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Abstract. Practical hardness results are necessary to select parame-
ters for cryptographic schemes. Cryptographic challenges proved to be
useful for determining the practical hardness of computational problems
that are used to build public-key cryptography. However, several of these
problems have the drawback that it is not known how to create a chal-
lenge for them without knowing the solutions. Hence, for these problems
the creators of the challenges are excluded from participating.
In this work, we present a method to create cryptographic challenges
without excluding anyone from participating. This method is based on
secure multi-party computation (MPC). We demonstrate that the MPC-
based approach is indeed feasible by using it to build a challenge for the
learning with errors (LWE) problem. The LWE problem is one of the
most important problems in lattice-based cryptography. The security of
many cryptographic schemes that have been proposed in the last decade
is directly based on it. We identify parameters for LWE instances that
provide the appropriate hardness level for a challenge while representing
instances used to instantiate encryption schemes as close as possible. The
LWE challenge is designed to determine the practical hardness of LWE,
to gain an overview of the best known LWE solvers, and to motivate
additional research e�ort in this direction.

Keywords lattices, learning with errors, LWE, secure multi-party com-
putation, MPC

1 Introduction

The security of many cryptographic schemes is based on the hardness of a com-
putational problem, such as the discrete logarithm problem. In order to be able



to select parameters for these schemes that guarantee a chosen level of security,
the hardness of such computational problems has to be estimated experimentally.
Such experiments require a great deal of work since all possible attack algorithms
have to be taken into account and implemented optimally. A method that proved
to be useful to address this issue is to publish cryptographic challenges. Cryp-
tographic challenges have been built for the factorization problem [3], for the
elliptic curve discrete logarithm problem [1], for several lattice problems [20,29],
for the NTRU cryptosystem [2], and for multivariate cryptography [32]. Each
challenge consists of a set of problem instances of varying hardness. Typically,
a challenge is built as follows: the creator of the challenge generates an instance
of the computational problem, and the challenge consists in computing a solu-
tion. However, for many computational problems it is hard to create a problem
instance without knowing the solution. For a cryptographic challenge targeting
such a problem, this means that the research community would have to trust
the creator of the challenge to keep the secret and not to reveal any information
about the solution to anyone. More important � the creator himself would not
be able to participate in the challenge. Real examples of such problems and chal-
lenges, respectively, are the factorization problem and the multivariate quadratic
problem [32].

In this work, we show that it is possible to create all cryptographic chal-
lenges without relying on the trustworthiness of a single party. We achieve this
by using secure multi-party computation (MPC). MPC is a a sub�eld of cryptog-
raphy that allows several parties to jointly compute a function without revealing
anything about the inputs of the other parties. Despite big theoretical progress
in recent years, real-world applications for MPC are still surprisingly rare. The
main reason for this is the rather signi�cant computational overhead that comes
with most MPC solutions. We show that MPC is in fact e�cient enough to
securely create cryptographic challenges. To this end, we create a new crypto-
graphic challenge: the LWE challenge[1][2].

The learning with errors (LWE) problem is an important problem in lattice-
based cryptography. On the one hand, it is of high theoretic interest since
it allows the construction of many highly sophisticated primitives like fully-
homomorphic encryption [19] and group signatures [25]. On the other hand,
many practical, more basic primitives like public-key encryption [26] or signa-
ture schemes [23] base their security on the hardness of LWE. In order to select
concrete parameters for the practical schemes, it is important to understand the
concrete hardness of the underlying LWE instances.

In order to allow for a meaningful conclusion about the hardness of the
schemes, care must be taken to provide useful problem instances in a cryp-

[1] https://www.latticechallenge.org/lwe_challenge
[2] We are currently in the process of creating the instances. At the moment, the page

only contains �dummy instances� that were created on a single machine and will be
replaced as soon as the MPC generation is �nished. Consequently, the page is at the
moment password-protected (login name: reviewer, password: lwe_challenge) and
will be made public after acceptance.



tographic challenge. For LWE, which is instantiated by several parameters, we
carefully determined the parameters that determine the hardness of the instance,
and considered their relation to each other for several practical cryptographic
schemes. Afterwards, we investigated the capability of the best known attacks
on LWE. That way, we identi�ed LWE instances satisfying two properties at the
same time:

1. the relation of the parameters to each other is as in the investigated crypto-
graphic schemes, and

2. they lie on the border between barely breakable and unbreakable instances.

Thus, the future development of the challenge allows to draw conclusions about
the advance of the analyses of LWE and the concrete complexity of LWE.

Our Techniques Instead of only by a single person, each instance of the challenge
is built jointly by three parties[3]. We show that none of these parties (and no
one else) has more information about the secret than what is actually given in
the challenge, assuming

1. honesty of the majority of participants,
2. an MPC protocol that provides information-theoretic security in the semi-

honest adversarial model,
3. collision resistance of a standard cryptographic hash function, and
4. security of a standard pseudorandom generator.

Information-theoretic security of the MPC protocol is needed to ensure that no
creating party can gain any advantage by breaking a possibly `weaker' crypto-
graphic primitive used in the MPC protocol. We show that for cryptographic
challenges it is su�cient to rely on MPC protocols that are secure against semi-
honest (passive) adversaries (instead of using a signi�cantly more expensive MPC
protocol that is secure in the malicious adversarial model), by verifying honest
behaviour once a challenge is solved.

Contribution The contribution of this work is threefold:

1. we introduce a method based on multi-party computation that allows to
create cryptographic challenges whithout relying on the trustworthiness of a
single party or excluding anyone from participating,

2. we show that this method is practical by creating a challenge for the LWE
problem that will stimulate further research on LWE solvers, and

3. to evaluate experimentally the hardness of LWE, we choose parameters for
instances that make the results of the LWE challenge useful for further use:
the relation between the parameters is as suggested for LWE-based encryp-
tion schemes and at the same time the parameters are at the limits of current
LWE solvers.

[3] The a�liations of the parties wil be published after acceptance.



Organization In the next section, we provide the basics of multi-party compu-
tation and introduce the LWE problem. In Section 3, we describe the protocol
that we used to build the instances for the LWE challenge and that will be used
to check the submitted solutions. In Section 4, we describe the LWE challenge
in more detail: we explain how the parameters of the instances are chosen and
why their solutions are unique. In Section 5, we give more details about the web
page and show how to participate.

2 Background

In this section, we provide the basics of secure multi-party computation and give
some background information on the LWE problem.

2.1 Secure Multi-Party Computation

In MPC, parties P1, . . . ,Pn want to securely compute a function f on their joint
secret inputs x1, . . . , xn to receive f(x1, . . . , xn) = (y1, . . . , yn), without any Pi
learning anything about the inputs or outputs of other parties besides what can
be deduced from xi and yi.

The two main security models for MPC are the semi-honest (passive) and
malicious (active) model. The semi-honest model provides security against an
adversary that exactly follows the protocol description, but tries to extract infor-
mation about other parties' inputs or outputs from all messages he sees during
the protocol run. The malicious model considers a stronger adversary that may
arbitrarily deviate from the protocol description to learn secret information or
a�ect the outcome of the computation.

2.2 Learning with Errors

Throughout this paper, we denote vectors with bold, lowercase letters (e.g.,
s ∈ Znq ), and matrices with bold, capital letters (e.g., A ∈ Zm×nq ). Abusing
notation, we identify Zq with the set [− q2 ,

q
2 [∩Z. This leads directly to a natural

de�nition of the norm of a vector in Zmq .
An instance of the learning with errors problem for natural numbers n,m, q,

and an error distribution χ on Zq is created as follows: �rst, a uniformly random
matrix A ∈ Zm×nq , a uniformly random vector s ∈ Znq , and an error vector
e← χm are sampled. Then, b = As+ e ∈ Zmq is calculated. The LWE problem

is to recover s, given A and b. [4]

Typically, χ is a discrete (or discretized) Gaussian distribution over the inte-
gers with parameter σ ∈ R+. It is de�ned as the distribution Dσ that samples ev-
ery integer x ∈ Z with probability proportional to exp(−1/2 · |x|2/σ2). Similarly,

[4] In the original de�nition of LWE, an attacker has access to arbitrarily many LWE
samples. The LWE challenge, however, is designed to cover practical applications of
LWE. There, the number of samples is usually limited.



the discrete Gaussian distribution over Zq (DZq,σ) is de�ned as the distribution
that samples every x ∈ Zq with probability proportional to

∑
y∈Z exp(−1/2 ·

|x′ + yq|2/σ2), where x′ ∈ Z is an arbitrary representative of x ∈ Zq. Note that
the sum is well-de�ned (i.e., it is independent of the choice of x′) and its value
is �nite.

In his original work on LWE [31], Regev used the relative error rate α := σ/q
to de�ne the Gaussian distribution. In fact, it seems to be more natural to de�ne
the hardness of LWE depending on α. The main reason for this is modulus
switching [18], a technique that allows to change the modulus q. In this process,
α remains constant except for a rather small factor (see Section 4.1).

2.3 Attacks on LWE

In the following, we shortly sketch the most important attacks on the LWE
problem. Knowing the attacks is crucial to determine the instances that are
provided by the challenge.

Decoding attack For any LWE instance (A, b) with b = As + e, the vector b
is a linear combination of the columns of A, disturbed by the error vector e.
Consider the lattice

Λq(A) := {w ∈ Zm | ∃v ∈ Znq : Av = w mod q}.

Since the error vector is Gaussian distributed, there is a lattice vector w such
that the distance between b and w is bounded by

√
m · 2 · σ with overwhelming

probability (see Equation (1) in Section 4.2). Hence, the LWE problem can be
seen as a bounded distance decoding problem (BDD) in the lattice Λq(A). The
most standard approach for solving BDD is Babai's nearest plane algorithm [10]
and its improvements by Lindner and Peikert [26] and Liu and Nguyen [27]. The
idea in all those approaches is to enumerate all lattice vectors in a certain search-
rectangle centered around the target vector, hoping that the lattice vector As
mod q is among them.

Reduction to SVP A di�erent lattice-based approach is to construct a lattice
that contains the error vector e. This can be done by adding b to the lattice
Λq(A) [6], but other approaches are possible as well [11,13]. Since e is short, it is
typically the shortest vector in the lattice and can be found with basis reduction.

BKW Another approach to solve LWE is based on the work from Blum, Kalai,
and Wasserman [14], which was originally developed to solve the learning parity
with noise problem. The main idea is to combine few LWE samples to get a new
sample that depends only on a small part of the secret s. This part can then
be recovered by brute-forcing all possibilities [5], or by advanced techniques like
the multidimensional Fourier transform [22].



Arora-Ge Arora and Ge [8] introduced a new method to solve LWE by reducing
it to a set of noise-free non-linear equations. These equations are then solved
by linearization techniques. Recently, Albrecht et al. [4] showed how to apply
Gröbner basis techniques to solve the equation system. The main advantage of
the latter approach is that it requires signi�cantly less LWE samples.

3 Creating LWE Instances with MPC

In this section, we �rst describe a general approach to create LWE challenges
with the help of MPC without leaking any information that could lead to a
computational advantage for the creating parties. However, due to the lack of
an e�cient MPC protocol that is secure in the malicious adversarial model, we
then present a novel approach that only requires a semi-honest MPC protocol
but still guarantees to detect malicious behavior in a veri�cation step. Finally,
we present technical insights into the actual implementation.

3.1 Secure Challenge Creation

Correctness and privacy are the basic properties that any secure MPC proto-
col ful�lls. Privacy ensures that the parties running the protocol do not learn
anything about the other parties' inputs or intermediate results except for the
information that they can derive from the output of the functionality and their
own input.

Thus, to securely generate an LWE challenge, the following functionality
needs to be implemented for use in an MPC protocol: as public inputs the
parties provide the challenge parameters, as private inputs the parties provide
randomness. Then, the matrix A ∈ Zm×nq and the vectors s ∈ Znq and e ← χm

have to be sampled securely before the actual challenge vector b = As+e ∈ Zmq
can be computed. The intermediate values s and e are never visible to any
computing party. At the end of the protocol, the matrix A and the vector b are
revealed to the parties.

3.2 E�cient Creation through Veri�cation

Given any MPC protocol that is information theoretically secure against ma-
licious adversaries, LWE challenges can be created following the approach de-
scribed in the previous section. However, achieving security in the malicious ad-
versary model is signi�cantly more costly for all currently known practical MPC
protocols than achieving security in the semi-honest model alone. Even worse and
to the best of our knowledge, none of the existing available MPC frameworks that
provide security against malicious adversaries are capable of computing larger
LWE challenges under reasonable time constraints. To overcome this situation,
we show how to extend a three-party protocol[5] that is secure in the semi-honest

[5] Three parties is the most e�cient case, but more parties are also imaginable.



model with an e�cient veri�cation step to check the correct behavior of all par-
ties in hindsight. This approach does not protect against malicious behavior, i.e.,
the generating parties can still manipulate the challenge creation. However, by
guaranteeing that malicious behavior will be detected, the participating parties
risk loosing their reputation when being caught cheating. That way, none of the
participating parties has an interest in manipulating the challenge instances.

The security model that we apply in this work is similar to the covert adver-
sarial model by Aumann and Lindell [9]. However, instead of requiring to detect
malicious behavior during the protocol execution with some probability ε > 0,
we extend the semi-honest model by requiring to detect malicious behavior only
after the computation, but then with a probability of ε = 1. Our protocol is
secure, i.e., cheating is detected, if the adversary corrupts up to one out of three
parties.

In the following paragraphs, we show that by using a self-synchronizing three-
party MPC protocol, we detect any deviation from an honest behavior. A proto-
col is called self-synchronizing if the adversary cannot force (semi-)honest par-
ticipants to start a new communication round until all other participants have
completed the previous round. The core idea of our approach is to commit to
all randomness used for the MPC protocol before the protocol starts. A �xed
randomness guarantees a deterministic communication (content and order of
messages) between all parties. Giving the same randomness to a protocol simu-
lator, a transcript between three honest parties can be simulated. By comparing
this honest transcript with the transcript of the actual protocol execution, any
deviation from an honest behavior is inevitably detected.

Two protocols are required for the veri�ed creation of LWE challenges. Proto-
col 1 (create_challenge) is run by the parties that generate the challenges.
Protocol 2 (check_challenge) can be run by anyone to verify that the chal-
lenges have been created in an honest manner.

create_challenge extends the used MPC protocol to allow a later veri-
�cation. In a �rst step, every party uniformly samples two seeds y′i, y

′′
i (Line 3)

that have a length κ, which denotes the bit length of the used randomness. In
a practical implementation κ is the length of the seed used for a secure PRNG
Then all parties commit to their seeds (Line 4), to ensure that these have been
chosen independently from the other parties. Afterwards, the seed y′′i is pub-
lished and sent to the other parties. The �nal seed yi, used as the actual source
of randomness in the MPC protocol, is computed by xor-ing all public seeds
y′′1 , y

′′
2 and y′′3 with the private seed y′i (Line 9). This guarantees a private and

uniformly distributed seed for every party, if at least one party behaves honestly.
Consequently, the protocol cannot be in�uenced through a cleverly chosen seed.
After the successful execution of the MPC protocol (Line 10), the parties publish
the generated instances and publish hashes of the communication with the other
parties (Line 11).

Once a correct solution s has been submitted, the general public can verify the
challenge creation process with the help of check_challenge. The generating
parties are asked to reveal the seeds that they used for the challenge creation.



Protocol 1: create_challenge

Input : · LWE parameters m,n, q, σ
· security parameter κ

Output : · an LWE instance A,b ∈ Zm×n
q × Zm

q

· commitment to private seeds hy′i
, hy′′i

, seed y′′i
· hashed comm. transcripts with other parties: hcom,i,j

1 begin

2 every party i ∈ {1, 2, 3}:
3 sample random seeds y′i,y

′′
i

$← {0, 1}k
4 publish commitments hy′i

= commit(y′i) and hy′′i
= commit(y′′i )

5 wait until all other parties published their commitments

6 publish y′′i
7 wait until all other parties published their seeds

8 verify seeds of other parties, abort if exists j: hy′′j
6= commit(y′′j )

9 compute seed yi = y′i ⊕ y′′1 ⊕ y′′2 ⊕ y′′3
10 jointly run MPC protocol seeded with yi

11 publish A,b, hashes of the communication with other parties: hcom,i,j

12 end

Keeping these a secret rules the challenge as invalid. After verifying the seeds
with the published commitments (Line 2), the MPC protocol can be simulated
(Line 4). Abnormal behavior is detected by comparing the hashes of the original
transcripts with the transcripts of the simulated protocol (Line 6).

To actively manipulate an MPC protocol, modi�ed messages have to be sent
by a malicious party, which will be re�ected in the hashed transcript observed
by either of the honest parties. Consequently, the two protocols guarantee that
malicious behavior of a single corrupted party will be caught.

3.3 Implementation

Our implementation uses the information-theoretically secure MPC protocol
suite of the Sharemind platform [17]. Sharemind has been used in many pro-
totype applications and real-world MPC deployments, processing people's per-
sonal data in a privacy-preserving manner [15,24]. As such, the framework's code
base has been audited and seen extensive optimization and testing, which leads
to an e�cient solution and signi�cantly reduces the chance of implementation
failures. Sharemind's additive secret sharing based MPC protocol suite provides
information-theoretical security in the semi-honest model when a majority of
participating parties are honest. The primitive protocols are provably univer-
sally composable and can therefore be combined to build larger computations
securely [16].

Deployment and implementation details The LWE instances are jointly created
by three parties, whose names will be published after acceptance. Each party



Protocol 2: check_challenge

Input : · LWE instance A ∈ Zm×n
q ,b ∈ Zm

q

· hashes of transcript with other parties hcom,i,j

· seeds y′i,y′′i and their commitments hy′i
, hy′′i

,
Output : · TRUE (if the challenge was created correctly) or abort

1 begin

2 verify the commitments hy′j
, hy′′j

of every party j ∈ {1, 2, 3}
3 compute the seed yj = y′j ⊕ y′′1 ⊕ y′′2 ⊕ y′′3 of every party j ∈ {1, 2, 3}
4 simulate MPC protocol on seeds y1,y2,y3

5 compute hashes of transcripts: hcom',i,j

6 pairwise verify the transcripts' hashes, abort if exists i, j: hcom,i,j 6= hcom',i,j

7 return TRUE;

8 end

runs the protocol on its own hardware. The protocol is highly interactive and
demands all parties to be online during the challenge generation. The genera-
tion is centrally initiated and controlled by one of the parties. The challenges,
commitments and hashes of the transcripts are published by each party on the
challenge web site for universal veri�cation. Being public, all these are visible
to all parties to validate their correctness at any point in time. The MPC code
(SecreC) and client application code (C++ and Python) will be made available
for public review on the challenge website. For the veri�cation algorithm, we ex-
tended the protocol software by functionalities to export the seeds used for the
PRNG and all sent and received messages. Moreover, our implementation also
allows to induce a seed to simulate the MPC protocol for veri�cation purposes.
Thus, the veri�cation can be done e�ciently and without the development of
a protocol simulator by locally running three application servers on the same
machine.

Runtime and Communication Costs Although highly optimized, the generation
of LWE instances is a time-consuming computational task. We observed creation
times up to 10 hours for the largest LWE instances, whereas the smallest ones
can be created in a few minutes. Even though, having the same computational
workload, the veri�cation step is executed in a fraction of that time, when run on
a single machine. This is because communication is the dominating cost factor,
especially when operating in an intercontinental setup with high latency and
varying bandwidth. Detailed timing results will be given in the �nal paper.

4 LWE Instances Provided by the LWE Challenge

In order to allow meaningful conclusions about the hardness of LWE, the hard-
ness of the provided problem instances is crucial. On the one hand, if the provided
instances are too easy, the attacks that are easier to implement would dominate
the hall of fame, and not the attacks with the best runtime. On the other hand,



if the instances are too hard, none of them would get broken, and the challenge
would fail to provide useful information about the practical hardness of LWE.

In this section, we �rst explain how we chose the parameters of the instances,
i.e., n,m, q, and α. Then, we show that every instance has (with high probability)
a unique solution.

4.1 Choice of Parameters

LWE is parametrized by several di�erent parameters. On the one hand, this is a
big advantage: it allows to generate instances that are crafted speci�cally for a
certain application, which leads to more e�cient schemes. An example for this
are the di�erent moduli used in signature schemes: while there are examples of
secure schemes with a modulus length of about 14 bits (see [23]), other techniques
require the modulus to be about 30 bits long or even longer (see [11]). On the
other hand, the �exibility of LWE makes estimating its hardness much more
complicated, since there is not one best algorithm for all instances [7]. This
makes the selection of the right instances provided by the challenge a non-trivial
task.

Fortunately, both theoretical and experimental results show that the hardness
of LWE mainly depends on the secret dimension n, and the error parameter α
(see [7,12,18,30]). The number of samples m and the modulus q appear to play
a minor role. In the following, we explain our parameter choices in detail.

Known attacks on LWE can be roughly divided in two classes: lattice-based
attacks (like the distinguishing attack [26], the decoding attack [10,26,27] or the
embedding approach [6]) work with few samples, while other approaches (like
BKW [5] or the Arora-Ge algorithm [8]) often require subexponentially many
(or even more). In theory, this is not a big issue, since an attacker has access to
arbitrarily many samples in the original de�nition of LWE. However, nearly all
practical applications only provide a limited number of samples (e.g., [11,23,26]).
Consequently, we consider modifying the latter attacks to run with less samples
an important challenge. In fact, progress in this direction by lowering the required
number of samples [22] or generating new samples [28] shows that it may be
possible to overcome this problem.

To motivate further progress, the LWE challenge provides only m = n2

samples per instance. This is enough to run all sample-e�cient solvers, but
should exclude the sample-consuming ones. Besides motivating further research
for sample-e�cient (and therefore realistic) attacks, this is leads to a more real-
istic picture about the limitations of current attacks in practice.

While being important for the correctness and the e�ciency of many schemes,
the modulus q appears to play a minor role for the hardness of LWE. Following
the original proposal by Regev [30], the LWE challenge is restricted to instances
with q being the smallest prime that is bigger than n2. Prime numbers are the
most frequently choice in practical schemes (e.g., [11,23,26,30]). Fortunately, it is
not necessary to include other values for q (like powers of 2). The reason for this
is a technique introduced by Brakerski and Vaikuntanathan [19] called modulus



switching. It allows an attacker to transfer an LWE instance with modulus q to
an LWE instance with an arbitrary di�erent modulus q′ with the same secret s.

The next choice concerns the size of the error. In the literature, the standard
deviation of the gaussian error is either given by the standard deviation σ, or by
the relative error size α = σ/q. Following Regev's original proposal, we select α as
error size parameter instead of σ. This choice is supported by modulus switching:
When switching the modulus q to q′, the relative error rate α remains constant
except for a small factor, which shows that the hardness of LWE depends on α
rather than on σ.

The last choice concerns concrete values for n and α. In the �rst cryptographic
application of LWE [30], Oded Regev proposed to to choose α = o( 1√

n log(n)
).

For the instances provided by the challenge, the lattice dimension n ranges from
40 to 120, and the relative error size α ranges from 0.005 to 0.070. They are
chosen such that they capture the proportion of n and α proposed by Regev (see
Figure 1).
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Fig. 1. Values for the error rate α and the dimension n as proposed by Regev (solid
line) and provided by the LWE challenge (small circles)

At the same time, the hardness of the instances lies in a reasonable range,
i.e., the easiest instances can be solved fairly easy using standard techniques,



while the hardest challenges are likely to remain unsolved for at least several
years. The hardness estimates are based on the simulator by Albrecht et al. [7],
that estimates the runtime of the known attacks on a given LWE instance. On
the one hand, the applicability of this simulator should be taken with a grain
of salt, since it was crafted for LWE instances with higher hardness levels (like
the instances proposed for cryptographic applications). On the other hand, it
should at least give an idea of the hardness of the instances, and comparing
the performance of the attacks in practice to the values predicted by theory is
an interesting future work made possible by the challenge. Additionally, we ran
attacks on LWE instances with the easiest parameter sets to con�rm that they
are breakable within a reasonable time. The challenge was build such that more
instances can be included once our estimations prove wrong or better algorithms
which signi�cantly decrease the hardness of LWE are developed.

4.2 Uniqueness and Correctness of Solutions

LWE is typically instantiated such that the solution is unique. This sounds sur-
prising at �rst glance because for every s ∈ Znq , there is an error vector e ∈ Zmq
such that As + e = b. Since there is no bound for values sampled according
to a Gaussian distribution, each s could be the secret. However, for a typical
instantiation of LWE, there is only one vector s that leads to a reasonable error
e, by which we mean that all other errors are much bigger and therefore only
sampled with a negligible probability.

For the LWE challenge, uniqueness is a little bit easier to de�ne. The chal-
lenge accepts a submission s if (and only if) the corresponding error e = b−As
satis�es ‖e‖ ≤ 2

√
mσ with σ = αq. This is justi�ed by the fact that Lemma 2.2

in [23] by Ducas et al. bounds the size of a Gaussian distributed vector as

Pr[‖e‖ > 2
√
mσ; e

$← DZm,σ] < 2 (2 exp(−3/2))m < 2−m+1. (1)

Note that this probability is extremely small for our values of m ranging from
1600 to 14400. Consequently, correct solutions get accepted with overwhelming
probability.

In the following, we show that all challenges have (with high probability) one
unique solution. For an arbitrary lattice Λ ⊂ Zm, let λ1(Λ) be the norm of the
shortest non-zero vector in Λ. To see why the solutions are unique, imagine two
secret-error tuples satisfying

As1 + e1 = b = As2 + e2 mod q

and ‖ei‖ ≤ 2
√
mσ. The triangle inequality immediately leads to

‖A(s1 − s2)‖ ≤ 4
√
mσ,

which shows that the lattice

Λq(A) = {v ∈ Zm | ∃w ∈ Zn : Aw = v mod q}



Fig. 2. The LWE challenge table. The lattice dimension n is shown on the x-axis, the
relative error size α is shown on the y-axis. Green points stand for unsolved instances,
while red points indicate that the respective instance has already been solved. By
clicking on one of the points, the respective challenge can be downloaded. By clicking
on a green point, additionally a solution to the challenge can be submitted.

contains two points v1,v2 satisfying ‖v1 − v2‖ ≤ 4
√
mσ. Consequently, the

existence of two LWE solutions would imply

λ1(Λq(A)) ≤ 4
√
mσ. (2)

The following Lemma bounds the probability that such an extraordinary
short lattice vector exists.

Lemma 1. Let A ∈ Zm×nq be a uniformly random matrix. If q1−
n
m ≥ 1250 then

Pr

[
λ1(Λq(A)) ≤ 1

5

√
mq1−

n
m

]
≤ 0.9−m + qn−m.



Proof. The idea of the proof is to consider the probability of a random integer
vector being in the lattice and take a union bound over all short vectors. Assume
we have det(Λq(A)) = qm−n (which happens with probability at least 1−qn−m).
The probability of a random integer vector to be in the lattice is qn−m. The
tricky part is to bound the number of integer vectors inside the ball of radius
1/5
√
mq1−

n
m . Note that using cubes of edge length 1 centered at each integer

vector, one can tile the entire space. However, not all cubes centered at integer
points inside the ball are completely enclosed by the ball. So we consider a second
ball with radius larger than the �rst one by an addititive factor of 1

2

√
m to ensure

that all cubes centered inside the original ball are entirely enclosed in the second
ball. This allows us to bound the number of integer points inside the �rst ball by
the volume of the second ball. Note that we can obtain the necessary extension
of the radius by multiplying the radius of the �rst ball with 1.002 due to the
condition in the lemma. So by the union bound and Stirling approximation of
the Gamma function we have

Pr

[
λ1(Λq(A)) ≤ 1

5

√
mq1−

n
m |det(Λq(A)) = qm−n

]
≤ πm/2

Γ (m2 + 1)

(
0.2004

√
mq

m−n
m

)m
qn−m

≤ Γ
(m
2

+ 1
)−1 (

0.20042πm
)m/2

≤
(
0.20042πm

m/2 + 1

)m/2
≤ (
√
2πe0.2004)m

≤ 0.9m.

ut

Corollary 1. Let A ∈ Zm×nq , b ∈ Zmq be an LWE instance with parameters

n, q, α, and m. If m = n2, q1−
n
m ≥ 1250, and

α n
√
q < 1/20, (3)

the probability that two di�erent vectors s1 ∈ Znq , s2 ∈ Znq satisfy

‖b−Asi‖ ≤
√
mαq

is bounded by 0.9−n
2

+ qn−n
2

.

Proof. Follows directly from Equation (2), Lemma 1, and the easy calculation

4
√
mσ < 1/5

√
m · q1−n/m

⇔ 20αq < q1−1/n

⇔ α n
√
q < 1/20.



While all proposed instances meet the condition in Lemma 1, not all satisfy
Equation (3). However, this does not mean that the solutions of the other chal-
lenges are not unique. To the contrary, the Gaussian heuristic strongly indicates
that all solutions are unique: it estimates the length of the shortest non-zero
vector in the above lattice to be

λ1(Λq(A)) ≈ Γ (1 +m/2)1/m√
π

q1−n/m.

Consequently, for all our instances, two valid solutions would imply a lattice
vector shorter than 0.7 times the Gaussian heuristic. However, the existence of
such a short vector is very unlikely. This is, among others, con�rmed by the
results of the SVP challenge: despite big e�orts by many researchers, no one was
able to �nd a lattice vector shorter than 0.8 times the prediction of the Gaussian
heuristic so far.

5 The LWE Challenge

In this section, we explain the challenge web page in more detail and show how
one can participate in the LWE challenge.

5.1 How to Download Challenges

The LWE challenge website provides a challenge table that is shown in Fig-
ure 2. This table contains all available instances, ordered by lattice dimension
n and relative error rate α. The green points of the challenge table stand for
unsolved instances. By clicking on a green point, the respective instance can be
downloaded.

On the day of the release of the LWE challenge website, all points of the
challenge table will be green. Once an instance is solved, i.e., the correct solution
has been submitted, the respective point turns red. Hence, while the challenge
table provides the challenge instances, it also serves as a visual representation
of the development of the LWE challenge and hence, of the LWE problem.

In addition to using the challenge table, LWE instances can also be down-
loaded directly in the download section (right column). After selecting n and α,
a click on the download button leads directly to the �le containing the corre-
sponding challenge.

The LWE challenge website also provides some smaller instances at the down-
load section. These toy challenges could for example be used to test the correct-
ness of an LWE solver implementation.

Format of the Challenges The LWE challenges are provided in the following
format: in the �rst three rows, the integers n, m, and q are listed. In the fourth
row, the real α is found. It is written in US notation, i.e., with a period as
decimal point. In the �fth row the vector b - which actually is a column vector
- is given and �nally in the sixth row, the matrix A starts. It consists of m rows
which n entries each. A description of the format of the instances can also be
found at the download section on the LWE challenge website.



5.2 How to Submit Solutions

The LWE challenge accepts a submitted solution s for a challenge A,b with
parameters n,m,α, and q if (and only if) ‖b−As‖ ≤ 2

√
mαq. Equation (1) shows

that such an s gets accepted with overwhelming probability if b was actually
created as As + e mod q. On the other hand, as mentioned in Section 4, with
very high probability all instances have a unique solution.

Analogous to downloading instances, there are two possibilities for submitting
a solution: �rst, the solution can be submitted by clicking on the respective green
point in the challenge table on the website. This will lead to a submission form
where the lattice dimension and the Gaussian parameter are already entered.
Second, the solution can be submitted by following the submission link on the
right side of the start page of the LWE challenge website. This link leads to a
submission form where both the lattice dimension and the Gaussian parameter
can be selected independently.

Note that for the solved instances, i.e., those represented with a red point in
the challenge table, no solution can be submitted. Solutions for the toy instances
can not be submitted either.

Hall of Fame At the bottom of the LWE challenge website's start page, we show
the latest �ve successful submissions. We also provide a list with all successful
submissions, i.e., a hall of fame. It can be found by clicking on a link below the
latest submissions. Here, all correct solutions are listed in a chronological order,
together with some meta information.

Once an instance is broken, there is no way to �nd a better solution. There-
fore, old results will not be suppressed and hence, these early contributions will
stay visible. This will prevent a picture similar to the one on the original lattice
challenge, where only few names dominate the hall of fame since as long as the
shortest vector is not found, better submissions can replace older solutions.
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