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Abstract. Defined in the standard GOST 28147-89, GOST is a Soviet
and Russian government standard symmetric-key block cipher. GOST
has the 64-bit block size and a key length of 256 bits. It is a Feistel
network of 32 rounds. In 2010, GOST was submitted to ISO 18033 to
become a worldwide industrial encryption standard. GOST 28147-89 has
also been published as informational RFC 5830 with IETF.

In this paper, we study linear attacks on GOST 28147-89. Prior to us,
[14] did some analysis on the linear approximation of GOST without
giving any detailed results. [14] claimed that the complexity of the lin-
ear attack on GOST is higher than 2256 after 5 rounds. In our work, we
show that this is not true. First, we give the detailed bias analysis on the
GOST round function for the first time. We show that the largest bias is
2−7. Secondly, we proposed the first known linear attacks on GOST. The
recent idea of synthetic linear analysis [9] is then successfully applied to
improve the bias for the r-round linear approximation of GOST. In sum-
mary, our attack on 8-round GOST recovers the key in time 237 with 250

known plaintexts in the single-key setting. For the 16-round GOST with
last 8 rounds using subkeys in reverse order, our distinguishing attack
works in time 285 using 285 known plaintexts, in the plain multiple-key
setting without the related-key assumption. That is, the plaintexts can
be encrypted by arbitrary number of keys, with each key encrypting ar-
bitrary number of plaintexts, as long as we have a total of 285 known
plaintexts. For the 32-round GOST with the slightly tweaked key sched-
ule, i.e., assuming last 16 rounds using subkeys in reverse order, our
distinguishing attack works in time 2170.8, given 2170.8 known plaintexts,
in the plain multiple-key setting without the related-key assumption. To
the best of our knowledge, our distinguishing attacks are the first known
distinguishers on block ciphers in the plain multiple-key setting without
the usual related-key assumption. Finally, for the 32-round GOST with
the original key schedule, our distinguisher works in time 2173.8, given
2173.8 known plaintexts, in the related-key setting. This is the fastest
attack known so far, compared with the best attacks [4, 3] on the full
32-round GOST.

Keywords: block cipher, GOST, Feistel network, bias, linear analysis,
distinguishing attack, plain multiple-key setting



1 Introduction

Defined in the standard GOST 28147-89, the cipher GOST [12, Chapter
14.1] is a Soviet and Russian government standard symmetric-key block
cipher. Note that the GOST hash function (c.f. [11]) is also based on
this block cipher. Developed in the 1970s, the standard had been marked
“Top Secret” and then downgraded to “Secret” in 1990. Shortly after
the dissolution of the USSR, it was declassified and it was released to
the public in 1994. GOST 28147 was a Soviet alternative to the United
States standard algorithm DES. The two are very similar in structure.
In 2010, GOST was submitted to ISO 18033 to become a worldwide in-
dustrial encryption standard. GOST 28147-89 has also been published
[5] as informational RFC 5830 with the Internet Engineering Task Force
(IETF), which is the main standardization body for Internet technology.
The GOST cipher has a 64-bit block size and a key length of 256 bits. It
is a Feistel network of 32 rounds. Recent attacks on GOST can be found
in [8, 14, 2–4, 6, 7, 13].

In this paper, we study linear attacks on GOST 28147-89. Prior to
us, [14] did some analysis on the linear approximation of GOST without
giving any detailed results. It was claimed in [14] that GOST is secure
against the linear analysis after 5 rounds out of 32 rounds (i.e., the com-
plexity of the linear attack was considered to be higher than 2256), with
the S-boxes used in the Central Bank of the Russian Federation. In our
work, we show that this is not true. First, we give the detailed bias anal-
ysis on the GOST round function for the first time. We show that the
largest bias is 2−7. Based on our bias analysis on the GOST round func-
tion, we proposed the first known linear attacks on GOST. Recently, the
idea of synthetic linear analysis [9] was proposed to study the combined
bias of multiple Boolean functions (such as multiple linear approxima-
tions), when some input terms of the Boolean functions are dependent
and Piling-up Lemma might not be appropriate. We successfully apply
the technique of synthetic linear analysis [9] to improve the bias for the
r-round linear approximation of GOST, which is actually the combined
bias of multiple linear approximations (from multiple rounds).

In summary, our linear attack on 8-round GOST recovers the key
in time 237 with 250 known plaintexts in the single-key setting. For the
16-round GOST with last 8 rounds using subkeys in reverse order, our
distinguishing attack works in time 285, given 285 known plaintexts, in the
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plain multiple-key setting1 without the related-key assumption. For the
32-round GOST with the slightly tweaked key schedule, i.e., assuming last
16 rounds using subkeys in reverse order, our distinguishing attack works
in time 2170.8, given 2170.8 known plaintexts, in the plain multiple-key
setting without the related-key assumption. To the best of our knowl-
edge, our proposed attacks are the first known distinguishing attacks on
block ciphers in the plain multiple-key setting without the usual related-
key assumption. Finally, for the 32-round GOST with the original key
schedule, i.e., assuming last 8 rounds using subkeys in reverse order, our
distinguishing attack works in time 2173.8, given 2173.8 known plaintexts,
in the related-key setting. This is the fastest attack known so far, com-
pared with the best attacks [4, 3] on 32-round GOST with the original
key schedule.

The rest of the paper is organized as follows. In Sect. 2, we give short
description on GOST. We give bias analysis on GOST round function in
Sect. 3. We propose our first linear attacks on GOST in Sect. 4. We study
the synthetic linear analysis on GOST in Sect. 5 and give the improved
attacks. We conclude in Sect. 6.

2 Preliminaries on GOST

GOST has a 64-bit block size and a key length of 256 bits. GOST is a
Feistel network of 32 rounds. Its round function is very simple. At each
round, add a 32-bit subkey modulo 232, put the result through a layer of
S-boxes, and rotate that result left by 11 bits. The result is the output
of the round function. Let 32-bit Li and Ri denote the left half and right
half at Round i (let L0, R0 be the left half and right half of the plaintext).
The subkey for Round i is ki. The round function can be expressed by
Li = Ri−1, Ri = Li−1 ⊕ f(Ri−1, ki). Here,

f(Ri−1, ki) = S-Box(Ri−1 + ki) ≪ 11, (1)

and the addition denotes the modulo addition.
There are eight different S-boxes in GOST. The S-boxes accept a

4-bit input and produce a 4-bit output. Each S-box is permutation of
the numbers 0 through 15. The S-boxes are implementation dependent.
For extra security, the S-boxes can be kept secret. Further, the GOST
standard does discuss how to generate the S-boxes. Recently, a set of

1 i.e., the plaintexts can be encrypted by arbitrary number of keys, with each key
encrypting arbitrary number of plaintexts, as long as we have a total of 285 known
plaintexts.
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S-boxes used in the Central Bank of the Russian Federation surfaced2,
according to [12, Chapter 14.1]. We give them in Table 4, Appendix.
Note that this choice of S-boxes is exactly what most researchers call
“the GOST cipher” in literature, according to [3]. The round subkeys are
generated as follows. The 256-bit key is divided into eight 32-bit subkeys
k1, k2, . . . , k8. Each subkey ki is used four times in total for the full 32-
round GOST; the first 24 rounds use the subkeys in order, while the last
8 rounds use them in reverse order. Table 1 shows the key schedule.

Table 1. The original key schedule for 32-round GOST

round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

subkey k1 k2 k3 k4 k5 k6 k7 k8 k1 k2 k3 k4 k5 k6 k7 k8

round 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

subkey k1 k2 k3 k4 k5 k6 k7 k8 k8 k7 k6 k5 k4 k3 k2 k1

3 Bias Analysis on GOST Round Function

Given a a binary random variable X, we define the bias for X by

bias(X)
def
= |Pr(X = 0)−

1

2
|. (2)

From Sect. 2, we note that the subkey mixing parts are different in Russian
GOST from the famous DES. For DES, the subkey is XORed into the
internal state and the subkey mixing is linear. In contrast, for GOST
cipher, the subkey is added (modulo 232) to the internal state and thus the
subkey mixing is nonlinear. Hence, for DES, linear cryptanalysis on the
round function can be focused on the S-Boxes, which is the only nonlinear
component within the round and which is not difficult to study due to the
rather small input size of DES S-Boxes. For the round function of GOST
cipher, however, we note that this subkey mixing difference makes linear
cryptanalysis not an easy task.

Previously, [14] did some analysis on linear approximation of the
GOST cipher without giving any detailed results. In this section, we will
give the detailed analysis on the GOST round function f as defined in (1).

2 These S-boxes are also used in the GOST hash function (c.f. [11]).
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For simplicity, in this section, we let the two 32-bits inputs be denoted
by R, k (i.e., we omit the subscripts i).

Assuming that the two inputs R, k are random and uniformly dis-
tributed, we can deduce that the output of f is random and uniformly
distributed. The reason is as follows. First, we deduce that (R + k) is
random and uniformly distributed. As each S-box is a permutation over
the 4-bit string, the 32-bit output of eight parallel S-boxes is also random
and uniformly distributed. The final bit-wise rotation is a permutation
over the 32-bit string, and so we deduce that the output of f is random
and uniformly distributed. Consequently, we know that the bit β ·f(R, k)
is always balanced for all possible 32-bit nonzero output mask β.

From above, we see that for the round function f , it is necessary to
examine the bias with the nonzero input masks. We propose to study
the bias for the bit α · R ⊕ α′ · k ⊕ β · f(R, k). Since the two inputs are
mixed in f by the modulo addition operation, which is commutative, we
consider the two input masks equal, i.e., α = α′. Further, to make it easy
to iterate for consecutively many rounds of GOST, we focus on the bias
analysis for the bit with equal input and output masks (α = β), i.e.,
β · (R⊕ k ⊕ f(R, k)).

In order to find all sufficiently large biases, with N randomly and
uniformly chosen pairs (R, k) (where the value of N is a parameter to be
discussed later), we calculate the 32-bit f ′(R, k) = R ⊕ k ⊕ f(R, k) and
we let D denote its distribution. The application of Walsh transform is
known to compute all the biases simultaneously as follows. Recall that
the Walsh transform for the function F : GF (2)ℓ → R is defined as
F̂ (x) =

∑
x′(−1)x·x

′

F (x′), for x ∈ GF (2)ℓ. We can compute the Walsh

transform for the distribution D. And it is easy to see that |D̂(a)| is twice
the value of the bias for a ·f ′(R, k), for any a. To show this, first, we have

D̂(a) =
∑

b

(−1)a·b · D(b) =
1

264

∑

b

(−1)a·b ·
∑

R,k

1f ′(R,k)=b (3)

We swap the order of the two summations in (3), and we have

D̂(a) =
1

264

∑

R,k

∑

b

(−1)a·f
′(R,k) · 1f ′(R,k)=b (4)

=
1

264

∑

R,k

(−1)a·f
′(R,k)

∑

b

1f ′(R,k)=b (5)
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We know that
∑

b 1f ′(R,k)=b = 1 holds true for any fixed (R, k). Conse-
quently, we have

D̂(a) =
1

264

∑

R,k

(−1)a·f
′(R,k), (6)

which equals Pr(a · f ′(R, k) = 0) − Pr(a · f ′(R, k) = 1), that is, 2(Pr(a ·
f ′(R, k) = 0) − 1/2). By our definition on bias in (2), we have justified
|D̂(a)| is twice the value of the bias for a · f ′(R, k).

Now we discuss the sampling numberN . Recall from coding theory, we
know that if the bias of the bit A is d, then we can successfully distinguish
the distribution of randomly and uniformly chosen 1/d2 samples of A from
uniform distribution with probability of success higher than 1/2. Hence,
we choose N = 240. And all those biases which are sufficiently large
(e.g., larger than 2−16) can be directly detected by searching through our
calculated big table of D̂.

Our computations found out that the largest bias 2−7 is obtained
when β ∈ {0x802001, 0x803007, 0x806001}. Other notably large biases
are: the bias is 2−7.2 when β = 0x806006, and the bias is 2−7.3 when
β = 0x802007. In Table 5, Appendix, we list all the biases, which are no
smaller than 2−9.

4 Our First Attacks on GOST

In this section, we will study attacks on GOST, based on our bias analysis
results on GOST round function in last section.

4.1 Attacks on 8-round GOST

We can immediately transfer our results for attacks on 8-round GOST
as follows. Let R ⊕ k ⊕ f(R, k) have the bias d with the mask β, which
were discussed following Sect. 3. Given the mask β, we can iterate this
one-round linear approximation for 8-round GOST. This is illustrated in
Figure 1, Appendix, which is shown in the untwisted Feistel structure.
Note that the subkey mixing is omitted in Figure 1; and whenever the
input mask is β for Round i in Figure 1, it means that the mask for the
subkey of that round is also β. For the linear approximation of 8-round
GOST, Round 1, Round 4 and Round 7 involve no linear approxima-
tion: the input and output masks are all marked “0” in Figure 1. By
the famous Piling-up Lemma [10], we can check that the 8-round linear
approximation

β · (R0 ⊕ L8 ⊕R8) ≈ β · (k2 ⊕ k3 ⊕ k5 ⊕ k6 ⊕ k8) (7)
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has bias d′ = (2d)5/2 = 16 · d5.
Thus, if we take the largest one-round bias d = 2−7 by choosing the

mask β ∈ {0x802001, 0x803007, 0x806001}, we know that the 8-round
linear approximation (7) has the bias d′ = 2−31. This means that given
1/d′2 (i.e., 262) pairs of known plaintexts and ciphertexts for 8-round
GOST, we compute the left-hand side of (7) for each pair, make a majority
vote on them and we can successfully recover one key bit, i.e., the right-
hand side of (7). Note that above is actually Matsui’s Algorithm 1 [10],
which uses 8-round linear approximation to attack 8-round GOST. If we
use Matsui’s Algorithm 2 [10], we can have better attack results on 8-
round GOST. That is, we use 7-round linear approximation rather than
8-round approximation. It is easy to see from Figure 1 that the bias d′′ for
7-round GOST is calculated as d′′ = (2d)4/2 = 8·d4 = 2−25 with d = 2−7.
Thus, with data amount 250, we can recover the subkey in the last round.
This takes time 232 × 32 = 237, by the optimized algorithm of Matsui’s
Algorithm 2 [1]. Then, we can recover the other subkeys sequentially
with less data after that. The attacks are the first known linear attacks
on GOST to the best of our knowledge.

4.2 Attacks on Higher Rounds of GOST

Obviously, we can iterate the one-round approximation for higher rounds
of GOST. For instance, for the 10-round linear approximation of GOST,
the same one-round linear approximation is iterated six times in total and
the bias is calculated as d′ = (2d)6/2 = 32·d6. With the largest one-round
bias d = 2−7, we have the bias d′ = 2−37 for 10-round approximation
of GOST. It implies the data complexity 1/d′2 = 274, which is above
the maximum limit 264 for a single key. In this subsection, we propose
attacks in the simple setting of multiple keys (without the related-key
assumption), which allows to obtain more than 264 known plaintext and
ciphertext pairs (that are generated by multiple keys). First, we consider
the distinguishing attack on 16-round GOST, whose last eight rounds
use subkeys in reverse order. We can easily extend the 8-round linear
approximation (7) for 16 rounds. We obtain the following 16-round linear
approximation,

β · (R0 ⊕ L16) ≈ β · (k2 ⊕ k3 ⊕ k5 ⊕ k6 ⊕ k8 ⊕

k9 ⊕ k11 ⊕ k12 ⊕ k14 ⊕ k15) (8)

where we let ki denote the subkey for Round i, for i = 1, 2, . . . , 16. As the
last eight rounds of the reduced 16-round GOST use subkeys in reverse
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order, i.e., k9 = k8, k10 = k7, k11 = k6, . . . , k16 = k1, the right-hand side
of the linear approximation (8) is the constant 0, which does not depend
on the key. This is critical for our distinguishing attack to work in the
plain setting of multiple keys, where we do not need to make the related
key assumption on these keys. Consequently, we know the 16-round linear
approximation β · (R0 ⊕ L16) ≈ 0 has the bias d′ = (2d)10/2 = 29 · d10 =
2−61 with d = 2−7. Thus, we have the distinguishing attack on 16-round
GOST with data amount 2122, which can be obtained from multiple keys
(and our attack is not affected by the aforementioned limit 264 for the
single key).

For 32-round GOST, we first consider the slightly tweaked key sched-
ule, that is, the last 16 rounds use subkeys in reverse order. Similarly as
we do for the 16 rounds, we have the 32-round linear approximation

β · (L0 ⊕R32) (9)

≈ β · (k1 ⊕ k2 ⊕ k4 ⊕ k5 ⊕ k7 ⊕ k8 ⊕ k10 ⊕ k11 ⊕ k13 ⊕ k14 ⊕ k16 ⊕

k17 ⊕ k19 ⊕ k20 ⊕ k22 ⊕ k23 ⊕ k25 ⊕ k26 ⊕ k28 ⊕ k29 ⊕ k31 ⊕ k32).

As the last 16 rounds use subkeys in reverse order, we apply k17 =
k16, k18 = k15, . . . , k32 = k1, and the right-hand side of above 32-round
linear approximation is constant 0. So, we know the 32-round linear ap-
proximation β·(L0⊕R32) ≈ 0 has the bias d′ = (2d)22/2 = 221·d22 = 2−133

with d = 2−7. Thus, we have the distinguishing attack on 32-round GOST
with data amount 2266, which are obtained from multiple keys.

Meanwhile, we note that for the full 32-round GOST with the original
key schedule, in order for our linear attack to work, we need to make
the related-key assumption. We can use the following 32-round linear
approximation (which has larger bias than above as shown later), β ·(R0⊕
L32⊕R32) ≈ β ·(k1⊕k3⊕k4⊕k6⊕k7). Assuming that k1⊕k3⊕k4⊕k6⊕k7
is a constant for all the keys, this 32-round linear approximation has bias
d′ = (2d)21/2 = 220 · d21 = 2−127. So, our distinguishing attack would
work with 2254 known plaintext and ciphertext pairs generated by the
multiple related keys. In the next section, we will study the improved
bias analysis to improve the attack results.

5 Synthetic Linear Analysis on GOST

Recently, the idea of synthetic linear analysis [9] was proposed in order to
study the combined bias of multiple Boolean functions (such as multiple
linear approximations), when some input terms of the Boolean functions
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are not statistically independent and Piling-up Lemma [10] might not
be an appropriate approximation. When multiple (possibly dependent)
Boolean functions are involved, [9] proposed to group dependent ones
together and make independent groups. For each group, the combined
bias is enlarged (compared with the total bias for all groups), which makes
bias analysis easier (and possible). The total bias can be finally obtained
from the combined bias of each independent group by Piling-up Lemma.

Recall that when we analyze the total bias for r-round linear approx-
imation of GOST in Sect. 4, we assume that each round is independent
of the others, and we apply the Piling-up Lemma to combine the biases
for the linear approximations of each active round (i.e., the round with
input mask β 6= 0). In particular, at each active round i, with the fixed
mask β, the linear approximation is expressed by

β · (Ri ⊕ ki ⊕ f(Ri, ki)) ≈ 0. (10)

Note that computing the individual bias for (10), assuming that Ri, ki
are random with uniform distribution, is discussed in Sect. 3.

In this section, we consider the dependency between multiple linear
approximations of different active rounds and we apply the synthetic bias
analysis [9] to improve the total combined bias of the r-round linear ap-
proximation. Let us start from the simple case of the combined bias for
the two linear approximations (from two active rounds3). For the linear
approximation (10) at the active round i, the input terms are (Ri, ki).
Given two active rounds i, j with i 6= j, we have the input terms (Ri, ki)
and (Rj , kj) respectively. We focus on the dependency between the two
input pairs. If we assume all the subkeys are random with uniform distri-
bution, then, ki, kj are statistically independent. And it is most possible
that Ri, Rj are dependent, which could make the combined bias stronger.
We use the technique of Sect. 3 to first compute the bias for

Ri ⊕ ki ⊕ f(Ri, ki)⊕Rj ⊕ kj ⊕ f(Rj , kj) (11)

for all mask β, where j = i+1 (i.e., two consecutive rounds) and Li, Ri, ki, kj
are randomly chosen with uniform distribution. Our results show that
Piling-up lemma gives fairly good approximation. We then tried for close
i, j, (i.e., j = i + 2, i + 3, i + 4). And we did not find any improved bias
results, compared with the simple Piling-up lemma approximation.

In above analysis, we assume that all the subkeys are random with
uniform distribution. Now, we study the case in which this assumption is

3 The two rounds may be not consecutive.
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removed. Due to the simple key schedule of GOST, we notice that it is
possible to have ki = kj for i 6= j. This initiates us to compute the bias
for (11) for all mask β, where ki = kj and Ri, Rj , ki are randomly chosen
with uniform distribution. Interestingly, our results show that when β =
0x806006, 0x400807, the bias is the largest 2−9.3. Note that Piling-up
lemma approximation gives much smaller biases of 2d2, i.e., 2−13.4, 2−16.2

respectively, (with d = 2−7.2, 2−8.6, which can be checked by Table 5).
In Table 2, we compare the other notably large biases with the Piling-
up lemma approximation results (in the last row of Table 2), where ‘-’
indicates that the corresponding bias is smaller than 2−16.

Table 2. Other large biases for (11), where ki = kj and Ri, Rj , ki are randomly chosen
with uniform distribution, in comparison with Piling-up lemma approximation results

mask 0x400802 0x500802 0x500807 0x30080500 0x700802 0x700807 0x804003

bias 2−10.7 2−10.5 2−10.5 2−10.8 2−11.1 2−11.1 2−11.1

d 2−8.6 2−8 - 2−7.8 2−9.7 - -

2d2 2−16.2 2−15 - 2−14.6 2−18.4 - -

We have just studied the combined bias for two active rounds. For
the combined bias for three active rounds, i.e., Ri ⊕ ki ⊕ f(Ri, ki)⊕Rj ⊕
kj⊕f(Rj, kj)⊕Rm⊕km⊕f(Rm, km) with different i, j,m, we did similar
analysis. Our results show that assuming ki = kj = km and Ri, Rj , Rm, ki
are randomly chosen with uniform distribution, then, we have the (only)
largest bias 2−13.2 with the mask β = 0x806006. In comparison, note that
Piling-up lemma approximation gives much smaller bias 4d3, i.e., 2−19.6

with d = 2−7.2 (which can be checked by Table 5). Similarly as done for
the case of two active rounds, we also analyzed the combined bias when
i < j < m and i, j,m are close, and Li, Ri, ki, kj , km are randomly chosen
with uniform distribution. We did not find any new results.

For the combined bias for four active rounds, i.e., Ri⊕ki⊕f(Ri, ki)⊕
Rj ⊕ kj ⊕ f(Rj , kj)⊕Rm ⊕ km ⊕ f(Rm, km)⊕Rn ⊕ kn ⊕ f(Rn, kn), with
different i, j,m, n, our analysis shows that assuming ki = kj = km = kn
and Ri, Rj , Rm, Rn, ki are randomly chosen with uniform distribution, we
have two largest biases 2−15.5, 2−15.3 with mask β = 0x806006, 0x400807
respectively. On the other hand, the Piling-up lemma approximation gives
much smaller biases of 8d4, i.e., 2−25.8, 2−31.4 with d = 2−7.2, 2−8.6 respec-
tively.
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5.1 The Improved Attacks on GOST

We now apply our above results to our attacks in Sect. 4. For the 8-
round attack in Sect. 4.1, we know that the subkeys are all random with
uniform distribution, and so we deduce that the attack results cannot be
improved.

We check our attack in Sect. 4.2 on the reduced 16-round GOST,
where the last eight rounds use subkeys in reverse order as the first eight
rounds. The 16-round linear approximation (8) involves linear approxi-
mations of 10 active rounds, i.e., round 2, 3, 5, 6, 8, 9, 11, 12, 14, 15. We
group the linear approximations of the 10 rounds into five groups: (round
2, round 15), (round 3, round 14), (round 5, round 12), (round 6, round
11), (round 8, round 9). The two linear approximations at the same group
use the same subkey for the round function, and are strongly dependent
by our above analysis. Meanwhile, the linear approximations with each
from a different group, can be assumed to be (almost) independent, as
all the subkeys involved now are random with uniform distribution4, and
our above analysis shows in this case we can assume the other inputs (i.e.,
Ri’s) of the round function are independent even if their round numbers
are close.

To get the combined bias for the not all independent ten linear ap-
proximations (i.e., the five groups), we first calculate the combined bias
for each group. Recall that we have shown when we choose the mask
β ∈ {0x806006, 0x400807}, the bias for each group is the largest d = 2−9.3.
Then, we apply Piling-up Lemma to calculate the total bias for the
five groups, i.e., the bias for the 16-round linear approximation (8) is
(2d)5/2 = 16d5 = 2−42.5. This greatly improves our previous estimated
bias 2−61 in Sect. 4.2, which assumes that the linear approximations are
all independent. And it implies our improved distinguishing attack on
16-round GOST needs data 285.

For our 32-round attack with the slightly tweaked key schedule in Sect.
4.2, the 32-round linear approximation (9) involves 22 active rounds. We
can group them into 8 groups: (round 1, round 32), (round 2, round 10,
round 23, round 31), (round 11, round 22), (round 4, round 29), (round
5, round 13, round 20, round 28), (round 14, round 19), (round 7, round
26), (round 8, round 16, round 17, round 25). Similar arguments hold
true to show that the linear approximations at the same group use the
same subkey for the round function, and are strongly dependent; mean-
while, the linear approximations with each from a different group, can

4 because each 32-bit subkey is extracted from a different (i.e., non-overlapping) part
of the 256-bit key.
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be assumed to be (almost) independent. When we choose the best mask
β = 0x400807, the bias for the group with two rounds is 2−9.3 and the
bias for the group with four rounds is 2−15.3, according to our previous
synthetic bias analysis. Therefore, the bias for the 32-round linear ap-
proximation (9) can be calculated by combining the biases of the eight
independent groups, 1/2×(2×2−9.3)5×(2×2−15.3)3 = 2−85.4. This means
the 32-round attack with the improved complexity 2170.8. In comparison,
note that our previous result (in Sect. 4.2) has much higher complexity
2266, which is based on the assumption that the linear approximations
are all independent.

For our proposed distinguishing attack (in the related-key setting5)
on the full 32-round GOST with the original key schedule in Sect. 4.2, we
can similarly improve the bias from previous estimate 2−127 to 2−86.9 by
choosing the mask β = 0x806006. This gives the greatly reduced attack
complexity 2173.8. It is the fastest attack known so far, compared with
the best attacks [4, 3] on the full 32-round GOST with the original key
schedule. Finally, we summarize our linear attack results in Table 3.

6 Conclusion

In this paper, we study linear attacks on GOST 28147-89. We give the
detailed bias analysis on the GOST round function for the first time. We
show that the largest bias is 2−7. Secondly, we propose the first known
linear attacks on GOST. Then, the recent technique of synthetic linear
analysis [9] is successfully applied to improve the bias for the r-round
linear approximation of GOST. Our proposed linear attacks are the first
known distinguishing attacks on block ciphers in the plain multiple-key

setting without the usual related-key assumption to the best of our knowl-
edge. Finally, for the full 32-round GOST with the original key schedule,
our distinguishing attack works in time 2173.8, given 2173.8 known plain-
texts, in the related-key setting. This is the fastest attack known so far,
compared with the best attacks [4, 3] on 32-round GOST with the original
key schedule. Meanwhile, our results also show that the early statement
[14] that GOST is secure against the linear analysis after 5 rounds out of
32 rounds is not true.

5 i.e., assuming that k1 ⊕ k3 ⊕ k4 ⊕ k6 ⊕ k7 is a constant for all the keys
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Table 3. Summary of our linear attacks on r-round GOST

attack r type setting data time key schedule notes

[13] 13 differential single key 251 unknown -
key-recovery (chosen-plaintext)

[13] 21 differential related key 256 unknown -
key-recovery (chosen-plaintext)

[3] 32 differential single key 264 2178 original key schedule
key-recovery

[4] 32 key-recovery single key 264 2192 original key schedule

[4] 32 key-recovery single key 232 2224 original key schedule

ours 8 linear key-recovery single key 250 237 -

ours 16 linear distinguisher multiple keys 285 285 last eight rounds use
(no related-key) subkeys in reverse order

ours 32 linear distinguisher multiple keys 2170.8 2170.8 last 16 rounds use
(no related-key) subkeys in reverse order

ours 32 linear distinguisher multiple keys 2173.8 2173.8 original key schedule
(related-key)
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Appendix

Table 4. GOST S-Boxes

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1(x) 4 10 9 2 13 8 0 14 6 11 1 12 7 15 5 3

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S2(x) 14 11 4 12 6 13 15 10 2 3 8 1 0 7 5 9

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S3(x) 5 8 1 13 10 3 4 2 14 15 12 7 6 0 9 11

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S4(x) 7 13 10 1 0 8 9 15 14 4 6 12 11 2 5 3

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S5(x) 6 12 7 1 5 15 13 8 4 10 9 14 0 3 11 2

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S6(x) 4 11 10 0 7 2 1 13 3 6 8 5 9 12 15 14

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S7(x) 13 11 4 1 3 15 5 9 0 10 14 7 6 8 2 12

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S8(x) 1 15 13 0 5 7 10 4 9 2 3 14 6 11 8 12
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Table 5. Biases for GOST round function R⊕ k⊕ f(R, k), which are no smaller than
2−9

mask 0x802001 0x803007 0x806001 0x806006 0x802007 0x500802

bias 2−7 2−7 2−7 2−7.2 2−7.3 2−8

mask 0x500803 0x803006 0x804006 0x3004008 0x3006008 0x8040060

bias 2−8 2−7.8 2−7.8 2−7.8 2−7.6 2−7.8

mask 0x30080200 0x30080500 0x200801 0x200802 0x200803 0x400802

bias 2−7.8 2−7.8 2−8 2−8.4 2−8.4 2−8.6

mask 0x400803 0x400807 0x802002 0x802006 0x804007 0x806002

bias 2−8.6 2−8.6 2−8.4 2−8.8 2−8.7 2−8.4

mask 0xc01801 0xc06801 0x4008070 0x8030060 0x30080300 0x40080500

bias 2−8.2 2−8.6 2−8.7 2−8.8 2−8.8 2−8.2

mask 0x60030080 0xc01002 0x3003008 0x8040020 0x8060020 0x30030080

bias 2−8 2−9 2−9 2−9 2−9 2−9
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Fig. 1. The 8-round linear trails shown in untwisted structure, and the subkey mixing
in f is omitted
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