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Abstract—Voting systems have been around for hundreds
of years and despite different views on their integrity, have
always been deemed secure with some fundamental security
and anonymity principles. Numerous electronic systems have
been proposed and implemented but some suspicion has been
raised regarding the integrity of elections due to detected security
vulnerabilities within these systems. Electronic voting, to be suc-
cessful, requires a more transparent and secure approach, than
is offered by current protocols. The approach presented in this
paper involves a protocol developed on blockchain technology.
The underlying technology used in the voting system is a payment
scheme, which offers anonymity of transactions, a trait not seen
in blockchain protocols to date. The proposed protocol offers
anonymity of voter transactions, while keeping the transactions
private, and the election transparent and secure. The underlying
payment protocol has not been modified in any way, the voting
protocol merely offers an alternative use case.

Index Terms − Blockchain, EVoting, Zcash, zk-SNARK.

I. INTRODUCTION

With blockchain steadily striving towards becoming the new
system for decentralized payment schemes, amongst other
implementations, it is easy to imagine why this technol-
ogy can be considered an ethical liberator in some senses.
Blockchain, although a relatively new concept, has gained
enough popularity for applications to emerge such as simpli-
fied methods for identification and authentication, the widely
known decentralized payment scheme, Bitcoin, and domain
systems which reside outside the control of the government
or non-governmental organisations (NGOs) [1]. The number
of blockchain systems is steadily increasing, however the
electronic voting domain is slow to adapt with a relatively low
number of systems devised so far, based on our observation
of the state of the art.

Electronic voting has been a topic of active debate, with
significant number of people believing that electronic voting
cannot be trusted enough to be used for significant elections
due to uncertainty in the authenticity and integrity of the
machines and the votes that have been cast using them. On the
other hand, people acknowledge that paper solutions are sig-
nificantly outdated and can be subject to serious manipulation
from a coercer. The emergence of blockchains has introduced a
new way to construct secure systems which have less inherent
security issues present. It is a belief that a successful voting
system can be implemented using blockchains, or with a

blockchain being one of the main elements present in a hybrid
electronic voting scheme [2].

In our work, we investigate a new decentralized, anonymous
payment scheme called Zcash [28] and create a voting system
without altering the inner working of Zcash protocol.

II. STATE OF THE ART

Electronic voting is a topic of much research and several
viable schemes have been created in order to attempt and
solve the problem. Here, we present some influential voting
protocols and other viable voting schemes as well as the
techniques they implement at the core of vote processing, their
security issues and analysis that have been done on some of the
protocols in this domain. Blockchain voting technologies that
have emerged recently are also discussed here, with particular
attention to Ethereum [3].

A. Influential Electronic Voting Protocols

Electronic voting protocols have been implemented in dif-
ferent elections, ranging from university to government based
elections. Many viable protocols have been created since
Chaum [4] first proposed Votegrity, one of the first end-to-
end (E2E) verifiable voting schemes. E2E verifiability means
that the voter can verify that their own vote has been cast as
intended. the voter would be the assured that their vote has
been counted correctly and included in the final tally and that
the public members can verify an election externally without
being involved in an election. These voting protocols, also
provide a way to audit the voter’s votes and the ballots prior
to picking the candidate and casting the ballot.

Some of the most prominent examples that have stemmed
from Chaums Votegrity, which also provide E2E verifiability,
are Neffs Markpledge [5], Prêt à Voter [6], Helios [8],
Scantegrity [9] and STAR-Vote [10]. Markpledge was one
of the first E2E voting protocols which has been proposed
alongside Votegrity, influencing the development of the other
schemes mentioned above and more. Helios, a university
voting scheme, has undergone security analysis, which un-
covered security vulnerabilities with a potential to affect the
outcome of the elections. This led to the development of
Helios 2.0 [12] and Helios 3.0 versions, attempting to fix the
vulnerabilities posted by Estehghari and Desmedt [13]. This
is a good example of a security vulnerabilities in a voting



protocol. A possible attack on Helios 2.0 included cross-site
scripting (XSS) through the usage of a browser rootkit, a script
capable of monitoring user traffic, capturing passwords entered
by the user and get access to the DOM tree of the web page.

Some E2E protocols use public web bulletin board (WBB)
for posting all of the cast ballots for the public to see. Web
bulletin boards are used as an authenticated public broadcast
channels which, display the cast ballots to the public in an
encrypted form, and serve as an important stage for any E2E
protocol. Typically, after the voter has cast their vote and
received a receipt encrypting their choice in a way that is
dependent of what voting protocol used, the encrypted vote is
propagated to the WBB [15] [7] [11].

The receipt is an important part of the voting protocol, as
it allows the user to prove their vote to an authority in case
the voter wishes to dispute their vote or prove that they have
voted contrary to what the system has recorded. The receipt
also allows the user to find their vote and view how the system
recorded their vote. These receipts vary from system to system,
but typically these receipts are the summary of how the voter
voted, which can be presented to the voter in an encrypted or
obfuscated manner. As an example, Votegrity summarises the
vote in a print out which prompts the voter to pick the top or
the bottom layer of the receipt. The receipt is a laminated piece
of paper, which is separated into two layers, which are only
readable when these layers are combined and never on their
own. The mutual relationship of the pixels on the translucent
layers is how the vote becomes readable [4].

Some electronic voting protocols implement a challenge
system, which helps a voter to establish trust in the system.
Apollo [16] is an extension of the Helios protocol, however,
it avoids some security issues that are inherent in Helios by
having voter assistants to verify, lock and audit the vote. The
assistants are external to the voting protocol devices that can
interact with the election and can be laptops, tablets, or any
other external devices. These interact with the session by
fetching the personalised string, input by the voter during
the start of the session, to fetch the session. The voter that
wishes to audit their vote sends the audit code through the
voting booth, which in turn opens the encryption of the ballot
by posting the randomness encrypted with the session key.
Each voting assistant checks the bulletin board and displays
the plaintext value of the vote. This procedure may be repeated
as many times as the voter wants [16].

Mixing is one of the two predominant techniques that are
used in electronic voting protocols and utilizes mix networks
(mixnet), a protocol that takes in multiple input messages from
the users and shuffles these messages in random order before
passing them to the next destination [18]. Mixnets, in the
context of voting, are used to provide a degree of anonymity
to the user by obfuscating where the message came from. For
example, Zeus [17] implements mixing after the election has
been closed to break the linkability between the encrypted
ballots and the voters who cast them. This is a multi-round
procedure which depends solely on the number of mixing
proxies available to the system. Each stage of the mixing

provides a proof of correct mixing, which can be used to verify
that the mixing server is not corrupt.

The second widely used technique is homomorphic tally.
Cohen and Fischer [14] describe how this can be applied
to a voting protocol. Homomorphic tally involves modifica-
tions, usually additions and multiplications, to the ciphertext
which are preserved upon decryption to reveal the operations
that have been done on the ciphertext while recovering the
modified decrypted value. Protocols such as Helios 2.0 [12],
STAR-Vote [10] and several others implement this technique
for tallying the votes due to its simplicity both in application
and for verification by the public, though the efficiency of
these protocols, over mixnets, have been different through the
papers where these methods are used.

Protocols such as Zeus [17] and Apollo [16] use the basis of
Helios to build their own voting protocol on, while attempting
to tackle some of the security issues that are inherent to Helios.
For instance, Apollo tackles the issues of XSS, cross-site
forgery, clickjacking and clash attacks with the help of the
voting assistants. For example, XSS was possible due to the
unchecked URL parameters that meant to obtain the election
URL, but if compromised could have pointed to a proxy with
malicious script forced to execute on the target machine by the
attacker. Ultimately, the attacker could encrypt each choice of
the voter correctly, but submit their own ballot instead of the
voters when the voter continued to submit their vote. This
attack is impossible to detect server-side, but can be detected
by the voter if the voter checks the WBB later to find their
vote. XSS is in the third place of the top vulnerabilities of web
applications as found by OWASP in 2013 [19] and remains in
the same position in OWASPs “Top 10 Application Security
Risks” draft of 2017.

B. Blockchain For Voting

The conclusion can be made that an electronic voting system
must be secure, while allowing for as much transparency as
possible to be a working E2E verifiable. Blockchains [21]
help to achieve this level of security and transparency, while
maintaining privacy and non-malleability of the transactions
[22] [23].

Although different, some elements from the above men-
tioned protocols may apply to the concept of blockchain
voting. The notion of WBB, where the encrypted votes can
be seen by the public members, can persist in blockchain in
the form similar to [24]. Here the blocks of transactions can
be observed as well as the height of the blockchain with any
other relevant information. Although blockchain is a promising
technology, we have not found any relevant papers to date
that present a protocol for online voting with blockchains.
Examples such as Follow My Vote [25] or TIVI [43] present a
seemingly sound voting protocol, however they are presented
without any in-depth specification to verify the security of the
protocol.

One other noteworthy blockchain technology that could
revolutionise electronic voting is Ethereum [3]. Ethereum
differs from Bitcoin [21] as it serves as a generic platform



Fig. 1. Types of Transactions in Zcash [29]

for creation of custom functionality in the form of contracts.
The currency used by Ethereum is ether and gas. However,
the main difference is the fact that the contracts allow for
different functionality using the Ethereum Virtual Machine
(EVM), while being enforced by the peer-to-peer, decen-
tralized way, inherent to the core structure of blockchain.
Ethereum possesses two types of accounts, which is another
way of specifying types of users. Accounts are used by human
entities, whereas contracts are accounts which are operated
by code on the EVM. Contracts are the agents that bring
about the generic functionality of Ethereum and allow one
to create custom behaviour for one’s blockchain application.
These applications include, and are not limited to, automatic
payments or creation of custom currency, which is worthless
outside of the context of the contract application [3] [26] [27].

III. ZCASH OVERVIEW

Zcash is a decentralised blockchain payment scheme, which
aims to provide anonymity of transactions. One of the biggest
differences between Zcash and Bitcoin is the proof-of-work
system, where Zcash relies on zero-knowledge proofs [28]. We
present a brief overview of the important concepts of Zcash
prior to describing details of the proposed voting protocol.

A. Addresses and Transactions

Zcash supports both anonymous and transparent transac-
tions as it has two types of addresses, which differs from
the Bitcoins single address. These addresses are, namely, z-
address and t-address, where z-address is the address which
preserves anonymity in transactions, and t-address resembles
the Bitcoins addresses in structure and allows for transpar-
ent transactions. The transactions between different addresses
ensures the conversion of transparent value into a shielded
value and vice versa. The details of shielded values cannot be
observed by the public. The transactions between addresses
is illustrated by Fig.1. Private transactions occur when both,
the sender and receiver use z-addresses, which ensures that no
entity, outside the entities involved, can view the details and
the value of Zcash (ZEC) that are exchanged in the transaction.

The private, z-addresses are generated with the combination
of the keys, of which there are a total of 4 keys, which
allow for spending, viewing, paying and transmission of secret
values between the parties. These keys are namely:

• Paying key (apk): Used as a part to generate payment
address.

• Transmission key (pkenc): Used to encrypt and decrypt
secret values to be passed between the parties involved a
in transaction.

• Spending key (ask): Allows spending of ZEC.
• Viewing key (skenc): Establishing keys for viewing the

private transaction between involved parties.

The combination of paying key apk and transmission key
pkenc is what makes up a z-address.

Part of spending a ZEC involves revealing a nullifier for
a ZEC which has a commitment in a Merkle tree [21].
The commitment is placed on such tree in Zcash, whenever
a new ZEC is generated. A nullifier is a serial value for
each ZEC which prevents double-spending of the same ZEC.
The spending procedure involves locating a commitment on
the Merkle tree and ensuring that the nullifier has not yet
been revealed, as once the nullifier is revealed, the ZEC is
considered spent.0 The nullifier set is maintained at every full
node and newly revealed nullifiers are inserted into the set
with each transaction.

A secret pair of keys is established and known as the
ephemeral keys. The ephemeral keys are established for the
transmission of the secret values in private transactions to
ensure that only the sender and the recipient can view the
transaction. The possession of the private ephemeral key (esk)
and the recipient’s address is what allows the sender to view
the transaction. At the same time, the receiver uses their
viewing key (skenc) and the ephemeral public key (epk) to
view the transaction from their end. The ephemeral public key
is sent with the transaction, which is the way that the receiver
obtains it. Even if a third party obtained this key, they do not
have the other keys to view the transaction or derive a key to
decrypt the secret values in the transaction.

Part of the transaction, named JoinSplit Transfer in Zcash
[28], is for the sender to spend their ZEC, which reveals the
nullifier for the input ZEC, and generation of the commitments
for the new ZEC which will be passed to the receiver as
part of the transaction. The values used to generate the ZEC
are passed to the receiver after being encrypted with a key
established via transmission key (pkenc). These values in a
transaction are accompanied, by a zero-knowledge proof to
ensure that the transaction is legitimate and follows the rules
for a transaction. Finally, the JoinSplit Transfer supports both
shielded and transparent values in the same transaction as
the transparent value pool in each transaction is dedicated for
transparent transactions as well as to hold the miners reward
for processing the transaction.

B. Zero-Knowledge Proving System

The key to the private transactions is the zero-knowledge
proving system. This is because there is a need to transfer
the secret values between the involved parties without dis-
closing these values to each other. To facilitate this transfer,
Zcash implements zk-SNARKs (Zero-Knowledge Succinct



Non-Interactive Arguments of Knowledge) devised into lib-
snark [30] library from the designs of Ben-Sasson et al. [31]
[32]. This construct allows for generation of zero-knowledge
proofs given an arbitrary program. The proofs are generated
using several steps which are shown in Fig. 2.

Fig. 2. Overview of zk-SNARK Proof Creation [37]

For this paper, we will not be discussing these steps in
details, rather we provide an overview of the zk-SNARK
functionality for better understanding of its application in
Zcash. The purpose of supplying a proof is to verify the
legitimacy of secret values, which are used to generate a
ZEC, exchanged during a transaction. Libsnark allows the con-
version of programs into proofs of knowledge. The program
utilizes a port for a GCC compiler to create a circuit based on
monitoring the execution of a program.

The core idea is that some universal program circuit is used
as input to a generator function, with secret values acting as
toxic waste to generate a pair of public keys, which can be
distributed to both the proving and the verifying parties. The
prover is to use the proving key, public value to be proven and
a secret value (witness) as input to a function which generates
a proof from the above information.

The verifier obtains the verifier key as well as the proof
generated by the prover and using a verification function,
whose inputs are verification key, the same public value to
be proven and the proof provided by the prover to verify
the legitimacy of the proof. The verification function is a
simple function which returns either true or false depending
on whether the proof has been successfully proven. [33]

The generator function is part of a setup procedure and
uses toxic waste values as part of the setup stage. The setup
phase for ZCash is done once to establish the proving and
verification keys. If the toxic waste is not deleted and a party
was able to obtain these keys, then the said party would be
able to generate fake proofs.

The JoinSplit transfer also provides some proofs as part of
the transfer is to generate new ZECs. Some of the things that
the proof is used to prove are:

• the total values of input ZECs and output ZECs matches.
• the commitments exist and are valid for the input ZECs.
• the nullifier and the commitment have been calculated

correctly.

The proofs are not limited to these three items and the total
size of the resulting proof is 296-bytes [28].

IV. SYSTEM OVERVIEW

Prior to describing our voting protocol, it is worth men-
tioning that the underlying Zcash protocol [28] has not been
changed in any way. The protocol utilizes basic functions
offered by Zcash and creates a platform with the ability to
cast votes. The following things are assumed by the work:
assumption of confirmed identity, where the protocol assumes
that the identity of a potential voter can be verified, such as
employing X.509 certificates [34] and Certificate Authorities
(CA) to verify those identities. This is to facilitate legal
authorisation of the vote transaction on behalf of the voter.
The voting protocol can be separated into four distinct steps:
registration, notification, voting, count/audit.

A. Registration

Registration is the first step of the protocol and is required as
part of the identity verification step and for audit purposes, to
keep track of which voters have cast a ballot, and is a control
mechanism to disallow unregistered people to participate in the
vote. A potential voter who wishes to participate in an election
or a poll visits the registration page, where communication
with the server is established transparently. The system needs
to authenticate a potential voter and can do so by following the
Challange-Handshake Authentication Protocol (CHAP) [35]
and exchange challenge information and solution.

After successful registration, the voter’s email address or an
X.509 certificate containing their email address is stored in the
database used by the voting system. The overall registration
step can be seen in Fig. 3.

Fig. 3. Voter Registration

B. Invitation

Invitation step is a small step which sends a one-time unique
link to the voter’s email to redirect the voter to a unique ballot
assigned to them. The voting server issues the invitations only
when the administrator of the election issues the details for
the election. This is similar to the Zeus protocol [17] where
the administrator too, inputs the details of the poll as well as
the list of the registered users.



The system server obtains the voter details from copies of
stored user verification data, such as X.509 certificates, in the
server’s database and issues the vote links to all the registered
voters. The links are active for as long as the election and
expire as soon as the election timer has expired. The invitation
step can be seen in Fig. 4.

Fig. 4. Invitation to Participate in Ballot

C. Voting

Once the voter has followed the ballot link, they are
redirected to the ballot page. The ballot is a simple interface
which contains candidates names and a checkbox next to the
names. The top of the ballot contains a field which requires
the voter to input their receiving t-address. These addresses
are generated by the voter to send and receive the tokens.
To maintain anonymity, but at the same time adhere to the
transparency of the vote, the voter is required to provide a
receiving t-address and is required to send the vote with a
z-address.

The receiving t-address is provided by the voter on the top
of the ballot and can be changed as many times as required by
the voter. This is the address which will ensure that the voter
receives the vote token which is redirected to the candidate
wallet. The z-address is used by the voter to ensure that their
vote is anonymous.

Once the authorisation takes place, the vote tokens can be
generated by the system faucet to send to a ZEC pool, or if
there are enough ZECs available, issue them straight from the
ZEC pool. The ZEC pool is a system wallet which issues ZECs
to the voters once the voter has authorised the vote. Once the
voter has authorised the vote, the system changes the voter’s
status in the database, as well as incrementing the system count
of the total votes for the current election. At the same time a
token is sent to the receiving address specified by the voter.
The number of issued tokens is tracked by the system and is
compared to the total number of votes to ensure that no extra
votes have been added into the tally. Fig. 5 outlines the steps
taken when the voter casts their vote.

D. System Variants

The transaction between the candidate and the voter be-
comes private if the candidate uses z-address. Inherent to the

Fig. 5. Overview of the Voting Process

Zcash protocol, z-addresses break the linkability between the
ZECs and previous transaction. This means that when the
candidate empties their wallet into the ZEC pool, the voter
may no longer trace their vote to the ZEC pool. This scheme
requires more trust in the system, however it guarantees the
privacy of the system i.e. no one can see the details and
amounts of the transaction sent to the candidate.

Since private transactions require more complicated setup,
there are more internal steps involved in making these transac-
tions. One of the most important pieces of information is the
establishment and sharing of ephemeral keys. These keys allow
the voter and the candidate both to view the transaction, which
is exclusive to the two parties. These keys are established as
per key agreement function of Zcash. Internally, the transaction
remains the same.

The second variant of the system involves the candidate’s
receiving with their t-addresses. This is an example of a de-
shielding transaction and would mean that the candidate’s
token balance can be observed by the public in real-time. The
linkability of the tokens would also be preserved. Linkability
in this case means that a token can be traced back to the sender
to the ZEC pool, where the tally occurs after an election timer
has expired. This can help users determine if their vote has
been counted in the tally.

Regardless of the variant used, the JoinSplit transfers of vote
tokens from voters to candidates are stored on the blockchain
with the appropriate data for each JoinSplit transfer.

E. The Tally/Audit

The final stage of the voting protocol is the vote count
and the audit which takes place after the count to review the
election process and ensure that the integrity of the election
has not been compromised. The candidate wallets send all the
ZEC vote tokens to the ZEC pool which has ZEC balance of
0 ZEC vote tokens. This requires some trust in the system,
however the assumption is that the candidate wallets and a
ZEC pool have 0 ZEC vote tokens in the beginning and that
candidate wallets send all the collected ZEC vote tokens into
the coin pool. The transactions may be more difficult to verify
as these are private and the details are only available to the
voters and the candidates only. However, if the same party
who starts an election holds the ownership of the candidate
wallets and may implement verification systems to check each
transaction destined for each candidate.



The candidate wallets send all their acquired ZEC vote
tokens to the ZEC pool using sending t-address on the
candidate’s side and a receiving t-address on the side of the
ZEC pool. The system declares the end of the election or a
poll as soon as the expiry time has been met. After that, no
votes are accepted into the count and the system, the unique
vote links expire and the ballot forms do not allow to proceed
with the submission of the votes.

At this point the number of total votes cast becomes public
as well as the number of tokens issued for the voters. The
total number of transactions may also be displayed with the
total number of voters who participated in the election. It is
not in the interest of the candidates to not empty their wallets
upon conclusion of the election, or to send an incorrect number
of ZEC vote tokens as the system equations will not balance
and the election will be considered forfeit. Fig. 6 provides
an example election with 100 total votes being cast between
candidate X and candidate Y .

Fig. 6. Example of the count and audit of an election

V. SECURITY CONSIDERATIONS

A significant issue with internet voting protocols are com-
promised voting machines. Since the target platform of the
protocol would be user’s end devices, such as computers and
mobile devices, it is possible for a coercer to influence the
outcome of the vote by compromising the voter’s device as
it would be much easier to achieve than compromising the
entire electronic voting scheme. The coercer could infect the
voter’s machine and influence the voting software installed.
The voting software will then be influenced by the coercer’s
candidate choice. One of the possible ways that a concerned
voter can defend against such an attack is to obtain a checksum
of the voting application [36]. A checksum can simply be a
hashing of the voting software of a specific version which
the voter has installed on their device. If the voter’s device is
compromised then the hash versions will not be the same and
the voter can obtain a new copy of the software.

Since our proposed voting protocol does not make any
changes to the underlying Zcash protocol, some problems, like
double voting i.e. using the same granted vote token to vote for
multiple candidates, is inherently absent in the voting protocol.

However, since the unique ballot link is sent to a voter’s email
address, the issue of compromised machine can persist once
again. A potential coercer could get access to the voter’s email
first and attempt to cast a vote on their behalf. Notification
systems can be in place to send email confirmation when a
vote has been issued by the voter and visually notify the voter
of the number of times they have attempted to vote so far.

A major consideration in dealing with Zcash and the
automated script assumption is that all the operations deal
with ZECs, which have a non-negligible value on the market
[38]. This gives a potential incentive for corrupt voters to
attempt to hijack the vote token upon brief arrival to their
wallet. The assumption is that the script can detect the specific
transaction arriving into the wallet and redirecting it to a
candidate immediately. There are several mitigations to avoid
ZEC hijacking. First is to deal with the smallest denominations
of ZEC (1 zatoshi) to reduce the incentive to steal a whole ZEC
as 1 ZEC is 108 zatoshis [28]. Though the audit calculations
for the end of the election may not fail, a rogue transaction to
a wallet, not belonging to a candidate may be noticed by the
public.

Having mentioned the required balance of values at the end
of an election in order to verify it’s integrity, a possible attack
could be carried out on the system, where a losing candidate
does not submit all of the received votes. This would cause the
election to be forfeit as the total number of ZEC vote tokens
does not balance with the total number of votes and ZEC vote
tokens issued. This attack could be detected if the candidates
were using t-addresses as all the receiving transactions would
be visible, however it would pose a problem if the candidate
used z-address as no public party, except the administrators of
the voting system would know if a candidate is misbehaving.
A possible mitigation for this attack can disregard the total
number of ZEC vote tokens returned back to the counting
pool, only if this number is less than or exactly equal to the
number of total votes. In case of this occurrence, the voters
and the administrators can be notified by the system that the
votes returned did not match the total number of votes issued.

An alternative solution can implement internal system track-
ers, which count the number of votes cast for each candidate,
and serve the purpose of controlling the amount of ZEC vote
tokens returned by the candidates. A tracker for each candidate
increments each time a vote has been cast for a candidate
and the system expects to withdraw this amount of ZEC
vote tokens from the candidate wallet, which would not let
a malicious candidate trick the system. These trackers would
function even if the candidates used z-addresses. It is also
possible to make this tracker public, during the tally period,
to notify the public what the expected vote count is.

A question may arise, of what would happen if the system
counters have been modified by an attacker. According to
the rules of the system, the integrity of the election will be
considered compromised and the result will be forfeit. The
reality of a decentralised system is that there may be more
than one instance of the tracker initialised at a given time,
and it may be required that they all need to agree at the end



of an election.
One significant attack on the entire blockchain is called 51%

attack [39]. This is one of the biggest flaws in blockchain
technology. This attack allows an entity with the biggest
contribution to block mining to be able to change the contents
of the past blocks on the blockchain due to the sheer computer
power available to the entity. Other activities would include
prevention of some transactions from obtaining a required
number of confirmations and preventing people from sending
ZEC vote tokens to the candidate addresses. This attack would
be difficult to prevent. On one hand, it is possible to pick out
several trusted verifiers out of the public volunteers and allow
them to confirm the transactions to be included in the blocks.
On the other hand, there may be trust issues raised by the
participating voters. One other option is to allow any willing
public member to participate in a verification pool. This would
mean that the voter adds their computing power to the pool
of other voter’s machines to verify the transactions, however
this pool would need to be organised by a trusted party whose
actions can be verified in case the party is considered rogue.

VI. FUTURE WORK

Having outlined the voting protocol and the basis for it’s
operations, it is important to outline the direction this protocol
can take. The Ethereum protocol [3], has been established
early on in the work as a potential candidate to become the
platform for our voting protocol. One of the reasons for this
is that Ethereum supports creation of contracts, which are
accounts which are operated by the EVM. These contracts
can be used to implement a voting scheme. However, voters
anonymity and privacy is an important piece of any voting
protocol and is not yet handled by EVM transactions.

Steady advancements in development of the Ethereum plat-
form bring the possibility of creation of this protocol closer.
The future Ethereum aims to make use of zk-SNARKs to add
privacy and anonymity of transactions. The zk-SNARKs are
complex to implement efficiently due to the time taken to
generate proofs, which is one of the issues in implementing
these today. However, steps towards adoption of zk-SNARKs
have already been taken by Ethereum [40].

Finally, steps have been made to integrate Zcash and
Ethereum together in projects such as Zcash over Ethereum
(ZoE), however these are still at very early stages [42] [41].

VII. CONCLUSION

A standardised electronic voting solution which would be
widely adopted has not yet emerged, and although there are
some good candidates, there are inherent security issues which
make these protocols unsuitable for elections. The literature
identifies a distinct gap in the domain which could be filled
by a protocol, using a different technology then the previ-
ous protocols. Blockchain offers an inherently more secure
platform, and with development of the recent anonymous
transaction scheme, namely Zcash, it is finally possible to
tackle the anonymity issues of blockchain transactions, which
would open a possibility for blockchain voting. Ethereum has

offered the smart contract functionality since it first came
to pass, however the much-needed anonymity factor has not
been present in the protocol so far. The rapid growth of the
Ethereum protocol, and it’s integration with Zcash will most
likely come up with the protocol, suitable for wide-spread,
cheap voting system. As indicated by the future work on these
protocols, voting on blockchain has received the much-needed
push in the right direction.

The applications for the proposed protocol are not limited to
government elections only. These can be stretched to opinion
polls or corporate elections providing a unified platform for
voting regardless of the cost or circumstance. The drive behind
a cheaper, unified, electronic voting system was the basis for
the above protocol, which has potential to grow into a real
wide-spread implementation, dealing with assumptions and
concerns which limit the current system.

The standardisation or adoption of such protocol would be
a step towards public approval of electronic voting schemes,
provided that the said protocol is secure and has been tested
and tried. The release of new protocols, with security issues
does not take steps to progress in public approval and, ulti-
mately, replacement of the paper elections.

A major effort has gone into development of a sound
voting system and with the rapid developments of blockchain
technology and it’s implementations in various fields, one final
push is required to bring a sound electronic solution to one of
the humanities basic rights - to vote.
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