
Further Analysis of a Proposed Hash-Based
Signature Standard

Scott Fluhrer

Cisco Systems, USA
sfluhrer@cisco.com

Abstract. We analyze the concrete security of a hash-based signature
scheme described in the most recent Internet Draft by McGrew, Fluhrer
and Curcio. We perform this analysis in the random-oracle model, where
the Merkle-Damgård hash compression function is models as the random
oracle. We show that, even with a large number of different keys the
attacker can choose from, and a huge computational budget, the attacker
succeeds in creating a forgery with negligible probability (< 2−129).

1 Introduction

McGrew et al have recently proposed a series of standards for hash-based sig-
natures. Along with these standards, there is a proof by Jonathan Katz of
security [1]; this proof shows that forgery attempts against version 4 [2] will
succeed with only negligible probability. McGrew et al has since updated their
proposal with version 6 [3], the proof is also applicable there. This proof is in
the random oracle model, specifically, it assumed that the hash function was a
random function, with the attacker having oracle access.

With this assumption, the proof is valid. However, if we examine a stronger
attack model, specifically, if the attacker has oracle access to the hash compression
function within the Merkle-Damgård hash function, we find that the proof no
longer applies. Specifically, the conclusion in [1, Lemma 9] would be incorrect in
this attack model, as the attacker can attack all the 0x04 hashes from a single
Merkle tree at once, as follows. The attacker extracts the hash computations
from all the interior Merkle tree nodes (which can be extracted from the authen-
tication paths contained within the valid sigantures), and arranges these hash
computations as follows:

H(I, T[2 ∗ 1], T[2 ∗ 1 + 1], ustr32(1), 0x04)
H(I, T[2 ∗ 2], T[2 ∗ 2 + 1], ustr32(2), 0x04)
H(I, T[2 ∗ 3], T[2 ∗ 3 + 1], ustr32(3), 0x04)

...
H(I, T[2 ∗ (2h − 2)], T[2 ∗ (2h − 2) + 1], ustr32(2h − 2), 0x04)
H(I, T[2 ∗ (2h − 1)], T[2 ∗ (2h − 1) + 1], ustr32(2h − 1), 0x04)

where I is the identifier of the LMS public key used for the Merkle tree, and
T[2*i], T[2*i+1] are the child nodes to interior node i.

Using oracle access to the hash compression function, the attacker then
computes the intermediate state after the partial hash computation of I ||
T[2*r] || T[2*r+1] (indicated by the dashed line in the table) for every r
within the tree. Note that this partial hash computation is on a SHA-256 block
boundary, and hence the intermediate state consists solely of the internal 256
bits of internal state variables. Then, the attacker selects q strings z for length 64
(distinct from T[2*i] || T[2*i+1] for any i), and performs q queries of the
intermediate state of H(I || z || ...); if the attacker finds an intermediate
state that matches any of the Merkle tree intermediate state in the above list
(say, for node r), then he attacker has found Collr, as

H(I || T[2*r] || T[2*r+1] || u32str(r) || 0x04) =
H(I || z || u32str(r) || 0x04)

For a height hMerkle tree, this succeeds with probability (2h−1)q ·2−8n,which
for h > 2 is higher than the probability 3q · 2−8n proven assuming only hash
function oracle access. This is not a violation of the original proof, as that proof
assumed that the attacker had only oracle access to the hash function, and hence
could not view intermediate hash states; it does indicate that, with SHA-256 at
least, the attack model assumed by the proof might not the most appropriate.

Because of this observation, McGrew et al has revised their draft to version
7 [4]; this paper seeks to prove that this revised version is secure in this stronger
attack model.

1.1 Assumptions of the Merkle-Damgård hash function

For the purposes of this proof, we will assume that the hash function H used is
a Merkle-Damgård hash function, based on a hash compression function C that
we will treat as a random oracle.

As a review of the construction of a Merkle-Damgård hash function, it is based
on a collision resistant compression function C : {0, 1}s×{0, 1}b → {0, 1}s (where
b is the block size of the input message, and s is the size of the internal state),
and a padding function Pad(M), such that M ||Pad(M) is always a multiple of
b in length. To hash an n bit message M , we append Pad(M) and then divide
the padded message M ||Pad(M) into successive b bit blocks M0,M1, ...,Mk.
Then, we start with a fixed s-bit state S0 = IV , and then successively compute
Si+1 = C(Si,Mi), and the final state Sk+1 is the hash result1

We assume that the padding function we use has the property thatM ||Pad(M) 6=
M ′||Pad(M ′) if M 6= M ′. For this paper, we further assume that if M,M ′ have
the same length, then the length of Pad(M),Pad(M ′) will also be the same.

The padding function used in common Merkle-Damgård hash functions (such
as SHA-256) meet these criteria.
1 It is common for Merkle-Damgård hash functions to truncate the output state when
generating the final hash output. For the purposes of this paper, we will assume that
the hash function does not truncate the output; the hash function used in the draft
(SHA-256) does not.

2 Version 07 of the McGrew-Fluhrer-Curcio draft

In analyzing the most recent version of the McGrew-Fluhrer-Curcio proposal,
we begin by showing the security of a hash compression function in an abstract
attack model. We will then show that the LMS signature scheme can be proven
to be secure, assuming the security results of the abstract attack model.

2.1 Abstract hash model

In this model, we give the attacker a series of strings with prefixes and hash
targets; the attacker’s goal is to find another string that has both the same prefix
and hash target as any of the strings.

We will denote prei as the values used as the string prefixes, and Hi as the
hash targets. We assume that, for any value pre, there are at most k prefixes
prei = pre (where k is a security parameter). In addition, we assume that no
prefix is a proper prefix of any other, that is prei 6= prej ||S, for any i, j, and any
nonempty string S. We assume that these prefixes has been chosen as a part of
the model set up procedure2.

We are interested in bounding the attacker’s success probability in the follow-
ing expirement.

1. We create a random oracle C : {0, 1}s × {0, 1}b → {0, 1}s, a value IV and a
padding function Pad that meets the requirements listed above. We create a
Merkle-Damgård hash function H (with s bits of internal state and a block
size of b) based on C, Pad and IV .

2. For i = 1, ..., N , we generate the prefixes prei arbitrarily, with the constraints
that no prefix value is used more than k times, no prefix is a proper prefix of
another, no prefix is used for two different groups, and that each prefix is no
more than b bits in length3. We give these prefixes to the attacker.

3. We divide the prefixes into three groups (and we assume that no two prefixes
from different groups share a common value):
(a) For a Group 1 prefix prei, we choose uniform Si ∈ {0, 1}s, and uniform

Hi ∈ {0, 1}s, add the tuple (IV, prei||Si||Pad(prei|||Si), Hi) to C, and
give Hi (but not Si) to the attacker. For these prefixes, we assume that
the length of prei||Si||Pad(prei||Si) is precisely b bits.

(b) For a Group 2 prefix prei, we select an arbitrary string Si, evaluate
Hi = H(prei||Si), and give Si and Hi to the attacker

(c) For a Group 3 prefix prei, the attacker gives us a string Si; we choose
a uniform Ci ∈ {0, 1}s, evaluate Hi = H(prei||Ci||Si), and give Ci and
Hi to the attacker. For these prefixes, we require that the length of prei
be at most b− s4.

2 These indentifier could be chosen adaptively by the attacker (subject to the require-
ments listed above) without any significant change ot the proof in the following
section, for simplicity, we treat them as fixed in advance. When we use this proof for
LMS, the identifiers will be fixed in advance.

3 The prefixes used as Group 1 and Group 3 will have stricter length requirements
4 So that prei||Ci fit in the initial hash compression block

4. The attacker is given the padding function Pad, the value IV and oracle
access to C, bounded to m invocations; note that this allows the attacker to
compute H(S) for any string S (by making the appropriate queries on C).

5. We consider the attacker to be successful if any of these conditions hold:
(a) For a Group 1 prefix prei, the attacker is able to produce a string S′ of

length s with Hi = H(prei||S′)
(b) For a Group 2 prefix prei, the attacker is able to produce a string S′ 6= Si

with Hi = H(prei||S′)
(c) For a Group 3 prefix prei, the attacker is able to produce a string S′ 6=

Ci||Si with Hi = H(prei||S′)

where, in the above procedure, where we evaluate H(m), we mean:

1. Append pad(m) to m, and parse the padded message into b-sized blocks
m1,m2, ...,mn

2. Set s to IV
3. For i = 1, ..., n, if an entry (s,mi, t) (for any t) is in C, then set s = t,

otherwise choose uniform t ∈ {0, 1}s, and add the tuple (s,mi, t) to C, and
set s = t

4. Return the final value of s

In the below lemmas, we will introduce value λ it is an arbitrary integer;
these lemmas will hold for all values of λ.

Lemma 1. If the total number of hash compression operations done as a part
of the setup process and the attacker Oracle queries is bounded by m, then the
probability that we will have an entry (∗, ∗, IV) ∈ C is bounded by m2−s.

Proof. This follows from the fact that each entry in C has a value which is
selected uniformly, and so the probablity of a single trial being IV is 2−s, hence
the probability bound listed after m trials follows immediately.

Lemma 2. If the total number of hash compression operations done as a
part of the setup process and the attacker Oracle queries is bounded by m, then
the probability that we will have at least λ pairs of entries in C that collide5 is
bounded by (m22−s−1)λ/λ!.

Proof. This follows from the fact that each entry in C has a value which is
selected uniformly, and the probability that there are λ distinct repeats out of m
random values from of a range of 2s is bounded by the probability given.

Lemma 3. The attacker will get a Group 1 success with probability at most
2km2−s

Proof. Let us denote the prefixes that share the prefix value pre as
prea1 , prea2 , ..., prean for n ≤ k. Any C query (IV, pre||S||Pad(pre||S),−) will
return a uniform value in {0, 1}s, unless the attacker happens one of the value
S ∈ {Sa1 , Sa2 , ..., San}. Hence, any query of C(IV, prei||S′||pad) will return one
of the Ha1 , Ha2 , ...,Han values with probability bounded by the probability that
5 that is, both (x, y, c), (z, w, c) ∈ C, with (x, y) 6= (z, w)

S′ = Saj (probability at most k2−s), plus the probability that the uniform value
selected will happen to be Hai (probability bounded by k2−s). Any other query
will yield no information about a Group 1 success; hence the probability after m
queries is bounded by 2km2−s.

Lemma 4. Assuming that the conditions in Lemma 1, 2 and 3 are not met,
the attacker will get a Group 2 success with probability bounded by λkm2−s

Proof. If the attacker does produce a string S′ with Hi = H(prei||S′); we
will assume that the attacker has issued all the C oracle queries involved with
computing this hash.

Let us consider the padded message blocks

(M0,M1, ...,Mn) = (prei||Si||Pad(prei||Si))

(M ′0,M ′1, ...,M ′n) = (prei||S′i||Pad(prei||S′i))

, and the sequence of states

S0 = IV, S1 = C(S0,M0), ..., Sn = C(Sn−1,Mn′−1)

S′0 = IV, S′1 = C(S′0,M ′0), ..., S′n′ = C(S′n′−1,M
′
n′−1)

and the smallest j such that (Sn−j ,Mn−j) 6= (S′n′−j ,M
′
n′−j). We know such

a j ≤ n, n′ just exist, because:

– We know that we cannot have either Sx = IV or S′x = IV for x > 0 (by the
assumption of Lemma 1), and hence one sequence cannot be a proper prefix
of the other

– We know that the sequences cannot be identical, as if they were, then we
have Si = S′, contrary to the assumption.

Let us consider the set of sequences in C such that S”0 = IV, S”1 =
C(S”0,M”0), ..., S”n” = C(S”n”−1,M”n”−1), S”n” = S′n′−j ; namely S′k = S”k, j =
n”.

Because there are at most λ− 1 collisions, that is, places where two chains
potentially merge, that mean that there are at most λ starting places (with the
initial state being IV) that such a sequence can start. In addition, each such
sequence can start with a specific prefix value, for each such sequence, there are
at most k such prefixes with that value.

Hence, there are at most λk prefixes that have a resulting Si value that can
make this chain work. So, the probability that the attacker will find a (s, b) value
that makes this work, after m queries, is bounded by λkm2−s

Lemma 5. Assuming the conditions in Lemma 1 and Lemma 2 are not met,
the attacker will get a Group 3 success with probability at most λ(k + 1)m2−s

Proof. Before the attacker submits the value Si, he has a probability bounded
by km2−s of querying the value C(IV, Initial(prei||Ci||Si)), where Initial(M) is
the first b block of the string M ||Pad(M). If he has not queries such a value, then
the value selected for the state C(IV, Initial(prei||Ci||Si)) when we evaluate Hi

will be random. Hence, in this case, the success probability is bounded by the
sum of the two probabilities, namely λ(k + 1)m2−s.

Theorem 1. The probability that the attacker would succeed in this game is
bounded by the probability m(2k + 1)(λ+ 1)2−s + (m22−s−1)λ/λ!.

Proof. The attacker wins if he succeeds against either a Group 1, Group
2 or Group 3 prefix. The conditional probabilities of the attacker succeeding
are bounded by by expressions given in lemmas 3, 4, 5, conditional that the
assumptions of lemma 1 and lemma 2 hold. The probabilities that the assumptions
given by lemma 1 or llemma 2 do not hold are bounded by the expression given in
those lemmas. Hence, the probabilility that the attacker will succeed is bounded
by the sum of the probabilities given in the five lemmas, which is the probability
given.

2.2 Description of the LMS scheme

LMS is a two level signature scheme, where a one time signature (LM-OTS) is
used to sign the message, while a Merkle tree signs the LM-OTS public key.

2.2.1 Description of LM-OTS We begin with a detailed description of the
LM-OTS scheme, following [4]. Let H : {0, 1}∗ → {0, 1}s. Fix w ∈ {1, 2, 4, 8} as a
parameter of the scheme, and set e def= 2w − 1. Set u def= s/w; note that the output
of H can be a sequence of u integers, each w bits long. Set v def= dblog u ·e+1c/we
and p def= u+ v. Define a function checksum : ({0, 1}w)u → {0, 1}wv as follows:

checksum(d0, ..., du−1) def=
u−1∑
i=0

(e− di)

where each di ∈ {0, 1}w is viewed as an integer in the range {0, ..., 2w − 1} and
the result is expressed as an integer using exactly wv bits.6 For positive integers
i, b with i < 28b, we let [i]b denote the b-byte representation of i in bigendian
order. For a string s and postive integer j, set H0

I,q(x; j) def= x. For positive
integers i ≥ 1 and j, define

Hi
I,q,d(x; j) def= H(I, [q]4, [d]2, [i+ j − 1]1, Hi−1

I,q,d(x; j))

Define the LM-OTS scheme as follows:

Key-generation algorithm GenOTS
Key Generation takes as input I, q, where I is a 16 byte identifier, and q is a 4
byte diversification factor. The algorithm proceeds as follows7:
6 In [4] the result is expressed as a 16-bit integer, but only the top vw bits are used.
7 In the below descriptions, the values 8080 through 8383 listed are in hexadecimal.

1. Choose p uniform values x0, ..., xp−1 ∈ {0, 1}s.
2. For i = 0 to p− 1, compute yi = He

I,q,i(xi; 0).
3. Compute pk := H(I, [q]4, [8080]2, y0, ..., yp−1)

The public key is pk, and the private key is sk = (x0, ..., xp−1).

Signing algorithm SignOTS
Signing takes as input a private key sk = (x0, ..., xp−1) and a message
M ∈ {0, 1}∗ as usual, as well as I, q as above. It does:

1. Choose uniform C ∈ {0, 1}s.
2. Compute Q := H(I, [q]4, [8181]2, C,M) and c := Checksum(Q). Set V :=
Q||c, and parse V as a sequence of w-bit integers V0, ..., Vp−1

3. For i = 0, ..., p− 1, compute σi := HVi

I,q,i(xi; 0)
4. Return the signature σ = (C, q, σ0, ..., σp−1)

Verification algorithm VrfyOTS
Verification takes as input a message M ∈ {0, 1}∗ and a signature
(C, q, σ0, ..., σp−1), as well as I and q as above. It does:

1. Compute Q := H(I, [q]4, [8181]2, C,M) and c := Checksum(Q) Set V := Q||c,
and parse V as a sequence of w-bit integers V0, ..., Vp−1

2. For i = 0, ..., p− 1, compute σi := HVi

I,q,i(σi;Vi)
3. Output H(I, [q]4, [(8080)]2, y0, ..., yp−1)

We note that, in contrast to the usual convention, VrfyOTS returns a string
rather than a bit and does not take a public key as input. A signature σ on some
message M is valid relative to some fixed public key pk if the output of VrfyOTS
is equal to pk.

One can verify that correctness holds in the following sense: for any I, q, and
(sk, pk) output by GenOTS(I, q), and any message M , we have:

VrfyOTS(SignOTS(sk,M, I, q), I) = pk

.

2.2.2 Description of LMS An instance of the LMS scheme is defined by
computing a Merkle tree of height h using 2h LM-OTS public keys at the leaves.
We give a formal definition now.

Let H : {0, 1}∗ → {0, 1}s as previously. We fix w ∈ {1, 2, 4, 8} for use in the
LM-OTS system, and we also select an integer h.

Key-generation algorithm Gen
Key Generation takes as input a parameter h and a value I ∈ {0, 1}128. The
algorithm proceeds as follows:

1. For q = 0, ..., 2h − 1, compute (pkq, skq)← GenOTS(I, q).

2. For r = 2h, ..., 2h+1 − 1, set T [r] := H(I, [r]4, [8282]2, pkr−2h)
3. For r = 2h − 1, ..., 1, set T [r] := H(I, [r]4, [8383]2, T [2r], T [2r + 1])

The public key is pk = (h, I, T [1]), and the private key is
sk = (sk0, ..., sk2h−1, T [1..2h+1 − 1]).

Signing algorithm Sign

Signing takes as input a private key (sk0, ..., sk2h−1, T [1..2h+1 − 1]), an integer
0 ≤ q < 2h, a message M ∈ {0, 1}∗, as well as I as above. The algorithm
proceeds as follows8:

1. Compute σ := SignOTS(skq,M, I, q).
2. Set p0, ..., ph−1 as pi := T [b(q + 2h)/2ic ⊕ 1]
3. Return the signature Σ = (σ, p0, ..., ph−1)

Verification algorithm Vrfy
Verification takes as input a public key (h, I, T), a message M ∈ {0, 1}∗, and a
signature Σ = (σ, p0, ..., ph−1) and an integer 0 ≤ q < 2h. The algorithm
proceeds as follows:

1. Compute pk := VrfyOTS(M,σ).
2. Set r := q + 2h, and compute T [r] = H(I, [r]4, [8282]2, pk)
3. For i = 1..h, set r := b(q + 2h)/2ic, and compute T [r] as follows:
T [r] := H(I, [r]4, [8383]2, T [2r], pi−1) if bq/2i−1c is even
T [r] := H(I, [r]4, [8383]2, pi−1, T [2r + 1]) if bq/2i−1c is odd

4. Return 1 if and only if T [1] = T .

This verification procedure works because, if the signature is valid, all T
elements computed during the verification procedure match the corresponding T
elements of the private key.

2.3 Security of the LMS scheme

We adapt the standard notion of security for signature schemes to the multi-user
setting. In this setting, multiple independent instances of the scheme are run,
generating multiple public keys (which are given to the attacker) and private
keys. The attacker can ask for the signatures of arbitrary messages, selecting
any of the public keys, and the indexes (given the constraint that they can ask
for a signature for a specific (public key, index) pair once). In addition, the
8 The standard description of this algorithm has q managed by the secret key to ensure
that no q value is reused, and has the q value embedded in the signature. However,
to make the proof clearer, we make q as an explicit input; this modification has no
impact on the security.

attacker is given Oracle access to the hash compression function. The attacker is
considered successful if it generates a signature forgery with respect to any of
those instances.

In particular, suppose we have z instances of the LMS scheme, with identifiers
I1, I2, ..., Iz, with the I values and the private keys assigned randomly9. We will
assume that no I value appears more than k times in this list (we will consider
the probability of this not being true below). Then, the expirement is:

1. We choose a random function C : {0, 1}s × {0, 1}b → {0, 1}s, a value IV and
a padding function Pad that meets the requirements. We create a Merkle-
Damgård hash function h (with s bits of internal state and a block size of b)
based on C, IV and Pad

2. For i = 1, ..., z, the key-generation algorithm Gen is run using identifier Ii to
obtain (pki, ski). The attacker is given (I1, pk1), ..., (IN , pkN).

3. The attacker is given the padding function Pad, IV and oracle access to
C (bounded to m invocations), plus a signing oracle SignOracle(·, ·, ·) such
that SignOracle(i, j,M) returns Sign(ski, j,M, Ii). For each (i, j) pair, the
attacker may make at most one query. Without loss of generality, we assume
the attacker makes exactly one signing query Sign(M,pki) for each value of
i, j.

4. The attacker outputs (i, j,M,Σ) with M 6= M i,j . The attacker succeeds
if Σ is a valid signature on M for the ith public key, the jth index, i.e. if
Vrfy(pki,M,Σ, j) returns 1.

Theorem 2. The probability that the attacker would succeed in creating a
forgery is bounded by m(2k+1)(λ+1)2−s+(m22−s−1)λ/λ!+zk+12−128k/(k+1)!
(for all values k, λ).

Proof. We can view this as a special case of our abstract hash model game.

– When we generate a public/private key pair:
• We compute all the LM-OTS public/private key pairs (placing the entries

used to compute the random key generate and the Winternitz values into
C).

• We then hash the final Winternitz values together, forming the prefix
Ii||q||8181, use the final Winternitz values as the string S, and treat it
as a Group 2 instance

• We then hash the Merkle tree leaves; for leaf node r, we form the prefix
Ii||r||8282, use the OTS public key as the string S, and treat it as a
Group 2 instance

• We then hash the Merkle tree nodes; for tree node r, we form the prefix
Ii||r||8383, use the two child nodes as the string S, and treat is as a
Group 2 instance

9 For the purposes of this proof, we will assume that the LMS scheme uses the
recommended pseudorandom key generation process given in [4, Appendix A]; it is
easy to see how to modify the proof if the LM-OTS keys were generated randomly.

– When the attacker gives us a value to sign the message M with instance i,
index q:
• We form the prefix Ii||q||8080, and treat it as a Group 3 instance along
with the message M .
• We compute the checksum of the hash, and compute the Winternitz
digits.

• When we generate the last Winternitz value for digit d, we form the
prefix Ii||q||d||v„ with v being a byte with the value Vd − 1 if Vd > 0 and
a byte with the value 255 if Vd = 0 and treat it as a Group 1 instance10.

We see that we meet all the requirements of the game, if we assume the
SHA-256 hash function (so we have b = 512, s = 256 and use the SHA-256
padding function):

– With the exception of prefixes that use the same I value (and the rest of the
prefix is the same), we do not repeat prefixes, and no prefix is a proper prefix
of another

– When we do reuse the same I value, we never use it more than k times (as
per the above assumption), and so any specific prefix is never used more than
k times.

– The prefixes meet the length limits:
• the Group 1 prefixes plus the length s C value come to 55 bytes in length;
the SHA-256 padding function allows that to fit in one block

• the Group 2 prefixes are less than 64 bytes in length
• the Group 3 prefixes are less than 32 = b− s bytes in length

If the attacker generates a forgery, then the attacker was successful against
the abstract hash model.

To see this, let us assume that we have a forgery for key pki, index q, message
M ′ (using randomizer C ′), which using the LMS verification procedure, yields
pki.

We look up the message M that the attacker had submitted to be signed with
key pki, index q (if there has been no such message, we can arbitrarily select a
message distinct from M ′ and sign it).

Then, stepping downwards through the authentication path of both the valid
message and the forgery:

– If they first differ within an internal node of the Merkle tree, that is, the
hash computation of Ii||r||8383 for the correct message and the forgery has
different message texts, the attacker has won against the corresponding Group
2 instance.

– If they first differ within a leaf node hash of the Merkle tree, that is, the hash
computation of Ii||r||8282, the attacker has won against the corresponding
Group 2 instance.

10 This is the prefix for both the intermediate Winternitz computation and the suggested
pseudorandom key generation process in Appendix A of the draft, hence this proof
need not make a distinction

– If they first differ during the hash of the Ii||q||8181 hash of the Winternitz
public key, the attacker has won against the corresponding Group 2 instance.

– If the computation H(Ii||q||8080||C ′||M ′) differs from H(Ii||q||8080||Ci||M),
then at least one of the digits of either of the hash or the forgery must be
lesser; if that digit is d, then the attacker has won against the Group 1 instance
of that digit (as that preimage is computable from the forgery signature).

– If those two computations are the same, then the attacker has won against
the corresponding Group 3 instance.

We assumed above that we never generate a specific 128 bit I value for more
than k keys; as I is selected randomly, this assumption is false with probability
bounded by zk+12−128k/(k + 1)!; we add that probability to the probability that
the attacker won against the abstract model.

Hence, the probability that an attacker, given z public keys, and given
access a signature oracle (where no more that m hash computations were used
total, including ones performed setting up the keys, and the ones responding to
attacker queries), has a forgery probability no more than m(2k + 1)(λ+ 1)2−s +
(m22−s−1)λ/λ! + zk+12−128k/(k + 1)! (for any k, λ).

Corollary 1. If we have no more than 264 randomly chosen LMS private keys,
allow the attacker access to a signing oracle and a SHA-256 hash compression
oracle, and allow a maximum of 2120 hash compression computations, then the
probability of an attacker being able to generate a single forgery against any of
those LMS keys is less than 2−129.

Proof. Evaluating the equation of Theorem 1, with s = 256 (the size of the
SHA-256 state), z = 264 (maximum number of private keys), and m = 2120

(maximum number of hash compression evaluations), and k = 3, λ = 7 evaluates
to ≈ 2−129.58 < 2−129.

3 Hierarchical Signature Scheme

In the Hierarchical Signature Scheme (HSS), described in [4, Section 6], a public
key consists of an LMS public key plus an integer L. The signature consists of
L-1 instances of a signed public key, which is an LMS public key along with the
signature of that public key signed by previous public key. Finally, there is the
signature of the message, signed with the last public key.

Theorem 3. If the attacker is unable to create a forgery for the LMS public
key system with nontrivial probability, he is unable to generate a forgery for the
HSS system with nontrivial probability.

Proof. To show this, we assume that the attacker can generate a forgery to
the HSS system with nontrivial probability, and show how that implies a forgery
to the LMS system with that same probability.

We follow the same backtracking logic; suppose someone had a forgery to an
HSS public key. Then:

– For levels i := 0..L-2

• We examine the signed message
• If it differs from the signed public key from the valid signature at same
index (with the curent public key), then the attacker has successfully
generated a forgery against the current public key

• If it is the same signed public key, we make that public key the current
one and continue

– If we get to the bottom level, we examine the signed message
– If it differs from the message from the valid signature at the same index, then

the attacker has successully generates a forgery
– If it is the same, then the attacker has signed precisely the same message;

it’s not a forgery

4 Future Work

We have analyzed the security of version 07 of the McGrew-Fluhrer-Curcio
proposal when implemented using a Merkle-Damgård hash function whose output
is not truncated (e.g. SHA-256). Future work may analyze the security of a
truncated Merkle-Damgård hash function (e.g. SHA-512/256), or a sponge hash
construction (e.g. SHA-3).

References

1. Jonathan Katz, Analysis of a Proposed Hash-Based Signature Standard, Security Stan-
dardization Research 2016, https://www.cs.umd.edu/̃jkatz/papers/HashBasedSigs-
04.pdf, Accessed 2016-11-14.

2. D. McGrew, Curcio, Hash-Based Signatures (draft-mcgrew-hash-sigs-04),
https://datatracker.ietf.org/archive/id/draft-mcgrew-hash-sigs-04.txt, Accessed
2017-05-30.

3. D. McGrew, Curcio, Fluhrer, Hash-Based Signatures (draft-mcgrew-hash-sigs-06),
https://datatracker.ietf.org/doc/draft-hash-sigs/06, Accessed 2017-05-30.

4. D. McGrew, Curcio, Fluhrer, Hash-Based Signatures (draft-mcgrew-hash-sigs-07),
https://datatracker.ietf.org/doc/draft-hash-sigs/07,

	Further Analysis of a Proposed Hash-Based Signature Standard

