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Abstract. A cryptanalytic technique known as time-memory tradeoff (TMTO) was proposed by Hell-
man for finding the secret key of a block cipher. This technique allows sharing the effort of key search
between the two extremes of exhaustively enumerating all keys versus listing all possible ciphertext
mappings produced by a given plaintext (i.e. table lookups). The TMTO technique has also been used
as an effective cryptanalytic approach for password hashing schemes (PHS). Increasing threat of pass-
word leakage from compromised password hashes demands a resource consuming algorithm to prevent
the precomputation of the password hashes. A class of password hashing designs provide such a defense
against TMTO attack by ensuring that any reduction in the memory leads to exponential increase
in runtime. These are called Memory hard designs. However, it is generally difficult to evaluate the
“memory hardness” of a given PHS design.

In this work, we present a simple technique to analyze TMTO for any password hashing schemes which
can be represented as a directed acyclic graph (DAG). The nodes of the DAG correspond to the stor-
age required by the algorithm and the edges correspond to the flow of the execution. Our proposed
technique provides expected run-times at varied levels of available storage for the DAG. Although our
technique is generic, we show its efficacy by applying it on three designs from the “Password Hashing
Competition” (PHC) - Argon2i (the PHC winner), Catena and Rig. Our analysis shows that Argon2i
fails to maintain the claimed memory hardness. In a recent work Corrigan-Gibbs et al. indeed showed an
attack highlighting the weak memory hardening of Argon2i. We also analyze these PHS for performance
under various settings of time and memory complexities.

Keywords: Time-Memory tradeoff, password, hashing, graph traversal, bit-reversal graph, double
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1 Introduction

Passwords are the most convenient, cost effective and widely used solution for user authentication.
‘Password Hashing’ is the technique to perform one way transformation of the input password to
convert it into a fixed length random output. These hashed passwords are commonly stored in the
server database avoiding the plaintext storage of the passwords to maintain the minimum security
of password authentication. As passwords are usually human generated and ideally required to be
memorized entities, they are easy to guess [1]. The most common attack for password hashing is
‘dictionary attack’ [2] where an attacker creates a dictionary of most commonly used passwords with
the corresponding password hashes using the password hashing algorithm. Creating the dictionary
exhausting most commonly used passwords has been very efficient when implemented with cheap,
massively parallel hardware like GPUs (graphics processing units). An attacker having the precom-
puted dictionary only needs to get the server database to match the entries which then discloses
client passwords. Therefore, the design requirements for password hashing schemes highly depend
on technological improvement over computational efficiency of the hardware. The state-of-the-art
of current processing speed and the cost of memory impose the following major requirements for
password-hashing construction [3].



— One-wayness: It should be difficult to obtain the password from the password hash.

— Memory Hardness: The construction should consume a fixed amount of memory (RAM)
during execution. The operation should take significantly longer time (preferably exponential)
if less than this pre-specified and fixed amount of memory is available.

— Constant Time Operation: The execution time of the construction should be fixed over
all input choices for a fixed set of parameters. In particular, even if the password lengths are
different, the time to compute password hashes should be the same.

— Cache Timing Attack Resistance: The construction should not leak information about the
password due to cache timing or memory leakage at the time of physical implementation.

— Client Independent Update: The construction should support upgradation of the existing
password hash to a different cost setting without the involvement of the client or the input
password. For example, a password hashing design may provide for 128-bit security level today,
but it may need to be updgraded to a 160-bit security at a future date. This upgradation should
be possible while being oblivious to the client.

The Memory Hardness requirement for password hashing schemes is significant to prevent
dictionary attack. Usually, attackers use GPU clusters, FPGAs and ASICs to get tremendous
amounts of computation power to brute-force frequently used passwords when a general purpose
cryptographic hash function like SHA-1, SHA-2, BLAKE etc. is used. These constructions are
extremely fast in hardware as well as software implementations thus enabling an attacker to perform
billions of hashes per second. To prevent such attempt, memory hard designs are a good alternative.
A memory-hard design may suffer from side channel attack depending on the memory access pattern
followed by the algorithm. Most existing password hashing designs follow a memory-access pattern
which is either password-dependent or password-independent throughout their execution. If the
memory-access pattern depends on the password then an attacker may leak some information about
the secret password by observing this pattern. In fact, such a cache-timing attack on Scrypt [4] was
described in [5]. Consequently, side channel attack resistance (i.e., password-independent memory
access) has become a crucial requirements for password hashing.

Our Contribution: Most of the submissions of Password Hashing Competition [3] claim
memory-hardness. However, there exists no easy way to verify the memory hardness claim of the
designs following their algorithmic description. In this work, we provide an easy technique to an-
alyze the memory hardness of those algorithms whose execution can be expressed as a Directed
Acyclic Graph (DAG). Most of the algorithms submitted to the PHC have multiple variants and
each can be represented as a different DAG. We experimentally show the TMTO of the algorithms
representing the DAG with specific parameters. Specifically, we give a generic algorithm to traverse
the DAG which allows to vary the memory storage, and computes the increased algorithmic runtime
(re-computation penalties) for different trade-offs (varying memory and time) options. We apply
the proposed technique on three cache-timing attack resistant algorithms, namely, Argon2i [6] (the
winner of PHC [3]), Catena [7] and Rig [8] to obtain TMTO values for various combinations of
options in these algorithms. For Argon2i, the DAG representation varies depending on the output
of a pseudorandom function which is non-uniform. Therefore, different DAGs for different input
values are obtained. Consequently, the choice of nodes which should be kept in memory becomes
probabilistic and hence difficult to analyze. Therefore, we first apply heuristic methods (specified in
Section 6.1) to find the optimal points for memory reduction and then apply the proposed traversal
algorithm to obtain the TMTO results.



We also analyze the above mentioned schemes for performance under various settings of time
and memory complexities. We attempt to benchmark the said algorithms at similar levels of memory
consumption.

Organization: The rest of the document is organised as follows. In Section 2 we present the
related work and Section 3 covers a brief overview of three cache-timing resistant password hashing
algorithms namely, Argon2i, Catena and Rig. This is followed by the preliminaries necessary for the
understanding of the proposed technique in Section 4. The description of the proposed algorithm
for TMTO is presented in Section 5. Subsequently, the re-computation penalties and performance
analysis are presented in Section 6 and Section 7. Finally, in Section 8, we provide the conclusions
of the paper.

2 Related Work on Cryptanalytic Time-Memory Tradeoff

The idea of Time-Memory Tradeoff (TMTO) to optimize the cryptanalytic effort for a search
which includes N possible solutions was introduced by Hellman in [9]. Specifically for TMTO, the
cryptanalyst tries to optimize the product T - M searching for a correct solution among N feasible
choices where 7' is the number of operations performed (time), M is the number of words of memory
and T'- M = N. The relative cost of CPU cycles (') is much lesser than RAM space (M), as a
result most attacks attempt to reduce memory at the cost of increased algorithmic runtime.

The proposed technique of [9] for TMTO analysis considers chosen plaintext attack scenario
to find the key of a block cipher. Specifically, m uniformly random starting points are chosen and
then m chains of length t of ciphertexts are computed where only the starting and ending points
of the chains are stored that yields the tradeoff.

Utilizing the concept of Hellman [9], Philippe Oechslin introduced a cryptanalytic time-memory
trade-off, named rainbow table [10]. This technique allows attacking a password hashing scheme
by reducing the cryptanalysis time with the help of precomputed data stored in memory. It creates
chains of password hashes choosing m uniformly random passwords from provided keyspace. It
generates m chains of length ¢ using ¢ different reduction functions. The main advantage of rainbow
table over the technique of Hellman [9] is that the chains can collide within the same table without
merging (to merge, collision at same position is required for two different chains). This is possible
because rainbow table uses t different reduction functions to compute the chains. However, this
technique is only applicable on password hashing schemes that do not consider salt as an input
with password. A recent result on TMTO analysis based on precomputation method is covered
in [11] for data-independent password hashing schemes and also provides a generic ranking method
for data-dependent schemes. This proposed method is applied in [6] to prove the memory hardness
of Argon2i. However, our analysis in Section 5 shows that Argon2i does not provide the claimed
security level. Infact an attack showing the weak memory hardness of Argon2i was recently shown
by Corrigan-Gibbs et al. [12].

3 Overview of the Analysed Password Hashing Algorithms

In this work we briefly explain three cache timing attack resistant password hashing algorithms
submitted to Password Hashing Competition (PHC) [3]. Overview of these algorithms is provided
ahead.



3.1 Argon2i [6]

Argon2 - Version 1.2.1 is the winner of PHC [3]. The first version was submitted as Argon and
later updated to Argon2. Recently the new Version 1.3 of Argon2 has appeared which addresses the
problem of memory optimization reported in [12]. For our work we focus on the version 1.2.1 which
was the PHC winner. Argon2 specifies two variants, Argon2d which follows input dependent memory
access pattern and Argon2i which follows input independent memory access pattern. Both are
efficient for different use cases: Argon2d for computing cryptocurrencies and Argon2i for password
hashing, key derivation etc. [6]. Both the variants are different only at the point of index (of a
matrix) computation. Our TMTO analysis is applicable to the variant Argon2i and we explain this
design next.

The hash function Blake2b [13] represented as H and the compression function based on Blake2b
permutation represented as G are used. First the variable length password P and salt S with other
parameters are hashed using H to produce Hy. This Hy is used to generate a memory matrix M; ;,
0 <i<pand0 < j< g where p is the number of lanes (rows) and ¢ = m/p is the number of
columns computed as below.

M;, <+ G(Hy,i | 0), 0<i<p
M; 2 < G(Ho,i || 1), 0<i<p
M;; = G(Mij—1, My z)), 0<i<p2<j<gq

Output < H(Mo,g1 S M1 g 1©--- & Mp_14-1)

where the function ¢(i,j) computes the index of the matrix M and its computation is either
password-dependent (Argon2d) or password-independent (Argon2i).

Index Computation ¢(i,j): The memory matrix M is further partitioned in S = 4 slices.
Intersection of a slice and a lane (row) is mentioned as the segment of length ¢/S. To compute the
index, two round compression function G is run in counter mode with counter i. The first round
input to G is a string of all-zeroes and the second round input is constructed as follows:
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where, r is the pass number, [ is the lane number, s is the slice number, m is the total number of
memory blocks, t is the total number of iterations, x is 1 for Argon 2i and 7 is the counter starting
in each segment from 1. Each application of G produces a 64-bit value. The two applications of G,
therefore, produce a 128-bit value J; || J2 where |Ji1| = |J2| = 64. To get the memory index ¢(i, j),
compute [ = Jy mod p which determines the index of the lane from which the block will be taken.
If r = s =0, then [ is set to the current lane index. Then determine the set of indices R that is
referenced for given M; ; according to the following rules as mentioned in [6]:

1. If [ is the current lane, then R includes all blocks computed in this lane, which are not over-
written yet, excluding M; ;1.

2. If [ is not the current lane, then R includes all blocks in the last S — 1 = 3 segments computed
and finished in lane [. If M; ; is the first block of a segment, then the very last block from R is
excluded.

Then take a block z from R by enumerating blocks in R in the order of construction as below.
S 2

J1 — | R|(1— (;}521 ), x = (j1)?/2%, y = (|R| xx) /232, 2 = |[R| — 1 — 3. For detailed design of Argon,

one may refer to [6].




3.2 Catena [7]

The design Catena provides two variants supporting input (password) independent memory access:
Catena-Butterfly which is represented as a stack of double-butterfly graphs, and Catena-Dragonfly
which is based on bit-reversal graphs. Catena uses a function H which implements Blake2b, a
function H’ which implements a single round of Blake2b including finalization, denoted as Blake2b-
1, a randomization layer 7 (optional), and a “memory-hard” function F'. Both the variants of Catena
differ in the choice of this function F' specified as F'9), where F' can be represented as a DAG with
depth A and 29 nodes at each level. The variable g is called the garlic parameter. First, the algorithm
initializes the variable x by setting it equal to the hash value computed on the concatenation of
the three inputs: tweak ¢, salt and password. The garlic parameter g defines the time and memory
requirements for Catena. The value x is then updated by the function flap to produce the final
password hash as shown in Fig. 1. The flap function has three phases. In the first phase, a memory
of size 29 - n bits is initialized, where gjo0y < g < ghign and n (bits) is the output length of the
underlying hash function. The second phase calls the function 7 (optional) which depends on the
public input . Finally, the third phase calls a memory-hard function F'. When F' is instantiated with
BRHY) ( (g, \) - Bit Reversal Hashing) it is denoted as Catena-BRG and when F is instantiated
with DBHY, ( (g, A) - Double Butterfly Hashing) it is denoted as Catena-DBG. The overview of
the design applying the function flap is shown in Fig. 1.

Input flap flap flap flap
> > > L cee—p
x [giow/2] Glow Glow + 1 Ghigh Output

Fig. 1: General overview of the design Catena applying the function flap, taken from [7].

3.3 Rig [8]

The algorithm Rig provides two variants where the general construction is represented as Rig [Hj,
H,, Hs]. The strictly sequential variant is denoted as Rig [Blake2b, BlakeCompress, Blake2b] and
the optimized variant which improves the performance by performing memory operations in larger
chunks is represented as Rig [BlakeExpand, BlakePerm, Blake2b]. Both the variants differ in the
instantiations of the functions Hi, Ho and Hs. We provide the general description of the design
which is similar to the sequential variant.

The algorithm defines a round with four phases. Phase 1 is called the initialization phase which
computes the hash of the value x derived from password, salt and other parameters and produces
the output a. The hash function is represented as H; and instantiated with Blake2b. Next phase 2
is called the ‘setup phase’. This phase uses the value « and initializes two arrays k£ and a each of
size m = 2™ where m, is taken as the input to define the required memory units. Each element of
both the arrays is generated from the output of a hash function. The function Hs is implemented
as 1-round of Blake2b. Next phase is the ‘iterative transformation phase’ and is designed to update
the stored array values n-times where n is the number of iterations. In this phase, each hash
computation represented by Hs takes input from both the arrays. Array k is accessed computing



bit reversal permutation on the indices and array a is accessed sequentially. The m- computations
of Hy at setup phase and n X m computations of Hs at iterative transformation phase altogether
are denoted as function Ho. The last phase is called the ‘output generation phase’. This phase
computes one hash (represented by Hj) taking salt as input with the last chaining value, produces
the final output of each round. If round=1, this output is considered as the password hash otherwise
the output of this phase is considered as the input to the next round. The value of m at round
i, i.e. m; is updated at round ¢ + 1 as: m;+1 = 2 X m; and other descriptions remain same. The
overview of the Rig design where round=1, is shown in Fig. 2.
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T (me,n)
H |« —
> ,H2 c
(me,n)

>

s || binaryg, (2™<)  —— H3

_>h*

Input z = pwd || binaryg, (pwd;) || s || binaryg,(s;) || binaryg,(n) || binarye, (1)
s = Salt, m,=memory count, n = no. of iterations

Fig. 2: Overview of the design Rig taken from [8].

4 Preliminaries

In this Section we give a brief overview of the key concepts used in our proposed cryptanalysis
technique.

4.1 Directed Acyclic Graph (DAG)

A directed graph is an ordered pair (V,€) such that V is a set of nodes and € C V x V. Every
edge e = (X;, X;) in the set € is ordered. A directed graph G is acyclic if it does not contain any
directed cycle.

4.2 Bit-Reversal Permutation [14]

A bit reversal permutation is a permutation of a sequence of m elements with m = 2¥ where
k € N. The elements are indexed from 0 to m — 1 and to permute the elements the bits of indices
represented in binary form are reversed. Each element is then mapped to the new location as per
the reversed value of indices from 0 to m — 1. Example, for k = 3 and m = 22 elements, the bit
reversal graph with indices 0,1, --- ,7 is shown in Fig. 3.

4.3 Description of Some Directed Acyclic Graphs

In this work, we analyze DAGs consisting of a two dimensional matrix of nodes. The characteristics
of the graph is determined by the connectivity (dependency) between the nodes. We next describe



Fig. 3: Bit-Reversal Permutation of m = 22 elements with 3-bit binary representation of indices.

some graphs which are useful for analyzing the designs Catena [7] and Rig [8]. The graphical
representation of these schemes is derived from the following 4 types of graphs which are named
according to the property followed by their edges as shown in Fig. 4.

1. The Sequential graph is obtained by connecting all the nodes of the graph sequentially (level-
wise).

2. The Vertical graph is obtained by connecting all the nodes of the graph vertically (level-wise).

3. The BitReversed graph is obtained by applying bit-reversal permutation [14] on each node
(level-wise).

4. The Butterfly graph [15, 16] is obtained by placing two back-to-back Fast Fourier Transformation
(FFT) graphs after omitting one row in the middle.

The analyzed password hashing schemes can be graphically represented by overlaying these 4
types of graphs in various combinations as described ahead.

(a) Sequential (b) Vertical
P
EEEEE R
R R
BEEREEE
BEREREE
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Fig. 4: Graphs based on different types of edges



(N, A)-Straight Graph A (N, \)-Straight Graph with V vertices and £ edges can be formed by
overlaying the Sequential and Vertical edge types graphs. A denotes the depth of the graph and
N = 2% where, k& € N is the number of nodes at each layer. An example of (8,2)-Straight graph

Fig.5: (8,2)-Straight Graph

is shown in Fig. 5. It is a simple and symmetric graph where A = 2 is the depth of the graph.
The consecutive nodes of each level are connected sequentially and level-wise nodes are connected
vertically. We use this graph to show the working of the DAG traversal algorithm (defined below)
with respect to the designs Catena [7] and Rig [8].

(N, A)-Bit-Reversal Graph (Representing the Catena-BRG Construction [7]) A (N, ))-
Bit-Reversal Graph with V = N vertices and £ edges can be formed by overlaying the Sequential
and BitReversed edge types graphs. A is the depth of the graph and at each level number of nodes
N = 2F where, k € N (definition adapted from [8]). An example of (8,2)-Bit-Reversal graph is

Fig. 6: (8,2)-Bit-Reversal Graph

shown in Fig. 6. As per the definition, it performs bit-reversal permutation at each level or it is a
stack of A = 2 bit-reversal permutation operations.

This graph represents the directed data dependency of Catena-BRG construction [7]. Specifi-
cally, it describes the flow of the flap function (see Fig. 1) with respect to its core memory-hard
function F' as described in section 3.2. The function F' instantiated with bit-reversal graph and
denoted as BRHY, requires three inputs: g that specifies the required number of nodes (29) of the
graph at each level, the value x which is the input to process, and the value A which defines the
depth of the graph. Therefore, Catena-BRG can be specified by a bit-reversal graph with A x 29



nodes representing the entire computation graph where the directed edges show the flow of the
execution.

(N, A)-Bit-Reversal-Straight Graph (Representing the Rig Construction [8]) A (N, ))-
Bit-Reversal-Straight Graph with V = AN vertices and £ edges can be formed by overlaying the
Sequential, Vertical and BitReversed edge types graphs. A is the depth of the graph and at each
level the number of nodes N = 2* where, k € N and (definition adapted from [7]). An example of
(8,2)-Bit-Reversal-Straight graph is shown in Fig. 7 where A = 2 is the depth of the graph and at
each level, the number of nodes is 8.

Fig. 7: (8,2)-Bit-Reversal-Straight Graph

This graph represents the directed data dependency of the Ha function of the Rig construc-
tion [8], depicted in Fig. 2. The function Hs accesses and updates values of two different arrays,
each of size m = 2™¢, at every level of the DAG (a level of the DAG is the horizontal dashed line
in Fig 7, which is further explained in Section 3.3). To simplify the graphical view, we consider
storing both the arrays at the i** location of the memory arrays with a single node of the graph.
Therefore H, is represented as bit-reversal-straight graph with m nodes and each node of the graph
accommodates two elements, one each from two different arrays. The number of iterations n defines
the depth of the graph i.e., the number of times the nodes are accessed and updated. The directed
edges show the flow of execution of the algorithm.

(N, A)-Double-Butterfly Graph (Representing the Catena-DBG Construction [7]) A
(N, A)-Double-Butterfly Graph with V = N vertices and £ edges can be formed by overlaying the
Sequential, Vertical and Butterfly edge type graphs. X is the depth of the graph and at each level
the number of nodes N’ = 2¥ where, k¥ € N (definition adapted from [7]). An example of (8, 1)-
Double-Butterfly graph is shown in Fig. 8 where A = 1 is the depth of the graph and the number
of nodes at each level is 8.

This graph represents the directed data dependency of Catena-DBG construction [7]. It de-
scribes the flow of the flap function (see Fig. 1) with respect to its core memory-hard function
F' instantiated with double-butterfly graph. This function, represented as DBHY), requires three
inputs: g that specifies the required number of nodes (29) of the graph at each level, the value x
which is the input to process, and the value A which defines the depth of the graph. Specifically,
the (M = 29,1)-Double-Butterfly graph representation is stacked A times in Catena-DBG to create
(N = 29, X\)-Double-Butterfly graph. The memory traversal pattern follows from the original FF'T
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butterfly structure. Due to the significantly large number of operations and large number of layers
(for example, 5 in Fig. 8) at each level, this graph traversal is significantly slower than the previous
types. The re-computation effort increases exponentially with reduction in memory. This is due to
the fact that in-degree of a node in the DAG corresponding to this design is high, e.g., each node
has in-degree of 3 when the total number of nodes are 8 (see Fig. 8). The directed acyclic graph
corresponding to Catena-DBG has 29 nodes which are arranged as A stacks of double butterfly
graphs. The directed edges in the DAG show the flow of execution of the algorithm as explained in
Section 3.2.

5 Traversing a Dependency Graph to Analyse Tradeoff Penalties

A password hashing design is considered memory hard, with respect to a pre-specified memory,
if its implementation requires significantly larger runtime when the memory is reduced by even a
fraction smaller than the pre-specified number. The expected increase in runtime is exponential in
the amount of memory reduction.

Many designs in the PHC claim a strong time-memory tradeoff defense. However, there exists
no general method to verify the claimed TMTO defense for a proposed algorithm. With the aim
to give a solution, we provide a cryptanalytic approach and apply the technique on Catena, Rig
and Argon2i. The representation of these algorithms as a directed acyclic graph, as explained
in Section 4, accommodates the memory dependencies throughout their execution. Our proposed
technique follows a simple approach to allow the flexibility to store the memory elements as per the
choice of the implementor and then to perform on-the-fly computation of memory elements which
are not stored at the time these elements are needed. This may increase the computation time from
the usual implementation of the design. We compute the increased algorithmic runtime which we
denote as re-computation penalty. This re-computation penalty provides the actual TMTO defense
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of the algorithm. However, an attacker is not obliged to follow the advice of the designer and may
vary the memory storage to other nodes. This could potentially allow him to compute the password
hash at a lower cost than the one envisaged by the designer. The algorithmic description of the
proposed method is provided in Algorithm 1.

The graphical representation of a password hashing algorithm shows the memory dependencies
between various memory elements as a password hash is computed in accordance with the design.
The nodes of the graph represent the storage elements (memory) of the design and the arrows
targeting the nodes show the dependencies. The Algorithm 1 traverses the nodes of the password
hashing scheme following its actual implementation and computes the values that are not stored
when required. Therefore ‘node’ plays an important role and below is the data structure defined
to keep the state of the nodes during traversal.

structure Node

{

integer X =0, Y = 0;

boolean MemoryAllowed = false, MemoryValid = false, Traversed = false;
array Node [ | Dependencies;

}

Initially all the values of ‘node’ are set to false. Each ‘node’ keeps track of an array which includes
all the nodes that derive its value. The password hashing schemes we analyze need memory equal
to the number of nodes in one row. If enough memory is available, then there is no need to do any
TMTO, and the computation takes the time it needs to process all the nodes once, i.e., the time of
actual implementation of the scheme. If enough storage is unavailable then it requires to perform a
tradeoff between time and memory and it is expected that it will require significantly large number
of operations to compute the values that are not stored. We explain the proposed technique with
examples in the following Section.

5.1 Description of the Proposed Technique

The nodes of a graph are represented as a tuple specifying column and row numbers. Therefore
the starting value (0,0) contains the value corresponding the initial inputs of a password hashing
algorithm and is assumed to be known. The algorithm takes as input the locations of the nodes that
are allowed to be stored during the evaluation. The location can be all the nodes corresponding to
a column or a row or some random locations throughout the graph. Therefore, there can be a large
number of possible combinations of allowed-memory locations and the overall effort (computations)
will depend on the allowed memory and its allocation in the complete graph. The structure Node
has the field MemoryAllowed to let the algorithm know which node has storage and allow it to
store the value when it is available/calculated during traversal and then mark the MemoryValid
true to know the value is available for further computations. The algorithm starts traversing from
the last node, i.e., from node (M-1, N-1) and runs iteratively backward, traversing node-to-node
until all the dependencies are computed. To explain the traversal we follow the following notation.

11



Algorithm 1: DAG Traverse

Input:

Variables:

1.n = graph[M-1, N-1J;

graph(Node)-Dependency graph to traverse,
integer M- No. of columns, N- No. of rows
Node n,

stack(Node) processing, dependency,
boolean dependencyfound,

list(Node) traverse

Output: list(Node) traverse - A list of nodes traversed by the algorithm.
> each node contains all its dependencies

2. while(true) do
3. if(n.Traversed == false)

NS ot

©

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

else break
end while

foreach dependency in n.Dependencies do

if (dependency.MemoryValid == false)
dependency.push(dependency)
end if

end foreach

n.Traversed < true

else
if dependency.count >0

n = dependency.pop()
processing.push(n)
if (n.MemoryValid == false)
add n to list traverse
end if
dependencyfound < true;
foreach Node d in n.Dependencies do
if (d.MemoryValid == false)
dependencyfound < false
end if
end foreach
if (dependencyfound == true)
while processing.count >0 do
temp = processing.pop()
if temp.MemoryAllowed == true
temp.MemoryValid < true
end if
end while

graph.clearAllTraversed() > clear graph to process next dependencies

end if

34. return list(Node) traverse

(N, N7) — { (D%, DY), (D1, Dit%), ..

12

> when no dependency is left to process

} = (N NI



Where, (N N7), (N*HL N7+1)) .. are the nodes, (D!, D7),(D*T! Di+2) ... are the depen-
dencies discovered during the traversal and i,j are the corresponding column and row numbers.
Specifically, the aim of all computations is to find out the value of node (M — 1, N — 1) where M
is the number of columns and N is the number of rows, while the input (0,0) is known. All the
nodes in between need to be computed on the way. Algorithm 1 (as defined) is considering pointer
arithmetic, so, when node n is pushed and then popped from the stack dependency, any changes
to n will be reflected in the initial graph structure. For better understanding of the proposed ap-
proach we provide two examples which cover two different scenarios and also prove the validity of
the method.

Example 1 A (4,2)-Bit-Reversal Graph is shown in Fig. 9.

Fig.9: (4, 2)-Bit-Reversal Graph

Let us consider that all the nodes allow memory storage. The procedure can be performed
by traversing the nodes in the following order starting with node (3,2) where 3 is the column
number and 2 is the row number. The traversal of (4,2)-Bit-Reversal Graph follows our notation
of traversal including the dependencies which is explained above and needs total 12 steps covering
the following path.

(3,2) = {(2,2),3,1)} = (3,1) = {(2,1),3,0)} = (3,0)= {(2,0)}
= (2,0) = {(1,0)}, (1,0) = {(0,0)} = (0,0) — { }
= (2,1) = {(1,)} = (1,1) = {01} = (0,1) = { }
= (2,2) = {(1.2)} =(1,2) = {(0,2)} = (0,2) = { }

Considering the node (3,2) as the starting point of Fig. 9, the initial dependencies are
(2,2) and (3,1) which again have further dependencies. For each node, the chain of its dependency
nodes are backtracked. Therefore, the dependency path of node (3,1) includes (2,1) and (3,0)
then from (3,0) to (2,0) which gives (1,0) and finally for (1,0) the dependency (0,0) ends the
current chain of dependencies. Whenever a dependency is found it is put in the stack.

As the value of (0, 0) is always known, it helps to end the dependency chain and also to compute
the values of the stack by popping them one-by-one. Therefore, all the nodes of the current stack
are processed. As we are considering the scenario where all the values are allowed storage, the
values at the memory location (1,0), (2,0) and (3, 0) are updated after their first processing. Next,
the dependency (2,1) is processed which needs only the dependency (1, 1) as another dependency
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Table 1: Traversal for Example 1

Position Dependency
(3,2) (2,2), (3,1)
(3,1) (2,1), (3,0)
(3,0) (2,0)
(2,0) (1,0)
(1,0) (0,0)
(0,0)

(2,1) (1,1)
(1,1) (0,1)
(0,1)
(2,2) (1,2)
(1,2) (0,2)
(0,2)

) is known. Dependency (1, 1) needs (0,1) which is known from (0,0), (3,0). Next the values
),(1,1),(2,1) and (3,1) are updated. The stack is then processed again and takes the value
) and the process continues until all the nodes are processed and all the dependencies are met.
method takes total 12 computations as below.

)

~~
N O =
O N~ O

(3,2) = (3,1) — (3,0) — (2,0) = (1,0) — (0,0) —
(2,1) = (1,1) = (0,1) — (2,2) — (1,2) — (0,2)

The traversal steps for Example 1 are shown in Table 1.

Example 2 A (4,2)-Bit-Reversal Graph is considered as shown in Fig. 10 where only the first
column (nodes in blue) is allowed memory storage. The rest of the nodes have no memory and
during traversal (MemoryValid set to false), they need to be re-computed every time they are
encountered.

Fig. 10: (4, 2)-Bit-Reversal Graph with only memory in the first column.

The complete traversal for a (4, 2)-Bit-Reversal Graph as shown in Fig. 10 needs 35 steps and
the steps take the following path.

(3,2) = {(2,2), B} = (3,
= (2,0) = {(1,0)} = (1,0) —

)} = (3,0) = {(2,0)}

—~
—
no
—~ =
~—
—~
= o
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= (2,1) = {(1,1), (1,0)} = (1,0) = {}

= (L,1) = {(0,1), (2,0)} = (2,0) = {(1,0)} = (1,0) = {}

= (0,1) = {(3,0)} = (3,0) — {(2,0)} = (2,0) — {(1,0)} = (1,0) — {}

= (2,2) = {(1,2), (1,1)} = (1,1) = {(2,0)} = (2,0) = {(1,0)} = (1,0) = {}

= (1,2) = {(0,2), (2,1)} = (2,1) — {(1,1), (1,0) } = (1,0) — {}

= (1,1) = {(2,0)} = (2,0) = {(1,0) } = (1,0) = {}

= (0,2) = {(3,1) } = (3,1) — {(2,1), (3,0) } = (3,0) = {(2,0) } = (2,0) — {(1,0), } = (1,0) —
{

= (2,1) = {(1,1), (1,0)} = (1,0) — {}

= (1,1) = {(2,0)} = (2,0) = {(1,0) } = (1,0) = {}

6 Results

The DAG traversal algorithm provided in Section 5 can be used to compute the re-computation
penalties for any graph by varying the memory storage. To apply Algorithm 1, a large number of
memory configuration are possible. For example, a column of a graph can be enabled or disabled, i.e.,
when a column is enabled all the nodes for that column have memory storage abilities, otherwise not.
We apply Algorithm 1 to the following cases and come up with re-computation penalties in different
memory sizes. For our experiments we only allow a limited set of configurations, i.e. columns are
enabled or disabled. The considered password hashing designs are regularly structured and therefore
the approach used to enable/disable columns is easy to implement. For analyzing reduced memory
scenarios, we try to evenly distribute the memory along columns starting from the first column.
The design Argon2i provides different graph structures for different implementation parameters,
therefore we explain its TMTO analysis separately in Section 6.1. Following are the graphs that
represent a fixed structure for all parameter choices and we compute the re-computation penalties
for them.

-Straight Graph (SG)

-Bit-Reversal Graph (Catena BRG)
-Double Butterfly Graph (Catena DBG)
-Bit-Reversal-Straight Graph (Rig Graph)

— (VA
— (N
— (VA
— (VA

i

NN AN NG

The cumulated results (including Argon2i) for the graphs are as shown in Fig. 11. It shows the
comparison of the re-computation penalty with change in allowed memory proportion. It is clear
from the results that the re-computation penalty increases drastically for reductions in memory
size. For the experiments, we fix M = 64 (columns) even though we experimented with larger
values upto 512. This is because the characteristics of the DAGs do not depend significantly on the
value of M and follow similar pattern of rate of growth, but the runtime becomes large. All data
from Table 2, 3, 4 and 6 are included in Fig. 11.

Table 5: Re-computation Penalties for Double-Butterfly Graph (A = 1)

Memory Proportion (%) | Double-Butterfly Graph
50 18
25 922
12.50 60504
6.25 2043702
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Fig. 11: Re-computation Penalties for Graphs
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Table 2: Re-computation Penalties for Graphs with 4 rows (A = 3)

Memory (%) |Straight| Bit-Reversal | Bit-Reversal-
Proportion (%)| Graph Graph Straight Graph
(Catena BRG) (Rig)
50 15 19 97
25 75 93 551
12.5 460 909 5036
6.25 3181 8019 43143

Table 3: Re-computation Penalties for Graphs with 5 rows (A = 4)
Memory (%) |Straight|Bit-Reversal| Bit-Reversal-
Proportion (%)| Graph Graph |Straight Graph

62.5 32 48 445
31.25 254 401 4190
15.625 2724 10215 92483
7.8125 35120 197389 1707950
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Table 4: Re-computation Penalties for Graphs with 6 rows (A = 5)
Memory (%) |Straight|Bit-Reversal| Bit-Reversal-
Proportion (%)| Graph Graph |Straight Graph

75 63 113 1971
37.5 T 1736 31270
18.75 14378 119358 2152596
9.375 341447 | 5060331 -

The algorithm uses stacks during calculations, but, the maximum size of the stack is bounded by the maximal
length of a single path (plus sub paths). As a result, the algorithm does not consume large amount of memory even
for huge re-computation dependency tree calculations.

6.1 Re-computation Penalty for Argon2i

The design Argon2 is the winner of the PHC competition [3] and an IETF internet-draft [17] proposes it to be made
a standard password hashing design for internet protocols. Therefore it is important to have detailed theoretical as
well as practical analysis of this design. Our proposed approach can help analyze any password hashing scheme whose
execution can be represented as a DAG. As we discuss in Section 3.1, Argon?2i falls in the cache-timing attack resistant
category for having password independent memory access pattern. However, it does not follow a fixed DAG structure
over all parameter choices as the memory access depends on pseudorandom output of the compression function G
which is non-uniform. Due to the non-uniform G, we get different DAGs depending on the chosen input. The nodes
of the graph at each level represent the memory elements of corresponding row of the memory matrix of Argon2i
as described in Section 3.1. Except for the first two nodes of first level, all nodes are connected with its previous
node and a node value derived from the output of the compression function G. We provide three different graphs for
different parameter choices in Fig. 12, 13 and 14. The parameters password, salt and p are taken to be “password”,
“salt” and 1, respectively. Note that p = 1 means we are considering the single threaded version of Argon2i.

A recent attack on Argon2i, presented by Corrigan-Gibbs et al. [12], shows that having a pseudorandom memory
access pattern for Argon2i does not provide advantage over fixed memory access as employed in designs like Catena
and Rig. In fact, Corrigan-Gibbs et al. exploit the non-uniform distribution of memory accesses against Argon2i. We
explain the main idea of the attack against Argon2i with an example. Consider the memory access pattern in the
last few nodes of Argon2i in Fig. 12. The last 6 nodes accessed among the total 8 in this figure follow the sequence
0, 1, 1, 3, 3, 3. This implies that these 8 nodes can be computed with only 3 nodes (current node and the previous
ones numbered 1 and 3). If the design was memory hard, we should have required all 8 nodes to compute the output
of Argon2i but we can manage to compute this while storing only 3 nodes. Hence there is no recomputation penalty.
Note that this behavior is caused by the one-to-many mapping in Argon2i (e.g. node 3 is used to compute nodes 5,
6 and 7 in Fig. 12). This provides the attacker with an opportunity to reduce the required number of memory units
throughout the Argon2i computations without paying any penalty.

In order to make a fair comparison between Argon2i, Catena and Rig, we analyze these designs with similar
number of memory units. Since each node of Argon2i takes 1024 KiB memory while each node of Rig and Catena
takes 512 KiB, we compare n nodes of Argon2i with 2n nodes of Catena and Rig. Argon2i creates the memory array
depending on the previous node and a node derived from pseudorandom output of function G. Thus, the memory
access pattern for Argon2i at the first level itself starts to contribute to its memory hardness. On the other hand, the
memory access pattern for Catena and Rig at the first level is derived from the initial input sequentially. For levels
[ > 1, the memory access depends on the previous node and a node derived from a fixed permutation. Therefore, as
far as the computation effort is concerned, iteration i for Argon2i is equivalent to computations with iteration 7 + 1
of the designs Catena and Rig. We consider this equivalence in our experimental results.

To obtain the recomputation-penalty for Argon2i, we provide the dependency graph (DAG) generated from the
above mentioned input parameters. To compute TMTO, the selection of nodes to allow memory are obtained after
applying different heuristic approaches. This is required for Argon2i because of the non-uniform dependencies on
nodes, as already mentioned. Since the selection of optimal nodes vary depending on the given input for Argon2i, it is
not feasible to get a closed-form solution for it. However, following the probabilistic analysis on the execution pattern
of Argon2i, it is possible to provide a randomized algorithm to get the optimal nodes considering the frequency of
dependencies. We later explain the basis of our heuristics for searching the optimal nodes.
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To select the nodes with higher frequency of dependencies, we used the following strategy. First we list the nodes
by sorting them on decreasing order of dependencies, and then choose the nodes maintaining a range of distance
between any two nodes. The reason for our choice is that if two nodes are close-by in the DAG, then we can compute
the next node from the previous one with a small cost. This can be seen as a “greedy strategy” with regard to the
locally optimal nodes in order to obtain the globally optimum solution. Qur heuristic was chosen based on several
experiments we performed on graphs of small order and checking the number of computations required as memory
was reduced.

Our experimental results show that the non-uniform distribution of Argon2i affects the memory-hardness of the
design, causes a weakness. The results of our experiments showing the re-computation penalty for Argon2i are shown
in Table 6.

Fig.12: Argon2i at t=1, m= 8 blocks

Fig.13: Argon2i at t=2, m= 8 blocks

Fig. 14: Argon2i at t=3, m= 16 blocks

Table 6: Re-computation Penalties for Argon2i (32KiB) at varying A\ (t-cost)

Memory Proportion (%)| A=2/ A=3 | A=4
50 75 118 157
25 163 382 1383
12.5 4008 | 80906 |845846
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Argon2i - Version 1.3 [18] This version was developed recently to mitigate the attack shown in [12] on
the previous version which was the PHC winner. This is similar to the design explained in Section 3.1 except for
iterations ¢ > 1 where for each computation of the block M; ;, the new block is XORed to its previous value instead
of just overwriting the previous one. The problem without this XOR operation was that for each block computation
there was a time gap between the moment the block was used for the last time (through index computation) and the
moment it is overwritten. Therefore it was possible to drop the block after last referenced. This is no longer possible
in the modified version. However, this version 1.3 gives little overhead on the performance as (¢t — 1) X ¢ X j more
XOR operations are performed.

7 Performance Analysis

In order to get consistent results for the different algorithms we perform all the test on a single machine with the
code compiled by the same compiler. The details are as follows:

— CPU: Intel Core i7 4770 (Turbo Boost: ON) - Working at 3.9 GHz

— RAM: Double Channel DDR3 16 GB (2400 MHz)

— Compiler: gcc / g++ v4.9.2 ( -march=native and -O3 flags were set if not already in the makefiles). This would
cause the compiler to use the AVX-2 instructions.

— OS: UBUNTU 14.04.1, on HYPER-V, on Windows-8.1 with 8 GB allocated RAM to the VM. We also performed
benchmarks on native Linux OS to make sure that the virtualization does not cause any changes in the results.

6 |
—— Argon2i (t =1)
5.5 —e— Argon2i (t = 2)
—&— Argon2i (¢t = 3)
57 —8— Argon2i (t =4)
(A

Time in seconds

45 | —+— CatenaB (A =1)
® —m— CatenaB (A = 2)

4 —e— CatenaB (A = 3)
CatenaD (A = 1)

. CatenaD (A = 2)
CatenaD (A = 3)

T T T T
256 512 800 1,024 1,600 2,048
Memory in MiB

Fig. 15: Execution time vs. memory, fast feeling of memory is better.
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For consistency we use single threaded versions of the algorithms. All the experiments were run at-least 5 times
and the average timings were taken. The performance graph is shown in Fig. 15 which shows the execution time vs.
memory for all algorithms benchmarked.

For Argon2, we consider only the cache-timing attack resistant variant, Argon2i, for the performance analysis.
The latest version of the code is cloned from [19]. The performance of Argon2i is similar to Catena Dragonfly and
slower than the design Rig.

The performance figure shows that Catena-Dragonfly is much faster than Catena-Butterfly, but, the Dragonfly
version is shown not to be memory-hard in [11]. The latest version of code at the time of benchmark was cloned
from [20] and optimized SSE implementation is used for both the benchmarks. One of the reasons for the slow
nature of the Butterfly version is the need for 2-g rows for processing. This property of Catena-DBG, combined with
the relatively small read-writes to the RAM makes the overall structure significantly slow. Even the fastest version
of Catena-Butterfly-Blake2b-1 can only achieve overall memory hashing speed of around 80 MiB/s. The Catena-
Dragonfly is much faster due to the significantly reduced number of rounds as compared to Catena-Butterfly. In
addition to this, every node in the Catena-BRG graph has dependency on two previous ancestors as opposed to three
in Catena-DBG. This leads to reduced number of random memory accesses and faster speeds.

For the performance of the design Rig we use the latest version from [21]. We use the optimized implementation
with the Blake2b round using AVX-2 instructions. All default settings are used as described in the code and Makefile.
One source code improvement is the removal of writing of the data back to the memory in the last row, this change
resulted in around 5% improvement in overall performance for small values of N.

We also include the performance of ‘Scrypt’ [4] algorithm which is the first memory-hard algorithm for password-
hashing. There are several implementations of Scrypt available, we use one of the fastest variants of the implementation
from [22] with AVX2 implementation using Blake2b and Salsa64/8.

8 Conclusions

It is difficult to provide a general technique to analyse the time-memory tradeoff for memory hard designs. We
propose a technique for traversal of DAGs to analyze the TMTO. Therefore, it is applicable to the designs which
can be represented as a DAG. We apply the proposed technique on three cache-timing attack resistant designs
namely, Argon2i, Catena and Rig by performing preliminary analysis with various parameters and TMTO options.
The proposed DAG traversal technique is flexible enough to be applied (may require minor simplification) on various
other complex cryptographic designs for which making a mathematical model is significantly difficult. Our TMTO
analysis shows that Argon2i does not follow the claimed memory hardness.

The performance graph in figure 15 shows the execution time vs. memory for all the memory-hard algorithms
benchmarked. It is clear that Catena-Butterfly is the slowest and take significant amount of time in hashing passwords
with moderate to large amounts of memory. The performance of Catena is unlikely to significantly improve even with
native assembly implementation.

Argon2i and Rig-v2 provide good performance in a wide range of use cases, though Argon2i is slower than Rig.
The attack of [12] on Argon2i shows reduction over claimed TMTO defense which is also visible in our analysis as
shown in Table 6.
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