
1

Robust Fuzzy Extractors and Helper Data
Manipulation Attacks Revisited: Theory vs Practice

Georg T. Becker

F

Abstract—Fuzzy extractors have been proposed in 2004 by Dodis et al.
as a secure way to generate cryptographic keys from noisy sources. In
recent years, fuzzy extractors have become an important building block
in hardware security due to their use in secure key generation based on
Physical Unclonable Functions (PUFs). Fuzzy extractors are provably
secure against passive attackers. A year later Boyen et al. introduced
robust fuzzy extractors which are also provably secure against active
attackers, i.e., attackers that can manipulate the helper data.

In this paper we show that the original provable secure robust fuzzy
extractor construction by Boyen et al. actually does not fulfill the
error-correction requirements for practical PUF applications. The fuzzy
extractors proposed for PUF-based key generation on the other hand
that fulfill the error-correction requirements cannot be extended to such
robust fuzzy extractors, due to a strict bound t on the number of
correctable errors. While it is therefore tempting to simply ignore this
strict bound, we present novel helper data manipulation attacks on fuzzy
extractors that also work if a “robust fuzzy extractor-like” construction
without this strict bound is used.

Hence, this paper can be seen as a call for action to revisit this
seemingly solved problem of building robust fuzzy extractors. The new
focus should be on building more efficient solutions in terms of error-
correction capability, even if this might come at the costs of a proof in
a weaker security model.

Index Terms—Robust Fuzzy Extractor, Physical Unclonable Functions
(PUFs), Helper Data Manipulation Attacks

1 Introduction
Fuzzy extractors have been proposed in 2004 by Dodis et
al. [10] as a provably secure way to generate cryptographic
keys from correlated but possibly noisy sources. The main
motivation for this work back in 2004 were biometrics:
During a generation phase, a biometric reading such as
a fingerprint or iris picture is used to generate a crypto-
graphic key and helper data. At a later time, a second,
possibly noisy, reading of the same biometric source is
used in conjunction with the helper data to reproduce the
cryptographic key. Fuzzy extractors guarantee that i) the
derived key is uniform even after revealing the helper data,
i.e., the helper data does not reveal information about
the key, and ii) as long as the distance between the two

The author is with the Digital Society Institute at the ESMT Berlin,
Germany. Most of the work was done while he was with the Horst
Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany.
E-mail: {firstname.lastname}@rub.de.
The author would like to thank Johannes Tobisch for providing the

GMC decoding implementation and for his helpful comments as well
as the anonymous reviewers for their helpful feedback.

readings is smaller than or equal to a constant t, the same
key is extracted during the recreation step.

While fuzzy extractors are provably secure against pas-
sive attackers, this does not say anything about attack-
ers who can alter the helper data. Therefore, Boyen et
al. proposed a construct called robust fuzzy extractor in
2005 [2] which is also secure against helper data manip-
ulation attacks. The original robust fuzzy extractor was
only provably secure in the random oracle model, but a
provably secure construction in the general model was
proposed a year later in [8] and slightly improved in [7],
[14]. It is noteworthy that, in theory, any fuzzy extractor
can be turned into a robust fuzzy extractor. Hence, at
least for the Hamming distance metric, the problem of
building provably secure fuzzy extractors and provably
secure robust fuzzy extractors seems to be solved.

From a practical perspective, fuzzy extractors have
become increasingly important not due to biometrics, but
due to key generation based on Physical Unclonable Func-
tions (PUFs). Storing and generating cryptographic keys
in embedded devices can be a challenging task, in partic-
ular if they need to be able to withstand physical attacks.
Standard non-volatile memory has little protection against
an unauthorized read-out, especially if the non-volatile
memory is not on the same chip. Only dedicated secure
non-volatile memory can offer protection against an ad-
vanced attacker. PUFs are a promising alternative to such
secure non-volatile memory. The idea of PUFs is to use
the process variations within each chip to derive a unique
“fingerprint”, which is called the PUF response. A Fuzzy
Extractor is then used to derive a cryptographic key and
helper data from this PUF response. In the recovery phase,
this helper data is used in conjunction with a (possibly
noisy) PUF response to recover the key again. PUF-based
key generation, and in particular how to construct fuzzy
extractors for PUF-based key storage, has been the focus
of a lot of research. One important focus of this research
is how to handle the significant level of noise that can
be present in the PUF responses. Several error-correcting
codes and decoding strategies have been proposed to be
used in fuzzy extractors for PUF-based key generation,
e.g. in [1], [16], [17], [18], [19], [25]. It is noteworthy that
fuzzy extractors and PUF-based key generation are not
purely academic research topics anymore. Several high-
security products by companies such as Microsemi, Altera

2

and NXP use fuzzy extractors in conjunction with PUF-
based key generation1.
The first helper data manipulation attacks against PUF

based key generation were not on fuzzy extractors, but on
helper data algorithm based on pattern matching [5] and
designs specifically for Ring-Oscillators [6]. Another helper
data manipulation attack was presented on soft-decision
error-correction [3]. While the attack was described based
on the helper data algorithm by Maes et al. [18], which is
strictly speaking not a fuzzy extractor as no bound on the
min-entropy is provided, the attack can also be applied to
even number repetition codes and hence fuzzy extractors.

In practice, most solutions for PUF-based generation
need a robust fuzzy extractor, which has been acknowl-
edged in numerous papers. However, papers describing
actual implementations only used fuzzy extractors and not
robust fuzzy extractors.

1.1 Main contribution
In this paper we will show that how to build provably
secure as well as practical robust fuzzy extractors is not a
solved problem. In particular, we show that:
• It is actually not possible to build a provably secure

robust fuzzy extractor based on the Bose-Chaudhuri-
Hocquenghem-Codes (BCH) construction proposed
by Boyen et al. [2] for noise levels above 3%.

• The concatenated code constructions used in practi-
cal fuzzy extractor implementations that can handle
noise levels of 15% or more are actually not well-
formed and therefore using them in Boyen et al. ’s
construction violates the security proof.

• We introduce a new helper data manipulation attack
strategy on linear codes which we demonstrate based
on several decoding strategies for Reed–Muller codes
and soft-decision decoding.

• In this new attack strategy the attacker sets a key
as opposed to recovering a key. Therefore, the new
attack strategy can be used to attack a robust fuzzy
extractor-like construction which uses a hash function
to check the integrity of the helper data, but ignores
the strict bound t of the proof by Boyen et al. .

Finally, we also propose some promising research direc-
tions to solve this problem in the future.

1.2 Outline
The next Sections provides some necessary background in-
formation. In particular, robust fuzzy extractors and their
related constructions are formally defined and introduced.
In Section 3 the robust fuzzy extractor based on BCH
codes is examined in greater detail, and it is shown that
building a robust fuzzy extractor based on BCH codes is
not possible for realistic parameters. Section 4 introduces
the attack model and strategy of our new helper data

1. NXP announced that the upcoming SmartMX2 security chips
will feature a PUF, Altera uses PUFs in their Stratix 10 FPGAs,
Microsemi in their SmartFusion FPGAs. All these products use
Intrinsic-ID’s licenses and PUF solutions.

manipulation attack and Section 5 presents some concrete
examples of how the attack works against Reed–Muller
codes and soft-decision decoding. Finally, a discussion
outlook is provided in Section 6 with promising future
research directions, before the paper finishes with a short
conclusion.

2 Background
This Section introduces the formal definitions of robust
fuzzy extractors and their building blocks. The corre-
sponding proofs and a more detailed description can be
found in the referenced papers. In the following we will
use the definitions from [2].

2.1 Notations
In this paper we will use the following notations: A vector
is represented with a bold lowercase character, a matrix
with a bold uppercase character, a scalar with a lowercase
character, a random variable with an uppercase character,
and a set with calligraphic character. Table 1 is a summary
of the variable names used in this paper to describe
the robust fuzzy extractor for PUF based key generation
and the helper data manipulation attack. In this context,
a variable used in the recovery phase before the error-
correction is denoted with a tick mark, a variable after the
error-correction is denoted with a bar, and a value chosen
or predicted by the attacker is indicated with an a index.
For binary error-correction codes we use to the notion of
[n, k, d], with n being the codeword length, k being the
dimension and d denoting the minimum distance between
codewords.

Original Before After Attacker’s
Error Corr. Error Corr. choice

PUF response w w′ w̄ w̄a

codeword x x′ x̄ x̄a

helper data s sa

hash value h h̄ h̄a

secret key r r̄ r̄a

error vector e
attack vector ea

TABLE 1: Overview of variable definitions

2.2 Definitions of secure sketches and fuzzy extractors
Fuzzy extractors and secure sketches were proposed by
Dodis et al. in 2004 [10]. A secure sketch is defined as
follows: [2]
Definition 1: An (m,m′, t)-secure sketch over a metric

space (M, d) comprises a sketching procedure SS : M →
{0, 1}∗ and a recovery procedure Rec, where:
1) (Security) For all random variablesW overM such

that H∞(W) ≥ m, we have H∞(W |SS(W)) ≥ m′,
with H∞ denoting the min-entropy.

2) (Error tolerance) For all pairs of points
w,w′ ∈ M with d(w,w′) ≤ t, it holds that
Rec(w′,SS(w)) = w.

3

In the context of PUFs, a secure sketch can be used to
generate helper data s for a PUF response w during the
first key generation (sketching procedure). This helper
data can then be used to correct up to t errors in a
noisy PUF response w′ during the “recovery” phase. The
security guarantees state that the remaining min-entropy
in the PUF response w after revealing the helper data
s is at least m′ ≤ m. Hence, w is not guaranteed to
be uniformly distributed and revealing the helper data
reduces the guaranteed min-entropy. Therefore, w cannot
be used directly as a cryptographic key. The main purpose
of a Fuzzy Extractor is to extend the secure sketch to
generate a string r that is uniformly distributed so that
it can be be used as a cryptographic key. The formal
definition is as follows: [2]
Definition 2: An (m, l, t, δ)-fuzzy extractor over a met-

ric space (M, d) comprises a (randomized) extraction algo-
rithm Ext :M→ {0, 1}l×{0, 1}∗ and a recovery procedure
Rec such that:
1) (Security) For all random variables W over M

that satisfy H∞(W) ≥ m, if 〈r,pub〉 ← Ext(W)
then SD(〈r,pub〉 , 〈Ul,pub〉) ≤ δ, where SD() is
the statistical difference as defined in [2] and Ul is
a random variable that is uniformly distributed over
{0, 1}l.

2) (Error tolerance) Let d() be a distance metric for
M. Then for all pairs of points w,w′ ∈ M with
d(w,w′) ≤ t, if 〈r,pub〉 ← Ext(w) then it is the
case that Rec(w′,pub) = r.

The aforementioned fuzzy extractor is only secure
against a passive attacker. I.e., it does not make any
guarantees about the security if the attacker can manipu-
late the helper data pub2. For this purpose, robust fuzzy
extractors were proposed by Boyen et al. [2] that are
also secure against active attackers. These robust fuzzy
extractors are based on well-formed secure sketches which
are defined as follows: [2]
Definition 3: An (m,m′, t)-secure sketch (SS,Rec) is

said to be well-formed if it satisfies the condition of
Definition 1, except for the following modifications:
1) Rec may now return either an element in M or the

distinguished symbol ⊥.
2) For all w′ ∈ M and arbitrary pub′, if

Rec(w′,pub′) 6= ⊥ then d(w′,Rec(w′,pub′)) ≤ t.
In other words, a secure sketch only guarantees that if
there are t or less errors, the errors will be corrected. It
does not say anything about what happens if there are
more than t errors. Correcting more than t errors does not
have any impact on security. In addition, t does not even
need to be a strict lower bound but can be relaxed, which
was formalized in [9] as relaxed notions of correctness.
A well-formed secure sketch on the other hand corrects
exactly up to t errors and responds with ⊥ if there are

2. With pub we denote the helper data to be in line with the
definition in with [2]. The helper data is typically a vector s. However,
the exact format of the helper data is not defined and can be of any
data type.

more than t errors. One cannot simply relax this notion
and allow more than t errors to be corrected without
violating the assumptions in the proof. It is actually simple
to construct a well-formed secure sketch from any secure
sketch: For this, one only needs to compute t′ = d(w,w′).
If t′ > t return ⊥ else return w.

A robust sketch is resistant to helper data manipulation
attacks and is defined as follows: [2]
Definition 4: Given algorithms (SS,Rec) and random

variables W = {W0,W1, ...,Wn} over the metric space
(M, d), consider the following game between an adver-
sary A and a challenger: Let w (resp., wi) be the value
assumed by W0 (resp., Wi). The challenger computes
pub← SS(w0) and gives pub to A. Next, for i = 1, ..., n,
the adversary A outputs a “challenge” pubi 6= pub and is
given Rec(wi,pubi) in return. If there exists an i such that
Rec(wi,pubi) 6= ⊥ we say that the adversary succeeds and
this event is denoted by Succ.

We say that (SS,Rec) is an (m,m′′, n, ε, t)-robust sketch
over (M, d) if it is a well-formed (m,m′′, t)-secure sketch
and:

1) For all t-bounded distortion ensembles W with
H∞(W0) ≥ m and all adversaries A we have
Pr[Succ] ≤ ε.

2) The average min-entropy of W0, conditioned on the
entire view of A throughout the above game, is
at least m′′. Which implies that (SS,Rec) is an
(m,m′′, t)-secure sketch.

Similar to secure sketches, a robust sketch does not
necessarily produce a uniformly distributed string that can
be used as a cryptographic key. For this purpose robust
fuzzy extractors were defined as follows: [2]
Definition 5: Given algorithms (Ext,Rec) and random

variables W = {W0,W1, ...,Wn} over a metric space
(M, d), consider the following game between an adversary
A and a challenger: Let w0 (resp., wi) be the value
assumed by W0 (resp., Wi). The challenger computes
(r,pub) ← Ext(w0) and gives pub to A. Next, for
i = 1, .., n, the adversary A outputs pubi 6= pub and
is given Rec(wi,pubi) in return. If there exists an i such
that Rec(wi,pubi) 6= ⊥ we say the adversary succeeds
and this event is denoted by Succ. We say (Ext,Rec) is
an (m, l, n, ε, t, δ)-robust fuzzy extractor over (M, d) if the
following hold for all t-bounded distortion ensembles W
with H∞(W0) ≥ m:
• (Robustness) For all adversaries A, it holds that
Pr[Succ] ≤ ε.

• (Security) Let V iew denote the entire view of
A at the conclusion of the above game. Then,
SD(〈r, V iew〉 , 〈Ul, V iew〉) ≤ δ. SD() is again the
statistical difference as defined in [2] and Ul the
uniform distribution over l-bit strings.

• (Error-tolerance) For all w′ with d(w0,w′) ≤ t, we
have Rec(w′,pub) = r.

2.3 Robust fuzzy extractor constructions
After we have defined the various constructions we will
now take a look at how they can be realized. In this paper

4

we only look at constructions for the Hamming distance
metric, since this is used in PUF-based key generation.
The main building block of all constructions is the secure
sketch. Two secure sketch constructions for the Hamming
distance metric were proposed by Dodis et al. [10], the
code-offset and the syndrome construction.

2.3.1 Secure sketches for the Hamming distance metric
The code-offset construction [10] is based on the fuzzy
commitment proposed by Juels and Wattenberg [13] and
is defined as follows:
Definition 6: Code-offset construction: During sketch-

ing, choose a random codeword x ∈ C and compute the
helper data s = SS(w,x) = w⊕ x. For recovery, compute
x̄ = decode(w′ ⊕ s), where decode() denotes the decoding
procedure of the error-correction code C and w′ the po-
tentially noisy PUF response. Then w̄ = Rec(w′, s) = s⊕x̄
with w̄ == w if d(w′,w) ≤ t.
The syndrome construction requires the code C to be a
linear binary error-correction code and works as follows:
Definition 7: Syndrome construction: During sketching,

compute s = SS(w,x) = w · HT, where HT is the
transposed parity-check-matrix of the used linear error-
correction code C. For recovery, compute s′ = w′ · HT.
Determine ē = locate(s′ ⊕ s) by using the error-location
algorithm locate() of the code C. Then w̄ = Rec(w′, s) =
w′ ⊕ ē with w̄ = w if d(w′,w) ≤ t.
Both the code-offset and the syndrome construction are

popular for PUF-based key generation.

2.3.2 Hash-based robust fuzzy extractor
Boyen et al. showed how robust fuzzy extractors can be
built using any well-formed secure sketch in conjunction
with a hash function. This construction, which we will
denote as hash-based construction in the remainder of the
paper is provably secure in the random oracle model [2].
This hash-based construction works as follows:
Definition 8: Assume we are given two hash functions

H1, H2 : {0, 1}∗ → {0, 1}l (in practice a single hash
function can be used by prepending a padding) and a well-
formed secure sketch (SS,Rec). The hash-based robust
fuzzy extractor (Ext,Rec) with (r,pub) = Ext(w) and
r̄ = Rec(w′,pub) works as follows:3

• (r,pub) = Ext(w): Let s = SS(w). Output
pub = (s,H1(w, s)) and r = H2(w, s).

• r̄ = Rec(w′,pub): Parse pub as (s,h) and set
w̄ = Rec(w′, s). If d(w̄,w′) ≤ t and h̄ == H1(w̄, s)
then output r̄ = H2(w̄) else output r̄ = ⊥.

How the hash-based robust fuzzy extractor works in
conjunction with the code-offset construction is illustrated
in Figure 1. One great advantage of this construction is
that in this way any fuzzy extractor can be extended to
a robust fuzzy extractor. Hence, when discussing fuzzy
extractor constructions for PUF-based key generation, it is
often noted that in case resistance against active attackers

3. It is also possible to compute r with r̄ = H2(w̄, s) as it was done
in [11]. Yet the original proposal in [2] uses r̄ = H2(w̄).

Fig. 1: Illustration of the robust fuzzy extractor when it
is used in conjunction with the code-offset construct. On
the left the extraction phase and on the right the recov-
ery phase is depicted. The distance check d(w′,w) ≤ t
highlighted in the red square is often overlooked in PUF
papers. A fuzzy extractor without this distance check is
called RFE-like construct in this paper and attacks against
such a construct will be presented in Section 4.

is needed, the fuzzy extractor can easily be turned into
a robust fuzzy extractor. However, we want to point to
a detail that is often overlooked: In a fuzzy extractor
d(w̄,w′) ≤ t is only a correctness requirement, i.e., only
guarantees that the errors are corrected. It has nothing to
do with security and hence an engineer can simply ignore
this part without jeopardizing security. Indeed, Dodis et
al. [9] formalized this as relaxed notion of correctness,
since better error correction rates can be achieved with
such relaxed notations.

In a robust fuzzy extractor on the other hand
d(w̄,w′) ≤ t is a security requirement. If this inequality is
not satisfied, the robust fuzzy extractor needs to return ⊥.
In other words, the robust fuzzy extractor requires a well-
formed secure sketch not because of a correctness require-
ment, but because of a security requirement. Hence, this
aspect cannot be ignored without security implications.

2.3.3 Fuzzy extractors for PUF-based key generation
In this Subsection we will briefly discuss some of the
different fuzzy extractors that have been proposed in
conjunction with PUF-based key generation. In earlier
works BCH codes have been used [12], [24]. However,
the superior error correction capability of concatenated
codes was pointed out by Bösch et al. in 2008 [1]. In
particular, they proposed a simple inner repetition code
with an outer Reed–Muller or Golay code. Concatenated
codes with BCH codes in conjunction with repetition
codes have been used in the literature as well [20]. In
2009 the idea to use soft-decision error correction was
first introduced by Maes et al. in conjunction with PUF-
based error correction [18], [19]. The idea is to collect
additional information about the reliability of each PUF
response bit and add this as additional helper data during
the generation phase. During reconstruction, soft-decision

5

error correction codes can use this information to consid-
erably decrease the probability of a decoding error. For
this, concatenated codes with soft-decision repetition and
Reed–Muller codes were proposed. One disadvantage of
this approach is that the soft-decision information needs
to be collected first, which might not always be trivial.
How to overcome this problem was presented in 2012
by van der Leest et al. [16], by using a hard-in soft-
out inner code (repetition decoder) in conjunction with
a soft-decision outer code (Reed–Muller or Golay code).
Compared to hard-decision decoding, considerably better
error correction rates are achieved without the need to
collect additional information during the generation phase.
The same hard-in soft-out decoding was also used in [17].
Similarly, the generalized concatenated code constructions
by Puchinger et al. [21] also use hard-in soft-out decoding
of Reed–Muller codes.

3 Impossibility results for BCH codes
In order to show the feasibility of fuzzy extractors,
Dodis et al. showed that BCH codes can be used to
construct fuzzy extractors based on the code-offset and
syndrome construction [10]. Later work showed how every
fuzzy extractor can be turned into a robust fuzzy extrac-
tor [2] and, hence, at least in theory BCH codes can also
be used to build robust fuzzy extractors. In this section
we look at the problem from a more practical perspective,
by investigating if the parameters of the security proof
can also be met for realistic error-correction rates, as they
are needed for PUF-based key generation. A typical goal
in PUF-based key generation is to achieve a failure rate
of less than 10−6 or 10−9 during key generation, with an
assumed worst-case PUF reliability of around 85%4. This
is assumed in, e.g., [1], [17], [18], [20], [21]. Note that in all
of these papers concatenated code constructions are used
that yield much better average error correction rates than
non-concatenated code. However, concatenated codes have
a significantly worse minimum error-correction capacity
t (see Section 3.3), making them unsuitable for robust
fuzzy extractors that follow the security proof from [2]. We
therefore want to evaluate in this Section, if these results
can also be achieved with a single BCH code, as it was
proposed for robust fuzzy extractors by Boyen et al. [2].

3.1 Security bound for Boyen et al.’s hash-based ro-
bust fuzzy extractor construction
The robust fuzzy extractor proof from [2] provides a
formula to compute the success probability ε of an active
attacker. This equation allows the derivation of a security
bound that the binary [n, k, 2t + 1] BCH codes need to
fulfill in order to be provably secure when used in robust
fuzzy extractors.

4. Worst case reliability of 85% in this case means that the chance
that a response bit flips is 15% in average for the worst environmental
conditions that is still within specification (e.g. highest specified
temperature).

Theorem 1: Security Bound:
A binary linear [n, k, 2t+ 1] code used in a robust sketch
as defined in [2] that does not fulfill the following bound
does not fulfill the corresponding security proof of Boyen
et al.:

k > 1 + log2(n) + log2

(t∑
i=0

(
n

i

))
(1)

Proof: From [2] Theorem 1 the success probability ε of
an attacker is defined with:5

ε = (4qH + 2n · v) · 2−m
′

(2)

where qH denotes the number of times an attacker is
allowed to query the robust fuzzy extractor, v denotes the
volume of the error correction code, and m′ the remaining
min-entropy after revealing the helper data. For binary
linear [n, k, 2t+1] codes v can be expressed as (see, e.g., [7],
Sec. III.e.):

v =
t∑
i=0

(
n

i

)
(3)

For a secure sketch based on a [n, k, 2t+1] code, the upper
bound of the min-entropy m′ can be written as m′ ≤ n−
(n− k) = k. Note that we are looking for an impossibility
result, i.e., we want to show that if the inequality does not
hold the construction does not fulfill the security proof
from [2]. We do not want to show that if the inequality
holds that the constriction is secure. Therefore, we derive
a lower bound of the attacker’s success probability ε as
follows:

ε = (4qH + 2n · v) · 2−m
′

ε ≥ 2n ·
t∑
i=0

(
n

i

)
· 2−k

log2(ε) ≥ log2

(
2n ·

t∑
i=0

(
n

i

)
· 2−k

)

log2(ε) ≥ 1 + log2(n) + log2

(t∑
i=0

(
n

i

))
−k

(4)

Since the success probability ε needs to be smaller than 1,
i.e., ε < 1, one can simply define a lower bound as:

log2(1) > log2(ε) ≥ 1 + log2(n) + log2

(t∑
i=0

(
n

i

))
−k

0 > 1 + log2(n) + log2

(t∑
i=0

(
n

i

))
−k

k > 1 + log2(n) + log2

(t∑
i=0

(
n

i

))
�

(5)

There are parameter choices for BCH codes that fulfill the
bound. However, in practice, not only the security bound
has to hold, but the resulting BCH code also needs to

5. We use the simplified lower bound of Theorem 1 [2] for the case
that the hash output length was chosen appropriately.

6

n 63 127 255 511 1023 2047 4095 8191 16383 32767 65535
p =0.92 - 27 45 85 126 231 413 819 1483 2861 5579
p =0.93 - 27 42 85 115 205 367 686 1321 2517 4902
p =0.94 15 23 42 59 102 179 330 597 1170 2340 4681
p =0.95 15 21 42 53 87 153 292 506 955 1829 3545
p =0.96 13 21 29 45 74 127 227 415 793 1483 2863
p =0.97 11 21 25 37 60 101 178 325 599 1133 2184

TABLE 2: Lower bound of the required number of correctable errors t for different codeword sizes n and reliabilities p
to achieve a failure rate of less than 10−6.

achieve the required error correction rate. In particular,
usually the probability of a key generation failure Pfail in
a worst-case scenario should be below a defined threshold.
A simple but widely used error-model is that each PUF
response bit flips independently with the same probability
1−p (i.e., a “naive, homogeneous” noise model [3]). Typical
parameters found in the literature are p ≈ 0.85 and Pfail
around 10−6 to 10−9. Table 2 shows the minimum value
for t for [n, k, 2t + 1] BCH codes and different codeword
sizes n and reliability values p to achieve a failure rate
of less than Pfail < 10−6 using the naive, homogenous
noise model6. In a way, the values in the table are an
“error-tolerance bound”, since only error-correcting codes
that can correct at least that many bit errors are reliable
enough for a robust fuzzy extractor.

Since we now have a security bound as well as a
lower bound on the required error correction capacity,
we can verify whether or not building a secure robust
fuzzy extractor based on BCH codes is possible. For
this purpose we tested the security bound by using the
BCH parameters derived in Table 2 and computing the
corresponding ε value. In particular, we calculated the
bounded log2(ε) according to Equation (4) using Sage for
the [n, k, 2t+1] BCH codes that were closest to the values
listed in Table 2. The result can be found in Figure 2a.
As one can see, only for p > 0.94 the value is negative,
i.e., fulfills the security bound. For all other values with
p ≤ 0.94% the security proof provided in [2] does not hold.
Note that for PUF-based key generation much lower

reliabilities than 94% are needed (e.g. p = 85%) and,
hence, it is currently not possible to build a robust fuzzy
extractor with BCH codes for PUF-based key generation,
that is provably secure according to the proof provided by
Boyen et al. [2].

3.2 Security bound for Dodis et al.’s robust fuzzy
extractor construction
The robust fuzzy extractor based on hash functions pro-
posed by Boyen et al. [2] is provably secure in the random
oracle model but not the general model. Therefore, a
different construction was proposed by Dodis et al. that
is also provably secure in the general model [8]. However,
this provable security in the general model comes at the

6. The advantage of the naive, homogenous noise model is that it is
independent of the PUF technology and provides the average failure
rate over all devices. Note that it does not incorporate burst-errors or
gives device-specific failure rates. The computation was done based
on the CDF of a binomial distribution.

(a) hash-based construction

(b) standard model construction

Fig. 2: The upper bound of the success probability ε of an
attacker for a helper data manipulation attack against a)
the hash-based construction from [2] and b) the standard-
model construction from [8]. For each codeword size n and
PUF reliability value p the best BCH parameters were
chosen to compute ε. Note that a positive value means
that for the corresponding reliability and codeword sizes
the construction does not offer provable security against
helper data manipulation attacks.

cost of a significantly reduced efficiency in terms of security
parameters. In particular, it looses half of the min-entropy
m′. Therefore the security bound for this construction is
reduced to:

k

2 ≥ log
(t∑
i=0

(
n

i

))
+log

(
2
⌈

k

n− k
+ 2
⌉)
−1

2 (6)

Details of how this bound is derived can be found in the
Appendix. We again computed the ε value for the BCH
parameters provided in Table 2. The results can be found
in Figure 2b. In this case, even for reliability values of
p = 98% no BCH code exists that fulfills the security proof

7

of Dodis et al. [8].

3.3 Impact of concatenated codes on the security
bound
Before looking into concatenated codes, let us first con-
sider the case that a message m is split into l blocks of
size n and each block is decoded by a BCH code (or other
linear code). Assume that a BCH code is used of which the
maximum as well as the minimum number of correctable
errors within any given code word is t. If we concatenate
l codeword blocks, the maximum number of correctable
errors is t · l, while the minimum number of correctable
errors is still only t, since t+ 1 errors in a single block will
result in a decoding failure. Hence, for more than t errors
the robust fuzzy extractor needs to output ⊥, which makes
it completely impractical. Otherwise, such a construction
would not be in line with the security proofs of Boyen et
al. [2] and Dodis et al. [8].

A crucial error correction concept in practice is the use
of concatenated codes. Nearly all PUF-based key genera-
tion proposals use concatenated codes, which first encode
the message with an inner code and then again with an
outer code. In many cases the inner codes is a simple
repetition code, while the outer code is more complex. The
main idea is that the average error correction capability is
considerably higher, even though the minimum number of
correctable errors is much smaller than using a single large
code. In practice, this average number of correctable errors
is what really matters to determine the failure probability
Pfail for PUF-based key generation. But since t is defined
by the minimum number and not the average number
of correctable errors, using concatenated codes in a well-
formed secure sketch is impossible. For example, in [20]
a [7,1,7] repetition code, concatenated with a [318,174,35]
BCH code was used. The repetition code can correct 3
errors in a 7-bit codeword, and the BCH code can correct
up to 17 errors in a 318-bit codeword. The concatenated
code has a codeword length of n = 318 · 7 = 2, 226. The
minimum number of bit errors for a decoding error to
occur is 18 · 4 = 72. On the other hand, the maximum
number of errors such that a codeword can still be decoded
correctly is 17 · 7 + 301 · 3 = 1, 022. When used in a
well-formed secure sketch as required for the robust fuzzy
extractor constructions from [2] and [8], the number of
correctable errors would have to be set to t=72. Hence,
such a construction would be impractical and considerably
worse than a non-concatenated code.

From an engineering perspective, it is tempting to ignore
the requirement of the proof that a well-formed secure
sketch is needed, and e.g. set t to the average or highest
number of correctable errors. While this violates the proof,
such a construction might still be secure considering that
no attack on such a construction is known. This scenario
is discussed in greater detail in the next section.

4 Helper data manipulation attack
In this section the general attack strategy for the new
helper data manipulation attacks is described, before some

specific attacks against specific error correction strategies
and implementations are introduced in the next Section.

4.1 Attack model
Recently, Delvaux et al. [3] introduced a helper data
manipulation attack on a soft-decision error-correction
strategy, in which modified helper data is sent to the
PUF-enabled device and the attacker observed whether
or not a decoding failure occurred. With each query the
attacker learns information about the PUF response and
can eventually reconstruct the entire response in a divide-
and-conquer-like fashion.

In this paper we consider that instead of a fuzzy
extractor an RFE-like construct is used. An RFE-like
construction is similar to the hash-based construction by
Boyen et al. [2], but neglects the distance check t (see
Figure 1). The RFE-like construction is tempting to use,
since it allows the use of concatenated codes. The RFE-
like construct prevents helper data manipulation attacks
as described above, since the key recovery always fails
if the attacker does not transmit a valid hash value h.
And without knowing the reconstructed PUF response w̄,
the attacker cannot compute a valid hash value ha for a
modified helper data sa.

The new attack strategy is therefore not to try to learn
the original PUF response w, but instead to try to set the
reconstructed PUF response w̄ to a value known by the
attacker. This, in turn, enables the attacker to compute
a valid hash value ha. Note that this also means that
the reconstructed key r̄ is known by the attacker, but
is not the same as the original key. Hence, the attacker
does not learn the original key r with such an attack.
Whether or not this is a reasonable attack goal depends on
the application the key is used for. For example, imaging
that the PUF-derived key is used to encrypt an externally
stored bitstream. In the helper data manipulation attack
from [3], the attacker would have learned the encryption
key of the bitstream. This would allow the attacker to both
decrypt the original bitstream as well as supply the device
with its own bitstream. In our helper data manipulation
attack scenario on the other hand the attacker would be
able to supply a different bitstream to the device but would
not be able to decrypt the original bitstream.

Other scenarios in which setting the key is a legitimate
attack goal is if the key is used for access control to the
device. In this case it is sufficient for the attacker to set a
new key without learning the old key as the main goal is
to get access to the device. If on the other hand the goal
is to create a software clone of a PUF device, e.g. because
it is used as an anti-counterfeiting mechanisms, setting a
key is not enough. In this case the original key is needed.

However, the presented helper data manipulation at-
tacks can also be extended from only setting a key to
additionally recovering the original key. When and how
this can be achieved is briefly discussed in Section 4.3. But
the focus of this paper is only to set the key to defeat the
security goal of a robust fuzzy extractor. The attacker’s
capability can be summarized as follows:

8

Attacker PUF device

Given: helper data s, with s = x⊕w Given: noisy PUF function, PUF() = w⊕ e

Choose attack vector ea such that
x̄a = decode(ci ⊕ ea), ∀ci ∈ Ca
with Ca ⊆ C and |Ca| maximized
sa = s⊕ ea

w̄a = sa ⊕ x̄a

ha = H1(sa, w̄a)
ra = H2(w̄a)

sa,ha−−−−−−−→
w′ = PUF() = w⊕ e
x′ = w′ ⊕ sa

= (w⊕ e)⊕ (w⊕ x⊕ ea) = x⊕ e⊕ ea

x̄ = decode(x′) = decode(x⊕ e⊕ ea)
w̄ = sa ⊕ x̄
h̄ = H1(sa, w̄)
IF h̄==ha set r̄ = H2(w̄) and status=‘ok’
ELSE set r̄ = ⊥ and status=‘error’

status←−−−−−−−

IF status==‘error’ repeat attack
ELSE success and ra == r̄ and w̄a == w̄

TABLE 3: General description of the new helper data manipulation attack on an RFE-like construct.

• Attacker’s goal:
– Make the PUF-enabled device reconstruct a key

r̄a that is known to the attacker (but which
differs from the original key r).

• Attacker’s capabilities:
– The attacker has read and write access to the

helper data (s and h)
– The attacker can verify if the predicted r̄a has

been reconstructed by the PUF device

4.2 New attack strategy

The main idea behind the new helper data manipulation
attack is to send modified helper data sa to the PUF-
enabled device such that during the recovery phase it de-
codes to a specific known codeword x̄a = decode(w′ ⊕ sa)
with a very high probability, independent of the PUF
response w′. This, in turn, implies that the PUF device
will recover a PUF response w̄a = s̄a ⊕ x̄a which the
attacker can predict with a high probability. The attacker
can then compute a valid hash value ha = H1(sa, w̄a). If
the attack succeeded, the PUF device and the attacker
then share a common key r̄a = H2(w̄a).

The entire attack is depicted in Table 3. The crucial
point is, whether or not the attacker is able to modify the
helper data s in a way that during the error-correction
phase the PUF device will decode towards the attacker’s
prediction x̄a with a high probability. Whether or not this
is possible strongly depends on i) the used error-correction
code and ii) the implementation of the error-correction
decoding. In the next section we will show some concrete
attacks on implementations of different error-correction
codes that have been proposed in the context of PUF-
based key storage.

4.3 Extending attack to extract original key
Depending on the applications and used error-correction
codes, it might be possible to not only set the key but
to also recover the key. In practice, often not a single
long code is used for the codeword x, but instead the
the codeword x actually consists of l smaller codewords
that are concatenated together. This is actually true for
all the codes we consider in our attack section. In this
case, an attacker can perform a helper data manipulation
attack that tries to set the codeword x̄ for l− 1 codeword
blocks but leaves one untouched. For the helper data
manipulation attack to succeed, the attacker then guesses
the unmodified codeword and tests the guess using the
appropriate w̄a to compute the hash ha. If the unmodified
code word has k bit of entropy, the attacker has in average
to guess 2k−1 times till he succeeds and can proceed to the
next codeword block. This way the attacker could learn the
entire original codeword x, and, hence, also the original
PUF response w = x ⊕ s and key r at the costs of an
increased attack complexity of l · 2k−1.

Note that this strategy also works, if only a fuzzy
extractor (as opposed to an RFE-like fuzzy extractor) is
used, as long as the attacker can verify if the recovered
key is the one he assumed it is. This greatly increases the
practical relevance of the attacks discussed in the next
section.

5 Example attacks
In this Section several attacks on popular error-correction
codes for PUF-based key generation are shown. In par-
ticular, several decoding strategies for Reed–Muller codes
are attacked, as well as soft-decision decoding and even-
numbered repetition decoding.

One of the most popular error-correction codes for PUF-
based key generation are Reed–Muller codes, which are for

9

example used in [1], [16], [18], [19], [21]. In the following,
we will show that different implementation strategies for
Reed–Muller codes exists that can be attacked using the
new helper data manipulation attack. For a successful
attack, we need to find an error pattern ea, such that
the decoding algorithm decodes the codeword x′ ⊕ ea to
the same codeword x̄a for most codewords x′. There are
several possible decoding strategies for Reed–Muller codes.
We consider three popular decoding strategies: soft- and
hard-decision maximum-likelihood decoding (SDML, ML),
soft-decision Generalized Multiple Concatenated codes
(GMC) decoding, and classic Reed decoding based on a
majority logic vote.

5.1 Attacking SDML decoding
The SDML decoding procedure simply consists of gener-
ating all possible codewords and returning the one with
the smallest Hamming distance to the received vector.
The key observation for our attack on SDML decoding
is that for some error vectors ea several codewords have
the same minimal Hamming distance. In this case always
the first or last tested codeword will be chosen in most
implementations7.

5.1.1 The noise free case
To provide a concrete example, let us look at a [16,5,8]
Reed–Muller code which contains 2k = 25 = 32 different
16-bit codewords xi. Let us denote the codeword x0 as the
codeword consisting of all-zeros x0 = [0, .., 0], and x1 =
[1, .., 1] the codeword consisting of all-ones. If we add the
following error vector ea = [0110101011000000] to xi then:

HD(x0,xi ⊕ ea) = 6 or HD(x1,xi ⊕ ea) = 6
and HD(xj ,xi ⊕ ea) = {6, 10} ∀ i, j ≥ 2

(7)

In this case, depending on the codeword xi, the
maximum-likelihood decoding always decodes to either x0
or x1 for attack vector ea. In particular, there are 16
codewords xi such x0 = decode(xi⊕ea) and 16 codewords
xi such that x1 = decode(xi⊕ea). Hence, by manipulating
the helper data with error vector ea, only one bit of
entropy remains from the original 5 bits of entropy in the
noise-free case.

For their PUF design, van der Leest et al. [16] proposed
to use 35 blocks of a concatenated code construction
consisting of a hard-in soft-out [7,1,7] repetition code as
an inner code and a [16,5,8] Reed–Muller code with SDML
decoding as an outer code to derive a 175-bit secret. Let
us first consider the noise free case. In order to defeat
the RFE-like construction, the attacker has to correctly
guess 35 blocks, i.e. predict 35 times the decoded codeword
x̄a correctly to be able to compute the correct hash h̄a
and key r̄a. After the helper data manipulation one bit
of entropy is left per block and a resulting entropy and
min-entropy of 35 bits all codeword blocks. One way to

7. It is also possible to choose a random codeword instead, in
which case the attack would not work. However, this is typically more
difficult to implement especially for hardware implementation.

reliability min-entropy entropy min-entropy
(per codeword) (per codeword) (per 175 bits)

soft-decision
100% 1.0 1.0 35.0
99% 2.0 3.6 69.6
98% 2.8 4.5 98.2
97% 3.4 4.8 118.5
96% 3.8 4.9 130.8
95% 4.0 4.9 138.8

hard-decision
100% 1.0 1.0 35.0
95% 1.0 1.0 35.0
90% 1.0 1.2 36.4
85% 1.2 1.8 41.1
80% 1.5 2.7 51.8

Without attack
– 5 5 175

TABLE 4: Top: Overview of helper data manipulation
attacks on a hard-in soft-out [7,1,7] repetition code in
conjunction with a [16,5,8] Reed–Muller code using soft-
decision SDML decoding. Bottom: hard-decision ML de-
coding of a concatenated [7,1,7] repetition code with a
[16,5,8] Reed–Muller code

interpret the min-entropy is that the success probability
for the most likely decoded codeword x̄a is 2−35. But it
should be noted, that testing a key requires the attacker to
send a manipulated helper data to the PUF device. Even
for an entropy of 35 bits the attack would be quite hard
to execute in practice, since the PUF would have to be
challenge around 235 times. But please also note that a
full bit-entropy of the PUF is assumed which in practice
might be reduced, e.g., due to a bias of response bits.

5.1.2 Impact of noise on the attack
In practice the PUF response w′ will be noisy and hence
a legitimate question is how well the attack works in the
presence of noise. To evaluate this question, we performed
following analysis. In a first step, 100,000 random binary
response strings are generated in MATLAB and the cor-
responding helper data for the code-offset construction
and the error correction code are computed. Then each
response is flipped with probability 1 − p to simulate
noise (i.e. we use the naive homogeneous noise model in
which each response bit has the same failure probability).
The helper data is manipulated according to the attack
strategy. The noisy responses and the modified helper data
are passed to the Rec algorithm and the decoded responses
are stored. Based on this analysis, the probability that
a decoding to a certain response w̄i occurs is computed,
which in turn allows us to compute the min-entropy and
entropy of the recovered response w̄ in the presence of
the attack. One thing to consider is that to estimate the
required error-correction capacity of a code the worst-case
PUF reliability under environmental conditions is used.
But during an attack the environmental conditions can be
kept constant to reduce the noise to a minimum. There-
fore, the reliability during an attack is considerably higher
than the worst-case reliability used to select the code. For
SRAM PUFs for example, reliability values around 96-98%
are not uncommon when the environmental conditions are

10

kept constant while their worst case reliably can be easily
10% worse [23].

The top of Table 4 shows the results for the attack on
the SDML construction from [16] while the bottom shows
the same attack for hard-decision maximum likelihood
decoding as proposed in [1]. The attack on soft-decision
decoding quickly becomes very difficult to perform in the
presence of noise. Even with a reliability of 99%, the
min-entropy within a 175-bit block is only reduced to
69.6. However, when hard-decision maximum likelihood
decoding is used, the attack is very resistant to noise. This
is due to the fact that the inner repetition code corrects
most of the noise. In this case the min-entropy of a 175-
bit block is only slightly increased from 35 to 36.4 for a
reduction of the PUF reliability to 90%. This shows that
helper data manipulation attacks are not restricted to soft-
decision decoding. Hard-decision decoding can actually be
easier to attack in some cases.

5.2 Attacking GMC decoding
Another popular decoding algorithm for Reed–Muller
codes is the Generalized Multiple Concatenated code
(GMC) decoding [22]. It is, e.g., used in [19] and [21]
in conjunction with PUF-based key generation. The main
idea of this soft-decision decoding algorithm is to treat the
Reed–Muller code as a concatenation of multiple smaller
codes, and recursively decode these codes. The smallest
code that is decoded is simply a repetition code, which
has a very low decoding complexity. The algorithm can
be used as a soft-decision decoder, and with some slight
modifications also supports erasures. We implemented the
GMC decoding in MATLAB as a target implementation.
Again, the [16,5,8] Reed–Muller code was used and an
error pattern for a helper data manipulation attack was
found by simply testing all 216 possible error pattern.
It turned out that the helper data manipulation attack
on our GMC decoding implementation is actually more
powerful than the one on SDML decoding.

For the noise-free case, our GMC implementation al-
ways decodes to the same codeword when supplied with
following error vector ea = [0000001011001010], i.e.:

x0 = decode(xi ⊕ ea) ∀xi ∈ C (8)

Hence, the resulting entropy is zero, since always x0
is decoded. The attack complexity for a [7,1,7] hard-in
soft-out repetition code as an inner code in conjunction
with the tested soft-decision GMC [16, 5, 8] Reed–Muller
implementation for different error rates is summarized in
Table 5. For a noise level of 98% the attack complexity
is quite reasonable and, hence, the attack can be consid-
ered practical. However, for larger noise levels the attack
complexity increases significantly.

5.3 Attacking Reed decoding
Another decoding algorithm considered in this paper is
the classic hard-decision Reed decoding based on major-
ity logic. For this purpose we took a publicly available

reliability min-entropy entropy min-entropy
(per codeword) (per codeword) (per 175 bits)

100% 0 0 0
99% 0.4 2.2 14.4
98% 0.9 3.7 31.3
97% 1.4 4.5 49.2
96% 1.9 5.0 66.6
95% 2.4 5.2 82.7

Without attack
– 5 5 175

TABLE 5: Overview of helper data manipulation attacks
on a hard-in soft-out [7,1,7] repetition code in conjunction
with a [16,5,8] Reed–Muller code using soft-decision GMC
decoding.

reliability min-entropy entropy min-entropy
(per codeword) (per codeword) (per 175 bits)

100% 0.2 0.5 6.8
95% 0.2 0.6 6.8
90% 0.2 0.7 7.4
85% 0.3 1.3 11.0

Without attack
– 5 5 175

TABLE 6: Results of helper data manipulation attacks
on a hard-decision [7, 1, 7] repetition code in conjunction
with a [16, 5, 8] Reed–Muller code using classic majority
decoding.

MATLAB implementation of a Reed–Muller majority logic
decoding and again searched for an error vector suitable
for a helper data manipulation attack. The attack vector
we found was actually better than for the SDML decoding
but slightly worse than GMC decoding. For error vector
ea = [1001011000000000] the implementation we used
decoded to the all-zero codeword x0 for 28 of the 32
codewords xi. The four codewords that did not decode
to x0 decoded to the bit vector consisting of all zeros
besides the least significant bit which was a one. Hence,
in the noise-free case, a min-entropy of 28/32 = 0.2 is
achieved per block. However, when considering noise the
helper data manipulation attack on classic hard-decision
Reed decoding actually exhibits the best performance
amongst all considered concatenated codes. This is once
again due to the fact that the inner repetition code corrects
most of the noise. If we use a [7,1,7] repetition code in
conjunction with a [16, 5, 8] Reed–Muller code even with a
PUF reliability of only 85% the attack complexity is in the
order of 211. The results of our attack on the concatenated
construction can be found in Table 6.

For comparison, Figure 3 shows the development of the
min-entropy of this attack when only a single Reed–Muller
code is being used. Without the inner repetition coding,
the attack would be considerably more difficult in a noisy
environment.

5.4 Attacks on soft-decision and even-numbered rep-
etition codes
Maes et al. were the first to propose soft-decision decoding
for PUFs in 2009 [18]. They proposed to derive a reliability
value for each PUF bit by querying the PUF multiple times

11

Fig. 3: The resulting entropy and min-entropy for a helper
data manipulation attack on a [16,5,8] Reed–Muller code
with classic Reed decoding based on majority logic. Note
that the information content of a [16, 5, 8] Reed–Muller
code is 5 bits, i.e., without the attack the entropy and
min-entropy would be 5.

during the setup phase. This reliability vector p is then
stored and provided as additional helper data to a soft-
decision error correction code. Hence, in their scheme a
second helper data string p is provided to the PUF device
in addition to the helper data s.
Such a soft-decision error-correction code was used by

Delvaux et al. [3] to demonstrate their helper data ma-
nipulation attack on a fuzzy extractor-like construct(the
soft-decision helper data algorithm [18] is not a fuzzy
extractor as no bound on the min-entropy loss is provided).
The attack is based on the fact that, if the probability
p is set to exactly 0.5, then the corresponding bit will
essentially be ignored during the soft-decision decoding.
The authors showed a divide-and-conquer manipulation
attack using SDML decoding of a simple [7, 4, 3] BCH
code as an example. The idea is to set pi = 0.5 for some
bits and observe if a decoding failure occurs. With each
error pattern, the attacker recovers information about the
codeword, until only one possible codeword remains. This
attack idea is illustrated in Figure 4 [3].
While the divide-and-conquer approach is very efficient

for fuzzy extractors, the RFE-like construction prevents
this type of helper data manipulation attack, as it will
always return a decoding failure unless a valid hash h̄a
is supplied. However, applying the new attack strategy
is straightforward for such a soft-decision decoding al-
gorithm. As also observed in [3], by setting all values
to pa = (0.5, .., 0.5) in repetition codes, the codeword
corresponding to 1 is equally likely than the codeword
corresponding to 0. In this case, the decoder will decode
always to either 1 or 0 depending on the implementation8.
Hence, by setting pa = (0.5, .., 0.5) for all codeword bits,
the response bits are all decoded to either 0 or 1.
Of great practical relevance is also that the same attack

works on even-numbered repetition codes, which have been
proposed as a hard-in soft out outer code e.g. in [16]. The
principle of a hard-in soft-out repetition code is fairly sim-
ple. The output is the Hamming weight of the codeword

8. Note that just like the previous attacks this attack strongly
depends on the implementations.

Fig. 4: Soft-decision manipulation attack for a [7,4,3] code
with SDML decoding, taken from [3]. It is assumed that
the first codeword is selected in case of a likelihood tie.

divided by the length of the codeword. The resulting value
is basically the probability that the corresponding message
bit is a 1. Three different constructions have been proposed
in [16] based on repetition codes in conjunction with either
Reed–Muller or Golay codes. Two of the proposals use an
even numbered repetition code, including a [8, 1, 8] hard-
in soft-out repetition code with a [24, 12, 8] soft-decision
Golay code. If we flip half of the bits in an [8,1,8] repetition
code, then a 0 and a 1 are equally likely and we basically
get pi = 0.5. In this case, the corresponding bit is decoded
to either always 0 or always 1 in most implementation
for the noise free case. Hence, by flipping half of the
bits of the helper data the attacker forces the decoded
codeword x̄a to be the all zero codeword. Note that for
an uneven numbered repetition code, such a helper data
manipulation attack is not possible.

5.4.1 Impact of noise
Of course, in the presence of noise the decoder might
decode to a different codeword depending on which bits
are noisy. To get a feeling how well such an attack would
work in practice, we simulated the attack for several error
rates and the [8,1,8] repetition code in conjunction with a
[24,12,8] Golay code and a soft-decision Hackett decoder.
In [16], 11 blocks of the concatenated code construction
are used to generate a key with an entropy of 132 bit.
Table 7 shows the result of the noise analysis based on the
same experimental setup as discussed before.

As one can see, if the PUF reliability is very high, e.g.
99%, the attack is very practical with a min-entropy per
codeword of 1.2 and a min-entropy for 132 bits of 12.9. One
way to interpret the min-entropy for 132 bits is that the
success probability of a helper data manipulation attack is
2−12.9 when the attacker chooses the most likely codeword
to compute h1. Hence, the min-entropy can be viewed

12

reliability min-entropy entropy min-entropy
(per codeword) (per codeword) (per 132 bits)

100% 0 0 0
99% 1.2 3.8 12.9
98% 2.0 6.1 22.4
97% 2.8 7.6 30.5
96% 3.4 8.7 37.9
95% 4.1 9.4 44.9

Without attack
– 12 12 132

TABLE 7: Result of a helper data manipulation attack on
a [8,1,8] hard-in soft-out repetition code as an outer code
and a [24,12,8] Golay code with a soft-decision Hackett
decoder for different noise levels.

as the attack complexity at least in case that the noise
is identically and independently distributed (which is not
necessarily true in practice, see [3]). For smaller reliability
values such as 95% the attacks become quite difficult to
perform in practice with a min-entropy of roughly 44.9.

6 Discussion
So far we have mainly presented negative results, i.e.,
showed that it is currently not possible to build a robust
fuzzy extractor that fulfills the security proof, and that
several practical error correction constructions are attack-
able. However, by no means does that mean that building
a provably secure fuzzy extractor is in general impossible.
What we need are new proofs and constructs.

6.1 Outlook: Secure decoding strategies
Looking forward, what is needed is a provably secure ro-
bust fuzzy extractor that works with efficient concatenated
code constructions to achieve the required error correction
rates. As a starting point, the hash-based construction
seems to be very promising, since it has considerably
better performance than the construction for the general
model proposed in [8]. The helper data manipulation
attacks discussed in Section 4 show that these attacks
strongly depend on the used error correction code, the
decoding strategy, as well as its implementation. But by no
means do our results show that any error correction code
or any implementation could be attacked using helper data
manipulation attacks! In particular, some error correction
codes have a very interesting property that makes them
secure against the helper data manipulation attacks from
Section 4.

Recall the syndrome decoding strategy from Definition 7,
where during decoding in the first step an error polynomial
ē is computed using the locate function, and in the second
step this error polynomial is XORed with the received
codeword x′. What is important for us is that there are
decoding strategies for BCH codes based on syndrome
decoding for which the following equation holds for all
codewords xi of the [n, k, 2t+ 1] code C:

ēj = locate
(
(xi ⊕ ej) ·HT

)
∀ xi ∈ C, ∀ ej ∈ {0, 1}n and ēj ∈ {0, 1}n

(9)

In other words, the error polynomial ēj is independent of
the codeword xi and only depends on the error polynomial
ej . While it is possible to flip specific bits of the decoded
codeword x̄ with a helper data manipulation attack, it is
not possible to set specific bits. The attacker can no longer
predict x̄ with an increased probability and can therefore
also not compute a hash value h̄a which the PUF device
will accept as valid. Hence, the helper data manipulation
attacks presented in this paper do not work any longer, if
a concatenated code construction is used in the RFE-like
construction for which Equation (9) holds.

It therefore seems, that it should be possible to build
secure robust fuzzy extractors, if the used error correction
codes fulfills Equation (9). However, note that we only
presented a security argument. Proving this in a more
formal setting would be very interesting, since this would
enable us to use a relaxed notion of correctness for robust
fuzzy extractors, similar as it has been proposed for fuzzy
extractors in [9]. This would allow the use of efficient
concatenated code constructions and possibly even soft-
decision decoding. But it is important to note that this
way not a specific error-correction code construct can be
shown to be provably secure. Instead, only specific error
correction strategies could be proven to be secure. In
other words, using a BCH code does not guarantee that
the implemented decoding strategy indeed fulfills Equa-
tion (9). To give an example, consider an [n, k, 2t+1] BCH
code with a small k. The typical decoding strategy for a
BCH code is syndrome decoding. But for codes with a
small k, maximum-likelihood decoding can be used as well
and might be very efficient, especially in hardware imple-
mentations. However, for maximum-likelihood decoding
Equation (9) does not hold and helper data manipulation
attacks are possible (see the attack in Section 5.1).

Another important, but difficult, aspect is the remaining
min-entropy for concatenated codes if the PUF response
w does not have full bit entropy. While there is a clear
upper bound on the entropy loss in fuzzy extractors [10],
using this bound makes building fuzzy extractors very
challenging [15]. In [17], [4] a more in-depth discussion
regarding this aspect is presented, including a considerably
tighter bound than the one assumed in [15]. In how far the
presented attacks can be improved by incorporating such
reductions in the PUF response entropy is an interesting
research question.

6.2 Random oracle model vs general model
From a practical perspective, the first robust fuzzy extrac-
tor proposal by Boyen et al. [2] based on hash functions
is very compelling, since it only requires a hash function
which needs to be implemented for the fuzzy extractor
anyway. Furthermore, it is very straightforward and easy
to implement and to understand. The fact that it is “only”
secure in the random oracle model is not seen as a big
problem from a practical perspective. To put it bluntly,
hardware security engineers have much bigger problems
than the assumptions in the random oracle model. For

13

example, in practice it is typically impossible to determine
the exact entropy within a PUF or a biometric reading.
The best we can usually do is perform measurements
and simulations and approximate the entropy based on
some assumptions. However, this will never be hundred
percent accurate and proving that the made assumptions
are correct extremely challenging, if not impossible, unless
very loose bounds are used. Therefore sacrificing nearly
half of the entropy so that the system is also provably
secure in the standard model does not really make sense
from a practical perspective. As a result, the construction
by Dodis et al. [8] that is provably secure in the general
model has basically been ignored by the PUF community.
It should also be noted that the problem of robust fuzzy
extractors in general has been largely neglected by the
PUF community. Usually, the need of security against an
active attacker is acknowledged, but this is typically only
followed by the remark that in this case hash-based robust
fuzzy extractor construction should be used. However, it
appears that the details of the proofs and definitions of
the robust fuzzy extractor have not been really considered.
Therefore, the fact that it is actually not possible to extend
the popular fuzzy extractor constructions to robust fuzzy
extractors has not been discussed.

From a theoretical perspective, the construction that is
secure in the general model is more compelling since it
has less assumptions. The construction for the standard
model therefore has gained much more attention in theory
oriented papers [14], [7]. However, the fact that the small
error correction rate of robust fuzzy extractors is actually
the most limiting factor for a provable, as well as practical,
robust fuzzy extractor has not been identified. Coming
up with a provably secure robust fuzzy extractor with a
relaxed notion of correctness (i.e., based on a non well-
formed secure sketch) would have a big practical impact,
even if it is proven in a weaker security model than the
random oracle model or general model.

7 Conclusion
This work shows that i) currently no robust fuzzy extrac-
tor construction exists that fulfills the security proof of
Boyen et al. [2] while also achieving the required error cor-
rection rates for PUF based key generation, and ii) many
implementations of decoding algorithms for error correc-
tion codes used in PUF-based key generation schemes
are susceptible to helper data manipulation attacks, even
when they are used in a fuzzy extractor setting with an
additional hash value check against modifications. Please
note that these attacks only work when the distance check
t that is required in the construction of Boyen et al. is
ignored. Hence, these attacks do not invalidate the results
of Boyen et al. , but instead highlight that simply ignoring
the check, as it seems to be the suggested in many practice
oriented papers, is not a valid solution.

Hence, our results show that the problem of building
robust fuzzy extractors is actually not solved yet. Our
attack on the widely used Reed–Muller decoding shows

that there is a great need to build robust fuzzy extractors,
that are secure against helper data manipulation attacks.
While this paper mainly presented negative results and
attacks, this does not mean that building secure robust
fuzzy extractors is a lost cause: By considering specific
decoding strategies it seems that it should be possible to
build both (provably) secure and practical robust fuzzy
extractor. However, for this a combined effort of both
practitioners, as well as theorist, is needed.

References
[1] Bösch, C., Guajardo, J., Sadeghi, A.R., Shokrollahi, J., Tuyls,

P.: Efficient helper data key extractor on FPGAs. In: CHES
2008, LNCS, vol. 5154, pp. 181–197. Springer (2008)

[2] Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure
remote authentication using biometric data. In: Advances in
cryptology–EUROCRYPT 2005, pp. 147–163. Springer (2005)

[3] Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Helper
data algorithms for PUF-based key generation: overview and
analysis. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 34(6), 889–902 (2015)

[4] Delvaux, J., Gu, D., Verbauwhede, I., Hiller, M., Yu, M.D.M.:
Efficient fuzzy extraction of PUF-induced secrets: Theory and
applications. In: CHES 2016. LNCS, Springer (2016)

[5] Delvaux, J., Verbauwhede, I.: Attacking PUF-based pattern
matching key generators via helper data manipulation. In: Cryp-
tographers Track at the RSA Conference (CT-RSA). pp. 106–
131. Springer (2014)

[6] Delvaux, J., Verbauwhede, I.: Key-recovery attacks on various
RO PUF constructions via helper data manipulation. In: Pro-
ceedings of the conference on Design, Automation & Test in
Europe - DATE 2014. p. 72. European Design and Automation
Association (2014)

[7] Dodis, Y., Kanukurthi, B., Katz, J., Reyzin, L., Smith, A.:
Robust fuzzy extractors and authenticated key agreement from
close secrets. IEEE Transactions on Information Theory 58(9),
6207–6222 (2012)

[8] Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy ex-
tractors and authenticated key agreement from close secrets.
In: Annual International Cryptology Conference. pp. 232–250.
Springer (2006)

[9] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extrac-
tors: How to generate strong keys from biometrics and other
noisy data. SIAM journal on computing 38(1), 97–139 (2008)

[10] Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. In:
Eurocrypt 2004. LNCS, vol. 3027, pp. 523–540. Springer (2004)

[11] Dodis, Y.e.H.t.g.s.k.f.b., other noisy data, Reyzin, L., Smith, A.:
Fuzzy Extractors, pp. 79–99. Springer London, London (2007),
https://doi.org/10.1007/978-1-84628-984-2_5

[12] Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Physical
unclonable functions and public-key crypto for FPGA IP protec-
tion. In: Field Programmable Logic and Applications, 2007. FPL
2007. International Conference on. pp. 189–195. IEEE (2007)

[13] Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In:
Proceedings of the 6th ACM conference on Computer and
communications security. pp. 28–36. ACM (1999)

[14] Kanukurthi, B., Reyzin, L.: An improved robust fuzzy extractor.
In: International Conference on Security and Cryptography for
Networks. pp. 156–171. Springer (2008)

[15] Koeberl, P., Li, J., Rajan, A., Wu, W.: Entropy loss in PUF-
based key generation schemes: The repetition code pitfall. In:
HOST 2014. pp. 44–49. IEEE (2014)

[16] van der Leest, V., Preneel, B., van der Sluis, E.: Soft decision
error correction for compact memory-based PUFs using a single
enrollment. In: CHES 2012, LNCS, vol. 7428, pp. 268–282.
Springer (2012)

[17] Maes, R., van der Leest, V., van der Sluis, E., Willems, F.:
Secure key generation from biased PUFs. In: CHES 2015, pp.
517–534. LNCS, Springer (2015)

[18] Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implemen-
tation of a soft decision helper data algorithm for SRAM PUFs.
In: CHES 2009, LNCS, vol. 5747, pp. 332–347. Springer (2009)

14

[19] Maes, R., Tuyls, P., Verbauwhede, I.: A soft decision helper data
algorithm for SRAM PUFs. In: IEEE International Symposium
on Information Theory – ISIT 2009. pp. 2101–2105. IEEE (2009)

[20] Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: A fully
functional PUF-based cryptographic key generator. In: CHES
2012, LNCS, vol. 7428, pp. 302–319. Springer (2012)

[21] Puchinger, S., Müelich, S., Bossert, M., Hiller, M., Sigl, G.: On
error correction for physical unclonable functions. In: SCC 2015;
10th International ITG Conference on Systems, Communica-
tions and Coding; Proceedings of. pp. 1–6. VDE (2015)

[22] Schnabl, G., Bossert, M.: Soft-decision decoding of Reed-Muller
codes as generalized multiple concatenated codes. IEEE Trans-
actions on Information Theory 41(1), 304–308 (1995)

[23] Schrijen, G.J., van der Leest, V.: Comparative analysis of SRAM
memories used as PUF primitives. In: Proceedings of the Confer-
ence on Design, Automation and Test in Europe. pp. 1319–1324.
EDA Consortium (2012)

[24] Suh, G.E., O’Donnell, C.W., Sachdev, I., Devadas, S.: Design
and implementation of the AEGIS single-chip secure processor
using physical random functions. In: 32nd International Sym-
posium on Computer Architecture (ISCA’05). pp. 25–36 (June
2005)

[25] Yu, M.M., Sowell, R., Singh, A., M’Raïhi, D., Devadas, S.: Per-
formance metrics and empirical results of a PUF cryptographic
key generation ASIC. In: HOST 2012. pp. 108–115. IEEE (2012)

Appendix
Security bound for the general construction from Dodis et
al.

Theorem 2: Security Bound for the general construct
from Dodis et al. [7] :
A binary linear [n, k, 2t+ 1] code used in a robust sketch
as defined in [7] that does not fulfill the following bound is
not provably secure according to the proof provided in [7]:

k

2 ≥ log
(t∑
i=1

(
n

i

))
+log

(
2
⌈

k

n− k
+ 2
⌉)
−1 (10)

Proof: Our Theorem is based on Theorem 3 from [7]. In [7]
slightly different notions are used than in this paper and
the paper from Boyen [2]. In particular the new notion
of pre- and post-application robustness is introduced. We
will not discuss these definitions and refer the interested
reader to [7]. A few variables used in Theorem 3 [7] can
be confusing since we use them differently in this paper
and therefore we marked variables from Theorem 3 [7]
that have a different meaning in this paper with a tilde.
Furthermore, v is denoted in [7] with B. In Theorem 3
from [7] it is stated that for any ε, δ satisfying

l ≤ 2m− n− k̃ − 2 ·max
{
log(v) + log

(
2
⌈
n−k̃
k̃

+ 2
⌉)

+log
(

1
δ̃

)
, 2log

(
1
ε̃

)}
(11)

(Gen,Rec) is an (m, l, t, ε̃)- fuzzy extractor for M with
pre-application robustness δ̃. The pre-application robust-
ness is basically the chance that an active attacker can
perform a helper data manipulation attack while ε̃ is the
success probability of a passive attacker. Hence, ε = δ̃
as we denoted the attack probability of an active attacker
with ε in this paper. For a linear [n, k, 2t−1] code k̃ = n−k
and the maximum possible entropy m is m = n. The
variable l is the length of the resulting key in bits. We are
again interested in an impossibility result that shows that

codes not fulfilling the bound cannot be secure (but again
fulfilling the bound does not necessarily mean the robust
fuzzy extractor is secure). One can bound the attackers
success probability ε with:

l ≤ 2m− n− k̃ − 2(log(v) + log

(
2
⌈
n−k̃
k̃

+ 2
⌉)

+log
(

1
ε

)
l
2 ≤

k
2 − log

(∑t
i=1
(
n
i

))
−log

(
2
⌈

k
n−k + 2

⌉)
+log(ε)

log(ε) ≥ log
(∑t

i=1
(
n
i

))
+log

(
2
⌈

k
n−k + 2

⌉)
−k2 −

l
2

(12)

Since l ≥ 1 and ε ≤ 1 we can define the following bound
that needs to be fulfilled:

log(1) ≥ log(ε) ≥ log
(∑t

i=1
(
n
i

))
+log

(
2
⌈

k
n−k + 2

⌉)
−k2 −

l
2

k
2 ≥ log

(∑t
i=1
(
n
i

))
+log

(
2
⌈

k
n−k + 2

⌉)
− 1

2

�

(13)

Dr. Georg T. Becker is a senior researcher
at the Digital Society Institute (DSI) at the
ESMT Berlin. Before joining the DSI in Decem-
ber 2016 he was a Post-Doc in the Embedded
Security Group at the Horst Görtz Institute for
IT-Security at the Ruhr Universität Bochum.
His primary research interest is IT-security with
special focus on hardware security with topics
such as hardware Trojans, Physical Unclonable
Functions (PUFs) and side-channel analysis. He
received his Ph.D. in Electrical and Computer

Engineering at the University of Massachusetts Amherst in 2014 and
holds a M.Sc. degree in IT-Security (2009) and a B.Sc. degree in Applied
Computer Science (2007) from the Ruhr Universität Bochum.

