∑
r≥r∗

e−Ω(r log logn)

4π2rδ(1− δ)

= o

(
1

n

)
.

Thus, Gm is a δ-local expander with high probability. 2

Reminder of Claim 4. If |S| < n/(10000m) then at least half of the layers
L1, L2, . . . Ln/(mr∗) are (1/1000)-good with respect to S.

Proof of Claim 4: Let i1 be the index of the first layer Li1 such that for

some x1 > 0 we have
∣∣∣S ∩ (⋃i1+x1−1

t=i1
Lt

)∣∣∣ ≥ c ∣∣∣(⋃i1+x1−1
t=i Lt

)∣∣∣. Once i1 < . . . <

ij−1 and x1, . . . , xj−1 have been defined we let ij be the least layer such that

ij > ij−1 + xj−1 and there exists xj > 0 such that
∣∣∣S ∩ (⋃ij+xj−1

t=ij
Lt

)∣∣∣ ≥
c
∣∣∣(⋃ij+xj−1

t=ij
Lt

)∣∣∣ (assuming that such a pair ij , xj exists). Let i1 + x1 < i2,

i2 + x2 < i3, . . . ik−1 + xk−1 < ik denote a maximal such sequence and let

F =

k⋃
t=1

[it, xt − 1] .

Observe that by construction of F we have |S| ≥ c
∣∣∣⋃j∈F Lj∣∣∣ = c|F |r∗, which

means that |F | ≤ |S| /(cr∗) = n/(10000cmr∗). Similarly, we can define a maximal

sequence i∗1 > . . . > i∗k∗ such that i∗j − x∗j > i∗j+1 and
∣∣∣S ∩ (⋃i∗jt=i∗j−x∗j+1 Lt

)∣∣∣ ≥
c
∣∣∣(⋃i∗jt=i∗j−x∗j+1 Lt

)∣∣∣ for each j. A similar argument shows that |B| ≤ |S| /(cr∗) =

n/(10000cmr∗), where B =
⋃k
t=1 [i∗t − x∗t + 1, i∗t ] . Finally, we note that if Li is

not c-good then i ∈ F ∪B. Thus, at most n/(5000cmr∗) layers are not c-good,
which means that the number of c = (1/1000)-good layers is at least

n

mr∗
− n

5mr∗
≥ n

2mr∗
.

2

Reminder of Lemma 3. Suppose that Gm is a (δ, r∗)-local expander with
δ = 1/16 and let S ⊆ V (Gm) be given such that |S| ≤ n/(10000m). Then,
|Ri,S | ≥ 7r∗/8.

Proof of Lemma 3: We prove by induction. For the base case, we set
R1 = H1,S − S. Thus, |R1| = |H1,S − S| ≥ r∗ − (1/1000)r∗, since H1,S is
(1/1000)-good with respect to S.



Now, suppose that |Rj | ≥ 7r∗/8 for each j ≤ i. If layers Hi,S and Hi+1,S are
within 100 intermediate layers, then since Hi,S is (1/1000)-good with respect to
S, it follows that at most 100/1000 = 1/10 of the nodes in Hi+1,S are also in S.
Moreover, since Gm is a (δ, r∗)-local expander with δ = 1/16, then at most δr∗

additional nodes in Hi+1,S are not reachable from Hi,S . Therefore,

|Ri+1,S | ≥ |Hi+1,S − S| − δr∗ ≥ (1− 1/1000− 1/16)r∗ ≥ (7/8)r∗ .

Otherwise, suppose more than 100 intermediate layers separate layers Hi,S

and Hi+1,S . Figure 1 provides a visual illustration of our argument in this second
case. Let Y1, . . . , Yk denote the intermediate layers between Hi,S and Hi+1,S ,
so that k > 100. Let j be the integer such that 2j ≤ k < 2j+1. Since Hi,S is
(1/1000)-good with respect to S, at most 2j+1r∗/1000 nodes in Y1 ∪ . . . ∪ Yk can
be in S. Thus, at least (1/8)-fraction of the nodes in Yk−2j−1 , . . . , Yk−2j−2+1 are
reachable from Ri. We now show this is sufficient.

. . . . . .

. . . . . .

. . . . . .

Hi,S

Ri,S

Hi+1,S

Ri+1,S

Y1 ∪ Y2 Yk−1 ∪ Yk
6⋃
j=3

Yj

k−2⋃
j=k−5

Yj

Fig. 1. The red area represents deleted nodes in the set S ⊆ V (Gm). Because the layers
Hi,S and Hi+1,S are both (1/1000)-good with respect to S the number of deleted nodes
in each oval cannot be too large. The green area in each oval represents nodes that are
reachable from Ri,S and are not in the deleted set S; other nodes are colored white. An
inductive argument shows that the number of white nodes in each oval cannot be too
large since Gm is a local expander.

Suppose that at least (1/8)-fraction of the nodes in Yk−2u, . . . , Yk−u−1 are
reachable from Ri. Then at least (7/8)-fraction of nodes in Yk−u, . . . , Yk−u/2 are
reachable from Ri, since layer Hi+1 is both (1/1000)-good and a (δ, r∗)-local
expander with δ = 1/16. (Note: we are now using layer Hi+1, not layer Hi). It
follows that at least (7/8)-fraction of the nodes in Yk are reachable from Ri.
Again,

|Ri+1,S | ≥ |Hi+1,S − S| − δr∗ ≥ (1− 1/1000− 1/16)r∗ ≥ (7/8)r∗ .



Thus, at least (7/8)-fraction of the nodes in Hi+1 are reachable, and so |Ri+1,S | ≥
(7/8)r∗.

2

Reminder of Claim 5. Let i, j ∈ [n] be given (i 6= j) and let G be a random
Argon2iB DAG on n nodes. There exists an edge from node j to i in G with
probability at least 1

4n .

Proof of Claim 5: Recall that for node i, Argon2iB creates an edge from i to

parent node i
(

1− x2

N2

)
, where x ∈ [N ] is picked uniformly at random. Thus, for

i, j ∈ G with i > j, there exists an edge from node j to i with probability at least

Pr

[
j ≤ i

(
1− x2

N2

)
≤ j +

1

2

]
= Pr

[
i− j
i
≥ x2

N2
≥
i− j − 1

2

i

]
≥ Pr

[
1 ≥ x2

N2
≥ 1− 1

2n

]
≥ 1

4n
.
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