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Abstract. Major substep in a lattice sieve algorithm which solves the Euclidean
shortest vector problem (SVP) is the computation of sums and Euclidean norms
of many vector pairs. Finding a solution to the SVP is the foundation of an attack
against many lattice based crypto systems. We optimize the main subfunction
of a sieve for the regular main processor and for the co-processor to speed up
the algorithm in total. Furthermore, we show that the co-processor can provide a
significant performance improvement for highly parallel tasks in the lattice sieve.
Four-fold speed up achieved, compared to the CPU, indicates that co-processors
are a viable choice for implementation of lattice sieve algorithms.
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1 Introduction

The security of the lattice-based cryptography relies on two well known problems: the
shortest vector problem (SVP) and the closest vector problem (CVP). The SVP is a
problem of finding a shortest non-zero lattice vector given a basis of the lattice and
the CVP is defined as finding the lattice vector which is closest to the given arbitrary
lattice vector and given a lattice basis. We consider Euclidean lattices and Euclidean
vector norms and in the rest of the paper we will omit the prefix Euclidean for brevity.
Both problems are known to be NP-hard1 to solve exactly [1, 14] and also NP-hard to
approximate [7, 17] within at least constant factors.

The time complexity of known algorithms that find the exact solution to the shortest
vector problem (SVP) or closest vector problem (CVP) are at least exponential in the di-
mension of the lattice. These algorithms also serve as subroutines for strong polynomial
time approximation algorithms which have been shown to be of great use as a cryptana-
lytic tool. In cryptology, they were used for a long time, first through a direct approach
as in [12] and then more indirectly using Coppersmith’s small roots algorithms [4, 5].
Algorithms for the exact problem enable us to choose appropriate parameters for cryp-
tographic schemes.

A shortest vector can be found by enumeration [6, 22, 13], sieving [2, 20, 19, 23, 3, 8,
24, 15, 16] or the Voronoi-cell algorithm [18]. Enumeration uses a negligible amount of

memory and its running time is between 2Õ(m) and 2Õ (m2) depending on the amount and
quality of the preprocessing. Probabilistic sieving algorithms, as well as the deterministic
Voronoi-cell algorithm are simply exponential in time and memory.

Our contribution. The basic step in sieving algorithms for SVP is to search for pairs of
lattice vectors for which the norm of the sum or difference is smaller than a given bound,
the so-called neighboring vectors . This is the dominating part of sieving algorithms in
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1 Under randomized reductions in the case of SVP.



terms of running time and thus it is important to do it as efficiently as possible. In this
report we focus on optimizing the searching procedure both for the regular main CPU
and for the Intel Xeon Phi co-processor, and show that the co-processor is suitable for
this task.

2 Basic background

In this section we briefly present the necessary facts about Euclidean lattices, sieving
algorithms for solving the SVP and the lattice sieving algorithm based on the decompo-
sition approach.

Euclidean lattices. A lattice L of dimension s ≤ m is a discrete subgroup of Rm that
spans an s-dimensional linear subspace. A lattice can be described as the set of all
integer combinations {

∑s
i=1 αibi |αi ∈ Z} of s linearly independent vectors bi in Rm.

Such vectors b1, .., bs are called a basis of L. The problem to find a shortest non-zero
lattice vector from a given basis is called the shortest vector problem (SVP). A second
problem is the closest vector problem (CVP), in which one needs to find a lattice vector
closest to an arbitrary vector in Rm given a basis.

Sieving algorithms to solve SVP. Asymptotic complexity classification identifies sieving
as the most efficient method to solve the exact SVP in high dimensions. Lattice sieving
algorithms usually start with the list of exponentially many large lattice vectors (ob-
tained by enumeration, e.g. Schnorr-Euchner algorithm [22]), and iteratively combine
these vectors, for instance replacing vectors by their difference with other close vectors
in the list, when they are shorter. The algorithm goes on, while the norm of the vectors
in the list decreases, until the list contains the shortest lattice vector, or at least, a very
good approximation. Sieving algorithms differ by the strategy to find pairs of vectors
close to each other in a list of arbitrary lattice vectors. Simple algorithms essentially test
all pairs of vectors using a quadratic approach to detect close vectors.

In [3] the authors proposed a new heuristic algorithm for solving the exact SVP and
CVP for n-dimensional lattices, namely the decomposition approach (Alg.1 in [3]). The
new algorithm follows the method of lattice sieving. The main part of the algorithm
(function Merge by collision - Alg.2 in [3]) accepts a list of vectors as an input, searches
for neighboring vectors, and outputs a new list. Before the search, input list of vectors
is divided into buckets and buckets are grouped into pairs, such that each bucket corre-
sponds to exactly one other bucket (see [3] for details). In the search routine, which we
call FindNeighbors, we go through each of the bucket pairs and test all the vector pairs
from those corresponding buckets. Two vectors which form a vector pair pass the test
(are neighbors) if the norm of their sum is lower than a given bound and in that case
the summation vector is added to the output list. Merge by collision is the most time
consuming part of the algorithm and speeding it up would yield a significant perfor-
mance gain for the whole algorithm. More precisely, in this report we aim at improving
the performance of the subroutine FindNeigbors which is presented in more details in
the following sections.

3 Intel Xeon Phi coprocessor and optimization tools

In the following section we present a high level description of the Intel Xeon Phi copro-
cessor architecture and programming model [9–11]. Intel Many Integrated Core (MIC)
architecture combines many Intel processor cores onto a single chip. The first product



based on this architecture was Xeon Phi Knights Ferry in 2010, after which Intel devel-
oped two more generations, namely the Knights Corner (KNC) and the Knights Landing
(KNL).

The Xeon Phi coprocessors comprise up to 61 in-order single-issue processor cores
running at 1 to 1.3 GHz. Each individual core supports 4 hardware threads, resulting
in up to 244 threads per device. The cores are connected with an on-die bidirectional
interconnect network. One of the most important features of the Xeon Phi are the
Vector Processing Units (VPUs). There is one 512-bit wide VPU on each of the cores.
It contains 128 vector registers of 512 bits each, resulting in 32 such vector registers
per thread context. Intel AVX-512 extension of the Instruction Set Architecture offers
vector instructions which can utilize the VPUs.

Each core of the Xeon Phi has 32 KB L1 data cache with 64 B cache line size, 32 KB
L1 instruction cache, and a 512 KB L2 cache. All the L2 caches are connected with each
other, effectively creating a shared last level cache of up to 32 MB, depending on the
number of cores. Xeon Phi also supports up to 16 GB of RAM memory. The coprocessor
is connected to the host system through a PCI Express system interface.

There are two execution modes: native and offload mode. In the native mode, the
coprocessor is treated as a standalone multicore computer running a Linux µOS. The
binary of the application is built on the host system copied to the coprocessor along
with the data and then executed. In the offload mode, the compiler on the host system
generates a heterogeneous binary to run on the host, while selected regions of the code
are offloaded to the coprocessor during runtime. Offload can be done in a synchronous
way in which case the host code will wait until the offloaded computation is finished and
the data is available, or in an asynchronous way when the host code will continue with
the execution and collect the data from the coprocessor at some later point in time.

Optimization methods for Xeon Phi can be summarized as follows:

– Utilization of powerful VPUs which can work with 16 single-precision elements si-
multaneously (or 8 double-precision elements) in SIMD mode. Compiler can vector-
ize the source code by itself, but in some more complex cases the code should be
vectorized with explicit intrinsic functions.

– Utilization of all available hardware threads - it is important to use more than one
thread per core (preferably 4) because the latency of arithmetic vector instructions
is 4 cycles and it is not possible to issue instructions from the same thread context
in consecutive cycles.

– Proper memory alignment - the best possible performance with vector instructions
can be achieved only if the memory is properly aligned.

– Reduce the need for synchronization between threads as much as possible - compared
to the general purpose CPUs, synchronization on the Xeon Phi is a bigger issue, since
there are many more threads (e.g. 240 vs 32).

4 Detailed optimization of the FindNeighbors step

The algorithm we aim at improving is the Merge by collision outlined in Alg. 1, more
precisely the subfunction called FindNeighbors. Let L be a lattice of dimension n, then a
coset C of L is a translation of L by a vector x ∈ span(L), namely the set C = {x+v|v ∈
L}. Bounded coset C is a coset such that for all vectors v ∈ C norm of v is lower than a
given bound R. Algorithm 1 is given a list of vectors which belong to the bounded coset
Cin, testing morphism φ, and bound R. Based on the morphism φ, vectors from input
coset are organized into k buckets. Buckets are then paired into k/2 bucket pairs such
that the sum of two vectors from two corresponding buckets belongs to the output coset
(without the restriction on the norm - not bounded). FindNeighbors algorithm then runs



Algorithm 1 Merge by collision

Input: Bounded coset Cin, Testing morphism φ, Radius bound R
Output: Bounded coset Cout

1: Reorganize vectors in Cin into k buckets indexed by values of φ
2: Group buckets into k/2 pairs of buckets (Ai, Bi) s.t. for every bucket pair (Aj , Bj) for all
u ∈ Aj , v ∈ Bj we have φ(u) = −φ(v)

3: Cout ← FindNeighbors(Ai, Bi, R)
4: return Cout

Algorithm 2 Find Neighbors

Input: Pairs of vector buckets (Ai, Bi), vector hashes, bound R
Output: List of vectors such that their norm is less than the bound
1: for each pair of buckets (Ai, Bi) do
2: for all vectors u ∈ bucket Ai do
3: for all vectors v ∈ bucket Bi do
4: if norm(u + v) ≤ bound then
5: add vector u + v to the output list uniquely

6: return output list of vectors

through all the potentially good vector pairs, tests if the norm of the summation vector
is lower than the bound R and adds the ones which pass the test to the output bounded
coset Cout. Potentially good vector pairs are formed from vectors from two corresponding
buckets. The outline of the FindNeighbors algorithm is given in Alg. 2.

Note: This is a high level description of the Merge by collision algorithm. We omit the
details because they are not necessary for understanding the algorithm we are optimizing
in this report - FindNeighbors. For details on how testing morphism is chosen and how
vectors are divided into buckets refer to [3].

Since the bucket pairs are completely independent, they can be processed in parallel.
Parallel FindNeighbors algorithm is described in Alg. 3. For each vector pair from the
corresponding buckets we do three steps: compute the squared norm of the sum of the
vectors and compare it with the bound, check if the pair is already added to the output
(we use a hash table), and add the pair to the output list.

Although the processing of the bucket pairs is independent, there are two steps in
the parallel algorithm when the synchronization of the threads is necessary. Those steps
are labelled as critical in Alg. 3 (lines 7 and 9).

Uniqueness - hash table. We want a list of unique vectors at the output of the algorithm
and to achieve this we use a hash table. Before adding the vector pair to the output
list we check if it is already in the hash table and if it is we avoid putting it in the
output again. Alongside with the vectors at the input of the algorithm we also have
vector hashes. When we want to check if the vector pair is unique we sum the hashes of
the two vectors and check if the resulting sum of hashes is already in the table. Since
there is a single output list and single hash table, shared among all the threads, access
to the list and the table has to be properly synchronized.

Note: The construction of the hash table and the function used to insert the elements
in the table (simple sum of vector hashes) is completely taken from the implementation of
the algorithms provided by the authors of [3] in order to maintain compatibility between
two implementations.

Output format. Furthermore, we do not store the summation vectors in the output list
but only indices of the involved vectors, and the summation vectors are constructed
afterwords from the indices. Storing only the indices has two advantages. Firstly, the



Algorithm 3 Parallel FindNeighbors

Input: Pairs of vector buckets (Ai, Bi), vector hashes, bound R
Output: List of vector’s indices fulfilling the requirements
1: Initialize hash table
2: for each pair of buckets (Ai, Bi) in parallel do
3: for all vectors u ∈ bucket Ai do
4: for all vectors v ∈ bucket Bi do
5: norm sq ← compute squared norm of the sum(u, v)
6: if norm sq ≤ R then
7: CRITICAL{ unique ← check if vector pair exists in the hash table }
8: if unique then
9: CRITICAL{ add indices of vectors u and v to the output list }

10: return output list of vector indices

required amount of memory is smaller because we store only two indices, compared to
n vector elements if we want to store the summation vectors. Secondly, performance
is improved because we have smaller number of memory writes (2 compared to n, for
each vector pair) and we do not need to compute the summation vector but just the
squared norm of the sum of given vectors. Computing the resulting summation vectors
from the indices, after the FindNeighbors function, requires negligible amount of time
compared to the FindNeighbors, because the size of the output list is approximately
of the same size as the input list and FindNeighbors algorithm runs in time almost
quadratic in the size of the input list. The size of the output list and the number of
operations in FindNeighbors depend on the choice of parameters in Merge by collision
algorithm, which provides a trade-off between running time and required memory. In
practical implementation of the algorithm the parameters are chosen such that the size
of the output and the input list is comparable.

5 Implementation of the FindNeighbors for the Xeon Phi

Implementations of the parallel FindNeighbors algorithm for regular CPU and for Xeon
Phi coprocessor follow the same procedure and optimization techniques. The main dif-
ferences are in the number of threads and in computing the squared norm of the sum of
two vectors. The algorithm is implemented in C++ programming language and for par-
allel execution we used OpenMP [21]. OpenMP parallel for directive is a work sharing
directive and it specifies that the iterations of the loop will be executed by a team of
threads in parallel. We use this directive on the outer loop of the parallel FindNeighbors
algorithm and thus each pair of buckets is processed by one of the available threads.

Vectorization. The most straightforward way to compute the squared norm of the sum
of two n-dimensional vectors is to go through the vectors element by element, sum
them, square the sum and add the square to a total sum. Since Intel Xeon Phi has
powerful VPUs, we can substantially improve the performance of this function by using
vector instructions. Xeon Phi has a 512 bits wide VPU and can work with vectors of
16 single-precision elements at the same time in SIMD mode (AVX512 data types and
instruction set). Computing the squared norm with vector AVX512 intrinsics is outlined
in the pseudo-code Alg. 4. Data type m512 denotes the AVX512 data type which is a
register 512 bits wide and in our case represents 16 single-precision elements (floats).
Instructions starting with vec denote vector instructions, for example vec load loads 512
bits from main memory into the register, while vec add sums two vectors element wise
and stores the result into the third vector.



Algorithm 4 Norm squared

Input: Two vectors a and b, vector dimension n
Output: Squared norm of the sum of the input vectors
1: m512 total sum ← vec init zeroes()
2: for i = 0; i < n; i += 16 do
3: m512 rega ← vec load(a[i])
4: m512 regb ← vec load(b[i])
5: m512 tmp ← vec add(rega, regb)
6: tmp ← vec mul(tmp, tmp)
7: total sum ← vec add(total sum, tmp)

8: result ← vec reduce(total sum) // Sum of all the vector elements
9: return result

Algorithm 5 Modified function for Xeon Phi

Input: Two buckets of vectors, vector hashes, bound
Output: List of vector’s indices fulfilling the requirements
1: Initialize hash table
2: k = vector dimension/16 // m512 registers can store 16 floats, so k is the number of
3: registers required for each lattice vector
4: for i = 0; i < sizeof(left bucket); i += 4 do
5: m512 vec 1[k], vec 2[k], vec 3[k] vec 4[k]
6: Load 4 vectors into registers
7: for all vectors v ∈ right bucket do
8: normsq1 ← compute squared norm of the sum(vec 1, v)
9: normsq2 ← compute squared norm of the sum(vec 2, v)

10: normsq3 ← compute squared norm of the sum(vec 3, v)
11: normsq4 ← compute squared norm of the sum(vec 4, v)
12: Check if squared norms are less than the bound and add indices to output uniquely

13: return output list of vectors

Registers. Since Xeon Phi has plenty of 512-bit registers, more precisely 32 per thread,
we slightly modified the algorithm such that it uses available registers more efficiently.
The modified algorithm is presented in Alg. 5. In the beginning of the outer loop we
load four vectors from the left bucket into registers. For each vector we need 4, 5, or 6,
512-bit registers depending on the lattice dimension. If we store the vector in registers,
we avoid reading the vector from memory in each iteration of the inner loop which
improves performance. By storing 4 lattice vectors in the registers before entering the
inner loop we actually improve the ratio of number of memory operations versus number
of arithmetic operations in the loop, since for every load of vector v from the right
bucket we now compute 4 norms, compared to 1 norm when we store only one vector.
Memory instructions have a bigger latency than arithmetic instructions, so with more
arithmetic instructions the compiler reorders them in such a way that the latency of
memory read/write instructions is neutralized. We tested the function with storing
different number of vectors in registers (from 1 to 5 vectors) and the best performance
is achieved with storing 4 of them.

Critical regions. As already mentioned, there is a need for two thread synchronization
points in the algorithm - critical sections in Alg. 3. OpenMP critical keyword provides
a way to specify a region of code that should be executed by only one thread at a time.
We can use this approach in both cases - checking the hash table and writing indices
to the output. However, critical regions significantly degrade the performance
of the algorithm, especially on the Xeon Phi where we have 240 threads competing to



enter the critical regions which results in many threads waiting for the region to be free
and not doing any useful work.

OpenMP locks. Besides critical regions, OpenMP provides API for software locks as
another method of thread synchronization. We virtually divide the hash table into
several parts and use OpenMP locks to control access to every part of the table. In this
way we avoid locking the whole hash table when a thread needs to use it and allow more
threads to use different parts of the table simultaneously, hence lowering the probability
that a thread will wait to access the hash table.

OpenMP atomic. The second synchronization point is writing to the output list which is
shared among all the threads. We solved this problem by maintaining a shared counter
which indicates the next free location in the output list. When a thread needs to store
the result to the output list it reads the counter value, increments it and writes to the
list. Reading and incrementing of the counter has to be done atomically - without the
interruption by some other thread, but writing to the list can be done simultaneously
by multiple threads. OpenMP provides the atomic directive which specifies that a mem-
ory location must be updated atomically, without letting multiple threads attempt to
write to it. This construction is much more efficient than critical regions because it uses
the CPU specific atomic machine instructions and thus avoids the expensive software
synchronization primitives.

Memory alignment. In order to achieve the maximum efficiency of vector instructions
we have to properly align the memory. For AVX512 instructions data should be
aligned on the boundary of 64 bytes. This is easily achieved with Intel’s intrinsics for
aligned memory allocation. Furthermore, since lattice dimension, and consequently the
size of the vectors, is not always a multiple of 16, we have to introduce padding. Even
though the lattice dimension is n, we fix the allocated size of the vectors to the next value
greater or equal to n which is divisible by 16, and fill the padding with zeros, if it exists.
Implementation with memory alignment has around 50 percent better performance than
the one without the alignment.

5.1 Implementation of the FindNeighbors on CPU

As already mentioned, most of the optimization techniques used for the Xeon Phi can
also be implemented for a regular CPU. Intel CPUs also have vector processing units
and can work with vectors of 128 or 256 bits in length viewed as 4 or 8 single-precision
elements respectively (SSE and AVX data types and instruction set). Computing the
squared norm with SSE and AVX intrinsics follows the same procedure as presented
in Alg. 4, but obviously with four and two times more iterations, since vector registers
are shorter.The second big difference between CPU and Xeon Phi is in the number of
available vector registers (e.g. 16 per core on CPU vs 128 per core on Phi). Because of
the low number of vector registers on CPUs, the optimization step denoted as Registers
in previous section does not give a performance improvement, on the contrary, when
we store some of the vectors in the registers before the inner loop, the application is
even slower. Other optimization steps from the previous section apply equally to the
CPU implementation. Critical regions are replaced with OpenMP locks and atomic
instructions. Data in memory is properly aligned on the boundary of 16 bytes for SSE,
and 32 bytes for AVX instructions and padding is inserted if needed.

6 Experimental results

The functions as well as the testing environment is implemented in C++ and for par-
allelization we used OpenMP. The source code is compiled with Intel C++ Compiler



(ICPC) version 14.0.2. The testing platform consists of a dual socket motherboard with
two Intel Xeon E5-2650 processors and one Intel Xeon Phi 5110P coprocessor. The spec-
ifications of the processors are shown in Table 1. In all the experiments, application on
CPU was tested with 32 threads and on Xeon Phi with 240 threads.

2 x Intel Xeon E5-2650 Intel Xeon Phi 5110P

# of Cores 16 60

# of Threads 32 240

Frequency 2 GHz 1.053 GHz

Cache size 40 MB 30 MB

VPU width 256 bits 512 bits

Table 1. CPU and Xeon Phi specifications

All the functions previously described are tested on the same data set and the results
are presented bellow. The data set consists of 1920 buckets which gives 960 bucket pairs
and each bucket has 3200 lattice vectors. The expected number of output vectors per
bucket pair is 1000, which in total gives almost 1 million vectors. The size of this data
set is chosen such that it almost fills the available RAM memory on the Xeon Phi. When
the lattice dimension is increased, the size of the buckets stays relatively the same, but
the number of buckets increases exponentially in the dimension. For clarity, we present
the performance results for one batch of computations (1920 buckets) for different lattice
dimensions.

In Table 2 are presented performance results of the function running on the CPU.
There are three different implementations, one using the Intel AVX instruction set,
one using the SSE instruction set, and one without any vector intrinsic instructions.
Execution times are in seconds and speed-ups are calculated between versions without
vectorization and with AVX vectorization. It can be clearly seen that the algorithm
benefits significantly from the use of intrinsics. The code is compiled with the default
level of optimization in which the compiler tries to vectorize the code even when explicit
intrinsics are not used. From the results it is clear that the compiler is not able to match
the performance of manually vectorized code. Implementation with SSE instructions
achieved the average improvement factor of 2.8, and AVX implementation further speed-
up of 1.4 times, resulting in total speed-up of approximately 4 times of AVX version
compared to the initial implementation without intrinsics.

Dimension NOVEC[s] SSE[s] AVX[s] NOVEC/AVX speed-up

64 21.9089 7.16444 5.35586 4.09

80 27.0982 9.77734 6.53369 4.15

96 32.9169 12.3163 9.24105 3.56

Table 2. CPU implementation results

Table 3 shows the execution times of the implementation with critical regions and
the implementation with OpenMP locks and atomics, on Xeon Phi. The results show
that critical regions have a big impact on performance of the Phi, but also that this
can be circumvented by a smart use of locks and atomic directive. When critical regions



are replaced with locks and atomics, the execution time of the function drops from
approximately 12 to 1.5 seconds, giving a speed-up of around 8 times for all the tested
lattice dimensions. On the other hand, implementation on the CPU does not benefit
from locks and atomics as much as the Xeon Phi. Average speed-up on CPU among the
different lattice dimensions is around 1.2 (20 percent improvement). This discrepancy
between speed-ups on CPU and Xeon Phi are as expected considering that the algorithm
on Phi runs with many more threads which collide in the critical regions.

Dimension Critical regions[s] Locks and atomic[s] Speed-up factor

64 12.5277 1.50102 8.3

80 13.0306 1.69802 7.6

96 13.4984 1.71858 7.8

Table 3. OpenMP locks and atomic vs. critical regions on Xeon Phi

Figure 1 shows the execution time for three test cases on Xeon Phi. Blue bars rep-
resent the test case without preloading of lattice vectors into registers before the inner-
most loop of the algorithm 3. Orange and gray bars represent the execution times of
the modified algorithm such that 1 or 4 lattice vectors are loaded into registers before
the innermost loop. The pseudo code of the modification with preloading of 4 vectors is
shown in algorithm 5, and functions with 1, 2, and 3 vectors preloaded are implemented
in the same fashion. Performance gradually improves with increase of the number of
preloaded vectors, achieving the peak performance at 4 vectors. Loading only one vector
before the inner loop yields a performance improvement factor of around 1.7 when com-
pared to the version without preloading, while working with four vectors at the same
time gives a speed-up of almost 7 times.
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Fig. 1. Xeon Phi results with and without preloading of vectors

Finally, Figure 2 shows the comparison between the best running times achieved
on CPU and Xeon Phi. For each dimension, blue and orange bars show the execution
time and green boxes show the speed-up of Xeon Phi over the CPU implementation. In



both implementations the memory is aligned, and locks and atomics are used instead of
critical regions. CPU implementation uses AVX intrinsics for explicit vectorization and
runs with 32 threads. Xeon Phi implementation uses AVX512 intrinsics, runs with 240
threads, and 4 lattice vectors are preloaded before the inner loop. The results show a
speed-up of 3.57, 3.84, and 5.37 for lattice dimensions 64, 80, and 96 respectively. The
speed-up improves when the lattice dimension increases, which can be explained by the
fact that increasing the dimension by 16, the number of additional instructions on CPU
is twice the number of additional instructions on Xeon Phi, due to the VPUs’ width (512
bits on Xeon Phi and 256 bits on CPU). It should be noted that the speed-up will not
increase infinitely with the increase of the dimension. The theoretical maximum speed-
up which could be achieved on the Xeon Phi compared to the CPU is approximately 8.
However, we can conclude that the higher the lattice dimension, the speed-up on Phi is
closer to the theoretical value.
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Fig. 2. Performance results, CPU and Xeon Phi

7 Conclusion

In this paper we presented the efficient implementation of the FindNeighbors subrou-
tine, which is the dominant part of the lattice sieve algorithm based on decomposition
approach. In addition to optimization of the routine for regular CPUs, we presented
highly optimized implementation aimed for execution on Intel’s many-core coprocessor,
Xeon Phi. In order to fully exploit the resources of the Xeon Phi, several optimization
tools should be used, as explained in the previous sections. The power of the Xeon Phi
comes from many processor cores (e.g. 60 in our device), and vector processing units
which are 512 bits wide and allow us to work with 16 single-precision elements at the
same time. Although compilers usually try to vectorize the source code automatically,
this is not always an easy task for them, and in those cases developer needs to use appro-
priate instruction set extension, such as AVX or AVX512, and explicitly implement the
vectorization. Experimental results showed that for FindNeighbors algorithm Xeon Phi
5110P outperforms two Xeon E5-2650 processors by a factor of around 4 for the tested
lattice dimensions, with tendency to improve the speed-up factor in higher dimensions.



Since these devices are in the same price range and power consumption range, we can
conclude that Xeon Phi is a promising platform for highly parallel applications which
can utilize the vector processing units, such as the algorithm studied in this paper, but
one still has to work a bit and manually optimize the code to efficiently utilize available
resources.
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