
Snarky Signatures:
Minimal Signatures of Knowledge from

Simulation-Extractable SNARKs

Jens Groth? and Mary Maller??

University College London
{j.groth, mary.maller.15}@ucl.ac.uk

Abstract. We construct a pairing-based simulation-extractable succinct non-interactive argu-
ment of knowledge (SE-SNARK) that consists of only 3 group elements and has highly efficient
verification. By formally linking SE-SNARKs to signatures of knowledge, we then obtain a
succinct signature of knowledge consisting of only 3 group elements.
SE-SNARKs enable a prover to give a proof that they know a witness to an instance in a
manner which is: (1) succinct - proofs are short and verifier computation is small; (2) zero-
knowledge - proofs do not reveal the witness; (3) simulation-extractable - it is only possible to
prove instances to which you know a witness, even when you have already seen a number of
simulated proofs.
We also prove that any pairing-based signature of knowledge or SE-SNARK must have at least 3
group elements and 2 verification equations. Since our constructions match these lower bounds,
we have the smallest size signature of knowledge and the smallest size SE-SNARK possible.

Keywords. Signature of knowledge, SNARK, non-interactive zero-knowledge proof, simulation-
extractability.

1 Introduction

Non-interactive zero-knowledge (NIZK) arguments enable a prover to convince a verifier that
they know a witness to an instance being member of a language in NP, whilst revealing no
information about this witness. Recent works have looked into building NIZK arguments
that are efficient enough to use in scenarios where a large number of proofs need to be stored
and where verifiers have limited computational resources. Such arguments are called suc-
cinct NIZK arguments, or zk-SNARKs (zero-knowledge succinct non-interactive arguments
of knowledge). A weakness of zk-SNARKs is that they are, currently without exception,
susceptible to man-in-the-middle attacks where the adversary can modify a zk-SNARK into
a new one. As a result, any application intending to use zk-SNARKs where malleability is
a concern has to take additional measures to ensure security e.g. signing the instance and
proof. Conversely, schemes that do not require succinctness can take advantage of a primitive
called signatures of knowledge (SoKs).

Signatures of knowledge [CS97,CL06] generalise signatures by replacing the public verifi-
cation key with an instance in an NP-language. A signer who holds a witness for the instance
can create signatures, and somebody who does not know a witness for the instance cannot
sign. SoKs should not reveal the witness, since this would enable others to sign with respect
to the same witness. Chase and Lysyanskaya [CL06] therefore define signatures of knowledge

? The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 307937

?? Supported by a scholarship from Microsoft Research

to be simulatable: if you have a trapdoor associated with some public parameters, you can
simulate the signature without the witness, and hence the signature cannot be disclosing
information about the witness. Moreover, in the spirit of strong existential unforgeability for
digital signatures, we want it to be the case that even after seeing many signatures under
different instances, it should still not be possible to create a new signature unless you know
a witness. Chase and Lysyanskaya capture this property through the notion of simulation-
extractability where you may obtain arbitrary simulated signatures, but still not create a
new signature not seen before unless you know the witness for the instance.

Both zk-SNARKs and SoKs are key building blocks in numerous cryptographic appli-
cations, including but not limited to: ring signatures, group signatures, policy based signa-
tures, cryptocurrencies, anonymous delegatable credentials and direct anonymous attesta-
tion [DS16,BCK+14] [BF14,MGGR13,BFG13a].

Our contribution. We construct a succinct simulation-extractable NIZK argument, or
an SE-SNARK. Our construction is pairing-based. Given three groups with a bilinear map
e : G1 × G2 7→ GT , our proofs consist of only 3 group elements from the source groups: 2
from G1 and 1 from G2. The proofs also have fast verification with verifiers needing to check
just 2 pairing product equations.

By exploiting the link between SoKs and SE-NIZK arguments, we show that our con-
struction also yields a succinct SoK. We formally define the notions of succinct SoKs and
SE-NIZK arguments. Then we construct SoKs from SE-NIZK arguments and also prove the
reverse implication that SoKs give rise to SE-NIZK arguments. Our SoK inherits the high
efficiency of our SE-NIZK argument, in particular that it consists of only 3 group elements.

We also prove a lower bound: a pairing-based SE-NIZK argument for a non-trivial lan-
guage in NP must have at least 2 verification equations and 3 group elements. Due to our
proof that any pairing-based SoK yields a pairing-based SE-NIZK (where the signature size
equals the proof size and the number of verification equations are equal), this lower bound
also applies to the signature size and the number of verification equations in SoKs. Our con-
structions are therefore optimal with respect to size and number of verification equations. We
note that the lower bound improves on previous lower bounds on standard NIZK arguments
by explicitly taking advantage of the simulation-extractability properties in the proof.

Our construction of an SE-SNARK compares well with the state of the art pairing-based
zk-SNARKs. Groth [Gro16] gave a 3 element zk-SNARK, however, it is not simulation-
extractable and it only has a proof of security in the generic group model. While we pay
a price in computational efficiency, our simulation-extractable SNARK matches the size
of Groth’s zk-SNARK. We also get comparable verification complexity and unlike Groth’s
zk-SNARK we give a security proof based on concrete intractability assumptions instead
of relying on the full generic group model. Ben-Sasson, Chiesa, Tromer, and Virza gave
an 8 element zk-SNARK which is also not simulation-extractable, however they do have
smaller prover computation [BSCTV14]. Compared to other pairing-based zk-SNARKs in
the literature we have both the simulation-extractability property and also better efficiency.
In Table 1 we give a comparison of our simulation-extractable SNARK with these prior
zk-SNARKs.

Our construction of a succinct signature of knowledge is the first in any computational
model. This reduces the size of the signatures, albeit at the expense of having more public
parameters. For applications where the public parameters need only be generated once, such
as DAA and anonymous cryptocurrencies, this can be advantageous. A comparison with the

2

Groth BCTV This work

CRS size
m+ 2n+ 3 G1

n+ 3 G2

6m+ n− ` G1

m G2

m+ 4n+ 5 G1

2n+ 3 G2

Proof size 2 G1, 1 G2 7 G1, 1 G2 2 G1, 1 G2

Prover computation
m+ 3n− `+ 3 E1

n+ 1 E2

6m+ n− ` E1

m E2

m+ 4n− ` E1

2n E2

Verifier computation ` E1, 3 P ` E1, 12 P ` E1, 5 P

Verification equations 1 5 2
Table 1. Comparison for arithmetic circuit satisfiability with ` element instance, m wires, n multiplication
gates. Since our work uses squarings gates, we have conservatively assumed n multiplication gates translate
to 2n squaring gates; if a circuit natively has many squaring gates our efficiency would therefore improve
compared to Groth and BCTV. Units: G means group elements, E means exponentiations and P means
pairings.

most efficient prior signature of knowledge by Bernhard, Fuchsbauer and Ghadafi [BFG13a] is
given in Table 2. The BFG scheme uses standard assumptions, as opposed to ours which uses
knowledge extractor assumptions. It is difficult to directly compare computational efficiency
since the languages are different; our work uses arithmetic circuits whereas the BFG scheme
uses satisfiability of a set of pairing product equations. Therefore, we get better efficiency
for arithmetic circuits and they get better efficiency for pairing product equations. However,
what is clear is that we make big efficiency gains in terms of the signature size and the
number of verification equations.

BFG This work

Public Parameters 10 + λ 8 + 6n+m

Signer Computation. Ω(|w|+ np) m+ 6n

Signature Size O(|w|+ np) 3

Verification Equations O(np) 2
Table 2. Comparison of signatures of knowledge schemes. We use m and n for the number of wires and
multiplication gates in our arithmetic curcuit, λ refers to the security parameter; |w| is the witness size and
np is the number of pairing product equations in BFG (one can translate an arithmetic circuit to pairing
product equations, in which case np = n). Size is measured in number of group elements and computation in
the number of exponentiations.

Techniques and challenges. Standard definitions of signatures of knowledge [CL06] and
simulation-extractable NIZK proofs [Gro06] assume the ability to encrypt the witness, which
can then be decrypted using a secret extraction key. However, since we are interested in
having succinct signatures and proofs, we do not have space to send a ciphertext. Instead
we give new definitions that use non-black-box extraction. Roughly, the definitions say that
given the signer’s or prover’s state it is possible to extract a witness if it succeds in creating
a valid signature or proof.

To formalise the close link between SoKs and SE-NIZK arguments, we illustrate how
to build a relation which includes the signature’s message as part of the instance to be
proved. Given an SE-NIZK for this relation, we build an SoK for the same relation only
without the message encoded. This SoK is built solely from a target collision-resistant hash
function and the SE-NIZK argument. The SoK is proven to be simulation-extractable directly

3

from the definition of simulation-extractability of the NIZK argument. Once this link has
been formalized, the rest of the paper focuses on how to build SE-SNARKs with optimum
efficiency.

Our SE-SNARK is pairing-based. The common reference string describes a bilinear group
and some group elements, the proofs consist of group elements, and the verifier checks that
the exponents of the proofs satisfy quadratic equations by calculating products of pairings.
The underlying relation is a square arithmetic program, which is a SNARK-friendly charac-
terisation of arithmetic circuits. Square arithmetic programs are closely related to quadratic
arithmetic programs [GGPR13], but use only squarings instead of arbitrary multiplications.
As suggested by Groth [Gro16] the use of squarings give nice symmetry properties, which in
our case makes it possible to check different parts of the proof against each other and hence
make it intractable for an adversary to modify them without knowing a witness.

The security of our construction is based on concrete intractability assumptions. For
standard knowledge soundness our strongest intractability assumption is similar to the power
knowledge of exponent assumption used in [DFGK14]. To go beyond knowledge soundness
to the stronger simulation-extractability property requires a stronger assumption, probably
unavoidably so. We formulate the eXtended Power Knowledge of Exponent (XPKE) assump-
tion, which assumes that an adversary cannot find elements in two source groups that have
a linear relationship between each other unless it already knows what this relationship is -
not even if it can query an oracle for functions of these exponents.

Finally, we rely on Groth’s [Gro16] definition of pairing-based non-interactive arguments
and rule out the existence of SE-NIZK arguments with 1 verification equation or 2 group
elements. Groth [Gro16] already ruled out 1 element NIZK arguments by exploiting that if
there is only one group element then the verification equations are linear in the exponents and
easy to fool. It is an open problem from [Gro16] whether regular NIZK arguments can have
2 group element proofs, a more difficult problem since a pairing of two group elements gives
rise to quadratic verification equations in the exponents. We show that in the case of SE-
NIZK arguments 2 group elements is not possible by leveraging the simulation-extractability
property to deal also with quadratic verification equations.

Related work. Signatures of knowledge are a core ingredient in many cryptographic proto-
cols. For example, [CF08,GT07,BFG+13b,BFG13a,YYQ+15,FXC09] are DAA schemes that
use SoKs. Anonymous cryptocurrencies can also be constructed using signatures of knowl-
edge, for example Zero-Coin [MGGR13]. In order to make sufficient efficiency gains so that
it could be deployed, the Zcash cryptocurrency [BCG+14] instead uses zk-SNARKs. To use
zk-SNARKs, Zcash has to take extra steps to avoid malleability (man-in-the-middle) attacks.
Specifically, Zcash samples a key pair for a one-time signature scheme; computes MACs to tie
the signing key to the identities secret keys; modifies the instance to include signature veri-
fying key and the MACs; and finally uses the signing key to sign the transaction. However,
the use of succinct SoKs for cryptocurrencies would yield the same, if not better, efficiency
as the use of zk-SNARKs and the resulting models would be simpler.

NIZK proofs originated with Blum, Feldman and Micali [BDSMP91,BFM88] and there
has been many works making both theoretical advances and efficiency improvements [FLS99]
[SP92,KP98,DSDCP00,Dam92,GO14,Gro10,GGI+15]. Groth, Ostrovsky and Sahai [GOS12]
proposed the first pairing-based NIZK proofs and subsequent works [Gro06,GS12] have
yielded efficient NIZK proofs that can be used in pairing-based protocols. NIZK proofs with
unconditional soundness need to be linear in the witness size. However, for NIZK arguments

4

with computational soundness it is possible to get succinct proofs that are smaller than the
size of the witness [Mic00,Kil95].

The practical improvements were accompanied by theoretical works on how SNARKs
compose [BSCTV14,Val08,BCCT13] and on the necessity of using strong cryptographic as-
sumptions when building SNARKs [AF07,GW11,BCI+13,BCPR13,BP14]. The latter works
give methods to take SNARKs with long common reference strings and build SNARKs with
common reference string size that is independent of the instance size, i.e., fully succinct
SNARKs. Using these techniques on our simulation-extractable SNARK, which has a long
common reference string, gives a fully succinct SE-SNARK.

Sahai [Sah99] introduced simulation-soundness of NIZK proofs as a notion to capture
that even after seeing simulated proofs it is not possible to create a fake proof for a false
instance unless copying a previous simulated proof. Combining this with proofs of knowledge,
Groth [Gro06] defined the even stronger security notion that we should be able to extract
a witness from an adversary that creates a valid new proof, even if this adversary has seen
many simulated proofs for arbitrary instances. Faust, Kohlweiss, Marson, and Venturi discuss
how to achieve simulation soundness in the random oracle model [FKMV12]. Kosba et al.
[PVW08] discuss how to lift any zk-SNARK into a simulation-extractable one, however they
do so by appending an encryption of the witness to the proof, so the result is no longer
succinct.

Camenisch [CS97] coined the term signatures of knowledge to capture zero-knowledge
protocols relying on techniques used in Schnorr signatures [Sch91]. Signatures of knowledge
have been used in many constructions albeit without a precise security definition. Chase
and Lysyanskaya [CL06] gave the first formal definition of signatures of knowledge. They
also broke the tight connection with Schnorr signatures and NIZK arguments based on
cyclic groups and the Fiat-shamir heuristic and instead provided a general construction from
simulation-sound NIZK proofs and dense public key encryption. An alternative definition of
signatures of knowledge was given by Fischlin and Onete [FO11] which requires witness
indistinguishability as opposed to full zero-knowledge.

2 Definitions

2.1 Notation

We write y ← S for sampling y uniformly at random from the set S. We write y ← A(x)
for a probabilistic algorithm on input x returning output y. When we want to be explicit
about running a probabilistic algorithm on random coins r, we write y = A(x; r). We use
the abbreviation PPT for probabilistic polynomial time algorithms. For an algorithm A we
define transA to be a list containing all of A’s inputs and outputs, including random coins.

When considering security of our cryptographic schemes, we will assume there is an
adversary A. The security of our schemes will be parameterised by a security parameter
λ ∈ N. The intuition is that the larger the security parameter, the better security we get. For
functions f, g : N→ [0; 1] we write f(λ) ≈ g(λ) if |f(λ)− g(λ)| = λ−ω(1). We say a function
f is negligible if f(λ) ≈ 0 and overwhelming if f(λ) ≈ 1. We will always implicitly assume
all participants and the adversary know the security parameter, i.e., from their input they
can efficiently compute the security parameter in unary representation 1λ.

We use games in security definitions and proofs. A game G has a number of procedures
including a main procedure. The main procedure outputs either 0 or 1 depending on whether
the adversary succeeds or not. Pr[G] denotes the probability that this output is 1.

5

2.2 Relations

Let R be a relation generator that given a security parameter λ in unary returns a polynomial
time decidable relation R← R(1λ). For (φ,w) ∈ R we call φ the instance and w the witness.
We define Rλ to be the set of possible relations R(1λ) might output.

2.3 Hard Decisional Problems

A relation R is sampleable if there are two algorithms, Yes and No such that:

– Yes samples instances and witnesses in the relation.
– No samples instances outside the language LR defined by the relation.

When proving our lower bounds for the efficiency of SE-NIZK arguments, we will assume
the existence of sampleable relations where it is hard to tell whether an instance φ has been
sampled by Yes or No.

Definition 2.1. Let R a relation generator, and let Yes, No be two PPT algorithms such
that for R ← R(1λ) we have Yes(R) → (φ,w) ∈ R and No(R) → φ 6∈ LR, and let A be an
adversary. Define AdvDPR,Yes,No,A(λ) = 2 Pr[GDPR,Yes,No,A(λ)]− 1 where GDPR,Yes,No,A(1λ) is given
by

main GDPR,Yes,No,A(λ)

R← R(1λ)
φ0 ← No(R); (φ1,w)← Yes(R)
b← {0, 1}
b′ ← A(R,φb)
return 1 if b = b′ and else return 0

We say Yes,No provide a hard decisional problem for R if for all PPT adversaries A,
AdvDPR,Yes,No,A(λ) ≈ 0.

2.4 Signatures of Knowledge

Signatures of knowledge [CL06] (SoKs) generalise digital signatures by replacing the public
key with an instance in a language in NP. If you have a witness for the instance, you can
sign a message. If you do not know a witness, then you cannot sign. The notion of SoKs
mimic digital signatures with strong existential unforgeability; even if you have seen many
signatures on arbitrary messages under arbitrary instances, you cannot create a new signature
not seen before without knowing the witness for the instance.

Signatures of knowledge are closely related to simulation-extractable NIZK arguments
and previous constructions have exploited the link between SoKs and NIZK proofs. In the fol-
lowing, we define signatures of knowledge, simulation-extractable NIZK arguments, and give
a formal proof that signatures of knowledge can be constructed from simulation-extractable
NIZK arguments. When we later in the article construct compact and easy to verify SE-NIZK
arguments, i.e., simulation-extractable SNARKs, we will therefore automatically obtain com-
pact and easy to verify SoKs.

For our definition of a simulation-extractable signature of knowledge, we follow the game
based definitions of Chase and Lysyanskaya [CL06]. However, Chase and Lysyanskaya define
their relations with respect to Turing Machines, whereas in our definitions the use of Turing
Machines is implicit in the relation generator. Another more important difference is that since
we want compact signatures, we give a non-black-box definition of simulation-extractability.

6

Definition 2.2. Let R be a relation generator and let {Mλ}λ∈N be a sequence of message
spaces. Then the quintet of efficient algorithms (SSetup,SSign, SVfy, SSimSetup,SSimSign)
is a signature of knowledge scheme for R and {Mλ}λ∈N if it is correct, simulatable and
simulation-extractable (defined below) and works as follows:

– pp← SSetup(R): the setup algorithm is a PPT algorithm which takes as input a relation
R ∈ Rλ and returns public parameters pp.

– σ ← SSign(pp,φ,w,m): the signing algorithm is a PPT algorithm which takes as input
the public parameters, a pair (φ,w) ∈ R and a message m ∈Mλ and returns a signature
σ.

– 0/1 ← SVfy(pp,φ,m,σ): the verification algorithm is a deterministic polynomial time
algorithm, which takes as input some public parameters pp, an instance φ, a message
m ∈Mλ, and a signature σ and outputs either 0 (reject) or 1 (accept).

– (pp, τ)← SSimSetup(R) : the simulated setup algorithm is a PPT algorithm which takes
as input a relation R ∈ Rλ and returns public parameters pp and a trapdoor τ .

– σ ← SSimSign(pp, τ ,φ,m) : the simulated signing algorithm is a PPT algorithm which
takes as input some public parameters pp, a simulation trapdoor τ , and an instance φ
and returns a signature σ.

Perfect Correctness: A signer with a valid witness can always produce a signature that
will convince the verifier.

Definition 2.3. A signature of knowledge scheme is perfectly correct if for all λ ∈ N, for
all R ∈ Rλ, for all (φ,w) ∈ R, and for all m ∈Mλ

Pr[pp← SSetup(R);σ ← SSign(pp;φ,w,m) : SVfy(pp,φ,m,σ) = 1] = 1.

Perfect Simulatability: The verifier should learn nothing from a signature about the
witness that it did not already know. The secrecy of the witness is modelled by the ability to
simulate signatures without the witness. More precisely, we say the signatures of knowledge
are simulatable if there is a simulator that can create good looking public parameters and
signatures without the witness.

Definition 2.4. For a signature of knowledge SoK, define Advsimul
SoK,A(λ) = 2 Pr[Gsimul

SoK,A(λ)]−
1 where the game Gsimul

SoK,A is defined as follows

main Gsimul
SoK,A(λ)

R← R(1λ)
pp0 ← SSetup(R)
(pp1, τ)← SSimSetup(R)
b← {0, 1}
b′ ← ASbppb,τ (ppb)
return 1 if b = b′ and return 0 otherwise

S0
pp0,τ

(φi,wi,mi) 00000000000000 S1
pp1,τ

(φi,wi,mi)

assert (φi,wi) ∈ R ∧ mi ∈Mλ assert (φi,wi) ∈ R ∧ mi ∈Mλ

σi ← SSign(pp0,φ,w,m) σi ← SSimSign(pp1, τ ,φ,m)
return σi return σi

7

A signature of knowledge SoK is called perfectly simulatable if for any PPT adversary A,
Advsimul

SoK,A(λ) = 0.

Simulation-Extractability: An adversary should not be able to issue a new signature
unless it knows a witness. This should hold even if the adversary gets to see signatures on
arbitrary messages under arbitrary instances. We model this notion in a strong sense, by
letting the adversary see simulated signatures for arbitrary messages and instances, which
potentially includes false instances. Even under this strong attack model, we require that
whenever the adversary outputs a valid signature not seen before, it is possible to extract a
witness for the instance if you have access to the internal data of the adversary.

Definition 2.5. For a signature of knowledge SoK, let Advsig-ext
SoK,A,χA

(λ) = Pr[Gsig-ext
SoK,A,χA

(λ)]

where the game Gsig-ext
SoK,A,χA

is defined as follows

main Gsig-ext
SoK,A,χA

(λ)

R← R(1λ); Q = ∅
(pp, τ)← SSimSetup(R)

(φ,m,σ)← ASSimSignpp,τ (pp)
w ← χA(transA)
assert (φ,w) 6∈ R
assert (φ,m,σ) 6∈ Q
return SVfy(pp,φ,m,σ)

....

SSimSignpp,τ (φi,mi)

σi ← SSimSign(pp, τ ,φi,mi)
Q = Q ∪ {(φi,mi,σi)}
return σi

A signature of knowledge SoK is simulation-extractable if for any PPT adversary A, there
exists a PPT extractor χA such that Advsig-ext

SoK,A,χA
(λ) ≈ 0.

2.5 Non-interactive Zero-Knowledge Arguments of Knowledge

Definition 2.6. Let R be a relation generator. A NIZK argument for R is a quadruple of
algorithms (ZSetup,ZProve,ZVfy,ZSimProve), which is complete, zero-knowledge and knowl-
edge sound (defined below) and works as follows:

– (crs, τ) ← ZSetup(R): the setup algorithm is a PPT algorithm which takes as input a
relation R ∈ Rλ and returns a common reference string crs and a simulation trapdoor
τ .

– π ← ZProve(crs,φ,w): the prover algorithm is a PPT algorithm which takes as input a
common reference string crs for a relation R and (φ,w) ∈ R and returns a proof π.

– 0/1← ZVfy(crs,φ,π): the verifier algorithm is a deterministic polynomial time algorithm
which takes as input a common reference string crs, an instance φ and a proof π and
returns 0 (reject) or 1 (accept).

– π ← ZSimProve(crs, τ ,φ): the simulator is a PPT algorithm which takes as input a
common reference string crs, a simulation trapdoor τ and an instance φ and returns a
proof π.

Perfect Completeness: Perfect completeness says that given a true statement, a prover
with a witness can convince the verifier.

Definition 2.7. (ZSetup,ZProve,ZVfy,ZSimProve) is a perfectly complete argument system
for R if for all λ ∈ N, for all R ∈ Rλ and for all (φ,w) ∈ R :

Pr
[
(crs, τ)← ZSetup(R);π ← ZProve(crs,φ,w) : ZVfy(crs,φ,π) = 1

]
= 1.

8

Note that the simulation trapdoor τ is kept secret and is not known to either prover or
verifier in normal use of the NIZK argument, but it enables the simulation of proofs when
we define zero-knowledge below.

Perfect Zero-Knowledge: An argument system has perfect zero-knowledge if it does not
leak any information besides the truth of the instance. This is modelled a simulator that
does not know the witness but has some trapdoor information that enables it to simulate
proofs.

Definition 2.8. For Arg = (ZSetup,ZProve,ZVfy,ZSimProve) an argument system, define
Advzk

Arg,A(λ) = 2 Pr[Gzk
Arg,A(λ)]− 1 where the game Gzk

Arg,A is defined as follows

main Gzk
Arg,A(λ)

R← R(1λ)
(crs, τ)← ZSetup(R)
b← {0, 1}
b′ ← AP bcrs,τ (crs)
return 1 if b = b′ and return 0 otherwise

P 0
crs,τ (φi,wi) 00000000000000 P 1

crs,τ (φi,wi)

assert (φi,wi) ∈ R assert (φi,wi) ∈ R
πi ← ZProve(crs,φ,w) πi ← ZSimProve(crs, τ ,φ)
return πi return πi

The argument system Arg is perfectly zero knowledge if all PPT adversaries A, Advzk
Arg,A(λ)

= 0.

Computational Knowledge Soundness: An argument system is computationally knowl-
edge sound if whenever somebody produces a valid argument it is possible to extract a valid
witness from their internal data.

Definition 2.9. For Arg = (ZSetup,ZProve,ZVfy,ZSimProve) an argument system, define
Advsound

Arg,A,χA(λ) = Pr[Gsound
Arg,A,χA

(λ)] where the game Gsound
Arg,A,χA

is defined as follows

main Gsound
Arg,A,χA

(λ)

R← R(1λ)
(crs, τ)← ZSetup(R)
(φ,π)← A(crs)
w ← χA(transA)
assert (φ,w) 6∈ R
return ZVfy(crs,φ,π)

An argument system Arg is computationally knowledge sound if for any PPT adversary A,
there exists a PPT extractor χA such that Advsound

Arg,A,χA(λ) ≈ 0.

Simulation-Extractability: Zero-knowledge and soundness are core security properties of
NIZK arguments. However, it is conceivable that an adversary that sees a simulated proof for
a false instance might modify the proof into another proof for a false instance. This scenario

9

is actually very common in security proofs for cryptographic schemes, so it is often desirable
to have some form of non-malleability that prevents cheating in the presence of simulated
proofs.

Traditionally, simulation-extractability is defined with respect to a decryption key as-
sociated with the common reference string that allows the extraction of a witness from a
valid proof. However, in succinct NIZK arguments the proofs are too small to encode the
full witness. We will therefore instead define simulation-extractable NIZK arguments using a
non-black-box extractor that can deduce the witness from the internal data of the adversary.

Definition 2.10. Let Arg = (ZSetup,ZProve,ZVfy,ZSimProve) be a NIZK argument for R.

Define Advproof-ext
Arg,A,χA

(λ) = Pr[Gproof-ext
Arg,A,χA

(λ)] where the game Gproof-ext
Arg,A,χA

is defined as follows

main Gproof-ext
Arg,A,χA

(λ)

R← R(1λ); Q = ∅
(crs, τ)← ZSetup(R)
(φ,π)← AZSimProvecrs,τ (crs)
w ← χA(transA)
return 1 if and only if

ZVfy(crs,φ,π) = 1
(φ,π) 6∈ Q
(φ,w) 6∈ R

....

ZSimProvecrs,τ (φi)

πi ← ZSimProve(crs, τ ,φi)
Q = Q ∪ {(φi,πi)}
return πi

A NIZK argument Arg is simulation-extractable if for any PPT adversary A, there exists a
PPT extractor χA such that Advproof-ext

Arg,A,χA
(λ) ≈ 0.

We observe that simulation-extractability implies knowledge soundness, since knowledge
soundness corresponds to simulation-extractability where the adversary is not allowed to
use the simulation oracle.

Definition 2.11. A succinct argument system is one in which the proof size is polynomial
in the security parameter and the verifier’s computation time is polynomial in the security
parameter and the instance size.

Terminology:

– A Succinct Non-interactive ARgument of Knowledge is a SNARK.
– A zk-SNARK is a zero-knowledge SNARK, or a succinct NIZK argument.
– A simulation-extractable NIZK argument is an SE-NIZK argument.
– A succinct SE-NIZK argument is an SE-SNARK.

Benign relation generators. Bitansky et al. [BCPR16] showed that indistinguishability
obfuscation implies that there are potential auxiliary inputs to the adversary that allow it
to create a valid proof in an obfuscated way such that it is impossible to extract the witness.
Boyle and Pass [BP14] show that assuming the stronger notion of public coin differing input
obfuscation there is even auxiliary inputs that defeat witness extraction for all candidate
SNARKs. These counter examples, however, rely on specific input distributions for the ad-
versary. We will therefore in the following assume the relationship generator is benign such
that the relation (and the potential auxiliary inputs included in it) are distributed in such a
way that the SNARKs we construct can be simulation extractable.

10

3 Signatures of Knowledge from SE-NIZKs

Signatures of knowledge and SE-NIZK arguments are closely related. We will now show
how to construct a signature of knowledge scheme for messages in {0, 1}∗ from an SE-NIZK
argument. This means that in the rest of the article we can focus our efforts on constructing
succinct SE-NIZK arguments, which is a slightly simpler notion than signatures of knowledge
since it does not involve a message.

We will be using target collision-resistant hash functions, also known as universal one-
way hash function. It is known that target collision-resistant hash functions exist if one-
way functions exist [Rom90,NY90]. It is alternatively possible to use collision-resistant hash
functions. This would simplify the construction since the key can be placed in the public
parameters. However, by using target collision-resistant hash functions we provide greater
generality.

Definition 3.1 (Target collision-resistant hash-function). We say the polynomial time
algorithm H : {0, 1}`K(λ)×{0, 1}∗ → {0, 1}`h(λ), with `K , `h being polynomials in λ, is target
collision-resistant if for all stateful PPT adversaries A,

Pr[m0 ← A(1λ);K ← {0, 1}`K(λ);m1 ← A(K) : m0 6= m1 ∧ HK(m0) = HK(m1)] ≈ 0.

Suppose R′ is a relation generator which, on input of a security parameter λ, outputs a
relation R′. We define a corresponding relation

R = {((K,h,φ),w) : K ∈ {0, 1}`K(λ) ∧ h ∈ {0, 1}`h(λ) ∧ (φ,w) ∈ R′}.

In the following, we let R be the relation generator that runs R′ ← R′(1λ) and returns R as
defined above. Let H be a target collision-resistant hash function and (ZSetup,ZProve,ZVfy,
ZSimProve) be a SE-NIZK argument for R. Then Fig. 1 describes a signature of knowledge
for R′.

SSetup(R′)

(crs, τ)← ZSetup(R)
return pp = crs

SSign(pp,φ,w,m)

K ← {0, 1}`K(λ)

π ← ZProve(crs, (K,HK(m),φ),w)
return σ = (K,π)

SVfy(pp,φ,m,σ)

parse σ = (K,π)
return ZVfy(crs, (K,HK(m),φ),π)

SSimSetup(R′)

(crs, τ)← ZSetup(R)
return pp = (crs, τ)

SSimSign(pp, τ ,φ,m)

K ← {0, 1}`K(λ)

π ← ZSimProve(crs, τ , (K,HK(m),φ))
return σ = (K,π)

Fig. 1. SoK scheme based on target collision-resistant hash-function and SE-NIZK argument.

Proposition 3.1. If H is a target collision-resistant hash-function and Arg = (ZSetup,
ZProve,ZVfy,ZSimProve) is an SE-NIZK argument for R, then the scheme (SSetup, SSign,
SVfy,SSimSetup, SSimSign) given in Fig. 1 is a signature of knowledge for R′ with respect to
the message spaces Mλ = {0, 1}∗.

11

Proof. We shall show that the signature of knowledge is perfectly correct, perfectly simulat-
able and that it is simulation extractable.

Perfect Correctness: Suppose that λ ∈ N, R′ ∈ R′λ, (φ,w) ∈ R′ and m ∈ {0, 1}∗. Running
pp ← SSetup(R′), σ ← SSign(pp,φ,w,m) and checking SVfy(pp,φ,m,σ) = 1 corresponds
to running (crs, τ)← ZSetup(R), K ← {0, 1}`K(λ), π ← ZProve(crs, (K,HK(m),φ),w) and
checking that ZVfy(crs, (K,HK(m),φ),π) = 1. As the NIZK argument is perfectly complete
this check will always pass.

Perfect Simulatability: We show that for any PPT adversary A there exists a PPT adversary

B such that Advsimul
SoK,A(λ) ≤ Advzk

Arg,B(λ) for all λ ∈ N. Since an SE-NIZK is perfectly zero-

knowledge, this implies that Advsimul
SoK,A is negligible in λ, i.e., if A breaks simulatability for

SoK then B breaks the zero-knowledge of Arg.
Let A be a PPT adversary against Gsimul

SoK,A. Define the PPT adversary B that uses the
output of A to attack zero-knowledge and behaves as follows:

BP bcrs,τ (crs) 000000000000000 Sbcrs,τ (φi,wi,mi)

b′ ← ASbcrs,τ (crs) Ki ← {0, 1}`K(λ)

return b′ πi ← P bcrs,τ ((Ki, HKi(mi),φi),wi)

return σi = (Ki,πi)

We argue that if P bcrs,τ is defined to be the oracles in Gzk
Arg,B then Sbcrs,τ behaves exactly

as the oracles in Gsimul
SoK,A. To see this first note that if (φi,wi) 6∈ R then Sb returns ⊥. If

(φi,wi) ∈ R then the following holds.

– when b = 0, P bcrs,τ returns πi ← ZProve(crs, (Ki, HKi(mi),φ),wi). This corresponds
exactly to sampling σi ← SSign(crs,φ,mi,wi).

– when b = 1, P bcrs,τ returns πi ← ZSimProve(crs, τ , (Ki, HKi(mi),φ)). This corresponds
exactly to sampling σi ← SSimSign(crs, τ ,φi,mi).

Hence whenever A succeeds at Gsimul
SoK,A, B succeeds at Gzk

Arg,B and the result holds.

Simulation-Extractability: We show that for all PPT adversaries A, there exists a PPT
adversary B such that for all PPT extractors χB, there exists a PPT extractor χA such that
Advsig−extSoK,A,χA

(λ) ≤ Advproof-ext
Arg,B,χB

(λ) + Advhash
B (λ) for all λ ∈ N. By simulation-extractability

of the SE-NIZK argument, we have that for any choice of B, there exists a PPT χB such that
the above is negligible in λ, meaning that there exists a χA such that Advsig−extSoK,A,χA

(λ) is
negligible in λ. In other words, we construct an adversary B such that if A breaks simulation-
extractability for SoK then B breaks simulation extractability for the argument.

Let A be a PPT adversary that on input of some public parameters outputs an instance,
a message and a signature. Define the PPT adversary B that uses A to attack simulation-
extractability of the argument and behaves as follows.

BZSimProvecrs,τ (crs) 00000000000000000000 SSimSignpp,τ (φi,mi)

Q′ = ∅ Ki ← {0, 1}`K(λ)

(φ,m,σ)← ASSimSigncrs,τ (crs); πi ← ZSimProvecrs,τ ((Ki, HKi(mi),φi))
parse σ = (K,φ) Q′ = Q′ ∪ {(φi,mi, (Ki,πi))}
return ((K,HK(m),φ),π) return σi = (Ki,πi)

12

Observe that transB contains no information that cannot be calculated in polynomial time
from transA. We need to design an extractor χA that uses χB’s output to break simulation-
extractability of the argument. Let T be such that transB = T (transA). Let χB be a PPT
extractor that on input of transB outputs some w. Define χA as follows.

χA(transA)

transB ← T (transA);
return χB(transB)

For all PPT A, if B is defined as above, then for all PPT χB, if χA is defined as above, then
B succeeds at Gprove-ext

Arg,B,χB
whenever A succeeds at Gsig-ext

SoK,A,χA
. To see this observe that

1. If ((K,h,φ),π) ∈ Q then either (φ,m,σ = (K,π)) ∈ Q′ or A outputs some m such that
HKi(m) = HKi(mi) for mi one of the queried messages but m 6= mi. The latter happens
with negligible probability when HK is target collision-resistant.

2. (φ,w) ∈ R′ ⇐⇒ ((K,HK(m),φ),w) ∈ R.

3. SVfy(pp,φ,m,σ) = ZVfy(crs, (K,HK(m),φ),π).

This completes the proof. ut

In the other direction, it is easy to see that an SoK scheme can be used to construct
an SE-NIZK argument by using a default message m = 0 assuming such a default message
exists in the message spaces Mλ.

Proposition 3.2. If an SoK scheme is simulation-extractably secure for a relation generator
R then the NIZK argument for the relation generator R described in Figure 2 has perfect
completeness, perfect zero-knowledge and is simulation-extractable.

Proof. For correctness, observe that the perfect simulatability of the signature of knowledge
implies real public parameters and simulated public parameters have identical distributions.
The perfect completeness of the NIZK argument now follows from the perfect correctness of
the signature of knowledge. Perfect zero-knowledge follows from perfect simulatability, and
computational simulation-extractability follows from simulation-extractability of the SoK
scheme. ut

ZSetup(R)

(pp, τ)← SSimSetup(R)
return (pp, τ)

ZProve(pp,φ,w)

σ ← SSign(pp,φ, 0,w)
return σ

ZSimProve(pp, τ ,φ)

σ ← SSimSign(pp, τ ,φ, 0)
return σ

ZVfy(pp,φ,π)

return SVfy(crs,φ, 0,π)

Fig. 2. SE-NIZK construction from an SoK.

13

4 Bilinear groups and Assumptions

Definition 4.1. A bilinear group generator BG takes as input a security parameter in unary
and returns a bilinear group (p,G1,G2,GT , e, aux) consisting of cyclic groups G1, G2, GT of
prime order p and a bilinear map e : G1 × G2 → GT possibly together with some auxiliary
information aux such that

– there are efficient algorithms for computing group operations, evaluating the bilinear map,
deciding membership of the groups, and sampling generators of the groups;

– the map is bilinear, i.e., for all G ∈ G1 and H ∈ G2 and for all a, b ∈ Z we have
e(Ga, Hb) = e(G,H)ab;

– and the map is non-degenerate, i.e., if e(G,H) = 1 then G = 1 or H = 1.

Usually bilinear groups are constructed from elliptic curves equipped with a pairing,
which can be tweaked to yield a non-degenerate bilinear map. There are many ways to set
up bilinear groups both as symmetric bilinear groups where G1 = G2 and as asymmetric
bilinear groups where G1 6= G2. We will be working in the asymmetric setting, in what
Galbraith, Paterson and Smart [GPS08] call the Type III setting where there is no efficiently
computable non-trivial homomorphism in either direction between G1 and G2. Type III
bilinear groups are the most efficient type of bilinear groups and hence the most relevant for
practical applications.

4.1 Intractability Assumptions

We will now specify the intractability assumptions used later to prove our pairing-based
SE-SNARK secure.

The eXtended Power Knowledge of Exponent Assumption
Our strongest assumption is the extended power knowledge of exponent (XPKE) assumption,
which is a knowledge extractor assumption. We consider an adversary that gets access to
source group elements that have discrete logarithms that are polynomials evaluated on secret
random variables. The assumption then says that the only way the adversary can produce
group elements in the two source groups with matching discrete logarithms, i.e., Ga ∈ G1

and Hb ∈ G2 with a = b, is if it knows that b is the evaluation of a known linear combination
of the polynomials.

Assumption 4.1 Let A be an adversary and let χA be an extractor. Define the advantage
AdvXPKE

BG,d(λ),q(λ),A,χA(λ) = Pr[GXPKE
BG,d(λ),q(λ),A,χA

(λ)] where GXPKE
BG,d(λ),q(λ),A,χA

is defined as below

and Q2 is the set of polynomials hj(X1, . . . , Xq) queried to O2
H,x.

14

main GXPKE
BG,d(λ),q(λ),A,χA

(λ)

(p,G1,G2,GT , e, aux)← BG(1λ);
G← G∗1;H ← G∗2;x← (Z∗p)q

(Ga, Hb)← AO1
G,x, O2

H,x(p,G1,G2,GT , e, aux)

η ∈ (Zp)|Q2| ← χA(transA);
return 1 if a = b and b 6=

∑
hj∈Q2

ηjhj(x)

else return 0

O1
G,x(gi) 00000000000000000000000 O2

H,x(hj)

assert gi ∈ Zp[X1, . . . Xq] assert hj ∈ Zp[X1, . . . Xq]
assert deg(gi) ≤ d assert deg(hj) ≤ d
return Ggi(x) return Hhj(x)

The (d(λ), q(λ))-XPKE assumption holds relative to BG if for all PPT adversaries A, there
exists a PPT algorithm χA such that AdvXPKE

BG,d(λ),q(λ),A,χA(λ) is negligible in λ.

The Computational Polynomial Assumption
The computational polynomial (Poly) assumption is related to the d-linear assumption of
Escala, Herold, Kiltz, Ràfols and Villar [EHK+17]. In the univariate case, the Poly assump-
tion says that for any G ∈ G∗1, given Gg1(x), . . . , GgI(x), an adversary cannot compute Gg(x)

for a polynomial g that is linearly independent from g1, . . . , gI - even if it knows Hg(x) for
H ∈ G∗2.

Assumption 4.2 Let A be a PPT algorithm, and define the advantage AdvPoly
BG,d(λ),q(λ),A(λ)

= Pr[GPoly
BG,d(λ),q(λ),A(λ)] where GPoly

BG,d(λ),q(λ),A is defined below and Q1 is the set of polynomials

gj(X1, . . . , Xq) queried to O1
G,x.

main GPoly
BG,d(λ),q(λ),A(λ)

(p,G1,G2,GT , e, aux)← BG(1λ);
G← G∗1;H ← G∗2;x← (Z∗p)q;
(Ga, g(X1, . . . , Xq))← AO1

G,x, O2
H,x(p,G1,G2,GT , e, aux)

return 1 if a = g(x) and g /∈ span{Q1}
else return 0

O1
G,x(gi) 00000000000000000000000 O2

H,x(hj)

assert gi ∈ Zp[X1, . . . Xq] assert hj ∈ Zp[X1, . . . Xq]
assert deg(gi) ≤ d assert deg(hj) ≤ d
return Ggi(x) return Hhj(x)

The (d(λ), q(λ))-Poly assumption holds relative to BG if for all PPT adversaries A we have

AdvPoly
Poly,d(λ),q(λ),A(λ) is negligible in λ.

Plausibility of the assumptions
To be plausible an assumption should not be trivial to break using generic group operations.
There are various ways to formalize generic group models that restrict the adversary to such
operations [Sho97,Nec94,MW98]. Using the framework from [BBG05] it is easy to show the
following proposition.

15

Proposition 4.1. The (d(λ), q(λ))-XPKE and (d(λ), q(λ))-Poly assumptions both hold in the
generic group model.

We construct a pairing-based SE-SNARK. The simulation-extractability property of the
SE-SNARK will rely on the XPKE and Poly assumptions. However, it is instructive to
consider the assumption requirements for the weaker notion of knowledge soundness of the
SNARK first, since it illustrates that for zk-SNARKs our assumptions are on par with those
used in previous zk-SNARKs and significantly simpler than the full generic group model.

To prove our SNARK has standard knowledge soundness, it suffices to consider the
XPKE and Poly assumptions where the adversary has non-adaptive oracle access. We can
reformulate this as the adversary having to specify all the polynomials it wants to query and
then submitting all queries at once and gets the matching oracle responses.

The non-adaptive Poly assumption is a computational target assumption [GG17] and is
implied by the q′-BGDHE1 assumption for sufficiently large q′ = Poly(d, q), which says that

given {Gxi , Hxi}2q
′

i=0 \ {Gx
q′}, where G ∈ G1 and H ∈ G2, it is hard to compute Gx

q′
.

The non-adaptive XPKE assumption bears resemblance to the power knowledge of ex-
ponent (PKE) assumption from [DFGK14]. The assumption ensures that if the response Ga

and Hb has a = b then it is beceause b is some known linear combination of the queried
polynomials. In contrast, in the only previous 3 element zk-SNARK [Gro16] it is necessary
in the proof of knowledge soundness to also consider elements where the exponent has a
quadratic relationship to the queried polynomials.

To get simulation-extractability, we strengthen both the XPKE and Poly assumptions
to make them interactive. We conjecture this is unavoidable; simulation-extractability is
interactive in nature and we do not see how to base it on non-interactive assumptions.

5 SE-SNARK

We will now construct an SE-SNARK for square arithmetic program (SAP) generators, which
we define below. Any arithmetic circuit over a finite field can be efficiently converted into an
SAP over the same field, see Appendix A, so this gives us SE-SNARKs for arithmetic circuit
satisfiability.

5.1 Our Techniques

Our SE-SNARK takes inspitation from that of Groth [?], which itself optimises standard
techniques for building SE-SNARKs. First, there is a trusted party that outputs a relation
specific CRS. Then the prover outputs an instance and a proof consisting of group elements.
Then the verifier checks that the proof satisfies a pairing equation determined by the instance;
the prover can only find verifying group elements if it knows a witness to the instance.

Let us provide some intuition as to why pairing-based zk-SNARKs are, typically speaking,
not simulation-extractable. The problem is that an adversary that sees a proof is often able
to modify it into a different proof for the same instance. Such modifications do not violate
standard zk-SNARKs, however, for SE-SNARKs an adversary may request a simulated proof
for a false instance, and then modify it into a different proof for the same false instance, which
breaks simulation-extractability.

In the case of Groth’s zk-SNARK, suppose for an instance φ that (A,B,C) are three
group elements in a proof that satisfy the verification equations. The verifies equation are

16

then given by

e(A,B) = e(Gα, Hβ)e(Gf(φ), H)e(C,Hδ) (1)

for a known polynomial f in φ and some secret α, β, δ.

There are two methods to generically randomise a proof A,B,C that satisfy (1). An
adversary can either set

A′ = Ar; B′ = B
1
r ; C ′ = C

or they can set

A′ = A; B′ = Bhrδ; C ′ = ArC

for any field element r.

To neutralise the first attack we add the verification equation

e(A,H) = e(G,B).

However this still leaves the case where r = −1. So we further take the elements Gαδ, Hβδ

into the quadratic constraint i.e. rather than using e(A,B) in the verification equation we
use e(Agαδ, Bhβδ).

To neutralise the second attack our CRS is designed to contain Hδ, Gγδ and Hγδ but
not Gδ. That way, if the adversary sets B′ = BHrδ, then the only possible value for A′ is
AGrδ (which the adversary cannot compute). This is a simplication of the attack - in the
full proof we are concerned about B′ = BHψ(τ)δ for ψ a polynomial in the trapdoor.

Groth’s verifier does not require that e(A,H) = e(G,B) and his prover sets A to depend
on the ui(X) polynomials in a QAP and B to depend on the vi(X) polynomials1. We modify
our construction to be built over a special case of QAP’s where for all i, ui(X) = vi(X).

5.2 Square Arithmetic Programs

Formally, we will be working with square arithmetic programs R that have the following
description

R = (p,G1,G2,GT , e, `, {ui(X), wi(X)}mi=0, t(X)) ,

where the bilinear group (p,G1,G2,GT , e) defines the finite field Zp we will be working over,
1 ≤ ` ≤ m, ui(X), wi(X), t(X) ∈ Zp[X] and ui(X), wi(X) have strictly lower degree than
n, the degree of t(X). Furthermore, we require that the set S = {ui(X) : 0 ≤ i ≤ `}
is linearly independent and that any ui(X) ∈ S is also linearly independent from the set
{uj(X) : ` < j ≤ m}. A square arithmetic program with such a description defines the
following binary relation, where we define s0 = 1,

R =


(φ,w)

∣∣∣∣∣∣∣∣∣∣∣

φ = (s1, . . . , s`) ∈ Z`p
w = (s`+1, . . . , sm) ∈ Zm−`p

∃h(X) ∈ Zp[X],deg(h) ≤ n− 2 :

(
∑m
i=0 siui(X))2 =

∑m
i=0 siwi(X) + h(X)t(X)


We say R is a bilinear group and square arithmetic program generator if it generates relations
of the form given above with prime p > 2λ−1.

1 Perhaps as a result of this his security is proven in the generic group model and not over KOE assumptions.

17

5.3 Derivation of a Relation Dependent CRS

We require a reference string that depends on an SAP (we denote the SAP by sap). In
Figure 4 we provide algorithm for generating the CRS and for verifying its structure. It
is essential that the proof of knowledge algorithm (POK) does not reveal Gδ and we are
implicitly assuming that the verifier checks that the elements in the proof of knowledge are
consistent with the CRS.

ZSetup(1λ, sap) 7→ (crssap, ρ):

α, β, γ, δ, x
$←− Zp such that t(x) 6= 0

crssap ←


Gα, Gγ , Gx, Gαδ, Gγδt(x), Gγ

2δt2(x), G(α+β)γδt(x),

H,Hβ , Hδ, Hβδ, Hγδt(x), Hδ2{
Gγδx

i

, Hγδxi , Gγ
2δt(x)xi

}n−1

i=0
,
{
Gγδwi(x)+δ(α+β)ui(x))

}`
i=0

,{
Gγ

2δwi(x)+γδ(α+β)ui(x))
}m
i=`+1

,


ρ

$←− POK
{
Gα, Hβ , Gγ , Hδ, Gx : α, β, γ, δ, x

}
return (crs, ρ)

UpdateVerify(1λ, sap, crssap, ρ) 7→ 0/1

check POKVerify(ρ)
Gα, Gγ , Gx, Gαδ, Gγδt(x), Gγ

2δt2(x), G(α+β)γδt(x),

H,Hβ , Hδ, Hβδ, Hγδt(x), Hδ2{
Gγδx

i

, Hγδxi , Gγ
2δt(x)xi

}n−1

i=0
,
{
Gγδwi(x)+δ(α+β)ui(x))

}`
i=0

,{
Gγ

2δwi(x)+γδ(α+β)ui(x))
}m
i=`+1

,

← Parse(crssap)

check that the following hold:

e(Gαδ, H) = e(Gα, Hδ) e(Gγδ, Hβ) = e(Gγ , Hβδ)

e(Gγδ, H) = e(Gγ , Hδ) e(Gγδ, Hδ) = e(Gγ , Hδ2)

e(Gγδt(x), Hγδ) = e(G
γδ(t(x)−t0)

x
γδ, Hγδx)e(G−t0γδ, Hγδ) e(Gγδt(x), Hγδ) = e(Gγδ, Hγδt(x))

e(Gγ
2δt(x)2 , Hδ) = e(Gγδt(x), Hγδt(x)) e(G(α+β)γδt(x), Hδ) = e(Gαδ, Hγδt(x))e(Gγδt(x), Hβδ)

e(Gγ , Hδ) = e(G,Hγδ)

for 0 ≤ i ≤ n− 2 :

e(Gx, Hγxi) = e(G,Hγxi+1

) and e(Gγδx
i

, Hγδx) = e(Gγδx
i+1

, Hγδ)

for 1 ≤ i ≤ n− 1 :

e(Gγ
2δt(x)xi , Hγδ) = e(Gγδt(x), Hγδxi)

for 0 ≤ i ≤ ` :

e(Gγδwi(x)+δ(α+β)ui(x), Hγδ) = e(Gγδ, Hγδwi(x))e(Gαδ, Hγδui(x))e(Gγδui(x), Hβδ)

for `+ 1 ≤ i ≤ m :

e(Gγ
2δwi(x)+γδ(α+β)ui(x), Hδ) = e(Gγδ, Hγδwi(x))e(Gαδ, Hγδui(x))e(Gγδui(x), Hβδ)

return 1 if all checks pass, else return 0

Fig. 3. Algorithm for verifying the structure of the crs in our SE-SNARK construction

18

5.4 Our Construction

Our construction of a simulation-extractable SNARK is given in Figure 4. The prover parses
the wires of the circuit as (1, a1, . . . , am), and then embeds the SAP polynomials aiui(X)
evaluated at the unknown point x into one proof element in the first source group and one
proof element in the second source group. They provide a third proof element whose exponent
is the product of the exponents of the first two proof elements. The verifier checks with a
pairing that the first and second proof elements share common exponents. They then check,
also with a pairing, that the third proof element’s exponent is indeed the product of the
exponents of the first two proof elements.

Common Input: info = bp, sap, crssap, e(G
αδ, Hβδ)

ZProve(info, φ, w) 7→ π:

(a0, a1, . . . , am)← Parse(1, φ, w)

h(X)←
(∑m

i=0
aiui(X)

)2
−
∑m

i=0
aiwi(X)

t(X)

A← G
γδ
(
rt(x)+

∑m

i=0
aiui(x)

)
B ← H

γδ
(
rt(x)+

∑m

i=0
aiui(x)

)
C ← G

γδ
(∑m

i=l+1
ai(γwi(x)+(α+β)ui(x))+r(α+β)t(x)+γt(x)

[
r2t(x)+h(x)+2r

∑m

i=0
aiui(x)

])
return (A,B,C)

Verify(info, φ, π) 7→ 0/1:

(a0, a1, . . . , a`) ∈ Z`p ← Parse(1, φ)
(A,B,C) ∈ G1 ×G2 ×G1 ← Parse(π)

check e(Agαδ, Bhβδ) = e(Gαδ, Hβδ)e(G

∑`

i=0
aiδ(γwi(x)+(α+β)ui(x)), Hγδ)e(C,Hδ)

check e(A,H) = e(G,B)
return 1 if both checks pass, else return 0.

Fig. 4. Our construction of a Simulation-Extractable SNARK.

5.5 Security Proof

Theorem 5.1. The construction in Figure 4 has subversion zero-knowledge.

Proof. To prove subversion zero-knowledge, we need to both show the existence of a an ex-
tractor χA that can compute a trapdoor from the reference string, and describe a ZSimProve
algorithm that produced indistinguishable proofs when provided with the extracted trap-
door. It can be seen that a adversary that outputs a verifying reference string must know
α, β, γ, δ, x in the exponents of Gα, Hβ, Gγ , Hδ, Gx because the proof of knowledge verifies.
Furthermore, if each of the verifier’s pairing checks verify then the adversary’s outputted ref-
erence string has the same structure as one output by the setup algorithm. So the extracted
τ is a valid trapdoor for the reference string.

A simulator is given a trapdoor τ = (α, β, γ, δ, x) and behaves as follows.

19

ZSimProve(bp, sap, crssap, τ, φ) 7→ π

(a0, a1, . . . , a`)← Parse(1, φ)

µ
$←− Zp

A,B ← Gµδ, Hµδ

C ← G

(
µ2δ+(α+β)µδ−γδ

∑`

i=0
ai(γwi(x)+(α+β)ui(x))

)
return (A,B,C)

To see that the simulated proofs are indistinguishable from the real proofs, first observe
that the simulation procedure always produces verifying proofs. Next, observe that for a
given instance and proof π = (A,B,C) the element A uniquely determines B through the
second verification equation, and the elements A, B uniquely determine C through the first
verification equation. In a real proof the random choice of r makes A uniformly random, and
in a simulated proof the random choice of µ makes A uniformly random. So in both cases, we
get the same probability distribution over proofs with uniformly random A and the unique
matching B,C.

Theorem 5.2. The protocol in Figure 4 is simulation-extractable (implying it is knowledge
sound) provided that the (n, q+5)-XPKE(λ) and (n, q+5)-Poly(λ) assumptions hold, where n
is the number of squaring constraints and q the number of simulation queries the adversary
asks.

Proof. Suppose that an adversary A is given an crs. It accesses its simulation oracle on
the instances (φ1, . . . , φq) to obtain the responses (π1, . . . , πq). We show that if A outputs
verifying (φ, π) then either (φ, π) is one of the oracle queries and responses (φj , πj) or there
exists an extractor χA that outputs w such that (φ,w) ∈ R.

From the second verification equation we have that e(A,H) = e(G,B). From the (n, q+5)-
XPKE assumption there exists an extractor that outputs

(η0, ηβ, ηδ, ηβδ, ηδ2 , ηγ,δ,t, ηγδ(X), ηb,j)

such that

log(B) = η0 + ηββ + ηδδ + ηβδβδ + ηδ2δ
2 + ηγδtγδt(x) + γδηγδ(x) + δ

∑
j

ηb,jµj .

Taking the adversary and the extractor together, we can see them as a combined algo-
rithm that outputs A,B,C and the formal polynomial η(X,Xβ, Xγ , Xx, Xδ, Xµ1 , . . . , Xµq)

such that A = Gη(x,β,γ,δ,µ1,...,µq). By the (n, q + 5)-Poly assumption this has negligible prob-
ability unless η is in the span of

X, Xα, Xγ , Xx, XαXδ, XγXδt(X), XγXδ(t(X))2, (Xα +Xβ)XγXδt(X),{
XγXδX

i, X2
γXδt(X)Xi

}n−1
i=0

, {XγXδwi(X) +Xδ(Xα +Xβ)ui(X)}`i=0 ,{
X2
γXδwi(X) +XγXδ(Xα +Xβ)ui(X)

}m
i=`+1

,
{
XµjXδ

}q
j=1{(

X2
µjXδ + (Xα +Xβ)XµjXδ −XγXδ

∑`
i=0 aµj ,i(Xγwi(X) + (Xα +Xβ)ui(X))

)}q
j=1

.

(2)
This means that

η(x, β, γ, δ, µ1, . . . , µq) = η0 + ηγδtγδt(x) + γδηγδ(x) + δ
∑

ηb,jµj .

20

From the first verification equation we get that C = Gf(x,β,γ,δ,µ1,...,µq) where f is given
by

1

δ
(η(x, β, γ, δ, µ1, . . . , µq) + αδ) · (η(x, β, γ, δ, µ1, . . . , µq) + βδ)

− αβδ −
∑̀
i=0

aiγδ(γwi(x) + (α+ β)ui(x))

By the (n, q + 5)-Poly assumption this means that

1

Xδ

(
η(X,Xβ, Xγ , Xδ, Xµ1 , . . . , Xµq) +XαXδ

)
·
(
η(X,Xβ, Xγ , Xδ, Xµ1 , . . . , Xµq) +XβXδ

)
−XαXβXδ −

∑̀
i=0

aiXγXδ(Xγwi(X) + (Xα +Xβ)ui(X))

also belongs to the span in (2).
The span has no polynomials of the form 1

δ thus η0 = 0. The span has no polynomials of
the form XδXµjXµk for j 6= k thus at most one ηb,j is uncancelled. Suppose without loss of
generality that ηb,j are cancelled for j ≥ 2 and rename ηb,1 by ηµ and µ1 by µ.

We are now left with

δ (ηγδtγt(x) + γηγδ(x) + ηµµ+ α) · (ηγδtγt(x) + γηγδ(x) + ηµµ+ β)

= αβδ +
∑̀
i=0

aiγδ(γwi(x) + (α+ β)ui(x)) + log(C).

If ηµ 6= 0 then ηγ,δ,t and ηγ,δ(X) both cancel because the span has no polynomials of
the form Xµb,1XγXδ . As a result, the polynomial f(x, β, γ, δ, µ1, . . . , µq) extracted from C
is given by

(ηµµ)2 + ηµµ(α+ β)−
∑̀
i=0

aiγδ(γwi(x) + (α+ β)ui(x)).

The only way to obtain the (ηµµ)2 term and the ηµµ(α+β) term is if f contains a non-trivial
linear combination of the term(

X2
µ1Xδ + (Xα +Xβ)Xµ1Xδ −XγXδ

∑̀
i=0

aµ1,i(Xγwi(X) + (Xα +Xβ)ui(X))

)
.

Thus η2µ = ηµ i.e. ηb,1 = 1 and f contains exactly one of the above term. There are no
polynomials in the span that can be used to balance γδ(α + β)ui(x) because: there are no
XβXγXδX

i terms in ν(X); t(X) has degree n which is strictly greater than the degree of
the other polynomials; and the set S = {ui(X) : 0 ≤ i ≤ `} is linearly independent from
the set {uj(X) : ` < j ≤ m}. Hence aµ1,i = ai, i.e. (φ, π) = (φ1, π1) and the adversary has
regurgitated a simulated proof.

We are now left with

δ (ηγδtγt(x) + γηγδ(x) + α) · (ηγδtγt(x) + γηγδ(x) + β)

= αβδ +
∑̀
i=0

aiγδ(γwi(x) + (α+ β)ui(x)) + log(C).

21

Looking at the terms involving α, we get that

ηγδtαγδt(x) + αγδηγδ(x) =
∑̀
i=0

aiγδαui(x) +
m∑

i=`+1

aiγδαui(x) + a(α+β)γδtαγδt(x)

where a`+1, . . . , am are the coefficients in f relating to the terms{
X2
γXδwi(X) +XγXδ(Xα +Xβ)ui(X)

}m
i=`+1

and a(α+β)γδt relates to the term (Xα+Xβ)XγXδt(X). We see that ηγδt = a(α+β)γδt because
the degree of t(X) is strictly greater than the degree of the other polynomials.

Looking at the terms involving γ2δ, we get that

ηγδtγ
2δt2(x) + γ2δη2γδ(x) =

∑̀
i=0

aiγ
2δwi(x) +

m∑
i=`+1

aiγ
2δwi(X) + γ2δh(x)t(x) + aγ2δtt

2(X).

for some polynomial h(X) relating to the coefficients in f that refer to the termsX2
γXδt(X)Xi

and where aγ2δt relates to the term X2
γXδt

2(X). We see that ηγδt = aγ2δt because the degree
of t2(X) is strictly greater than the degree of the other polynomials.

Putting these two expressions for ηγδ(X) together gives us that(
m∑
i=0

aiui(X)

)2

=
m∑
i=0

aiwi(X) + h(X)t(X)

which gives us that a`+1, . . . , am is a valid witness for φ, completing our proof.

5.6 Efficiency

The proof size is 2 elements in G1 and 1 element in G2. The reference string containsm+2n+5
elements in G1 and n+ 3 elements in G2.

The verifier can work with a reduced reference string that only contains ` + 2 elements
from G1, 3 elements from G2, and 1 element from GT of the form(

Gαδ, Hδ, Hβδ, Hγδ, {Gδ(γwi(x)+(α+β)ui(x))}`i=0, e(G
αδ, Hβδ)

)
.

The verification consists of checking that the proof contains 3 appropriate group elements
and checking 2 pairing product equations. The verifier’s computation is dominated by a multi-
exponentiation G1 to ` exponents (noting that a0 = 1) and 5 pairings (assuming e(Gα, Hβ)
is precomputed).

The prover has to compute the polynomial h(X) and it depends on the relation how
long this computation takes. If we construct the SAP from an arithmetic circuit where each
multiplication gate connects to a constant number of wires, there is a set of distinct points
r1, . . . , rn where the polynomials are non-zero only in a few places. In this case we can use fast
polynomial manipulation techniques to compute h(X) in Õ(n) operations in Zp. The prover
also computes the coefficients of

∑m
i=0 aiui(X), which again can be done in Õ(n) operations

in Zp for polynomials arising from arithmetic circuits where each multiplication gate connects
to a constant number of wires. Having all the coefficients of relevant polynomials, the prover’s
cost is dominated by m+ 2n− ` exponentiations in G1 and n exponentiations in G2.

22

6 Lower Bounds

We now show that our pairing-based simulation-extractable SNARK construction in Sec-
tion 5.1 is optimal in the number of group elements and verification equations. First, we
prove that it is impossible to have a pairing-based SE-NIZK argument with just one verifi-
cation equation. Afterwards, we prove that it is impossible to have a pairing-based SE-NIZK
argument with just two group elements. Consequently, it is impossible to have a pairing-
based SE-NIZK argument or SoK with one verification equation or with 2 group elements.
This stands in contrast to standard knowledge sound NIZK arguments, for which there are
constructions consisting of just one verification equation.

6.1 Pairing-Based NIZK Arguments

We will in this subsection define pairing-based arguments. Before giving the definition, let
us introduce some useful notation. For a row vector a = (a1, . . . , am) ∈ Zmp and a group

element G we define Ga = (Ga11 , . . . , G
am). For a matrix B̂ ∈ Zm×np we define (Ga)B̂ = GaB̂,

which can be computed using generic group operations. For two vectors G = (G1, . . . , Gn)
and H = (H1, . . . ,Hn) we define e(G,H) =

∏n
i=1 e(Gi, Hi). Following Groth [Gro16] quite

closely we say an argument is pairing-based if it works as follows:

(crs, τ)← ZSetup(R): The relation contains a bilinear group (p,G1,G2,GT , e). The setup al-
gorithm runs an internal algorithm (G,H,u,v, z, τ)← ZSetup′(R) yielding G ∈ G∗1, H ∈
G∗2 and (u,v, z) ∈ Zm1

p × Zm2
p × ZmTp . It returns simulation trapdoor τ and the common

reference string
crs = (R,Gu, Hv, e(G,H)z).

We can without loss of generality assume u1 = v1 = 1 such that G,H are included in the
CRS, and will in the following use them as the base when computing discrete logarithms.

π ← ZProve(crs,φ,w): The prover runs an internal algorithm (P̂ , Q̂, T̂)← ZProve′(R,φ,w)
to get matrices P̂ ∈ Zm1×n1

p , Q̂ ∈ Zm2×n2
p and T̂ ∈ ZmT×nTp . The prover returns the proof

π = (GuP̂ , HvQ̂, e(G,H)zT̂).

0/1← ZVfy(crs,φ, π): The verifier runs an internal algorithm {(Âi, B̂i, Ĉi, D̂i, Êi, F̂i)}ηi=1 ←
ZVfy′(R,φ) giving matrices Âi ∈ Zn1×n2

p , B̂i ∈ Zn1×m2
p , Ĉi ∈ Zm1×n2

p , D̂i ∈ Zm1×m2
p , Êi ∈

ZnT×1p , F̂i ∈ ZmT×1p . The verifier then asserts π = (Π1,Π2,ΠT) ∈ Gn1
1 ×Gn2

2 ×GnT
T and

checks the verification equations

e(ΠÂi
1 ,Π2) · e(ΠB̂i

1 , Hv) · e((Gu)Ĉi ,Π2) · e((Gu)D̂i , Hv) = ΠÊi
T · (e(G,H)z)F̂i

for i = 1, . . . , η.
The dimensions m1,m2,mT , n1, n2, nT and η are constants implicitly determined by the
relation R in the argument system.

Our definition of pairing-based arguments captures all existing pre-processing SNARKs based
on Type III pairings. Essentially, the definition captures that using generic group operations
we should expect common reference strings that are computed as group elements raised to
known exponents, proofs should be generated by computing known linear combinations of
group elements in the common reference string, and verification of proofs should be done

23

by multiplying and pairing group elements in the common reference string and in the proof.
Bitansky et al. [BCI+13] abstracted the action taking place in the exponents as linear in-
teractive proofs, and for our concrete Type III pairing setting we can think of the definition
above as saying the pairing-based argument is built by executing a split non-interactive linear
interactive proof [Gro16] in the exponent.

6.2 Disclosure-Freeness

We want to avoid that the prover can learn non-trivial information about the discrete loga-
rithms in the common reference string using generic bilinear group operations. An example
of such a pathological case is a common reference string with group elements G, Gb, where
b is a bit. The prover can easily recover the bit b by guessing it and verifying the guess with
generic group operations. This would make it possible to embed and subliminally communi-
cate a non-pairing-based common reference string to the prover, who could then proceed in a
non-pairing way to construct a proof. We therefore restrict the argument to being disclosure-
free, which means that a given pairing product equation will always evaluate to the same
over a randomly sampled common reference string, which in turn means that it is not leaking
non-trivial information about the discrete logarithms.

Definition 6.1. We say a pairing-based argument is disclosure-free if for all adversaries A

Pr


R← R(λ); (R,Gu, Hv, e(G,H)z)← ZSetup(R);

(R,Gu′ , Hv′ , e(G,H)z
′
)← ZSetup(R); (P̂ , T̂)← A(R) :

e(GuP̂ , Hv) = e(G,H)zT̂ and e(G(u′)P̂ , Hv′) 6= e(G,H)(z
′)T̂

 ≈ 1.

6.3 Lower Bounds for Pairing-Based Simulation-Sound NIZK Arguments

Here we prove that any simulation-extractable NIZK argument must have at least 2 ver-
ification equations and 3 group elements. Our theorems extend to the weaker properties
of computational completeness (an honest prover can convince an honest verifier with all
but negligible probability), computational zero-knowledge (a PPT adversary has negligi-
ble advantage in discerning a real proof from a simulated one) and simulation soundness.
Simulation-soundness is akin to simulation-extractability but weaker in not being a proof
of knowledge. In simulation-soundness the adversary has access to a simulation oracle but
wins by returning a false instance and an accepting proof for it, under the condition that the
instance-proof pair is not one of the simulations. We call a simulation-sound NIZK argument
an SS-NIZK argument.

Theorem 6.1. If (ZSetup,ZProve,ZVfy,ZSimProve) is a disclosure-free pairing-based SS-
NIZK argument for relation generator R with a hard decisional problem (Yes,No), then it
must have at least 2 verification equations and at least 3 group elements in the proofs.

Proof. As in Groth [Gro16] it can be shown that the verification equations cannot be linear.
More precisely, in a disclosure-free pairing-based NIZK argument we must have negligible
probability of Â1 = · · · = Âη = 0 when φ is generated by Yes or No. Groth observed that
this means n1 ≥ 1 and n2 ≥ 1 since at least one pairing of source group elements in the
proof must take place in the verification equations

24

Assuming without loss of generality Â1 6= 0 we now get from Theorem 6.2 that there
cannot be a single verification equation, i.e., η 6= 1. Moreover, again assuming Â1 6= 0,
Theorem 6.3 then shows that it is impossible to have n1 = n2 = 1 and nT = 0 for a
simulation-sound NIZK argument. ut

6.4 Number of Verification Equations

We will now prove that there is no pairing-based SS-NIZK argument with a single verification
equation, i.e. η = 1. The idea is that a single verification equation corresponds to a quadratic
equation in the discrete logarithms of the group elements of the proof. The adversary will
simulate to get a proof, and then try to find a second solution to the quadratic equation. If
the instance is true, then usually this is possible. If the instance is false, then by simulation-
soundness this should be impossible. To formalize this idea, we first write what a generic
verification equation has to look like. We then translate this into a corresponding matrix
equation in the discrete logarithms and use techniques from linear algebra to find a second
solution.

Theorem 6.2. If (ZSetup,ZProve,ZVfy,ZSimProve) is a disclosure-free pairing-based SS-
NIZK argument for R with a hard decision problem Yes,No, then the verification procedure
must use at least 2 verification equations.

Proof. We show the contrapositive, i.e. that if (ZSetup,ZProve,ZVfy,ZSimProve) is an SS-
NIZK argument for the relation generator R where ZVfy generates a single verification equa-
tion, then Yes,No can be efficiently distinguished. To achieve this, we exploit the form of the
pairing-based verification equation in order to construct a PPT adversary A that can con-
struct new, valid proofs from old simulated proofs. Whenever φ ∈ LR, A outputs a different
verifying proof for φ. Whenever φ 6∈ LR, by simulation-soundness A cannot output a (new)
verifying proof for φ. We can then use A to test membership in the language.

Form of pairing-based verification equations:
Suppose that (ZSetup,ZProve,ZVfy,ZSimProve) is a pairing-based SS-NIZK argument for R
such that ZVfy consists of just one verification equation. First, observe that if there is a
proof component ΠT in the target group that is used in a non-trivial way, then it is trivial
to satisfy the verification equation. By soundness of the argument system, we must therefore
have with overwhelming probability over the choice of R← R(1λ) that mT = 0.

The CRS’s consist of the relation including the bilinear group (p,G1,G2,GT , e) as well
as group elements {{Gu}, {Hv}, {e(G,H)z}} for some G ∈ G∗1, H ∈ G∗2, and u, v, z vectors
with entries in Zp. The algorithms ZProve and ZSimProve output proof vectorsΠ1,Π2 where
Π i has entries in Gi.

The verification equation can be rewritten

e(ΠÂ
1 ,Π2) · e(ΠB̂

1 , H
v) · e((Gu)Ĉ ,Π2) = Z (3)

where Z = e((Gu)−D̂, Hv) · (e(G,H)z)F̂ .

Linear algebra trick:
For ease of notation, set

N = rank(Â).

25

Consider the matrix ∆̂ ∈ Zn1×n2
p that has entries ∆̂ii = 1 for 1 ≤ i ≤ N and zeros everywhere

else.

∆̂ =

(
ÎN 0
0 0

)
(4)

Then rank(∆̂) = N and we can pick invertible matrices P̂ , Q̂ such that

∆̂ = P̂ ÂQ̂. (5)

PPT algorithm to generate new proofs:
We define a PPT algorithm A that given an instance φ and a verifying proof (Π1,Π2)
outputs a new valid proof.

A(crs,φ,Π1,Π2)

Â, B̂, Ĉ ← matrices in the verification equation defined by crs and φ
Gu, Hv, e(G,H)z ← vectors from crs

N = rank(Â); ∆̂ = matrix defined by (4)

P̂ , Q̂← matrices that satisfy (5)

Π ′1 ←Π1Π
−2P̂−1∆̂P̂
1 (Gu)−2ĈQ̂∆̂P̂

Π ′2 ←Π2Π
−2(Q̂−1)T ∆̂Q̂T

2 (Hv)−2B̂
T P̂T ∆̂Q̂T

return (Π ′1,Π
′
2)

Let π1 = log(Π1) and π2 = log(Π2). Then plugging Π ′1 and Π ′2 into the left hand side
of the rewritten verification equation (3) leads to the following value in the discrete logs.

(
π1 − 2(π1P̂

−1 + uĈQ̂)∆̂P̂
)
Â
(
π2 − 2

(
π2(Q̂

−1)T + vB̂T P̂ T
)
∆̂Q̂T

)T
+
(
π1 − 2(π1P̂

−1 + uĈQ̂)∆̂P̂
)
B̂vT + uĈ

(
π2 − 2(π2Q̂

−T + vB̂T P̂ T)∆̂Q̂T
)T

= π1Âπ
T
2 + π1Â

(
−2Q̂∆̂

(
Q̂−1πT2 + P̂ B̂vT

))
+
(
−2(π1P̂

−1 + uĈQ̂)∆̂P̂
)
ÂπT2(

−2(π1P̂
−1 + uĈQ̂)∆̂P̂

)
Â
(
−2Q̂∆̂

(
Q̂−1πT2 + P̂ B̂vT

))
+ π1B̂vT +

(
−2(π1P̂

−1 + uĈQ̂)∆̂P̂
)
B̂vT + uĈπT2 + uĈ

(
−2Q̂∆̂(Q̂−1πT2 + P̂ B̂vT)

)
.

Rearranging, we see that this is equal to

π1Âπ
T
2 + π1B̂vT + uĈπT2

+ π1

(
−2ÂQ̂∆̂Q̂−1 − 2P̂−1∆̂P̂ Â+ 4P̂−1∆̂P̂ ÂQ̂∆̂Q̂−1

)
πT2

+ π1

(
−2ÂQ̂∆̂P̂ B̂ + 4P̂−1∆̂P̂ ÂQ̂∆̂P̂ B̂ − 2P̂−1∆̂P̂ B̂

)
vT

+ u
(
−2ĈQ̂∆̂P̂ Â+ 4ĈQ̂∆̂P̂ ÂQ̂∆̂Q̂−1 − 2ĈQ̂∆̂Q̂−1

)
πT2

+ u
(
4ĈQ̂∆̂P̂ ÂQ̂∆̂P̂ B̂ − 2ĈQ̂∆̂P̂ B̂ − 2ĈQ̂∆̂P̂ B̂

)
vT .

26

Using that ∆̂ = ∆̂∆̂, ∆̂ = P̂ ÂQ̂, P̂−1∆̂ = P̂−1∆̂∆̂ = ÂQ̂∆̂ and that ∆̂Q̂−1 = ∆̂P̂ Â we see
that this is equal to

π1Âπ
T
2 + π1B̂vT + uĈπT2

+ π1

(
−2ÂQ̂∆̂P̂ Â− 2ÂQ̂∆̂P̂ Â+ 4ÂQ̂∆̂P̂ Â

)
πT2

+ π1

(
−2ÂQ̂∆̂P̂ B̂ + 4ÂQ̂∆̂P̂ B̂ − 2ÂQ̂∆̂P̂ B̂

)
vT

+ u
(
−2ĈQ̂∆̂P̂ Â+ 4ĈQ̂∆̂P̂ Â− 2ĈQ̂∆̂P̂ Â

)
πT2

+ u
(
4ĈQ̂∆̂P̂ B̂ − 2ĈQ̂∆̂P̂ B̂ − 2ĈQ̂∆̂P̂ B̂

)
vT .

Cancelling terms leaves
π1Âπ

T
2 + π1B̂vT + uĈπT2 ,

which we know matches the right hand side of (3).

Analysis yielding contradiction:
By simulation-soundness we have on φ← No(R) that there is negligible chance of Π ′1 6= Π1

or Π ′2 6= Π2.

Pr


R← R(1λ); φ← No(R); (crs, τ)← ZSetup(R);

(Π1,Π2)← ZSimProve(crs, τ ,φ) :

A(crs,φ,Π1,Π2) 6= (Π1,Π2)

 ≈ 0.

Since Yes,No is a hard decisional problem, we get the same for φ← Yes(R).

Pr


R← R(1λ); (φ,w)← Yes(R); (crs, τ)← ZSetup(R);

(Π1,Π2)← ZSimProve(crs, τ ,φ) :

A(crs,φ,Π1,Π2) 6= (Π1,Π2)

 ≈ 0.

By zero-knowledge, this also holds for real proofs.

Pr


R← R(1λ); (φ,w)← Yes(R); (crs, τ)← ZSetup(R);

(Π1,Π2)← ZProve(crs, τ ,w) :

A(crs,φ,Π1,Π2) 6= (Π1,Π2)

 ≈ 0.

So both on Yes-instances and No-instances, we have overwhelming probability Π ′1 = Π1.
Taking discrete logarithms this means

π1 = π1 − 2(π1P̂
−1 + uĈQ̂)∆̂P̂ .

Since P̂ is invertible this means

π1P̂
−1∆̂ = −uĈQ̂∆̂.

This means that
π1Âπ

T
2 = π1P̂

−1∆̂Q̂−1πT2 = −uĈQ̂∆̂Q̂−1πT2 .

27

We could therefore replace the first component e(ΠÂ
1 ,Π2) of the verification equation by

e((Gu)ĈQ̂∆̂Q̂
−1
,Π2) and with overwhelming probability get the same result of the verifica-

tion.
On a Yes-instance, we know that the prover can find matrices that can be applied to the

group elements in the common reference string to yield a proof (Π1,Π2). The proof matrices
are chosen independently of the common reference string, so if we sample many common
reference strings, by completeness they have overwhelming probability of yielding verifying
proofs on all of the common reference strings. After replacing the quadratic component in
the verification equations, they correspond to a large system of linear equations, and we
know the discrete logarithms of all the common reference strings. This means we can solve
a system of linear equations to find one or more pairs of suitable proof matrices that yield
verifying proofs with high probability.

On a No-instance on the other hand, soundness of the argument means that there is
negligible chance of computing a valid proof and hence no such proof matrices exist. We can
therefore distinguish Yes-instances and No-instances. ut

6.5 Number of Group Elements

We will now show that that there is no pairing-based SS-NIZK argument where proofs only
have two group elements for hard to decide relations. Our strategy is to show that given
an SS-NIZK argument for a relation generator R with PPT sampling algorithms Yes and
No it is trivial to distinguish whether instances have been output by Yes or No. Hence the
decisional problems behind the SS-NIZK are not hard.

Theorem 6.3. If (ZSetup,ZProve,ZVfy,ZSimProve) is a pairing-based SS-NIZK argument
for relation generator R with a hard decisional problem Yes,No then the proofs must contain
at least 3 group elements.

Proof. Since the verification equations must involve a pairing between source group elements
in the proof, we can without loss of generality assume Â1 6= 0. This means we have n1 ≥ 1
and n2 ≥ 1, so the case we need to rule out is n1 = n2 = 1 and nT = 0.

Let Âi, . . . , F̂i be the matrices output by ZVfy′. Note that Âi are single field elements as
there is only one proof element on each side of the pairing. By scaling the first verification
equation by the exponent 1

Â1
we can without loss of generality assume Â1 = 1. Moreover,

by dividing subsequent verification equations with appropriately scaled versions of the first
verification equation, we can without loss of generality also assume Â2 = . . . = Âη = 0. Two
linearly independent equalities in two variables is uniquely solvable, so if the first verification
with Â1 = 1 is non-redundant then the remaining verification equations can impose at most
one linear constraint on the proof. This means that they can be combined to a single linear
constraint. Theorem 6.2 showed there must be two non-trivial verification equations, which
means that we can without loss of generality consider only the case where η = 2, Â1 = (1)
and Â2 = (0).

We will now show that the existence of a pairing-based SS-NIZK argument with η = 2,
Â1 = (1) and Â2 = (0) implies a decision procedure for determining whether an instance φ
has been sampled by Yes or No. We break the analysis into two cases depending on whether
the simulation is likely to always produce the same proofs or whether it returns randomized
proofs (noting that by the structure of verification equations there are at most two acceptable
proofs).

28

Case I: The simulator always outputs the same proof in repeated executions.
In Case I we assume

Pr

[
R← R(1λ); (crs, τ))← ZSetup(R); (φ,w)← Yes(R) :

ZProve(crs,φ,w) = ZProve(crs,φ,w)

]
≈ 1.

We construct a PPT decision algorithm A for the hard decisional problem.

A(R,φ)

m = max{m1,m2}
for i = 0, ..,m :

(ui,vi, zi, τ i) = ZSetup′(R)
(Gsi , Hti)← ZSimProve(crsi, τ i,φ)

(Â1, . . . , F̂2)← ZVfy′(R,φ)
si, ti ← compute from verification equations

return 1 if and only if it is possible to find P̂ , Q̂ such that

for all i = 0, . . . ,m we have si = uiP̂ , ti = viQ̂

Let us analyse the performance of A when working on φ generated by Yes and No,
respectively. First we consider the Yes case and define another PPT algorithm B that is
similar to A but instead uses real proofs.

B(R,φ,w)

(P̂ ′, Q̂′)← ZProve′(R,φ,w)
m = max{m1,m2}
for i = 0, ..,m :

(ui,vi, zi, τ i) = ZSetup′(R)

si = uiP̂
′, ti = viQ̂

′

return 1 if and only if it is possible to find P̂ , Q̂ such that

for all i = 0, . . . ,m we have si = uiP̂ , ti = viQ̂

Since we are in Case I, when running B we would in each iteration i = 0, . . . ,m get the
same (si, ti) pairs even if running the prover algorithm several times. By the zero-knowledge
property real proofs should match these unique (si, ti) pairs, so A generates similar si, ti
values in its execution on a Yes-instance.

Pr[R← R(1λ); (φ,w)← Yes(R) : A(R,φ) = 1]

≈ Pr[R← R(1λ); (φ,w)← Yes(R) : B(R,φ,w) = 1].

When running B there exists at least one solution P̂ = P̂ ′ and Q̂ = Q̂′ for the matrices, so
Gaussian elimination will provide some P̂ and Q̂ solution. This means

Pr[R← R(1λ); (φ,w)← Yes(R) : B(R,φ,w) = 1] ≈ 1.

Next, we consider the No case. Also here it must be true that the simulator produces
unique (si, ti) pairs, since otherwise we could use the deviation in simulated proofs to de-
termine we had sampled φ ← No(R). Now, if A returns 1 it means it found matrices P̂ , Q̂
that explain all the simulated verification equation solutions (si, ti). The dimensions of P̂ , Q̂
are m1 × 1 and m2 × 1, so we have more equations in (si, ti) than variables. Some of the
equations must therefore be linearly dependent. This means, if we were to sample yet another

29

pair of common reference string and verification equations, then there is a chance that it too
would be linearly dependent on previous verification equations and hence the matrices P̂ , Q̂
would yield accepting proofs. However, by soundness such matrices P̂ , Q̂ cannot exist, since
it would mean the forgery of a proof for a false instance. We therefore get

Pr[R← R(1λ); φ← No(R) : A(R,φ) = 1] ≈ 0,

which contradicts that Yes,No was a hard to decision problem for R.

Remark 6.1. It is tempting to use the same analysis also when the proofs sometimes differ.
Just let A use both posisble proofs. The issue is that the adversary does not know which
proof element, si or s′i to use in the system of equations, so it has to run through up to
2m+1 combinations in order to try all combinations to find the proof vector P̂ and the same
for finding Q̂. If the common reference string is large then this adversary is not polynomial
time. Nonetheless, it does show that any computationally sound NIZK argument must either
have a long common reference string or at least 3 group elements in the proofs. In the next
part, we leverage simulation soundness to show that on any common reference string whether
short or long we cannot have two group element proofs.

Case II: The simulator sometimes produces different proofs in repeated executions.
Let

ε(λ) = Pr

[
R← R(1λ); (crs, τ))← ZSetup(R); (φ,w)← Yes(R) :

ZProve(crs,φ,w) 6= ZProve(crs,φ,w)

]
.

In Case II we have that ε(λ) 6≈ 0, so there is a constant c > 0 such that ε(λ) ≥ 1
λc for

infinitely many choices of λ ∈ N.
We construct a PPT algorithm A that whenever there is two pairs of proof matrices

takes as input a CRS and an instance φ ∈ LR and matrices that can be used to compute
the difference between the two proofs.

A(crs,φ)

m = max{m1,m2}
for i = 1, ..,m :

(ui,vi, zi, τ i) = ZSetup′(R)
(si, ti), (s

′
i, t
′
i)← compute two solutions to verification equation

(xi, yi) = (si + s′i, ti + t′i)

solve for two matrices Ŝ, T̂ such that for all i = 1, . . . ,m

si + s′i = uiŜ and ti + t′i = viT̂

return (Ŝ, T̂), and else abort

Now, observe that if the prover is run twice and produces two different proofs for the
same statement, then it must have used two different proof matrices. By disclosure-freeness,
there is then overwhelming probability that these two proof matrices would also produce
distinct proofs on another freshly drawn CRS. Moreover, since the verification equations
have exactly two different solutions, these two proofs are uniquely defined. The algorithm A
would in this case succeed in finding Ŝ, T̂ . Written formally, we get

Pr


R← R(1λ); (φ,w)← Yes(R); (crs, τ)← ZSetup(R);

(Π1,Π2)← ZProve(crs,φ,w); (Ŝ, T̂)← A(R,φ);

Π ′1 ← (Gu)ŜΠ−1; Π ′1 ← (Gu)ŜΠ−1 :

(Π ′1,Π
′
2) 6= (Π1,Π2) and ZVfy(crs,φ, (Π ′1,Π

′
2)) = 1

 ≈ ε(λ).

30

From the zero-knowledge property we then get

Pr


R← R(1λ); (φ,w)← Yes(R); (crs, τ)← ZSetup(R);

(Π1,Π2)← ZSimProve(crs, τ ,φ); (Ŝ, T̂)← A(R,φ);

Π ′1 ← (Gu)ŜΠ−1; Π ′1 ← (Gu)ŜΠ−1 :

(Π ′1,Π
′
2) 6= (Π1,Π2) and ZVfy(crs,φ, (Π ′1,Π

′
2)) = 1

 ≈ ε(λ).

The hardness of deciding whether φ is drawn as a Yes-instance or a No-instance, now
implies

Pr


R← R(1λ); φ← No(R); (crs, τ)← ZSetup(R);

(Π1,Π2)← ZSimProve(crs, τ ,φ); (Ŝ, T̂)← A(R,φ);

Π ′1 ← (Gu)ŜΠ−1; Π ′1 ← (Gu)ŜΠ−1 :

(Π ′1,Π
′
2) 6= (Π1,Π2) and ZVfy(crs,φ, (Π ′1,Π

′
2)) = 1

 ≈ ε(λ).

However, this contradicts simulation soundness. ut

A Square Arithmetic Programs

We defined Square Arithmetic Program (SAP) relations in Section 5.1. We will now show
how any arithmetic circuit with fan-in 2 gates over a finite field Zp can be expressed as a SAP
over the same finite field. The conversion is largely the same as the conversions described in
[GGPR13] and [DFGK14], however we also discuss how to instantiate the trick of replacing
multiplications with squarings that was mentioned in [Gro16].

Gennaro, Gentry, Parno and Raykova [GGPR13] introduced quadratic span programs
(QSPs) and quadratic arithmetic programs (QAPs). These define NP-complete languages
specified by a quadratic equation over polynomials. QSPs characterise boolean circuits
and QAPs characterise arithmetic circuits in a natural way. Danezis, Fournet, Groth and
Kohlweiss [DFGK14] noticed that by replacing each of the constraints in QSPs with 2 other
constaints, it is possible to design a square span program (SSP), which is a QSP in which
the two sets of polynomials involved in the quadratic term are identical. Using this technique
they were able to reduce the number of proof elements and verification equations (at the cost
of a circuit with twice as many gates) by having the quadratic proof components on each
side of the pairing be replicas. We use SAPs in a similar way to make the group elements A
and B in our proof symmetric.

An arithmetic circuit can be described as a set of arithmetic constraints over the wires
s1, . . . , sm. We fix the constant s0 = 1, use s1, . . . , s` ∈ Zp to describe the instance, and the
rest of the wires s`+1, . . . , sm can be viewed as the witness. Generalising from the addition
and multiplication constraints that arise in an arithmetic circuit, e.g., si ·sj = sk we consider
a set of n multiplication constraints of the form

m∑
i=0

siui,q ·
m∑
i=0

sivi,q =
m∑
i=0

siwi,q,

where ui,q, vi,q, wi,q are constants in Zp specifying the qth equation.
Our SAP is based on a simplification of systems of arithmetic constraints, where all

multiplications are replaced with squarings. As suggested by [Gro16], we can write a product

31

ab = (a+b)2−(a−b)2
4 . A system with n multiplication constraints can therefore be rewritten as a

system with at most 2n squaring constraints. To be precise, for each multiplication constraint∑m
i=0 siui,q ·

∑m
i=0 sivi,q =

∑m
i=0 siwi,q we introduce a new variable sm+q and replace the

multiplication constraint with two squaring constraints

1. (
∑m
i=0 si(ui,q + vi,q))

2 = 4
∑m
i=0 siwi,q + sm+q;

2. (
∑m
i=0 si(ui,q − vi,q))

2 = sm+q.

Consider now n squaring constraints
{

(
∑m
i=0 siui,q)

2 =
∑m
i=0 siwi,q

}n
q=1

. Let us pick arbi-

trary distinct r1, . . . , rn ∈ Zp and define t(x) =
∏n
q=1(x − rq). Furthermore, let ui(x), wi(x)

be degree n− 1 polynomials such that

ui(rq) = ui,q and wi(rq) = wi,q for i = 0, . . . ,m, q = 1, . . . , n.

We now have that s0 = 1 and the variables s1, . . . , sm ∈ Zp satisfy the n constraints if and
only if in each point r1, . . . , rq (

m∑
i=0

siui(rq)

)2

=
m∑
i=0

siwi(rq).

Since t(X) is the lowest degree monomial with t(rq) = 0 in each point, we can reformulate
this condition as (

m∑
i=0

siui(X)

)2

≡
m∑
i=0

siwi(X) mod t(X).

This gives rise to a SAP as defined in Section 5.1.
Formally, we work with square arithmetic programs R that have the following description

R = (Zp, aux, `, {ui(X), wi(X)}mi=0, t(X)) ,

where p is a prime, aux is some auxiliary information, 1 ≤ ` ≤ m, ui(X), wi(X), t(X) ∈ Zp[X]
and ui(X), wi(X) have strictly lower degree than n, the degree of t(X). A square arithmetic
program with such a description defines the following binary relation, where we let s0 = 1,

R =

(φ,w)

∣∣∣∣∣∣∣∣∣
φ = (s1, . . . , s`) ∈ Z`p
w = (s`+1, . . . , sm) ∈ Zm−`p

(
∑m
i=0 siui(X))2 ≡

∑m
i=0 siwi(X) mod t(X)

 .
We say R is a square arithmetic program generator if it generates relations of the form given
above with p > 2λ−1.

Relations can arise in many different ways in practice. It may be that the relationship
generator is deterministic or it may be that it is randomized. It may be that first the prime
p is generated and then the rest of the relation is built on top of the Zp. Or it may be that
the polynomials are specified first and then a random field Zp is chosen. To get maximal
flexibility we have chosen our definitions to be agnostic with respect to the exact way the
field and the relation is generated, the different options can all be modelled by appropriate
choices of relation generators.

In our pairing-based NIZK arguments the auxiliary information aux specifies a bilinear
group over Zp. It may seem a bit surprising to make the choice of bilinear group part of the

32

relation generator but this provides a better model of settings where the relation is built on
top of an already existing bilinear group. Again, there is no loss of generality in this choice,
one can think of a traditional setting where the relation is chosen first and then the bilinear
group is chosen at random as the special case where the relation generator works in two
steps, first choosing the relation and then picking a random bilinear group. Of course letting
the relation generator pick the bilinear group is another good reason that we need to assume
it is benign; an appropriate choice of bilinear group is essential for security.

We use in the security proofs that the polynomials u0(X), . . . , u`(X) are linearly inde-
pendent from each other and are also linearly independent from u`+1(X), . . . , um(X). When
constructing the square arithmetic program from squaring constraints, we can achieve this by
adding a new variable s′i and a squaring constraints s2i = s′i for any ui(X) that is not already
linearly independent. This makes ui(X) linearly independent from all the other uj(X) since
ui(rn+i) = 1, while uj(rn+i) = 0 for all j 6= i.

Finally, we note that given a square arithmetic program defining a relation R′, we can
formulate a square arithmetic program defining

R = {((K,h,φ),w) : K ∈ {0, 1}`K(λ) ∧ h ∈ {0, 1}`h(λ) ∧ (φ,w) ∈ R′},

by thinking of {0, 1}`K(λ) × {0, 1}`h(λ) as embedded in Zdp in a natural way, adding new
variables s′1, s

′′
1, . . . , s

′
d, s
′′
d to the instance, and adding squaring constraints (s′i)

2 = s′′i . This
means that from a simulation-extractable NIZK for relation R, we can build a simulation
extractable signature of knowledge as in Section 3.

Acknowledgments

We thank Vasilios Mavroudis and Markulf Kohlweiss for helpful discussions.

References

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Theory of Cryptogra-
phy, 4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands, February
21-24, 2007, Proceedings, pages 118–136. Springer, 2007.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant
size ciphertext. In Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May
22-26, 2005, Proceedings, pages 440–456. Springer, 2005.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 111–120. ACM, 2013.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages
459–474. IEEE, 2014.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In Theory of Cryptography - 10th Theory
of Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, pages
315–333. Springer, 2013.

[BCK+14] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, and Gregory Neven.
Better zero-knowledge proofs for lattice encryption and their application to group signatures. In
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory and
Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11,
2014. Proceedings, Part I, pages 551–572. Springer, 2014.

33

[BCPR13] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. Indistinguishability obfuscation vs.
auxiliary-input extractable functions: One must fall. IACR Cryptology ePrint Archive, 2013:641,
2013.

[BCPR16] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. SIAM Journal on Computing, 45(5):1910–1952, 2016.

[BDSMP91] M Blum, A De Santis, S Micali, and G Persiano. Non-interactive zero-knowledge proof systems.
SIAM Journal on Computing, 20(6):1084–1118, 1991.

[BF14] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In Public-Key Cryptography -
PKC 2014 - 17th International Conference on Practice and Theory in Public-Key Cryptography,
Buenos Aires, Argentina, March 26-28, 2014. Proceedings, pages 520–537. Springer, 2014.

[BFG13a] David Bernhard, Georg Fuchsbauer, and Essam Ghadafi. Efficient signatures of knowledge and
DAA in the standard model. In Applied Cryptography and Network Security - 11th International
Conference, ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings, pages 518–533.
Springer, 2013.

[BFG+13b] David Bernhard, Georg Fuchsbauer, Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi.
Anonymous attestation with user-controlled linkability. Int. J. Inf. Sec., 12(3):219–249, 2013.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 103–112. ACM, 1988.

[BP14] Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional auxil-
iary input. In Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland, New Zealand,
November 29 - December 3, 2015, Proceedings, Part II, pages 236–261. Springer, 2014.

[BSCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge
via cycles of elliptic curves. In International Cryptology Conference, pages 276–294. Springer,
2014.

[CF08] Xiaofeng Chen and Dengguo Feng. A new direct anonymous attestation scheme from bilinear
maps. In Proceedings of the 9th International Conference for Young Computer Scientists, ICYCS
2008, Zhang Jia Jie, Hunan, China, November 18-21, 2008, pages 2308–2313. Springer, 2008.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Advances in Cryptology
- CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006, Proceedings, pages 78–96, 2006.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups (extended
abstract). In Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings, pages 410–424.
Springer, 1997.

[Dam92] Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect zero-knowledge
with preprocessing. In Workshop on the Theory and Application of of Cryptographic Techniques,
pages 341–355. Springer, 1992.

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs
with applications to succinct NIZK arguments. In Advances in Cryptology - ASIACRYPT 2014
- 20th International Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages 532–550.
Springer, 2014.

[DS16] David Derler and Daniel Slamanig. Fully-anonymous short dynamic group signatures without
encryption. IACR Cryptology ePrint Archive, 2016:154, 2016.

[DSDCP00] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Necessary and sufficient
assumptions for non-interactive zero-knowledge proofs of knowledge for all np relations. In
International Colloquium on Automata, Languages, and Programming, pages 451–462. Springer,
2000.

[EHK+17] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Rafols, and Jorge Villar. An algebraic framework
for diffie–hellman assumptions. Journal of Cryptology, 30(1):242–288, 2017.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the
non-malleability of the fiat-shamir transform. In Progress in Cryptology - INDOCRYPT 2012,
13th International Conference on Cryptology in India, Kolkata, India, December 9-12, 2012.
Proceedings, pages 60–79. Springer, 2012.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs under
general assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

34

[FO11] Marc Fischlin and Cristina Onete. Relaxed security notions for signatures of knowledge. In
Applied Cryptography and Network Security - 9th International Conference, ACNS 2011, Nerja,
Spain, June 7-10, 2011. Proceedings, pages 309–326, 2011.

[FXC09] Deng-Guo Feng, Jing Xu, and Xiao-Feng Chen. An efficient direct anonymous attestation scheme
with forward security. WSEAS TRANSACTIONS on COMMUNICATIONS, 8(10):1076–1085,
2009.

[GG17] Essam Ghadafi and Jens Groth. Towards a classification of non-interactive computational as-
sumptions in cyclic groups. Cryptology ePrint Archive, Report 2017/343, 2017.

[GGI+15] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam D. Smith. Using
fully homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs. Journal
of cryptology, 28(4):820–843, 2015.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct nizks without pcps. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, pages 626–645. Springer, 2013.

[GO14] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. Journal of Cryptology,
27(3):506–543, 2014.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge.
Journal of the ACM (JACM), 59(3):11, 2012.

[GPS08] Steven D Galbraith, Kenneth G Paterson, and Nigel P Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16):3113–3121, 2008.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In Advances in Cryptology - ASIACRYPT 2006, 12th International Conference on
the Theory and Application of Cryptology and Information Security, Shanghai, China, December
3-7, 2006, Proceedings, pages 444–459. Springer, 2006.

[Gro10] Jens Groth. Short non-interactive zero-knowledge proofs. In Advances in Cryptology - ASI-
ACRYPT 2010 - 16th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 5-9, 2010. Proceedings, pages 341–358. Springer,
2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages 305–326.
Springer, 2016.

[GS12] Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM
Journal on Computing, 41(5):1193–1232, 2012.

[GT07] He Ge and Stephen R. Tate. A direct anonymous attestation scheme for embedded devices. In
Public Key Cryptography - PKC 2007, 10th International Conference on Practice and Theory in
Public-Key Cryptography, Beijing, China, April 16-20, 2007, Proceedings, pages 16–30. Springer,
2007.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, 6-8 June 2011, pages 99–108. ACM, 2011.

[Kil95] Joe Kilian. Improved efficient arguments (preliminary version). In Advances in Cryptology
- CRYPTO ’95, 15th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 27-31, 1995, Proceedings, pages 311–324. Springer, 1995.

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system for np
with general assumptions. Journal of Cryptology, 11(1):1–27, 1998.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous dis-
tributed e-cash from bitcoin. In 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, pages 397–411. IEEE, 2013.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000.

[MW98] Ueli M. Maurer and Stefan Wolf. Lower bounds on generic algorithms in groups. In Advances
in Cryptology - EUROCRYPT ’98, International Conference on the Theory and Application of
Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, pages 72–84.
Springer, 1998.

[Nec94] Vassiliy Ilyich Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Math-
ematical Notes, 55(2):165–172, 1994.

35

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In STOC, pages 427–437, 1990.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and compos-
able oblivious transfer. In Advances in Cryptology - CRYPTO 2008, 28th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, pages 554–
571. Springer, 2008.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In STOC,
pages 387–394, 1990.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext secu-
rity. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 543–553. IEEE, 1999.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of cryptology,
4(3):161–174, 1991.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Advances in
Cryptology - EUROCRYPT ’97, International Conference on the Theory and Application of
Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, pages 256–266.
Springer, 1997.

[SP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without inter-
action (extended abstract). In 33rd Annual Symposium on Foundations of Computer Science,
Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 427–436. IEEE, 1992.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC 2008,
New York, USA, March 19-21, 2008., pages 1–18. Springer, 2008.

[YYQ+15] Bo Yang, Kang Yang, Yu Qin, Zhenfeng Zhang, and Dengguo Feng. DAA-TZ: an efficient DAA
scheme for mobile devices using ARM trustzone. In Trust and Trustworthy Computing - 8th
International Conference, TRUST 2015, Heraklion, Greece, August 24-26, 2015, Proceedings,
pages 209–227. Springer, 2015.

36

