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Abstract. The complexity of computing the solutions of a system of
multivariate polynomial equations by means of Gröbner bases computa-
tions is upper bounded by a function of the solving degree. In this paper,
we discuss how to rigorously estimate the solving degree of a system, fo-
cusing on systems arising within public-key cryptography. In particular,
we show that it is upper bounded by, and often equal to, the Castelnuovo-
Mumford regularity of the ideal generated by the homogenization of the
equations of the system, or by the equations themselves in case they
are homogeneous. We discuss the underlying commutative algebra and
clarify under which assumptions the commonly used results hold. In par-
ticular, we discuss the assumption of being in generic coordinates (often
required for bounds obtained following this type of approach) and prove
that systems that contain the field equations or their fake Weil descent
are in generic coordinates. We also compare the notion of solving degree
with that of degree of regularity, which is commonly used in the litera-
ture. We complement the paper with some examples of bounds obtained
following the strategy that we describe.
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Introduction

Polynomial system solving plays an important role in many areas of mathemat-
ics. In this paper, we discuss how to solve a system of multivariate polynomial
equations by means of Gröbner bases techniques and estimate the complexity of
polynomial system solving. Our motivation comes from public-key cryptography,
where the computational problem of solving polynomial systems of equations
plays a major role.

⋆ Corresponding author.
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In multivariate cryptography, the security relies on the computational hard-
ness of finding the solutions of a system of polynomial equations over a finite
field. One can use similar strategies in order to produce public-key encryption
schemes and digital signature algorithms, whose security relies on this problem.
For signature schemes, e.g., the public key takes the form of a polynomial map

P : Fn
q −→ Fr

q

(a1, . . . , an) 7−→ (f1(a1, . . . , an), . . . , fr(a1, . . . , an))

where f1, . . . , fr ∈ Fq[x1, . . . , xn] are multivariate polynomials with coefficients
in a finite field Fq. The secret key allows Alice to easily invert the system P. In
order to sign the hash b of a message, Alice computes a ∈ P−1(b) and sends it
to Bob. Bob can readily verify the validity of the signature by checking whether
P(a) = b. An illegitimate user Eve who wants to produce a valid signature
without knowing Alice’s secret key is faced with the problem of solving the
polynomial system of r equations in n variables

f1(x1, . . . , xn) = b1
...

fr(x1, . . . , xn) = br

Even without knowing Alice’s secret key, Eve may be able to exploit the struc-
ture of P in order to solve the system. Such an approach is largely used and the
adopted strategies vary significantly from one cryptographic scheme to another.
Moreover a direct attack is always possible, i.e., Eve may try to solve the system
by computing a Gröbner basis of it. Therefore, being able to estimate the compu-
tational complexity of solving a multivariate polynomial system gives an upper
bound of the security of the corresponding cryptographic scheme, and is therefore
highly relevant. In this context, the complexity of solving a polynomial system is
typically large enough to make the computation unfeasible, since being able to
compute a solution would enable the attacker to forge a digital signature or to
decrypt an encrypted message. We emphasize that the security of multivariate
cryptographic schemes is a theme of high current interest. For example, the Na-
tional Institute of Standards (NIST) is in the process of selecting post-quantum
cryptographic schemes for standardization. Three digital signature algorithms
were selected as finalists in Round 3 by NIST in July 2020 [NIST], one of which
is a multivariate scheme.

Multivariate polynomial systems also appear in connection with the Discrete
Logarithm Problem (DLP) on an elliptic or hyperelliptic curve. An index calcu-
lus algorithm for solving the DLP on an abelian variety was proposed in [Gau09].
The relation-collection phase of the algorithm relies on Gröbner bases computa-
tions to solve a large number of polynomial systems. These systems usually do
not have any solutions, but, whenever they have one, they produce a decompo-
sition of a point of the abelian variety over the chosen factor base. In contrast
with polynomial systems arising within multivariate cryptography, it is feasi-
ble to solve the polynomial systems arising within index calculus algorithms.
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Nevertheless, it is important to be able to accurately estimate the complexity
of solving them. In fact, the complexity of solving these systems has a direct
impact on the complexity of the corresponding index calculus algorithm to solve
the DLP.

Estimating the complexity of solving multivariate polynomial systems is rele-
vant within public-key cryptography. In this context, we usually wish to compute
the solutions over a finite field of a system of multivariate polynomial equations.
Typically, the systems have one, or few, or no solutions, not only over the cho-
sen finite field, but also over its algebraic closure. Moreover, the equations are
usually not homogeneous. The degrees of the equations are often small for sys-
tems coming from multivariate cryptography, but they can be large for systems
arising within index calculus algorithms. Similarly, the number of equations and
of variables can vary. Therefore, in this paper we concentrate on finite fields
and on non homogeneous systems, which have a finite number of solutions over
the algebraic closure. We however do not make assumptions on the number of
variables, the number of equations and their degrees.

This paper is devoted to an in-depth discussion of how to estimate the com-
plexity of computing a Gröbner basis for a system of multivariate polynomial
equations. As said before, our focus is on finite fields and on systems that have
a finite number of solutions over the algebraic closure. At the same time, we try
to keep the discussion more general, whenever possible. We often concentrate on
systems which are not homogeneous, not only because this is the relevant case
for cryptographic applications, but also because it is the most difficult case to
treat.

After recalling in Section 1 the commutative algebras preliminaries that will
be needed throughout the paper, in Section 2 we discuss in detail the relation
between computing Gröbner bases and solving polynomial systems. This con-
nection is often taken for granted within the cryptographic community, as are
the necessary technical assumptions. In Section 2 we discuss in detail what these
technical assumptions are and what can be done when they are not satisfied. We
also show in Theorem 3 that, under the usual assumptions, solving a polynomial
system of equations is polynomial-time-equivalent to computing a Gröbner basis
of it. We conclude with Subsection 2.1, where we discuss the feasibility of adding
the field equations to a system.

Section 3 is the core of the paper. After establishing the setup that we
will be adopting, we prove some results on Gröbner bases and homogeniza-
tion/dehomogenization. They allow us to compare, in Theorem 7, the solving
degree of a system, the solving degree of its homogenization, and the solving
degree of the homogenization of the ideal generated by its equations. Combining
these results with a classical theorem by Bayer and Stillman [BS87], we obtain
Theorem 9 and Theorem 10, where we show that the Castelnuovo-Mumford reg-
ularity upper bounds the solving degree of a system, and recover Macaulay’s
Bound in Corollary 2. These results hold under the assumption that the homog-
enized system of equations is in generic coordinates, an assumption that is often
overlooked in the cryptographic literature and that we discuss in Section 1. In
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Theorem 11 we prove that any system that contains the field equations or their
fake Weil descent is in generic coordinates.

In Section 4 we discuss the relation between solving degree and degree of
regularity. The latter concept is commonly used in the cryptographic literature
and often used as a proxy for the solving degree. In Section 4 we discuss the
limitations of this approach. In particular, Example 12 and Example 13 are
examples of systems coming from index calculus for which, respectively, the
degree of regularity is strictly smaller than the solving degree and the degree of
regularity is not defined.

Finally, Section 5 is meant as an example of how the results from Section 3, in
combination with known commutative algebra results, easily provide estimates
for the solving degree. In particular, Theorem 13 and Theorem 14 give bounds
for the solving degree of polynomial systems coming from the MinRank Problem.

Acknowledgements: The authors are grateful to Albrecht Petzoldt for help
with MAGMA computations, to Wouter Castryck and Sara Gharahbeigi for
pointing out imprecisions in earlier versions of this paper, and to Marc Chardin,
Teo Mora, Christophe Petit, and Pierre-Jean Spaenlehauer for useful discussions
on the material of this paper. This work was made possible thanks to funding
from Armasuisse.

1 Preliminaries

In this section we introduce the basic notations and terminology from commu-
tative algebra that we need in the rest of the paper. All the definitions and the
proofs of the results that we quote here are extensively covered in the books
[KR00], [KR05], [KR16], and [CLO07].

1.1 Polynomial rings and term orders

We work in a polynomial ring R = k[x1, . . . , xn] in n variables over a field k. An
element f ∈ R is a polynomial, and may be written as a finite sum f =

∑
ν aνx

ν ,
where ν ∈ Nn, aν ∈ k, and xν = xν1

1 · · ·xνn
n . A polynomial of the form aνx

ν is
called a monomial of degree |ν| = ν1 + · · ·+ νn. In particular, every polynomial
f is a sum of monomials. The degree of f , denoted by deg(f), is the maximum
of the degrees of the monomials appearing in f . If all these monomials have the
same degree, say d, then f is homogeneous of degree d. A monomial aνx

ν with
aν = 1 is monic. A monic monomial is also called a term.

Notation. Given a system of polynomials F = {f1, . . . , fr} ⊆ R we de-
note by (F) = (f1, . . . , fr) the ideal that they generate, that is (f1, . . . , fr) =
{
∑r

i=1 pifi : pi ∈ R}.

The list F = {f1, . . . , fr} is called a system of generators of the ideal I = (F).
F is aminimal system of generators for I if the ideal generated by any non-empty
proper subset of F is strictly contained in I. If the polynomials f1, . . . , fr are
homogeneous, then we say that the system Fand the ideal I are homogeneous.
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Remark 1. Let I be an ideal of R minimally generated by homogeneous poly-
nomials f1, . . . , fr. Then every homogeneous minimal system of generators of I
consists of r polynomials of the same degrees as f1, . . . , fr.

For any degree d ∈ Z+, denote by Rd the d-th homogeneous component of
R. Rd is generated as a k-vector space by the monomials of R of degree d. If
I ⊆ R is homogeneous, we let Id = I ∩Rd be the k-vector space of homogenous
polynomials of degree d in I.

We denote by T the set of terms of R. A term order on R is a total order τ
on the set T, which satisfies the following additional properties:
1. m ≤τ n implies p ·m ≤τ p · n for all p,m, n ∈ T;
2. 1 ≤τ m for all m ∈ T.
If in addition m <τ n whenever deg(m) < deg(n), we say that the term order τ
is degree-compatible.

Example 1 (Lexicographic order). Let xα and xβ be two terms in R. We say
that xα >LEX xβ if the leftmost non-zero entry in the vector α − β ∈ Zn is
positive. This term order is called lexicographic and it is not degree-compatible.
We denote it by LEX.

Example 2 (Degree reverse lexicographic order). Let xα and xβ be two terms in
R. We say that xα >DRL xβ if |α| > |β|, or |α| = |β| and the rightmost non-
zero entry in α − β ∈ Zn is negative. This term order is called degree reverse
lexicographic (DRL for short) and it is degree-compatible.

Let f =
∑

i∈I aimi ∈ R\{0} be a polynomial, where ai ∈ k\{0}, and mi ∈ T
are distinct terms. We fix a term order τ on R. The initial term or leading term
of f with respect to τ is the largest term appearing in f , that is inτ (f) = mj ,
where mj > mi for all i ∈ I \ {j}. The support of f is supp(f) = {mi : i ∈ I}.
Given an ideal I of R, the initial ideal of I is

inτ (I) = (inτ (f) : f ∈ I \ {0}).

Definition 1. Let I be an ideal of R. A set of polynomials G ⊆ I is a Gröbner
basis of I with respect to τ if inτ (I) = (inτ (g) : g ∈ G). A Gröbner basis is
reduced if m ̸∈ (inτ (h) : h ∈ G \ {g}) for all g ∈ G and m ∈ supp(g).

Sometimes we will need to consider a field extension. At the level of the
ideal, this corresponds to looking at the ideal generated by the equations in a
polynomial ring over the desired field extension.

Definition 2. Let I = (f1, . . . , fr) ⊆ R = k[x1, . . . , xn], let K ⊇ k be a field
extension. We denote by IK[x1, . . . , xn] the extension of I to K[x1, . . . , xn], i.e.
the ideal of K[x1, . . . , xn] generated by f1, . . . , fr. In symbols, IK[x1, . . . , xn] =
(f1, . . . , fr) ⊆ K[x1, . . . , xn].
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1.2 Zero loci of ideals

We are mostly interested in ideals, whose zero locus is finite.

Definition 3. The affine zero locus of an ideal I = (f1, . . . , fr) ⊆ R over the
algebraic closure k̄ of k is

Z(I) = {P ∈ k̄n : f(P ) = 0 for all f ∈ I} = {P ∈ k̄n : f1(P ) = . . . = fr(P ) = 0}.

We also denote it by Z(f1, . . . , fr).

Definition 4. The projective zero locus of a homogeneous ideal I = (f1, . . . , fr) ⊆
R over the algebraic closure k̄ of k is

Z+(I) = {P ∈ P(k̄)n : f(P ) = 0 for all f ∈ I}
= {P ∈ P(k̄)n : f1(P ) = . . . = fr(P ) = 0}.

We also denote it by Z+(f1, . . . , fr).

Remark 2. The following are equivalent for a homogeneous ideal I ⊆ R:

|Z(I)| < ∞ ⇔ Z(I) = {(0, . . . , 0)} ⇔ Z+(I) = ∅.

These conditions are equivalent to the fact that the Krull dimension of R/I is
zero. This is in turn equivalent to R/I being a finite dimensional k-vector space.

In Definition 3 and Definition 4 it is important to look at the zero locus of I
or F over the algebraic closure of the base field. For cryptographic applications,
often the base field k is a finite field. In this case the condition that the zero
locus is finite over k is trivially satisfied by any ideal or system of equations.

1.3 Infinite fields and the Zariski topology

Let k be a field. The Zariski topology on the affine space kn is the set of com-
plements of solution sets of systems of polynomial equations over R, that is
{kn \ Z(f1, . . . , fr) | f1, . . . , fr ∈ R}. If k is an algebraically closed field, or at
least an infinite field, then every non-empty open set in the Zariski topology is
dense, i.e., its closure is equal to the entire space. A non-empty open subset of
kn is often called a generic set and a property which holds on a non-empty open
set is generic. Intuitively, a generic set is almost the whole space and a generic
property holds almost everywhere in kn.

If k is a finite field, on the other side, the Zariski topology is the discrete
topology on kn. In other words, any subset of kn is both open and closed, and
the algebraic-geometric intuition of genericity fails. In particular, one can no
longer say that a non-empty open subset of kn is almost the whole space, as the
closure of any subset of kn is the subset itself. Therefore, as genericity loses its
meaning over a finite field, we always will need to assume that the ground field
is infinite when dealing with generic sets or properties.
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1.4 Generic changes of coordinates and saturation

In this paper, we work in the open set defined in [BS87]. In order to state the
definition, we need to recall the algebraic operation of saturation.

Definition. Let J ⊆ S = R[t] be a homogenoeus ideal. The saturation of J with
respect to the irrelevant maximal ideal of S is

J sat =
⋃
d≥0

{f ∈ S | fm ∈ J for every monomial m ∈ Sd}.

Definition 5. Let k be an infinite field. Let J ⊆ S = R[t] be a homogeneous ideal
with |Z+(J)| < ∞. We say that J is in generic coordinates if either |Z+(J)| = 0
or t ∤ 0 mod. J sat.

Let k be any field and let K ⊇ k with K infinite. J is in generic coordinates
over K if JK[x1, . . . , xn, t] ⊆ K[x1, . . . , xn, t] is in generic coordinates.

It is easy to see that any homogeneous ideal can be put in generic coordinates
by applying a generic change of coordinates to it (see also the proof of [BS87,
Lemma 2.9]). Informally, if k is finite, it suffices to apply to J a random change
of coordinates over a field extension of sufficiently large cardinality.

1.5 Homogeneous ideals associated to a system

Let R = k[x1, . . . , xn] and let S = R[t]. Given a polynomial f ∈ R, we denote
by fh ∈ S the homogenization of f with respect to the new variable t. For
F = {f1, . . . , fr} ⊆ R, we let Fh ⊆ S denote the system obtained from F by
homogenizing each fi with respect to t, that is Fh = {fh

1 , . . . , f
h
r }.

For an ideal I ⊆ R, the homogenization of I with respect to t, or simply the
homogenization of I, is the ideal

Ih = (fh : f ∈ I) ⊆ S.

If I = (F) ⊆ R, then Ih is a homogeneous ideal of S which contains (Fh). It is
easy to produce examples where the containment is strict.

Remark 3. Let G be a Gröbner basis of I with respect to a degree-compatible
term order on R. It can be shown that Gh = {gh : g ∈ G} is a Gröbner basis
of Ih with respect to a suitable term order on S, see e.g. [KR05, Section 4.3]. In
particular Ih = (gh : g ∈ G), hence the degrees of a minimal system of generators
of Ih are usually different from those of a minimal system of generators of I.
Instead, the degrees of a minimal system of generators of (Fh) coincide with the
degrees of f1, . . . , fr.

The dehomogenization map ϕ is the standard projection on the quotient
ϕ : S → R ∼= S/(t− 1). For any system of equations F ⊆ R generating an ideal
I = (F) we have ϕ(Ih) = (ϕ(Fh)) = I. Notice that one also has ϕ((Fh)) =
(ϕ(Fh)) = I.
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For a polynomial f ∈ R, we denote by f top its homogeneous part of highest
degree. For a system of equations F = {f1, . . . , fr} we denote by

F top = {f top
1 , . . . , f top

r }.

Both the ideal (Fh) and the ideal (F top) depend on F , and not only on the
ideal I = (F).

2 The importance of being LEX

The main goal of this section is clarifying the relation between solving a system of
polynomial equations F and computing a Gröbner basis of the ideal I generated
by the system. In the cryptographic literature it is often stated that, thanks to
the Shape Lemma, the problem of finding the solutions of F can be reduced to
that of computing a lexicographic Gröbner basis of I. This statement is however
not rigorous, since the Shape Lemma only holds under certain assumptions,
which are not always verified for cryptographic systems.

We start by stating the assumptions under which the Shape Lemma holds
and showing that, when they are satisfied, the problem of solving the system F is
polynomial-time-equivalent to that of computing a lexicographic Gröbner basis
of I. Then we discuss what can be done in the case when the assumptions of the
Shape Lemma are not satisfied. We come to the conclusion that, in all situations,
one can easily compute the solutions of F from a lexicographic Gröbner basis
of I. We stress that we are not stating that directly computing the reduced
lexicographic Gröbner basis is the most efficient way to solve a system (see also
Section 3). We conclude the section with a brief discussion of when it is feasible
to add the field equations to a system F and how that affects the computation
of a Gröbner basis of it.

Throughout the section we focus on systems of equations which have a finite
number of solutions over the algebraic closure of the field of definition, since
systems that arise in public key cryptography are usually of this kind. Moreover,
we always assume that our systems have at least one solution. In fact, if the
system has no solutions, the corresponding ideal is equal to the polynomial ring,
that is the reduced Gröbner basis with respect to any term order is equal to
{1}. In this case, therefore, computing the reduced lexicographic Gröbner basis
allows us to decide that the system has no solutions, without any additional
work.

We start by recalling the Shape Lemma.

Theorem 2 (Shape Lemma – [KR00], Theorem 3.7.25). Let k be a field
and let f1, . . . , fr ∈ R be such that the corresponding ideal I = (f1, . . . , fr) is
radical, in normal xn-position, and |Z(I)| = d < ∞. The reduced lexicographic
Gröbner basis of I is of the form

{gn(xn), xn−1 − gn−1(xn), . . . , x1 − g1(xn)},

where g1, . . . , gn are univariate polynomials in xn and deg(g1), . . . ,deg(gn−1) <
deg(gn) = d.
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The Shape Lemma assumes that the ideal I is radical and in normal xn-
position. An ideal I is radical if f ℓ ∈ I for some ℓ > 0 implies f ∈ I. This
assumption is not always verified for ideals generated by systems arising in cryp-
tography. Later in the section, we will show how one can use a more general
version of the Shape Lemma in order to overcome this problem.

Being in normal xn-position means that any two distinct zeros (a1, . . . , an),
(b1, . . . , bn) ∈ Z(I) satisfy an ̸= bn. Notice that every ideal I with finite affine
zero locus can be brought into normal xn-position by a suitable linear change
of coordinates, passing to a field extension if needed (see [KR00, Proposition
3.7.22]). A field extension may indeed be needed, as the next example shows.

Example 3. Let F = {x2
1 + x1, x1x2, x

2
2 + x2} ⊆ R = F2[x1, x2]. Then I =

(x2
1 + x1, x1x2, x

2
2 + x2) is a radical ideal and Z(I) = {(0, 0), (0, 1), (1, 0)}. We

claim that I cannot be brought in normal x2-position by a linear change of
coordinates over F2. In fact, a linear change of coordinates over F2 sends x2 to
either x1, x2, x1 + x2, x1 + 1, x2 + 1, or x1 + x2 + 1. However, all these linear
forms take the same value on at least two of the elements of Z(I).

Finally, the Shape Lemma assumes that |Z(I)| < ∞. If k is a finite field,
then one can add the field equations to I and obtain an ideal J which is radical
and such that Z(J) = Z(I)∩ kn, in particular |Z(J)| < ∞. This is however not
always advantageous or even feasible, as we discuss in Section 2.1.

Whenever the assumptions of the Shape Lemma are satisfied, computing the
solutions of a system of equations has the same complexity as computing the
reduced lexicographic Gröbner basis of the ideal generated by the system.

Theorem 3. Let F = {f1, . . . , fr} ⊆ R be a polynomial system such that the
corresponding ideal I = (f1, . . . , fr) is radical and in normal xn-position. As-
sume that |Z(I)| = d < ∞ and Z(I) ⊆ Fn

q . Consider the LEX order. The set
of solutions of F can be computed from the reduced Gröbner basis of I proba-
bilistically in time polynomial in log q, n and d. Conversely, the reduced Gröbner
basis of I can be computed from the set of solutions of F deterministically in
time polynomial in log q, n and d.

Proof. By the Shape Lemma, the reduced lexicographic Gröbner basis of I has
the form:

{gn(xn), xn−1 − gn−1(xn), . . . , x1 − g1(xn)}, (1)

where gi(xn) are polynomials in the variable xn only, and deg(gj) < deg(gn) = d
for 1 ≤ j < n.

If we know the reduced lexicographic Gröbner basis of I, then we can factor
the polynomial gn(xn) to find its roots. Each root α of gn(xn) corresponds to
a solution (g1(α), . . . , gn−1(α), α) of f1 = . . . = fr = 0. Notice that the only
operation required, apart from the arithmetic over Fq, is factoring univariate
polynomials, which can be done in probabilistic polynomial time over a finite
field.

Vice versa, assume that we know Z(I) = {P1, . . . , Pd} ⊆ Fn
q of F . Write Pi =

(ai,1, . . . , ai,n) for i = 1, . . . , d. We wish to compute the reduced lexicographic



10 A. Caminata and E. Gorla

Gröbner basis of I, knowing that it is of the form (1). Since the roots of gn
are exactly a1,n, . . . , ad,n we can compute gn(xn) =

∏d
i=1(xn − ai,n). Now fix

j ∈ {1, . . . , n− 1}. Since gj(ai,n) = ai,j for i = 1, . . . , d and deg(gj) < d, we can
compute gj(xn) by using Lagrange interpolation:

gj(xn) =

d∑
i=1

 ∏
1≤λ≤d
λ ̸=i

xn − aλ,n
ai,n − aλ,n

 ai,j .

We now discuss the situation in which the assumptions of the Shape Lemma
do not hold. In particular, we consider the case when I is not radical. Some
authors state that, since I + (xq

1 − x1, . . . , x
q
n − xn) ⊆ Fq[x1, . . . , xn] is always

radical, up to adding the field equations one may assume without loss of gen-
erality that I is radical. However, adding the field equations to the system is
not always computationally feasible, even in the case of systems coming from
cryptography. Therefore, being able to deal with the situation when the ideal I
is not radical is relevant for cryptographic applications. We discuss this issue in
more detail in Section 2.1.

Before continuing our discussion, we give an example of system coming
from multivariate cryptography for which the corresponding ideal is not rad-
ical, adding the field equations to the system is not feasible, and one ends up
with a reduced lexicographic Gröbner basis which does not have the shape pre-
dicted by the Shape Lemma. Indeed, this was the case for most of the instances
of the ABC cryptosystem [TDTD13,TXPD15] that we computed. Since the field
sizes proposed in [TXPD15] for achieving 80-bits security are 28, 216, and 232,
adding the field equations to the system is not feasible. In our next example we
disregard the linear transformations used in the ABC cryptosystem to disguise
the private key, since they do not affect the property of the system to generate
a radical ideal.

Example 4. We consider R = F2[x1, x2, x3, x4] with the LEX term order and a
toy instance of an ABC cryptosystem with

A =

(
x1 x2

x3 x4

)
, B =

(
x1 + x2 + x3 x1 + x2

x1 + x3 + x4 x3

)
, C =

(
x1 + x2 + x3 + x4 x1 + x4

x1 + x4 x1

)
.

We let p1, . . . , p8 be the entries of the matrices AB and AC. We take a random
plaintext b = (0, 1, 1, 0) ∈ F4

2 and we evaluate the polynomials p1, . . . , p8 at b to
obtain the ciphertext a = (1, 1, 0, 1, 0, 0, 0, 0) ∈ F8

2. We then consider the system
F = {pi−ai : i = 1, . . . , 8} and the corresponding ideal I = (F) ⊆ R. The ideal
I is not radical as (x3 + 1)2 ∈ I, but x3 + 1 ̸∈ I. A computation with MAGMA
shows that the reduced lexicographic Gröbner basis of I is {x1, x2+x3, x

2
3+1, x4}.

We now discuss how one can efficiently compute the solutions of a polynomial
system from its lexicographic Gröbner basis, without assuming that the ideal
generated by the equations is radical. We stress that we always assume that the
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system has finitely many solutions over the algebraic closure. The next result
will be central to our discussion, as we will use it as a substitute of the Shape
Lemma.

Theorem 4 (Elimination Theorem – [CLO07], Chapter 3.1, Theorem
2). Let I ⊆ R be an ideal and let G be a lexicographic Gröbner basis of I.
Then for every 1 ≤ ℓ ≤ n − 1 the set G ∩ k[xℓ+1, . . . , xn] is a Gröbner basis of
I ∩ k[xℓ+1, . . . , xn] with respect to the LEX order on k[xℓ+1, . . . , xn].

In the next result we use Theorem 4 to prove that one can easily compute
the solutions of F from the reduced lexicographic Gröbner basis of I.

Theorem 5. Let I be a proper ideal of R = k[x1, . . . , xn] with finite affine zero
locus. The reduced lexicographic Gröbner basis of I has the form

pn,1(xn),

pn−1,1(xn−1, xn), . . . , pn−1,tn−1
(xn−1, xn),

pn−2,1(xn−2, xn−1, xn), . . . , pn−2,tn−2
(xn−2, xn−1, xn),

· · ·
p1,1(x1, . . . , xn), . . . , p1,t1(x1, . . . , xn),

where pi,tj ∈ k[xi, . . . , xn] for every index i ∈ {1, . . . , n}, j ∈ {1, . . . , ti} and
t1, . . . , tn−1 ≥ 1. Moreover, for any 1 ≤ ℓ ≤ n, let a = (aℓ+1, . . . , an) ∈ kn−ℓ be
a solution of the equations

pn,1(xn),

pn−1,1(xn−1, xn), . . . , pn−1,tn−1
(xn−1, xn),

· · ·
pℓ+1,1(xℓ+1, . . . , xn), . . . , pℓ+1,tℓ+1

(xℓ+1, . . . , xn),

and let

pℓ(xℓ) = gcd{pℓ,1(xℓ, aℓ+1, . . . , an), . . . , pℓ,tℓ(xℓ, aℓ+1, . . . , an)}.

Then pℓ(xℓ) ̸∈ k.

Proof. Let G be the reduced lexicographic Gröbner basis of I. The set G ∩
k[xℓ, . . . , xn] is of the form

G ∩ k[xℓ, . . . , xn] = {pi,j(xi, . . . , xn) | ℓ ≤ i ≤ n, 1 ≤ j ≤ ti}

for some t1, . . . , tn ≥ 0. Moreover, for any 1 ≤ ℓ ≤ n such that pℓ(xℓ) ̸= 0, one
has tℓ ≥ 1. Hence it suffices to show that pℓ(xℓ) ̸∈ k for 1 ≤ ℓ ≤ n.

We prove the claim by descending induction on ℓ ≤ n. Let ℓ = n, then
G ∩ k[xn] is the reduced lexicographic Gröbner basis of I ∩ k[xn] by Theorem 4.
Let pn,1(xn) be a monic generator of I ∩ k[xn], then G ∩ k[xn] = {pn,1(xn)}
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and tn = 1. Since the affine zero locus of I is finite, pn,1(xn) ̸= 0. Moreover,
pn(xn) = pn,1(xn) ̸∈ k \ {0}, since ∅ ≠ Z(I) ⊆ Z(pn).

We suppose now that the claim holds up to ℓ+1 and we prove that pℓ(xℓ) ̸∈ k.
By Theorem 4, G ∩ k[xℓ, . . . , xn] is the reduced lexicographic Gröbner basis of
I ∩ k[xℓ, . . . , xn], in particular

I ∩ k[xℓ, . . . , xn] = (pi,j | ℓ ≤ i ≤ n, 1 ≤ j ≤ ti).

Let a ∈ Z(I ∩ k[xℓ+1, . . . , xn]) ∩ kn−ℓ and define

I(ℓ, a) = (pℓ,1(xℓ, aℓ+1, . . . , an), . . . , pℓ,tℓ(xℓ, aℓ+1, . . . , an)) = (pℓ(xℓ)).

By [CLO07, Chapter 3.2, Theorem 3] and since Z(I) is a finite set, one has that

Z(I ∩ k[xℓ, . . . , xn]) = πn−ℓ+1(Z(I)),

where πi : kn → ki is the projection on the last i coordinates. In particular,
Z(I∩k[xℓ, . . . , xn]) is finite. If pℓ(xℓ) is the zero polynomial, then Z(I(ℓ, a)) = k̄
and

{(aℓ, aℓ+1, . . . , an) | aℓ ∈ k̄} ⊆ Z(I ∩ k[xℓ, . . . , xn]),

contradicting the finiteness of Z(I ∩ k[xℓ, . . . , xn]). If instead pℓ(xℓ) ∈ k \ {0},
then Z(I(ℓ, a)) = ∅. However, a = (aℓ+1, . . . , an) ∈ Z(I ∩ k[xℓ+1, . . . , xn]) =
πn−ℓ(Z(I)), where equality holds by [CLO07, Chapter 3.2, Theorem 3]. So there
exist a1, . . . , aℓ ∈ k̄ such that (a1, . . . , an) ∈ Z(I). Therefore, πn−ℓ+1(a1, . . . , an) =
(aℓ, . . . , an) ∈ Z(I ∩ k[xℓ, . . . , xn]), that is aℓ ∈ Z(I(ℓ, a)) = ∅, a contradiction.

We use the previous result to build an algorithm which computes the affine
zero locus of an ideal I from its reduced lexicographic Gröbner basis. We adopt
the notation of Theorem 5.

Corollary 1. Let I ⊆ R = k[x1, . . . , xn] be an ideal with finite affine zero locus
Z(I). Then Z(I) can be computed as follows:

1. Compute the reduced lexicographic Gröbner basis G of I to obtain the monic
polynomial pn ∈ k[xn] such that (pn) = I ∩ k[xn].

2. If pn = 1, then Z(I) = ∅. Else, factor pn.

3. For every root α of pn compute

pn−1(xn−1) = gcd{pn−1,1(xn−1, α), . . . , pn−1,tn−1(xn−1, α)}.

4. Factor pn−1.

5. For every root β of pn−1 compute

pn−2(xn−2) = gcd{pn−2,1(xn−2, β, α), . . . , pn−2,tn−2
(xn−2, β, α)}.

6. Proceed similarly, until all the elements of Z(I) are found.
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Notice that the computation is even more efficient under the assumption that
the system F , or equivalently the ideal I, has only one zero over the algebraic
closure. This is often the case for polynomial systems coming from multivariate
cryptosystems, where we usually require that for each ciphertext b there is a
unique plaintext a such that fi(a) = b for every i = 1, . . . r.

In such a situation, one does not need to factor any univariate polynomial,
since each one of them has exactly one solution, which, for a monic polynomial
of degree d, can be computed by multiplying the coefficient of xd−1 by −d−1.

Remark 4. Assume that k is either a finite field or has characteristic zero. If I
admits only one solution (a1, . . . , an) ∈ k̄n, then in fact (a1, . . . , an) ∈ kn. This
is true even if the solution has multiplicity higher than one. In fact, gn(xn) =
(xn − an)

d ∈ k[xn], hence dan ∈ k. If k has characteristic zero, then an ∈ k.
Else, let p be the characteristic of k and write d = pℓe where p ∤ e. Then

gn(xn) =
(
xpℓ

n − ap
ℓ

n

)e
∈ k[xn], so eap

ℓ

n ∈ k. This implies ap
ℓ

n ∈ k, hence an ∈ k,

since k is a finite field. One proceeds similarly to prove that ai ∈ k for all i.

Remark 5. By [CLO07, Chapter 3.2, Theorem 3] and since Z(I) is a finite set,
one has that

Z(I ∩ k[xℓ, . . . , xn]) = πn−ℓ+1(Z(I))

for 1 ≤ ℓ ≤ n, where πi : k
n → ki is the projection on the last i coordinates.

This implies that each path from the roots to the leaves in the tree-shaped
computation of Corollary 1 produces a solution. In particular, Corollary 1 does
not perform useless computations.

2.1 Adding the field equations to a system

Let Q = {xq
1 − x1, . . . , x

q
n − xn} be the system consisting of the field equations

relative to Fq. Clearly, for any system of equations F = {f1, . . . , fr} ⊆ R =
Fq[x1, . . . , xn] one has

Z(F ∪Q) = Z(F) ∩ Fn
q .

The systems F and F ∪Q, however, often have different algebraic properties.
It is easy to show that the ideal generated by F ∪ Q is always radical, while
the ideal generated by F may not be. The structure of the reduced Gröbner
bases of the ideals generated by the two systems and the degrees of the elements
appearing in them are often different as well. As a consequence, adding the field
equations to a system often affects the complexity of computing a Gröbner basis.

Therefore, passing from F to F ∪ Q may or may not provide an advantage.
It typically provides an advantage for fields of small size, since the equations of
Q have low degree and adding them to F makes the ideal radical, a necessary
hypothesis for the Shape Lemma (Theorem 2) to apply. Over fields of large size,
however, adding the field equations may make the computation of a Gröbner
basis practically infeasible. This is due to the fact that we are adding to the
system equations of large degree, which are involved in the computation of a
Gröbner basis, therefore increasing the degree of the computation. In the next
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example, we show that the solving degree may increase when passing from F to
F ∪Q (see Definition 6 for the definition of solving degree).

Example 5. Let F = {x2
3 − x2, x

3
2 − x1} ⊆ F5[x1, x2, x3] and let I = (F). The

affine zero locus of I over F5 is infinite. If we add the field equations Q =
{x5

1 − x1, x
5
2 − x2, x

5
3 − x3} of F5 to F , we obtain the ideal J = (F ∪ Q), which

has Z(J) = {(0, 0, 0), (1, 1, 1), (4, 4, 2), (4, 4, 3), (1, 1, 4)}. The elements of F are
a Gröbner basis of I with respect to the LEX order, while the reduced Gröbner
basis of J with respect to the same order also contains x5

3−x3. In particular, the
Gröbner basis of J contains a polynomial of higher degree and one can easily
verify that

solv.deg(F ∪Q) = 5 > 3 = solv.deg(F).

Even if we restrict our attention to polynomial systems arising in public-
key cryptography, one may not always assume that the field equations can be
added to the system. An example coming from multivariate cryptography was
given in Example 4. Another example are systems coming from the relation-
collection phase of index calculus on elliptic or hyperelliptic curves, since the
field size is very large (e.g., the field size required for 80-bit security is at least
q ∼ 2160 for an elliptic curve and q ∼ 280 for a hyperelliptic curve of genus two).
In such a situation, adding equations of degree q to the system would make it
unmanageable.

3 Solving degree of polynomial systems

In Section 2 we discussed how one can compute the solutions of a polynomial
system, starting from a lexicographic Gröbner basis of the ideal that it generates.
In this section, we address the problem of estimating the complexity of comput-
ing a lexicographic Gröbner basis. In practice, one observes that computing a
Gröbner basis with respect to LEX is usually slower than with respect to any
other term order. On the other hand, computing a Gröbner basis with respect
to DRL is often faster than with respect to any other term order. Therefore,
computing a degree reverse lexicographic Gröbner basis and converting it to a
lexicographic Gröbner basis using FGLM or a similar algorithm is usually more
efficient than computing a lexicographic Gröbner basis directly. For this reason,
in this section we discuss the complexity of computing a Gröbner basis of an
ideal I in a polynomial ring R = k[x1, . . . , xn] over a field k with respect to the
DRL order. We refer the reader to [FGLM93] for a description of the FGLM
algorithm and an estimate of its complexity.

3.1 Macaulay matrices and solving degree

We have two main classes of algorithms for computing Gröbner bases: Buch-
berger’s Algorithm and linear algebra based algorithms, which transform the
problem of computing a Gröbner basis into one or more instances of Gaus-
sian elimination. Examples of linear algebra based algorithms are: F4 [Fau99],
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F5 [Fau02], the XL Algorithm [CKPS00], and MutantXL [DBMMW08]. Buch-
berger’s Algorithm is older, and its complexity has been extensively studied. Lin-
ear algebra based algorithms are often faster in practice and have contributed
to breaking many cryptographic challenges. However, their complexity is less
understood, especially when the input consists of polynomials which are not
homogeneous.

In this section, we discuss the complexity of linear algebra based algorithms,
which is dominated by Gaussian elimination on the Macaulay matrices. First
we describe them for homogeneous systems, following [BFS15, p. 54]. Let F =
{f1, . . . , fr} ⊆ R be a system of homogeneous polynomials and fix a term order.
The homogeneous Macaulay matrix Md of F has columns indexed by the terms
of Rd sorted, from left to right, according to the chosen order. The rows of Md

are indexed by the polynomials mi,jfj , where mi,j ∈ R is a term such that
deg(mi,jfj) = d. Then the entry (i, j) of Md is the coefficient of the monomial
of column j in the polynomial corresponding to the i-th row.

Now let f1, . . . , fr be any polynomials (not necessarily homogeneous). For
any degree d ∈ Z+ the Macaulay matrix M≤d of F has columns indexed by the
terms of R of degree ≤ d, sorted in decreasing order from left to right. The rows
of M≤d are indexed by the polynomials mi,jfj , where mi,j is a term in R such
that deg(mi,jfj) ≤ d. The entries ofM≤d are defined as in the homogeneous case.
Notice that, if f1, . . . , fr are homogeneous, the Macaulay matrix M≤d is just a
block matrix, whose blocks are the homogeneous Macaulay matrices Md, . . . ,M0

associated to the same equations. This is the reason for using homogeneous
Macaulay matrices in the case that f1, . . . , fr are homogeneous.

The size of the Macaulay matrices M≤d and Md, hence the computational
complexity of computing their reduced row echelon forms, depends on the degree
d. Therefore, following [DS13], we introduce the next definition.

Definition 6. Let F = {f1, . . . , fr} ⊆ R and let τ be a term order on R. The
solving degree of F is the least degree d such that Gaussian elimination on the
Macaulay matrix M≤d produces a Gröbner basis of F with respect to τ . We
denote it by solv.degτ (F). When the term order is clear from the context, we
omit the subscript τ .

If F is homogeneous, we consider the homogeneous Macaulay matrix Md and
let the solving degree of F be the least degree d such that Gaussian elimination
on M0, . . . ,Md produces a Gröbner basis of F with respect to τ .

Some algorithms perform Gaussian elimination on the Macaulay matrix for
increasing values of d. An algorithm of this kind has a termination criterion,
which allows to decide whether a Gröbner basis has been found and the algorithm
can be stopped. For example, F5 uses the so-called signatures for this purpose.
Other algorithms perform Gaussian elimination on just one Macaulay matrix,
for a large enough value of d. For such an algorithm, a sharp bound on the
solving degree provides a good estimate for the value of d to be chosen. In both
cases, the solving degree produces a bound on the complexity of computing
the desired Gröbner basis. In particular, one may choose to artificially stop a
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Gröbner basis computation in the degree corresponding to the solving degree.
For this reason, we use the solving degree to measure the complexity of Gröbner
bases computations and we do not discuss termination criteria.

Remark 6. If F is not homogeneous, then Gaussian elimination on M≤d may
produce a row that corresponds to a polynomial f such that deg(f) < d and
in(f) was not the leading term of any row of M≤d before performing Gaussian
elimination. If this is the case, then some variants of the algorithms add to M≤d

the rows corresponding to the polynomials mf , where m is a monomial and
deg(mf) ≤ d. Then they proceed to compute the reduced row echelon form of
this larger matrix. If no Gröbner basis is produced in degree ≤ d, then they
proceed by adding to this matrix the appropriate multiples of its rows in the
next degree and continue as before. This potentially has the effect of enlarging
the span of the rows of M≤d, for all d. Introducing this variation may therefore
reduce the computational cost of computing a Gröbner basis with respect to a
given term order, since we might be able to obtain a Gröbner basis in a smaller
degree than the solving degree, as defined in Definition 6. Throughout the paper,
we consider the situation when no extra rows are inserted. Notice that the solving
degree is an upper bound on the degree in which the algorithms adopting this
variation terminate.

Definition 7. Let I ⊆ R be an ideal and let τ be a term order on R. We
denote by max.GB.degτ (I) the maximum degree of a polynomial appearing in the
reduced τ Gröbner basis of I. If I = (F), we sometimes write max.GB.degτ (F)
in place of max.GB.degτ (I).

It is clear that

max.GB.degτ (F) ≤ solv.degτ (F),

for any system of polynomials F and any degree-compatible term order τ . The
inequality may not hold for an arbitrary term order, as we show in the next
example. In Example 9 we show that the inequality may be strict for a degree-
compatible term order.

Example 6. Let F = {x2
3 − x2, x

3
2 − x1} ⊆ F5[x1, x2, x3] be the system of Exam-

ple 5 and let I = (F). The elements of F are a Gröbner basis of I with respect
to the LEX order, while the reduced Gröbner basis of I with respect to the same
order is {x2

3 − x2, x
6
3 − x1}. One can easily verify that

solv.degLEX(F) = 3 < 6 = max.GB.degLEX(F).

Remark 7. Assume that F = {f1, . . . , fr} is homogeneous. Gaussian elimination
on Md exclusively produces rows that correspond to polynomials of degree d.
Therefore

solv.degτ (F) = max.GB.degτ (F)

for any τ .
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Notice moreover that the solving degree of a system F may be strictly smaller
than the largest degree of an equation of F . This may happen, e.g., when F
contains redundant equations.

Example 7. Let F = {x2 + x, xy, y2 + y, x2y + x2 + x} ⊆ F2[x, y]. The reduced
DRL Gröbner basis of I = (F) is {x2 + x, xy, y2 + y} and solv.degDRL(F) = 2.

3.2 Homogenization of ideals and extensions of term order

We consider a polynomial ring R = k[x1, . . . , xn] and its extension S = R[t] with
respect to a new variable t. We compare term orders on R and S.

Definition 8. Let σ be a term order on R, let τ be a term order on S = R[t],
and let ϕ : S → R be the dehomogenization map. We say that τ ϕ-extends σ,
or that τ is a ϕ-extension of σ, if ϕ(inτ (f)) = inσ(ϕ(f)) for every homogeneous
f ∈ S.

The next theorem relates Gröbner basis and dehomogenization.

Theorem 6. Let σ be a term order on R, and let τ be a ϕ-extension of σ on S.
Let I be an ideal in R, let J be a homogeneous ideal in S such that ϕ(J) = I.
The following hold:

1. inσ(I) = ϕ(inτ (J));
2. if {g1, . . . , gs} is a homogeneous τ Gröbner basis of J , then {ϕ(g1), . . . , ϕ(gs)}

is a σ Gröbner basis of I.

Proof. We prove (1). Notice that inτ (J) = (inτ (f) : f ∈ J, f homogeneous),
because J is a homogeneous ideal. Then we have

ϕ(inτ (J)) = (ϕ(inτ (f)) : f ∈ J, f homogeneous)

= (inσ(ϕ(f)) : f ∈ J, f homogeneous) .

To conclude the proof of (1), it suffices to show that

{ϕ(f) : f ∈ J, f homogeneous} = I.

The inclusion from left to right follows from the assumption that ϕ(J) = I.
To prove the other inclusion, we fix a system of generators f1, . . . , fr of I
and consider f =

∑r
i=1 pifi ∈ I, with pi ∈ R. Let hi ∈ J be homogeneous

such that ϕ(hi) = fi for all i and define p̃ =
∑r

i=1 t
αiphi hi. The polynomial

p̃ belongs to J and it is homogeneous for a suitable choice of the αi’s. Since
ϕ(p̃) =

∑r
i=1 ϕ(t

αiphi hi) =
∑r

i=1 pifi = f , the inclusion follows.
To prove (2), observe that

ϕ(inτ (J)) = (ϕ(inτ (gi)) : i = 1, . . . , s) = (inσ(ϕ(gi)) i = 1, . . . , s) ,

since ϕ is a homomorphism and τ ϕ-extends σ. This shows that {ϕ(g1), . . . , ϕ(gs)}
is a Gröbner basis of ϕ(inτ (J)) with respect to σ, which is equal to inσ(I) by
(1).
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There is a natural way to ϕ-extend a term order σ on R to a term order σ̄
on S.

Definition 9. Let m,n be terms in R, let σ be a term order on R. Define a
term order σ̄ on S via: tαm >σ̄ tβn if and only if (m >σ n) or (m = n and
α > β).

Lemma 1. σ̄ is a term order on S which ϕ-extends σ.

Proof. First we prove that σ̄ is a term order. The fact that 1 <σ m for every
term m ∈ R implies 1 <σ̄ m. We have also 1 = t0 <σ̄ t.

Now, let tαm >σ̄ tβn, with m,n terms in R, and α, β ∈ N. We show that
>σ̄ respects multiplication by terms. We have two possibilities: 1) m >σ n
or 2) m = n and α > β. If 1) holds, then we have xim >σ xin for every
i = 1, . . . , n since σ is a term order, which implies xit

αm >σ̄ xit
βn. Clearly

tα+1m >σ̄ tβ+1n. If 2) holds, then xim = xin for every i = 1, . . . , n, therefore
xit

αm >σ̄ xit
βn since α > β. Moreover we have tα+1m >σ̄ tβ+1n, because

m = n and α+ 1 > β + 1.
Now we prove that σ̄ ϕ-extends σ, that is ϕ(inσ̄(f)) = inσ(ϕ(f)) for every

f ∈ S homogeneous. Let f =
∑d

i=1 ait
αimi be a homogeneous polynomial, with

mi ∈ R distinct terms, αi ∈ N, and ai ∈ k \ {0}. Then ϕ(f) =
∑d

i=0 aimi

and degmi = deg f − αi. If there is any cancellation in the sum defining ϕ(f),
then the monomials cancelling have the same degree, then they have already
been cancelled in f . Hence, there is no cancellation in ϕ(f). Without loss of
generality, let m1 = inσ(ϕ(f)), that is m1 >σ mi for every i = 2, . . . , d. Then
tα1m1 = inσ̄(f), and ϕ(inσ̄(f)) = m1 = inσ(ϕ(f)).

Example 8. The equality ϕ(inσ̄(f)) = inσ(ϕ(f)) does not necessarily hold for f
not homogeneous. For example consider f = tx− x+ ty ∈ S = k[x, y, t], and let
σ = LEX. Then inσ̄(f) = tx, ϕ(f) = y, and inσ(ϕ(f)) = y ̸= x = ϕ(inσ̄(f)).

The next Lemma gives an important example of ϕ-extension of a term order.

Lemma 2. Fix the DRL order on R and extend it to the DRL order on S by
letting t be the smallest variable. Then the DRL order on S ϕ-extends the DRL
order on R.

Proof. Let f =
∑d

i=1 ait
αimi be a homogeneous polynomial, with distinct terms

mi ∈ R, αi ∈ N, and ai ∈ k \ {0}. Then ϕ(f) =
∑d

i=0 aimi and degmi =
deg f − αi. As in the proof of Lemma 1 there is no cancellation in ϕ(f).

Without loss of generality, let inDRL(ϕ(f)) = m1, that is m1 >DRL mi

for all i = 2, . . . , d. For each i ∈ {2, . . . , d} we have two possibilities: either
degm1 > degmi or degm1 = degmi. If degm1 > degmi then we have α1 < αi,
since degmj + αj = deg f for every j. This implies tα1m1 >DRL tαimi. If
degm1 = degmi then we have α1 = αi, and tα1m1 >DRL tαimi follows from
m1 >DRL mi. Therefore we have inDRL(f) = tα1m1, and ϕ(inDRL(f)) = m1 =
inDRL(ϕ(f)).
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Remark 8. Fix the DRL order on R. The DRL order on S is different from the
order DRL obtained by applying Definition 9. For example, let R = k[x, y] with
x > y, S = R[t], and consider the monomials t3x and ty2. We have t3x <DRL ty2

because x <DRL y2 in R. In particular, DRL is not degree-compatible, while
DRL is. Notice however that the two orders coincide on pairs of terms of the
same degree.

3.3 Solving degree and homogenization

Let R = k[x1, . . . , xn] with the DRL order and let S = R[t] with the DRL order
with t as smallest variable. Let F = {f1, . . . , fr} ⊆ R, let I = (F) ⊆ R, let
Ih ⊆ S be the homogenization of I with respect to t, and let (Fh) ⊆ S be the
ideal generated by Fh = {fh

1 , . . . , f
h
r }. The goal of this section is comparing the

solving degree of F , Fh, and Ih with respect to the chosen term orders. We start
with a preliminary result on Gröbner bases and homogenization.

Proposition 1. Let R = k[x1, . . . , xn] and let S = R[t]. Fix the DRL term
order on R and extend it to the DRL term order on S by letting t be the
smallest variable. Let I be an ideal of R with Gröbner basis {g1, . . . , gs}. Then
{gh1 , . . . , ghs } is a Gröbner basis of Ih.

Proof. First we show that gh1 , . . . , g
h
s generate Ih. Clearly we have gh1 , . . . , g

h
s ∈

Ih. For the other inclusion, consider f ∈ I of degree d with standard representa-
tion f =

∑s
i=1 figi for some fi ∈ R, that is in(f) ≥ in(figi) for all i = 1, . . . , s.

Since in(f) ≥ in(figi) and DRL is degree-compatible, we have d ≥ deg fi +
deg gi. Therefore we can write

fh =

s∑
i=1

td−deg fi−deg gifh
i g

h
i , (2)

which shows that fh ∈ (gh1 , . . . , g
h
s ).

To prove that {gh1 , . . . , ghs } is a Gröbner basis, it is enough to show that (2)
is a standard representation for fh, i.e. in(fh) ≥ in(td−deg fi−deg gifh

i g
h
i ) for all

i = 1, . . . , s. We observe that in(fh) = in(f) does not contain the variable t and
we distinguish two cases.

1. If d − deg fi − deg gi > 0, then a power of t appears in td−deg fi−deg gifh
i g

h
i ,

and in its initial term as well. It follows that in(fh) ≥ in(td−deg fi−deg gifh
i g

h
i )

since t is the smallest variable in the DRL term order of S.
2. If d− deg fi − deg gi = 0, then no power of t appears in in(fh

i g
h
i ). Therefore

we have in(fh
i g

h
i ) = in(figi) ≤ in(f) = in(fh).

The next result relates the solving degrees of F and Fh.

Theorem 7. Let F = {f1, . . . , fr} ⊆ R = k[x1, . . . , xn] and consider the system
Fh = {fh

1 , . . . , f
h
r } ⊆ S = R[t] obtained from F by homogenizing f1, . . . , fr with
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respect to t. Let Ih ⊆ S be the homogenization of I = (F) ⊆ R with respect to t.
Consider the term order DRL on R and S, with t as smallest variable. Then

max.GB.deg(Fh) = solv.deg(Fh) ≥ solv.deg(F)

≥max.GB.deg(F) = max.GB.deg(Ih) = solv.deg(Ih).

Proof. We claim that the Macaulay matrix M≤d of F with respect to DRL is
equal to the homogeneous Macaulay matrix Md of Fh with respect to DRL, for
every d ≥ 1. In fact, the monomials of S of degree d are exactly the homoge-
nizations of the monomials of R of degree ≤ d. Similarly, if mi,jf

h
j is the index

of a row of Md, i.e., deg(mi,jf
h
j ) = d, then ϕ(mi,jf

h
j ) = ϕ(mi,j)fj has degree

≤ d, hence it is the index of a row of M≤d. Conversely, every index mi,jf
h
j of

a row of Md, can be obtained from an index of a row of M≤d by homogenizing
and multiplying by an appropriate power of t. In a nutshell, the statement on
the columns follows from the fact that I≤d = ϕ

(
(Fh)d

)
. One also needs to check

that the order on the columns of Md and M≤d is the same. We consider M≤d.
Since DRL is degree-compatible, the columns are ordered in non-increasing de-
gree order from left to right. The columns of the same degree j ∈ {1, . . . , d} are
then ordered according to DRL. Similarly, since t is the smallest variable in the
DRL order on S, the columns of Md are ordered in increasing order (from left to
right) of powers of t, which is equivalent to decreasing order of the degree of the
variables x1, . . . , xn. Then, the columns with the same power of t are ordered
according to DRL on the variables x1, . . . , xn. This proves that the matrices
M≤d and Md coincide.

Let I = (F) and J = (Fh). Since the matrices M≤d and Md coincide and
since the dehomogenization of a Gröbner basis of Fh produces a Gröbner basis
of F by Theorem 6, one has

solv.degDRL(F) ≤ solv.degDRL(Fh).

The equality max.GB.deg(F) = max.GB.deg(Ih) follows from the following
two facts:

– By Lemma 2 and Theorem 6 the dehomogenization of a DRL Gröbner basis
of Ih produces a DRL Gröbner basis of I.

– The homogenization of a DRL Gröbner basis of I produces a DRL Gröbner
basis of Ih by Proposition 1.

In particular, no leading term of an element of the reduced Gröbner basis of
Ih is divisible by t, so dehomogenization does not decrease the degrees of the
elements of the Gröbner basis.

Finally, the two equalities

max.GB.deg(Fh) = solv.deg(Fh) and max.GB.deg(Ih) = solv.deg(Ih)

follow from Remark 7.
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Remark 9. Theorem 7 clarifies why, when the system F is not homogeneous, the
largest degree of an element in a reduced Gröbner basis may be strictly smaller
than the solving degree. In fact, it is often the case that solv.degDRL(F) =
solv.degDRL(Fh). In this situation, the difference between solv.degDRL(F) and
max.GB.deg(F) is due to the difference between the ideals (Fh) and Ih, and
more specifically between max.GB.deg(Fh) and max.GB.deg(Ih).

The following is an example where solv.deg(F) > max.GB.deg(F). See also
Example 12 for a cryptographic example.

Example 9. Let R = k[x, y] and let S = R[t] = k[x, y, t], both with the DRL
order. We consider the system F = {f1, f2} ⊆ R with f1 = x2 − 1, f2 = xy + x,
and let I = (F). Then Fh = {fh

1 , f
h
2 } = {x2 − t2, xy + xt}, and Ih = (x2 −

t2, y + t). Writing the Macaulay matrices of F , Fh, and {x2 − t2, y + t} and
doing Gaussian elimination, one sees that solv.deg(F) = solv.deg(Fh) = 3.
By computing Gröbner bases, one can check that max.GB.deg(Fh) = 3 and
max.GB.deg(F) = max.GB.deg(Ih) = 2.

3.4 Solving degree and Castelnuovo-Mumford regularity

In what follows, we compare the solving degree of a homogeneous ideal with
a classical invariant from commutative algebra: the Castelnuovo-Mumford reg-
ularity. We recall the definition of this invariant and its basic properties before
illustrating the link with the solving degree.

Let R = k[x1, . . . , xn] be a polynomial ring in n variables over a field k and
let I be a homogeneous ideal of R. For any integer j we recall that Rj denotes
the k-vector space of homogeneous elements of R of degree j.

Choose a minimal system of generators f1, . . . , fβ0 of I. We recall that, since
I is homogeneous, the number β0 and the degrees di = deg fi are uniquely
determined. We fix an epimorphism φ : Rβ0 → I sending the canonical basis
{e1, . . . , eβ0

} of the free module Rβ0 to {f1, . . . , fβ0
}. The map φ is in general

not homogeneous of degree 0, so we introduce degree shifts on R: For any integer
d, we denote by R(−d) the R-module R, whose j-th homogeneous component is
R(−d)j = R−d+j . For example, the variables x1, . . . , xn have degree 2 in R(−1),
and degree 0 in R(1). The map

φ :

β0⊕
j=1

R(−dj) → I

is homogeneous of degree 0, that is deg(φ(f)) = deg f for every f .

Now consider the submodule kerφ ⊆
⊕β0

j=1 R(−dj). It is again finitely gen-
erated and graded, and is called (first) syzygy module of I. We choose a minimal
system of generators of kerφ and we continue similarly defining an epimorphism
from a free R-module (with appropriate shifts) to kerφ and so on.

Hilbert’s Syzygy Theorem guarantees that this procedure terminates after a
finite number of steps. Thus, we obtain a minimal graded free resolution of I:

0 → Fp → · · · → F1 → F0
φ−→ I → 0,
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where the Fi are free R-modules of the form

Fi =

βi⊕
j=0

R(−di,j)

for appropriate shifts di,j ∈ Z. By regrouping the shifts, we may write the free
R-modules of the minimal free resolution of I as

Fi =
⊕
j∈Z

R(−j)βi,j .

The numbers βi,j = βi,j(I) are the (graded) Betti numbers of I.

Definition 10. The Castelnuovo-Mumford regularity of I is

reg(I) = max{j − i : βi,j(I) ̸= 0}.

If F is a homogeneous system of generators of I, we set also reg(F) = reg(I).

Example 10. We consider the ideal I = (x2, xy, xz, y3) in R = k[x, y, z]. A min-
imal free resolution of I is given by

0 → R(−4)
φ2−→ R(−3)3 ⊕R(−4)

φ1−→ R(−2)3 ⊕R(−3)
φ0−→ I → 0,

with R-linear maps given by the following matrices

φ0 = (x2, xy, xz, y3), φ1 =


−y −z 0 0
x 0 −z −y2

0 x y 0
0 0 0 x

 , φ2 =


z
−y
x
0

 .

So the non-zero Betti numbers of I are β0,2 = 3, β0,3 = 1, β1,3 = 3, β1,4 = 1,
β2,4 = 1, and the Castelnuovo-Mumford regularity is reg(I) = 3.

For more on regularity and its properties, the interested reader may con-
sult [Eis94, Chapter 20] or [Cha07]. In the sequel we only mention the facts that
are relevant for our purposes.

Remark 10. In many texts in commutative algebra or algebraic geometry it is
assumed that the field k is algebraically closed or infinite. However, the definition
of regularity makes perfect sense over a finite field. The construction of a minimal
free resolution that we illustrated can be carried out over a finite field. Moreover,
it shows that the Castelnuovo-Mumford regularity is preserved under field exten-
sions. In particular, if I is an ideal in a polynomial ring R = Fq[x1, . . . , xn] over
a finite field Fq and J is its extension to the polynomial ring S = Fq[x1, . . . , xn]
over the algebraic closure of Fq, then regR(I) = regS(J).

The next theorem is due to Bayer and Stillman. It relates the regularity of
a homogeneous ideal to the regularity of its DRL initial ideal. Combined with
our Theorem 7, it will allow us to bound the solving degree of any system.
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Theorem 8 ([BS87], Theorem 2.4 and Proposition 2.9). Let J be a ho-
mogeneous ideal in k[x1, . . . , xn]. Assume that J is in generic coordinates over
k, then

reg(J) = reg(inDRL(J)).

Remark 11. If k has characteristic zero, after applying a generic change of coor-
dinates to J we have reg(inDRL(J)) = max.GB.degDRL(J), as shown in [BS87,
Proposition 2.9]. If k has positive characteristic, one still has that

max.GB.degDRL(J) ≤ reg(inDRL(J))

and the inequality is often an equality. In fact this was the case in almost all
the examples that we computed while working on this paper. Nevertheless, in
positive characteristic one can find examples of ideals J in generic coordinates
for which the inequality is strict. E.g. J = (xp, yp) ⊆ Fp[x, y] is in generic
coordinates, max.GB.degDRL(J) = p, and reg(J) = 2p− 1.

Combining Theorem 7 and Theorem 8, one obtains bounds on the solving
degree. Our bounds assume that the ideal generated by the (homogenized) sys-
tem is in generic coordinates. Notice that this assumption is likely to be satisfied
for systems of equations coming from multivariate cryptography, at least over
a field of sufficiently large cardinality. In fact, multivariate schemes are often
constructed by applying a generic change of coordinates (and a generic linear
transformation) to the set of polynomials which constitutes the private key.

For the sake of clarity, we give a homogeneous and a non-homogeneous version
of the result. Since the proofs are very similar, and in fact more complicated in
the non-homogeneous case, we only give the proof in the latter case.

Theorem 9. Let F ⊆ R be a system of homogeneous polynomials and assume
that (F) is in generic coordinates over k. Then

solv.degDRL(F) ≤ reg(F).

The following result allows us to bound the complexity of computing a
Gröbner basis of a system of equations by establishing a connection with the
Castelnuovo-Mumford regularity of the homogenization of the system.

Theorem 10. Let F = {f1, . . . , fr} ⊆ R be a system of polynomials, which is
not homogeneous. Let Fh = {fh

1 , . . . , f
h
r } ⊆ S = R[t] and assume that the ideal

(Fh) is in generic coordinates over k. Then

solv.degDRL(F) ≤ reg(Fh).

Proof. For a homogeneous ideal J in R or S, max.GB.degDRL(J) and reg(J)
are invariant under field extension. So we may extend all ideals to the algebraic
closure k of k. By Theorem 7 and Theorem 8 we have the chain of equalities and
inequalities

solv.degDRL(F) ≤ solv.degDRL(Fh)

= max.GB.degDRL(Fh) ≤ reg(inDRL(Fh)) = reg(Fh).
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Remark 12. The upper bound in Theorem 9 and Theorem 10 is often an equality,
since generically all the inequalities are in fact equalities if k has characteristic
zero. This is often the case even if k has positive characteristic (see also Re-
mark 11).

By combining Theorem 10 and classical results on the Castelnuovo-Mumford
regularity (see e.g. [Cha07, Theorem 12.4]), one immediately obtains the follow-
ing bound on the solving degree of systems which have finitely many solutions
over k̄. The bound is linear in both the number of variables and the degrees of
the polynomials of the system.

Corollary 2 (Macaulay bound – [Laz83], Theorem 2). Consider a system
of equations F = {f1, . . . , fr} ⊆ R with di = deg fi and d1 ≥ d2 ≥ · · · ≥ dr.
Set ℓ = min{n+ 1, r}. Assume that |Z+(Fh)| < ∞ and that (Fh) is in generic
coordinates over k. Then

solv.degDRL(F) ≤ d1 + . . .+ dℓ − ℓ+ 1.

In particular, if r > n and d = d1, then

solv.degDRL(F) ≤ (n+ 1)(d− 1) + 1.

The condition that (Fh) is in generic coordinates is not always easy to verify.
Nevertheless, if we add the field equations, or their fake Weil descent, to the
generators of the ideal, then we can prove that the homogenized system is in
generic coordinates.

Theorem 11. Let p > 0 be a prime and let q = pe, e ≥ 1. Let k be a field of
characteristic p and let F = {f1, . . . , fr} ⊆ k[x1, . . . , xn] be a system of polyno-
mial equations. Set di = deg fi with d1 ≥ d2 ≥ · · · ≥ dr and ℓ = min{n + 1, r}.
Assume that one of the following holds:

(i) xq
i − xi ∈ F for i = 1, . . . , n, or

(ii) xq
1 − x2, . . . , x

q
n−1 − xn, x

q
n − x1 ∈ F .

Then the ideal (Fh) = (fh
1 , . . . , f

h
r ) is in generic coordinates over k̄. In particular

solv.degDRL(F) ≤ d1 + . . .+ dℓ − ℓ+ 1.

Moreover, if r > n and d = d1, then

solv.degDRL(F) ≤ (n+ 1)(d− 1) + 1.

Proof. By definition, J = (Fh) is in generic coordinates over k̄ if and only if t is
not a zero divisor on the quotient k̄[x1, . . . , xn, t]/J

sat, where J sat is the satura-
tion of J with respect to the irrelevant maximal ideal (x1, . . . , xn, t). Substituting
t = 0 in the equations of J one obtains the equations x1 = . . . = xn = 0. There-
fore the projective zero locus of J does not contain any point with t = 0. This
means that t ∤ 0 modulo J sat, hence proving that J is in generic coordinates.
The second part of the statement then follows from Corollary 2.
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Remark 13. From the proof of Theorem 11 one sees that a system is in generic
coordinates whenever it contains equations of the form xdi

i + pi(x1, . . . , xn) with
deg(pi) < di, for i = 1, . . . , n.

We may use the results established in this section to obtain bounds on the
solving degree of the ABC encryption scheme. We assume that the systems
have finite affine zero loci, which was the case for all the instances of the ABC
cryptosystem that we computed.

Example 11. The system associated to the ABC cryptosystems [TDTD13,TXPD15]
consists of 2n quadratic equations in n variables. Therefore by assuming that the
system is in generic coordinates, or, if the ground field is F2, simply by adding
the field equations to the system we obtain

solv.deg(F) ≤ n+ 2.

4 Solving degree and degree(s) of regularity

In recent years, different invariants for measuring the complexity of solving a
polynomial system of equations were introduced. In particular, the notion of
degree of regularity gained importance and is widely used nowadays. In this
section we discuss how the degree of regularity is related with the Castelnuovo-
Mumford regularity.

In the literature we found several definitions of degree of regularity. However,
they are mostly variations of the following two concepts:

1. the degree of regularity by Bardet, Faugère, and Salvy [Bar04,BFS04,BFS15];
2. the degree of regularity by Dubois and Gama, later studied by Ding, Schmidt,

and Yang [DG10,DS13,DY13].

In this section we recall both definitions of degree of regularity and compare
them with the Castelnuovo-Mumford regularity.

4.1 The degree of regularity by Bardet, Faugère, and Salvy

To the best of our knowledge, the degree of regularity appeared first in a paper
by Bardet, Faugère, and Salvy [BFS04] and in Bardet’s Ph.D. thesis [Bar04].
However, the idea of measuring the complexity of computing the Gröbner basis of
a homogeneous ideal using its index of regularity can be traced back to Lazard’s
seminal work [Laz83]. Before giving the definition, we recall some concepts from
commutative algebra.

Let R = k[x1, . . . , xn] be a polynomial ring over a field k, let I be a homo-
geneous ideal of R, and let A = R/I. For an integer d ≥ 0, we recall that Ad

denotes the homogeneous part of degree d of A. The function HFA(−) : N → N,
HFA(d) = dimk Ad is called Hilbert function of A. It is well known that for large
d, the Hilbert function of A is a polynomial in d called Hilbert polynomial and
denoted by HPA(d). The generating series of HFA is called Hilbert series of A.
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We denote it by HSA(z) =
∑

d∈N HFA(d)z
d. A classical theorem by Hilbert and

Serre says that the Hilbert series of A is a rational function, and more precisely
has the form

HSA(z) =
hA(z)

(1− z)ℓ
(3)

where hA(z) is a polynomial such that hA(1) ̸= 0, called h-polynomial of A.

Definition 11. The index of regularity of I is the smallest integer ireg(I) ≥
0 such that HFR/I(d) = HPR/I(d) for all d ≥ ireg(I). If F is a system of
generators for I, we set also ireg(F) = ireg(I).

The index of regularity can be read off the Hilbert series of the ideal, as
shown in the next theorem.

Theorem 12 ([BH98], Proposition 4.1.12). Let I ⊆ R be a homogeneous
ideal with Hilbert series as in (3) and let δ = deg hA. Then ireg(I) = δ − ℓ+ 1.

Let I ⊆ R be a homogeneous ideal. Applying the Grothendieck-Serre’s For-
mula [BH98, Theorem 4.4.3] to R/I one obtains

ireg(I) ≤ reg(I). (4)

Moreover, if I is homogeneous and Id = Rd for d ≫ 0, then ireg(I) = reg(I)
by [Eis05, Corollary 4.15].

Definition 12. Let F = {f1, . . . , fr} ⊆ R be a system of equations and let
(F top) = (f top

1 , . . . , f top
r ) be the ideal of R generated by the homogeneous part

of highest degree of F . Assume that (F top)d = Rd for d ≫ 0. The degree of
regularity of F is

dreg(F) = ireg(F top).

Remark 14. If (F top)d = Rd for d ≫ 0, then |Z(F)| < ∞. The converse, how-
ever, does not hold in general. See Example 13 for an example where F has
finitely many solutions over k̄, but (F top)d ̸= Rd for all d.

The following is an easy consequence of the definitions.

Proposition 2. Let F ⊆ R be a system of equations. Assume that (F top)d = Rd

for d ≫ 0. Then
dreg(F) = reg(F top).

If in addition F is homogeneous, then F top = F and

dreg(F) = reg(F).

In the context of multivariate cryptosystems however, it is almost never the
case that F is homogeneous and (F)d = Rd for d ≫ 0. In fact, this is equivalent
to saying that Z(I) = {(0, . . . , 0)} by Remark 2.

For a system F such that I = (F) has finite affine zero locus, we may
interpret the condition (F top)d = Rd for d ≫ 0 as a genericity assumption. This
assumption guarantees that the degree of regularity gives an upper bound on
the maximum degree of a polynomial in a Gröbner basis of I, with respect to
any degree-compatible term order.
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Remark 15. Let τ be a degree-compatible term order and assume that (F top)d =
Rd for d ≫ 0. Let I = (F) and J = (F top). Then HPR/J(z) = 0, hence
Jd = inτ (J)d = Rd for d ≥ dreg(F). The inclusion inτ (J)d ⊆ inτ (I)d holds for
any d, since τ is degree-compatible. So we obtain inτ (I)d = Rd for d ≥ dreg(F).
This implies that every element of the reduced Gröbner basis of I has degree at
most dreg(F), that is

max.GB.degτ (F) ≤ dreg(F). (5)

Notice however that (5) does not yield a bound on the solving degree of F ,
as we show in the next example.

Example 12. We consider the polynomial systems F obtained in [BG18] (see
also [Bia17, Chapter 5]) for collecting relations for index calculus following the
approach outlined by Gaudry in [Gau09]. For n = 3, they consist of three non-
homogeneous equations f1, f2, f3 of degree 3 in two variables. Computing 150’000
randomly generated examples of cryptographic size (3 different q’s, 5 elliptic
curves for each q, 10’000 random points per curve), we found that (F top)d = Rd

for d ≫ 0 and

solv.degDRL(F) = reg(Fh) = 5 > 4 = dreg(F) = ireg(F top).

The computations were performed by G. Bianco with MAGMA [BCP97].

Notice moreover that there are systems F for which |Z(F)| < ∞ and (F top)d ̸=
Rd for all d ≥ 0. Definition 12 and inequality (5) do not apply to such systems.
This can happen also for polynomial systems arising in cryptography.

When this happens, one may be tempted to consider ireg(F top) anyway, and
use it to bound the solving degree of F . Unfortunately this approach fails since
ireg(F top) and solv.deg(F) might be far apart, as the next examples shows. On
the other hand, the Castelnuovo-Mumford regularity of Fh still allows us to
correctly bound the solving degree of F .

Example 13. We consider the polynomial systems obtained in [GM15] for col-
lecting relations for index calculus following the approach outlined by Gaudry
in [Gau09]. For n = 3, they consist of three non-homogeneous equations f1, f2, f3
in two variables, of degrees 7,7, and 8. Let F = {f1, f2, f3}, Fh = {fh

1 , f
h
2 , f

h
3 },

and F top = {f top
1 , f top

2 , f top
3 }. For 150’000 randomly generated examples of cryp-

tographic size (as in Example 12) we found that solv.degDRL(F) = reg(Fh) =
15, (F top)d ̸= Rd for all d ≥ 0, and ireg(F top) = 8. The computations were
performed by G. Bianco with MAGMA [BCP97].

Finally, given a polynomial system F = {f1, . . . , fr} there is a simple relation
between the ideals (F top) ⊆ R and (Fh) ⊆ S, namely

(F top)S + (t) = (Fh) + (t). (6)

Here (F top)S denotes the extension of (F top) to S, i.e., the ideal of S generated
by F top. Since F top ⊆ R, t ∤ 0 modulo (F top)S. If t ∤ 0 modulo (Fh), then
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(Fh) = (F)h is the homogenization of (F) and reg(Fh) = reg(F top). Therefore,
if t ∤ 0 modulo Fh and (F top)d = Rd for d ≫ 0, then

dreg(F) = reg(Fh)

by Proposition 2. However, one expects that in most cases t | 0 modulo (Fh).
In fact, (Fh) = (F)h only in very special cases, namely when f1, . . . , fr are a
Macaulay basis of (F) with respect to the standard grading (see [KR05, Theo-
rem 4.3.19]). Therefore (6) usually does not allow us to compare the regularity
and the index of regularity of Fh and F top. See also [BDDGMT20, Section 4.1]
for a more detailed discussion.

4.2 The degree of regularity by Ding and Schmidt

The second notion of degree of regularity is more recent. To the extent of our
knowledge it has been introduced by Dubois and Gama [DG10], and later has
been used by several authors such as Ding, Schmidt, and Yang [DS13,DY13].
The definition we present here is taken from [DS13], and differs slightly from the
original one of Dubois and Gama.

Let Fq and let B = Fq[x1, . . . , xn]/(x
q
1, . . . , x

q
n). Let f1, . . . , fr ∈ B be homo-

geneous polynomials of degree 2. We fix a B-module homomorphism φ sending
the canonical basis e1, . . . , er of B

r to {f1, . . . , fr}, that is for every (b1, . . . , br) ∈
Br we have φ(b1, . . . , br) =

∑r
i=1 bifi. We denote by Syz(f1, . . . , fr) the first

syzygy module of f1, . . . , fr, that is the kernel of φ. An element of Syz(f1, . . . , fr)
is a syzygy of f1, . . . , fr. In other words, it is a vector of polynomials (b1, . . . , br) ∈
Br such that

∑r
i=1 bifi = 0.

An example of syzygy is given by the Koszul syzygies fiej − fjei, where

i ̸= j or by the syzygies coming by the quotient structure of B, that is fq−1
i ei.

Here ei denotes the i-th element of the canonical basis of B. These syzygies
are called trivial syzygies, because they are always present and do not depend
on the structure of f1, . . . , fr, but rather on the ring structure of B. We define
the module Triv(f1, . . . , fr) of trivial syzygies of f1, . . . , fr as the submodule of
Syz(f1, . . . , fr) generated by {fiej−fjei : 1 ≤ i < j ≤ r}∪{fq−1

i ei : 1 ≤ i ≤ r}.
For any d ∈ N we define the vector space Syz(F)d = Syz(F)∩Br

d of syzygies
of degree d. We define the vector subspace of trivial syzygies of degree d as
Triv(F)d = Triv(F) ∩Br

d. Clearly, we have Triv(F)d ⊆ Syz(F)d.

Definition 13. Let F = {f1, . . . , fr} ⊆ B be a system of polynomials of degree
2. The degree of regularity of F is

δreg(F) = min{d ≥ 2 : Syz(F top)d−2/Triv(F top)d−2 ̸= 0}.

Remark 16. Dubois and Gama [DG10] work in the ring Fq[x1, . . . , xn]/(x
q
1 −

x1, . . . , x
q
n − xn) and not in B = Fq[x1, . . . , xn]/(x

q
1, . . . , x

q
n).

The degree of regularity is the first degree where we have a linear combination
of multiples of f1, . . . , fr which produces a non-trivial cancellation of their top
degree parts. For this reason, some authors refer to it as first fall degree.
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One may wonder whether the degree of regularity by Ding and Schmidt is
close to the solving degree of a polynomial system of quadratic equations. Ding
and Schmidt showed that this is not always the case. In fact, it is easy to produce
examples, the so-called degenerate systems, for which the degree of regularity
and the solving degree are far apart. For a detailed exposition on this problem
and several examples we refer the reader to their paper [DS13].

We are not aware of any results relating δreg(F) (Definition 13) and dreg(F)
(Definition 12). Despite the fact that they share the name, we do not see an
immediate connection. A comparison between these two invariants is beyond
the scope of this paper.

5 Solving degree of ideals of minors and the MinRank
Problem

The goal of this section is giving an example of how the results from Section 3,
in combination with known commutative algebra results, allow us to prove es-
timates for the solving degree in a simple and synthetic way. We consider poly-
nomial systems coming from the MinRank Problem. For more bounds on the
complexity of the MinRank Problem, see [CG20].

The MinRank Problem can be stated as follows. Given an integer t ≥ 1 and
a set {M1, . . . ,Mn} of s × s matrices with entries in a field k, find a non-zero
tuple λ = (λ1, . . . , λn) ∈ kn such that

rank

(
n∑

i=1

λiMi

)
≤ t− 1. (7)

This problem finds several applications in multivariate cryptography and in other
areas of cryptography as well. For example, Goubin and Courtois [GC00] solved
a MinRank Problem to attack Stepwise Triangular Systems, and Kipnis and
Shamir [KS99] solved an instance of MinRank in their cryptanalysis of the HFE
cryptosystem.

Consider the matrix M =
∑n

i=1 xiMi, whose entries are homogeneous linear
forms in R. Condition (7) is equivalent to requiring that the minors of size t×t of
M vanish. Therefore, every solution of the MinRank Problem corresponds to a
non-zero point in the zero locus in kn of the ideal It(M) of t-minors of M . A sim-
ilar algebraic formulation can be given for the Generalized MinRank Problem,
which finds applications within coding theory, non-linear computational geome-
try, real geometry, and optimization. We refer the interested reader to [FSS13]
for a discussion of the applications of the Generalized MinRank Problem and a
list of references.

Problem 1 (Generalized MinRank Problem). Given a field k, an r × s matrix
M whose entries are polynomials in R = k[x1, . . . , xn], and an integer 1 ≤ t ≤
min{r, s}, find a point in kn \{(0, . . . , 0)} at which the evaluation of M has rank
at most t− 1.
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The Generalized MinRank Problem can be solved by computing the zero
locus of the ideal of t-minors It(M). The minors of size t × t of the matrix M
form an algebraic system of multivariate polynomials, which one can attempt to
solve by computing a Gröbner basis. This motivates our interest in estimating
the solving degree of this system for large classes of matrices.

Ideals of minors of a matrix with entries in a polynomial ring are called
determinantal ideals and have been extensively studied in commutative algebra
and algebraic geometry. Using Theorem 9, we can take advantage of the literature
on the regularity of determinantal ideals to give bounds on the solving degree
of systems of minors of certain large classes of matrices. For simplicity, we focus
on homogeneous matrices.

Definition 14. Let M be an r×s matrix with r ≤ s, whose entries are elements
of R. The matrix M is homogeneous if both its entries and its 2-minors are
homogeneous polynomials.

It is easy to see that the minors of any size of a homogeneous matrix are
homogeneous polynomials. Moreover, observe that a matrix whose entries are
homogeneous polynomials of the same degree is a homogeneous matrix, but there
are homogeneous matrices whose entries have different degrees. After possibly
exchanging some rows and columns, we may assume without loss of generality
that the degrees of the entries of a homogeneous matrix increase from left to
right and from top to bottom. With this notation, we can compute the solving
degree of our first family of systems of minors. We refer the reader to [Eis94] for
the definition of height of an ideal.

Theorem 13. Let M = (fij) be an r×s homogeneous matrix with r ≤ s, whose
entries are elements of R, n ≥ s− r + 1. Let F be the polynomial system of the
minors of size r of M . Assume that height(Ir(M)) = s− r + 1 and that Ir(M)
is in generic coordinates. Then the solving degree of F is upper bounded by

solv.deg(F) ≤ deg(f1,1)+. . .+deg(fm,m)+deg(fm,m+1)+. . .+deg(fm,n)−s+r.

If deg(fi,j) = 1 for all i, j, then solv.deg(F) = r.

Proof. Since the matrix M is homogeneous, the system of minors F consists of
homogeneous polynomials. The regularity of the corresponding ideal Ir(M) =
(F) is

reg(Ir(M)) = deg(f1,1) + . . .+ deg(fr,r) + deg(fr,r+1) + . . .+ deg(fr,s)− s+ r.

The formula can be found in [BCG04, Proposition 2.4] and is derived from a
classical result of Eagon and Northcott [EN62]. The bound on the solving degree
now follows from Theorem 9. In particular, if deg(fi,j) = 1 for all i, j, then
solv.deg(F) ≤ r. Since Ir(M) is generated in degree r, then solv.deg(F) = r.

Notice that the assumption on the height is satisfied by a matrix M whose
entries are generic homogeneous polynomials of fixed degrees. If n = s−r+1, then
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Ir(M)d = Rd for d ≫ 0, hence dreg(F) = reg(F), where F is the set of maximal
minors of M . Therefore, Theorem 13 recovers the results of [FSS10,FSS13] for
n = s − r + 1 and t = r, and extends them to homogeneous matrices whose
entries do not necessarily have the same degree.

We now restrict to systems of maximal minors of matrices of linear forms. The
MinRank Problem associated to this class of matrices is a slight generalization
of the classical MinRank Problem of (7). From the previous result it follows
that, if the height of the ideal of maximal minors is as large as possible, then the
solving degree of the corresponding system is as small as possible, namely r. We
now give different assumptions which allows us to obtain the same estimate on
the solving degree, for ideals of maximal minors whose height is not maximal.
We are also able to bound the solving degree of the system of 2-minors.

Let R have a standard Zv-graded structure, i.e., the degree of every indeter-
minate of R is an element of the canonical basis {e1, . . . , ev} of Zv.

Definition 15. Let M = (fi,j) be an r × s matrix with entries in R, r ≤ s.
We say that M is column-graded if s ≤ v, and fi,j = 0 or it is homogeneous of
degree deg(fi,j) = ej ∈ Zv for every i, j. We say that M is row-graded if r ≤ v,
and fi,j = 0 or it is homogeneous of degree deg(fi,j) = ei ∈ Zv for every i, j.

Informally, a matrix is row-graded if the entries of each row are homogeneous
linear forms in a different set of variables. Similarly for a column-graded matrix.

Theorem 14. Let r ≤ s and let M be an r × s row-graded or column-graded
matrix with entries in R . Assume that Ir(M) ̸= 0 and that Ir(M) is in generic
coordinates. Then:

– if F is the system of maximal minors of M then solv.deg(F) = r,
– if F is the system of 2-minors of M then solv.deg(F) ≤ s in the column-

graded case, and solv.deg(F) ≤ r in the row-graded case.

Proof. It is shown in [CDG15,CDG20] that reg(Ir(M)) = r, reg(I2(M)) ≤ s in
the column-graded case, and reg(I2(M)) ≤ r in the row-graded case. The bounds
on the solving degree now follow from Theorem 9.
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BFS04. Magali Bardet, Jean-Charles Faugère, Bruno Salvy, On the complexity of
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