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Abstract. We study the complexity of securely evaluating an arithmetic circuit over a finite field F
in the setting of secure two-party computation with semi-honest adversaries. In all existing protocols,
the number of arithmetic operations per multiplication gate grows either linearly with log |F| or poly-
logarithmically with the security parameter. We present the first protocol that only makes a constant
(amortized) number of field operations per gate. The protocol uses the underlying field F as a black
box, and its security is based on arithmetic analogues of well-studied cryptographic assumptions.

Our protocol is particularly appealing in the special case of securely evaluating a “vector-OLE” function
of the form ax+b, where x ∈ F is the input of one party and a, b ∈ Fw are the inputs of the other party.
In this case, which is motivated by natural applications, our protocol can achieve an asymptotic rate of
1/3 (i.e., the communication is dominated by sending roughly 3w elements of F). Our implementation
of this protocol suggests that it outperforms competing approaches even for relatively small fields F
and over fast networks.

Our technical approach employs two new ingredients that may be of independent interest. First, we
present a general way to combine any linear code that has a fast encoder and a cryptographic (“LPN-
style”) pseudorandomness property with another linear code that supports fast encoding and erasure-
decoding, obtaining a code that inherits both the pseudorandomness feature of the former code and the
efficiency features of the latter code. Second, we employ local arithmetic pseudo-random generators,
proposing arithmetic generalizations of boolean candidates that resist all known attacks.

1 Introduction

There are many situations in which computations are performed on sensitive numerical data. A computation
on numbers can usually be expressed as a sequence of arithmetic operations such as addition, subtraction,
and multiplication.4

In cases where the sensitive data is distributed among multiple parties, this calls for secure arithmetic
computation, namely secure computation of functions defined by arithmetic operations. It is convenient to
represent such a function by an arithmetic circuit, which is similar to a standard boolean circuit except that
gates are labeled by addition, subtraction, or multiplication. It is typically sufficient to consider such circuits
that evaluate the operations over a large finite field F, since arithmetic computations over the integers or
(bounded precision) reals can be reduced to this case. Computing over finite fields (as opposed to integers
or reals) can also be a feature, as it is useful for applications in threshold cryptography (see, e.g., [16, 27]).
In the present work we are mainly interested in the case of secure arithmetic two-party computation in the
presence of semi-honest adversaries.5 From here on, the term “secure computation” will refer specifically to
this case.

? An extended abstract of this paper appears in the Proceedings of Crypto 2017.
4 More complex numerical computations can typically be efficiently reduced to these simple ones, e.g., by using

suitable low-degree approximations.
5 Our results extend naturally to the case of secure multi-party computation with no honest majority. We restrict

the attention to the two-party case for simplicity.



Oblivious Linear-function Evaluation. A natural complete primitive for secure arithmetic computation is
Oblivious Linear-function Evaluation (OLE). OLE is a two-party functionality that receives a field element
x ∈ F from Alice and field elements a, b ∈ F from Bob and delivers ax+ b to Alice. OLE can be viewed as the
arithmetic analogue of 1-out-of-2 Oblivious Transfer of bits (bit-OT) [23]. In the binary case, every boolean
circuit C can be securely evaluated with perfect security by using O(|C|) invocations of an ideal bit-OT
oracle via the “GMW protocol” [31, 28]. A simple generalization of this protocol can be used to evaluate
any arithmetic circuit C over F using O(|C|) invocations of OLE and O(|C|) field operations [36].

The complexity of secure arithmetic computation. The goal of this work is to minimize the complexity of
secure arithmetic computation. In light of the above, this reduces to efficiently realizing multiple instances
of OLE. We start by surveying known approaches. The most obvious is a straightforward reduction to
standard secure computation methods by emulating field operations using bit operations. This approach is
quite expensive both asymptotically and in terms of concrete efficiency. In particular, it typically requires
many “cryptographic” operations for securely emulating each field operation.

A more direct approach is via homomorphic encryption. Since OLE is a degree-1 function, it can be
directly realized by using “linear-homomorphic” encryption schemes (that support addition and scalar mul-
tiplication). This approach can be instantiated using Paillier encryption [49, 19, 27] or using encryption
schemes based on (ring)-LWE [44, 20]. While these techniques can be optimized to achieve good communica-
tion complexity, their concrete computational cost is quite high. In asymptotic terms, the best instantiations
of this approach have computational overhead that grows polylogarithmically with the security parameter k.
That is, the computational complexity of such secure computation protocols (in any standard computational
model) is bigger than the computational complexity of the insecure computation by at least a polylogarithmic
factor in k.

Another approach, first suggested by Gilboa [27] and recently implemented by Keller et al. [38], is to
use a simple information-theoretic reduction of OLE to string-OT. By using a bit-decomposition of Alice’s
input x, an OLE over a field F with `-bit elements can be perfectly reduced to ` instances of OT, where
in each OT one of two field elements is being transferred from Bob to Alice. Using fast methods for OT
extension [32, 13], the OTs can be implemented quite efficiently. However, even when neglecting the cost of
OTs, the communication involves 2` field elements and the computation involves O(`) field operations per
OLE. This overhead can be quite large for big fields F that are often useful in applications.

A final approach, which is the most relevant to our work, uses a computationally secure reduction from
OLE to string-OT that assumes the peudorandomness of noisy random codewords in a linear code. This
approach was first suggested by Naor and Pinkas [47] and was further developed by Ishai, Prabhakaran, and
Sahai [36]. The most efficient instantiation of these protocols relies on the assumption that a noisy random
codeword of a Reed-Solomon code is pseudorandom, provided that the noise level is sufficiently high to defeat
known list-decoding algorithms. In the best case scenario, this approach has polylogarithmic computational
overhead (using asymptotically fast FFT-based algorithms for encoding and decoding Reed-Solomon codes).
See Section 1.3 for a more detailed overview of existing approaches and [36] for further discussion of secure
arithmetic computation and its applications.

The above state of affairs leaves the following question open:

Is it possible to realize secure arithmetic computation with constant computational overhead?

To be a bit more precise, by “constant computational overhead” we mean that there is a protocol which
can securely evaluate any arithmetic circuit C over any finite field F, with a computational cost (on a RAM
machine) that is only a constant times bigger than the cost of performing |C| field operations with no security
at all. Here we make the standard convention of viewing the size of C also as a security parameter, namely
the view of any adversary running in time poly(|C|) can be simulated up to a negligible error (in |C|). In the
boolean case, Ishai, Kushilevitz, Ostrovsky, and Sahai [35] showed that secure computation with constant
computational overhead can be based on the conjectured existence of a local polynomial-stretch pseudo-
random generator (PRG). In contrast, in all known protocols for the arithmetic case the computational
overhead either grows linearly with log |F| or polylogarithmically with the security parameter.
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1.1 Our Contribution

We improve both the asymptotic and the concrete efficiency of secure arithmetic computation. On the
asymptotic efficiency front, we settle the above open question in the affirmative under plausible cryptographic
assumptions. More concretely, our main result is a protocol that securely evaluates any arithmetic circuit C
over F using only O(|C|) field operations, independently of the size of F. The protocol uses the underlying
field F as a black box, where the number of field operations depends only on the security parameter and not
on the field size.6 The security of the protocol is based on arithmetic analogues of well-studied cryptographic
assumptions: concretely, an arithmetic version of an assumption due to Alekhnovich [1] (or similar kinds of
“LPN-style” assumptions) and an arithmetic version of a local polynomial-stretch PRG [35, 4, 11].7

On the concrete efficiency front, our approach is particularly appealing for a useful subclass of arithmetic
computations that efficiently reduce to a multi-output extension of OLE that we call vector-OLE. A vector-
OLE of width w is a two-party functionality that receives a field element x ∈ F from Alice and a pair of vectors
a, b ∈ Fw from Bob and delivers ax+ b to Alice. We obtain a secure protocol for vector-OLE with constant
computational overhead and with an asymptotic communication rate of 1/3 (i.e., the ratio between w and
the number of communicated field elements tends to 1/3 as w tends to infinity). Our implementation of this
protocol suggests that it outperforms competing approaches even for relatively small fields F and values of
w, and even over fast networks. The protocol is also based on more conservative assumptions, namely it can
be based only on the first of the two assumptions on which our more general result is based. This assumption
is arguably more conservative than the assumption on noisy Reed-Solomon codes used in [47, 36], since the
underlying codes do not have an algebraic structure that gives rise to efficient (list-)decoding algorithms.

Vector-OLE can be viewed as an arithmetic analogue of string-OT. Similarly to the usefulness of string-
OT for garbling schemes [55], vector-OLE is useful for arithmetic garbling [10, 5] (see Section 4). Moreover,
there are several natural secure computation tasks that can be directly and efficiently realized using vector-
OLE. One class of such tasks are in the domain of secure linear algebra [18]. As a simple example, the secure
multiplication of an n× n matrix by a length-n vector easily reduces to n instances of vector-OLE of width
n. More generally, vector-OLE can be used in the OLE-based “arithmetic GMW” protocol [36] to efficiently
handle the case of arithmetic circuits with large fan-out, where one field element is multiplied by w other
field elements. Finally, a more specialized class of applications is in the domain of securely searching for
nearest neighbors, e.g., in the context of secure face recognition [22]. The goal is to find in a database of
n vectors of dimension d the vector which is closest in Euclidean distance to a given target vector. This
task admits a simple reduction to d instances of width-n vector OLE, followed by non-arithmetic secure
computation of a simple function (minimum) of n integers whose size is independent of d. The cost of such
a protocol is dominated by the cost of vector-OLE. See Section 5 for a more detailed discussion of some of
these applications.

1.2 Overview of Techniques

Our constant-overhead protocol for a general circuit C is obtained in three steps. The first step is a reduction
of the secure computation of C to n = O(|C|) instances of OLE via an arithmetic version of the GMW
protocol.

The second step is a reduction of n instances of OLE to roughly
√
n instances of vector-OLE of width w =

O(
√
n). This step mimics the approach for constant-overhead secure computation of boolean circuits taken

in [35], which combines a local polynomial-stretch PRGs with an information-theoretic garbling scheme [55,
33]. To extend this approach from the boolean to the arithmetic case, two changes are made. First, the
information-theoretic garbling scheme for NC0 is replaced by an arithmetic analogue [10]. More interestingly,

6 The protocol additionally uses standard “bit-operations,” but their complexity is dominated by the field operations
for every field size.

7 More precisely, we need a polynomial-stretch PRG with constant locality and constant degree, or equivalently,
a polynomial-stretch PRG which can be computed by a constant-depth (NC0) arithmetic circuit. For brevity,
through the introduction we refer to such a PRG as being local and implicitly assume the additional constant-
degree requirement.
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the polynomial-stretch PRGs in NC0 needs to be replaced by an arithmetic analogue. We propose candidates
for such arithmetic PRGs that generalize the boolean candidates from [29, 11] and can be shown to resist
known classes of attacks. While the security of these PRG candidates remains to be further studied, there
are no apparent weaknesses that arise from increasing the field size.

The final, and most interesting, step is a constant-overhead protocol for vector-OLE. As noted above,
the protocol obtained in this step is independently useful for applications, and our implementation of this
protocol beats competing approaches not only asymptotically but also in terms of its concrete efficiency.

Our starting point is the code-based OLE protocol from [47, 36]. This protocol can be based on any ran-
domized linear encoding scheme E over F that has a the following “LPN-style” pseudorandomness property:
If we encode a message x ∈ F and replace a small random subset of the symbols by uniformly random field
elements, the resulting noisy codeword is pseudorandom. For most linear encoding schemes this appears to
be a conservative assumption, since there are very few linear codes for which efficient decoding techniques
are known. The OLE protocol proceeds by having Alice compute a random encoding y = E(x) and send a
noisy version y′ of y to Bob. Bob returns c′ = ay′ + b to Alice, where b = E(b) is a random linear encoding
of b. Knowing the noise locations, Alice can decode c = ax+b from c′ via erasure-decoding in the linear code
defined by E. If we ignore the noise coordinates, c′ does not reveal to Alice any additional information about
(a, b) except the output ax + b. However, the noise coordinates can reveal more information. To prevent
this information from being leaked, Alice uses oblivious transfer (OT) to selectively learn only the non-noisy
coordinates of c′.

An attempt to extend the above protocol to the case of vector-OLE immediately encounters a syntactic
difficulty. If the single value a is replaced by a vector a, it is not clear how to “multiply” y′ by a. A
workaround taken in [36] is to use a “multiplicative” encoding scheme E based on Reed-Solomon codes. The
encoding and decoding of these codes incurs a polylogarithmic computational overhead, and the high noise
level required for defeating known list-decoding algorithms results in a poor concrete communication rate.
The algebraic nature of the codes also makes the underlying intractability assumption look quite strong. It
is therefore desirable to base a similar protocol on other types of linear codes.

Our first idea for using general linear codes is to apply “vector-OLE reversal.” Concretely, we apply a
simple protocol for reducing vector-OLE to the computation of ax + b where a is the input of Bob, x and
b the are the inputs of Alice, and the output is delivered to Bob. Now a general linear encoding E can be
used by Bob to encode its input a, and since x is a scalar Alice can multiply the encoding by x and add an
encoding of b. If we base E on a linear-time encodable and decodable code, such as the code of Spielman [52],
the protocol can be implemented using only O(w) field operations. The problem with this approach the is
that the pseudorandomness assumption looks questionable in light of the existence of an efficient decoding
algorithm for E. Even if the noise can chosen in a way that still respects linear-time erasure-decoding but
makes error-correction intractable (which is not at all clear), this would require a high noise rate and hurt
the concrete efficiency.

Our final idea, which may be of independent interest, is that instead of requiring a single encoding E to
simultaneously satisfy both “hardness” and “easiness” properties, we can combine two types of encoding to
enjoy the best of both worlds. Concretely, we present a general way to combine any linear code C1 that has
a fast encoder and a cryptographic (“LPN-style”) pseudorandomness property with another linear code C2

that supports fast encoding and erasure-decoding (but has no useful hardness properties) to get a randomized
linear encoding E that inherits the pseudorandomness feature from C1 and the efficiency features from C2.
This is achieved by using a noisy output of C1 to mask the output of C2, which we pad with a sufficient
number of 0s. Given the knowledge of the noise locations in the padding zone, the entire C1 component
can be recovered in a “brute-force” way via Gaussian elimination, and one can then compute and decode
the output of C2. When the expansion of E is sufficiently large, the Gaussian elimination is only applied
to a short part of the encoding length and hence does not form an efficiency bottleneck. Using these ideas,
we obtain a constant-overhead vector-OLE protocol under a seemingly conservative assumption, namely
a natural arithmetic analogue of an assumption due to Alekhnovich [1] or a similar assumption for other
linear-time encodable codes, such as the ones proposed in [21]. The assumption is conservative in that it can
apply to codes that do not have the special structure required for fast erasure-decoding.
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1.3 Related Work

In this section we give an overview of known techniques for OLE (with semi-honest security) and compare
these previous techniques to our approach.

First, the work of Gilboa [27] (see also [38]) implements OLE in a field with n-bit elements using n
oblivious transfers of field elements. The asymptotic communication complexity of this approach is larger
than ours by a factor Ω(n).

To be more concrete, in the case of implementing vector-OLE, we can get the following efficiency. Our
vector-OLE implementation uses wn/r bits of communication to implement a width-w vector-OLE on n-bit
field elements, where the rate r can be asymptotically as high as 1/3 and is between 1/5 and 1/10 for our
implementation.8 The OT based approach will need to send at least wn2 bits to do the same. So in cases
where network bandwidth is the bottleneck, we can expect to be faster than the OT based approach by a
factor of nr. This might happen in practice, as can be seen from our experiments. They indicate that on
the platform we used, for 32 ≤ n ≤ 1024 and aiming for 80 or 100 bits of security, our implementation
uses around 20-50 Mbits/sec of bandwidth. Hence if network speed was lower than this, then on the same
machines the OT based approach would be slower than ours as we just explained.

Actually, our vector-OLE implementation outperforms the OT based approach even if communication
is not the bottleneck: The latest timings for semi-honest string OT on the type of architecture we used (2
desktop computers connected by a LAN) are from [13] (see also [38]) and indicate that one OT can be done
in amortized time of about 0.2 µs, so that 0.2nµs would an estimate for the time needed for one OLE. In
contrast, our running times (for 100-bit security) are much faster, even for the smallest case we considered
(n = 32) we have 0.7 µs amortized time per OLE. For larger fields, the picture is similar, for instance
for n = 1024, we obtain 19.5µs per OLE, where the estimate for the OT based technique is about 200µs.
This comparison is accurate for vector-OLE of width w = 20.000 as we used in our experiments for 100 bit
security. We can trivially get smaller w by simply not using some of the w OLEs we generate. Doing the
math we find that we can go to w > 2000 and still be faster than the OT-approach.

A second class of OLE protocols can be obtained from homomorphic encryption schemes: one party
encrypts his input under his own key and sends the ciphertext to the other party. He can now multiply
his input “into the ciphertext” and randomize it appropriately before returning it for decryption. This will
work based on Paillier encryption (see, e.g., [22] for an application of this) but will be very slow because
exponentiation is required for the plaintext multiplication. A more efficient approach is to use (ring)-LWE
based schemes, as worked out in [20] by Damg̊ard et al. Here the asymptotic communication overhead is
worse than ours by a poly-logaritmic factor, at least for prime fields if one uses the so-called SIMD variant
where the plaintext is a vector of field elements. However, the approach becomes very problematic for
extension fields of large degree because key generation requires that we find a cyclotomic polynomial that
splits in a very specific way modulo the characteristic, and one needs to go to very large keys before this
happens. Quantifying this precisely is non-trivial and was not done in [20], but as an example, the overhead
in ciphertext size is a factor of about 7 for a 64-bit prime fields, but is 1850 for F28 . Also, the computational
overhead for ring-LWE based schemes is much higher than ours: even if we pack as many field elements,
say λ, into a ciphertext as possible, the overhead involved in encryption and decryption is superlinear in
λ. Further λ needs to grow with the field size, again the asymptotic growth is hard to quantify exactly,
but it is definitely super logarithmic. In more concrete terms, the computational overhead of homomorphic
encryption makes these protocols slower in practice than the pure OT-based approach (see [38]), which is in
turn generally slower than our approach for the case of vector-OLE.

A final class of protocols is more closely related to ours, namely the code-based approach of Naor and
Pinkas [47] and its generalizations from [36]. The most efficient instantiation of these protocols relies on
the assumption that noisy Reed-Solomon codewords are pseudo-random, whereas we can rely on a similar
assumption for arbitrary linear codes, including linear-time encodable codes that are generated by a sparse
matrix. Because known algorithms for encoding and decoding Reed-Solomon codes require quasi-linear time,

8 The reason these rates are worse than our asymptotic rate of 1/3 is that when implementing, we chose to sacrifice
optimal rate in return for better concrete computational efficiency. See Section 6 for details. Different implemen-
tation choices can make the rate closer to 1/3.

5



these protocols (even when applied to the case of vector-OLE) are asymptotically slower than ours by a
poly-logarithmic factor. As for the communication, we obtain an asymptotic rate of 1/3 for vector-OLE,
whereas the rate of the protocol from [36] is a significantly smaller constant: one loses a factor 2 because
the protocol involves point-wise multiplication of codewords, so codewords need to be long enough to allow
decoding of a Reed-Solomon code based on polynomials of double degree. Even more significantly, on top of
the above, the distance needs to be increased (so the rate decreases) to protect against attacks that rely on
efficient list-decoding algorithms for Reed-Solomon codes. We can avoid this class of attacks by relying on
codes that have no algebraic structure.

An advantage of the OLE protocols based on noisy Reed-Solomon codes from [47, 36] is that they
yield constant-rate (non-vector) OLE directly, without overhead of converting vector-OLE to OLE via an
arithmetic local PRG. Thus, we expect our technique to yield better concrete efficiency only in the case of
vector-OLE.

2 Preliminaries

2.1 The arithmetic setting

Our formalization of secure arithmetic computation follows the one from [36], but simplifies it to account
for the simpler setting of security against semi-honest adversaries. We also refine the computational model
to allow for a more concrete complexity analysis. We refer the reader to [36] for more details.

Functionalities. We represent the functionalities that we want to realize securely via a multi-party variant
of arithmetic circuits.

Definition 1 (Arithmetic circuits). An arithmetic circuit C has the same syntax as a standard boolean
circuit, except that the gates are labeled by ‘+’ (addition), ‘-’ (subtraction) or ‘*’ (multiplication). Each input
wire can be labeled by an input variable xi or a constant c ∈ {0, 1}. Given a finite field F, an arithmetic
circuit C with n inputs and m outputs naturally defines a function CF : Fn → Fm. An arithmetic functionality
circuit is an arithmetic circuit whose inputs and outputs are labeled by party identities. In the two-party case,
such a circuit C naturally defines a two-party functionality CF : Fn1 × Fn2 → Fm1 × Fm2 . We denote by
CF(x1, x2)P the output of Party P on inputs (x1, x2).

Protocols and complexity. To allow for a concrete complexity analysis, we view a protocol as a finite object
that is generated by a protocol compiler (defined below). We assume that field elements have an adversarially
chosen representation by `-bit strings, where the protocol can depend on ` (but not on the representation).
The representation is needed for realizing our protocols in the plain model. When considered as protocols in
the OT-hybrid model, our protocols can be cast in the more restrictive arithmetic model of Applebaum et
al. [5], where the parties do not have access to the bit-length of field elements or their representation, but
can still perform field operations and communicate field elements over the OT channel. Protocols in this
model have the feature that the number of field operations is independent of the field size.

By default, we model a protocol by a RAM program.9 The choice of computational model does not
change the number of field operations, which anyway dominates the overall cost as the field grows. In our
theorem statements we will only refer to the number of field operations T , with the implicit understanding
that all other computations can be implemented using O(T`) bit operations. (Note that T` bit operations
are needed just for writing the outputs of T field operations.)

Protocol compiler. A protocol compiler P takes a security parameter 1k, an arithmetic (two-party) function-
ality circuit C and bit-length parameter ` as inputs, and outputs a protocol Π that realizes C given an oracle
to any field F whose elements are represented by `-bit strings. It should satisfy the following correctness and
security requirements.

9 This choice is related to our use of the linear-time decoding algorithm of Spielman [52], which can only be imple-
mented in linear time in the RAM model (and requires quasi-linear circuit size).
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– Correctness: For every choice of k,C,F, `, any representation of elements of F by `-bit strings, and every
possible pair of inputs (x1, x2) for C, the execution of Π on (x1, x2) ends with the parties outputting
C(x1, x2), except with negligible probability in k.

– Security: For every polynomial-size non-uniform A there is a negligible function ε such that the success
probability of A in the following game is bounded by 1/2 + ε(k):

• On input 1k, the adversary A picks a functionality circuit C, positive integer ` and field F whose
elements are represented by `-bit strings. The representation of field elements and field operations
are implemented by a circuit F output by A. (Note that all of the above parameters, including the
complexity of the field operations, are effectively restricted to be polynomial in k.)

• Let ΠF be the protocol returned by the compiler P on 1k, C, `, instantiating the field oracle F using
F .

• A picks a corrupted party P ∈ {1, 2} and two input pairs x0 = (x01, x
0
2),x1 = (x11, x

1
2) such that

CF(x0)P = CF(x1)P .
• Challenger picks a random bit b.
• A is given the view of Party P in ΠF (xb) and outputs a guess for b.

OLE and vector OLE. We will be particularly interested in the following two arithmetic computations: an
OLE takes an input x ∈ F from Alice and a pair a, b ∈ F from Bob and delivers ax+ b to Alice. Vector OLE
of width w is similar, except that the input of Bob is a pair of vectors a, b ∈ Fw and the output is ax + b.
OLE and vector OLE can be viewed as arithmetic analogues of bit-OT and string-OT, respectively. Indeed,
in the case F = F2, the OLE functionalities coincide with the corresponding OT functionalities up to a local
relabeling of the inputs. An arithmetic generalization of the standard “GMW Protocol” [31, 36] compiles
any arithmetic circuit functionality C into a perfectly secure protocol that makes O(s×) calls to an ideal
OLE functionality, where s× is the number of multiplication gates, and O(|C|) field operations. Hence, to
securely compute C with O(|C|) field operations in the plain model it suffices to realize n instances of OLE
using O(n) field operations.

2.2 Decomposable affine randomized encoding (DARE)

Let f : F` → Fm where F is some finite field.10 We say that a function f̂ : F` × Fρ → Fm is a perfect
randomized encoding [33, 8] of f if for every input x ∈ F`, the distribution f̂(x; r) induced by a uniform

choice of r
$←Fρ, “encodes” the string f(x) in the following sense:

1. (Correctness) There exists a decoding algorithm Dec such that for every x ∈ F` it holds that

Pr
r

$← Fρ
[Dec(f̂(x; r)) = f(x)] = 1.

2. (Privacy) There exists a randomized algorithm S such that for every x ∈ F` and uniformly chosen r
$←Fρ

it holds that

S(f(x)) is distributed identically to f̂(x; r).

We say that f̂(x; r) is decomposable and affine if f̂ can be written as f̂(x; r) = (f̂0(r), f̂1(x1; r), . . . , f̂n(x`; r))

where f̂i is linear in xi, i.e., it can be written as aixi + bi where the vectors ai and bi arbitrarily depend on
the randomness r.

It follows from [34] (cf. [10]) that every single-output function f : Fd → F which can be computed
by constant-depth circuit (aka NC0 function) admits a decomposable encoding which can be encoded and
decoded by an arithmetic circuit of finite complexity D which depends only in the circuit depth. Note
that any multi-output function can be encoded by concatenating independent randomized encodings of the
functions defined by its output bits. Thus, we have the following:

10 The following actually holds even for the case of general rings.
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Fact 1 Let f : F` → Fm be an NC0 function. Then, f has a DARE f̂ which can be encoded, decoded and
simulated by an arithmetic circuit of size O(m) where the constant in the big-O notation depends on the
circuit depth.11

We mention that the circuits for the encoding, decoder, and simulator can be all constructed efficiently given
the circuit for f .

3 Vector OLE of large width

In this section, our goal is to construct a semi-honest secure protocol for Vector OLE of width w over the
field F = Fp for parties Alice and Bob.

As a stepping stone, we will first implement a “reversed” version of this that can easily be turned into
what we actually want: for the Reverse vector OLE functionality, Bob has input a ∈ Fw, while Alice has
input x ∈ F, b ∈ Fw, and the functionality outputs nothing to Alice and a · x+ b to Bob. The latter will be
based on a special gadget (referred to as fast hard/easy code) that allows fast encoding and decoding under
erasures but semantically hides the encoded messages in the presence of noise. We describe first this gadget
and then give the protocol.

3.1 Ingredients

The main ingredient we need is a public matrix M over F with the following pseudorandomness property:
If we take a random vector y in the image of M , and perturb it with “noise”, the resulting vector ŷ is
computationally indistinguishable from a truly random vector over F. Our noise distribution corresponds to
the p-ary symmetric channel with crossover over probability µ, that is, ŷ = y+ e where for each coordinate
of e we assign independently the value zero with probability 1− µ and a uniformly chosen non-zero element
from F with probability µ. We let D(F)tµ denote the corresponding noise distributions for vectors of length
t (and occasionally omit the parameters F, µ and t when they are clear from the context). For concreteness,
the reader may think of µ as a small constant, say 1/4, however µ can also be chosen so that it tends to 0
when the security parameter k tends to infinity. The properties needed for our protocol are summarized in
the following assumption, that will be discussed in Section 7.

Assumption 2 (Fast pseudorandom matrix) There exists a noise rate µ = µ(k) < 1/2 and an efficient
randomized algorithm M that given a security parameter 1k and a field representation F, samples a k3 × k
matrix M over F such that the following holds:

1. (Linear-time computation) The mapping fM : x 7→ Mx can be computed in linear-time in the output
length. Formally, we assume that the sampler outputs a description of an O(k3)-size arithmetic circuit
over F for computing fM .

2. (Pseudorandomness) The following ensembles (indexed by k) are computationally indistinguishable for
poly(k) adversaries

(M,Mr + e) and (M,z),

where M
$←M(1k, p), r

$←Fkp, e
$←Dµ(Fp)` and z

$←Fk3p .

3. (Linear independence) If we sample M
$←M(1k,F) and keep each of the first k log2 k rows independently

with probability µ (and remove all other rows), then, except with negligible probability in k, the resulting
matrix has full rank.

We will also need a linear error correcting code Ecc over F with constant rate R and linear time encoding
and decoding, where we only need decoding from a constant fraction of erasures µ′ which is slightly larger
than the noise rate µ. (For µ = 1/4 we can take µ′ = 1/3.) Such codes are known to exist (cf. [52]) and can
be efficiently constructed given a black-box access to F.

11 This hidden constant corresponds to the maximal complexity of encoding an output of f . The latter is at most
cubic in the size of the branching program that computes fi (and can be even smaller for some concrete useful
special cases).
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Fast hard/easy code We combine the “fast code” Ecc and the “fast pseudorandom code”M into a single
gadget that provides fast encoding and decoding under erasures, but hides the encoded message when deliv-
ered through a noisy channel. The gadget supports messages of length w = Θ(k3). Our gadget is initialized
by sampling a k3 × k matrix M over F using the randomized algorithm M promised in Assumption 2. We
view the matrix M as being composed of two matrices M top with u = 2k log2 k rows and k columns, placed
above Mbottom which has v = k3−u rows and k columns. Let w = Rv = Θ(k3) be a message length parameter
(corresponding to the width of the vector-OLE). Note that our Ecc encodes vectors of length w into vectors
of length v.

For a message a ∈ Fw, and random vector r ∈ Fk, define the mapping

Er(a) = Mr + (0u ◦ Ecc(a)),

where ◦ denotes concatenation (and so (0u ◦ Ecc(a)) is a vector of length u + v). We will make use of the
following useful properties of E:

1. (Fast and Linear) The mapping Er(a) can be computed by making only O(k3) arithmetic operations.
Moreover, it is a linear function of (r,a) and so Er(a) + Er′(a′) = Er+r′(a+ a′).

2. (Hiding under errors) For any message a and r
$←Fk e $←D(F)k

3

µ , the vector Er(a) +e is pseudorandom
and, in particular, it computationally hides a.

3. (Fast decoding under erasures) Given a random (1 − µ)-subset I of the coordinates of z = Er(a) (i.e.,
each coordinate is erased with independently probability µ) it is possible to recover the vector a, with
negligible error probability, by making only O(|z|) = O(k3) arithmetic operations. Indeed, letting I0
(resp., I1) denote the coordinates received from the u-prefix of z (resp., v-suffix of z), we first recover r
by solving the linear system zI0 = (M topr)I0 via Gaussian elimination in O(k3) arithmetic operations. By
Assumption 2 (property 3) the system is likely to have a unique solution. Then we compute (Mbottomr)I1
in time O(k3), subtract from (Er(a))I1 to get Ecc(a)I1 , from which a can be recovered by erasure
decoding in time O(k3).

3.2 From Fast hard/easy code to reverse vector-OLE

Our protocol uses the gadget E to implement a reversed vector-OLE. In the following we assume that the
parties have access to a variant Oblivious Transfer of field elements which we assume (for now) is given as
an ideal functionality. To be precise, the variant we need is one where Alice sends a field element f , Bob
chooses to receive f , or to receive nothing, while Alice learns nothing new.

We describe the protocol under the assumption that the width w is taken to be Θ(k3). A general value of
w will be treated either by padding or by partitioning into smaller blocks of size O(k3) each. (See the proof
of Theorem 3.)

Construction 1 (Reverse Vector OLE protocol) To initialize the protocol one of the parties samples

the matrix M
$←M(1k,F) and publish it. The gadget E (and the parameters u, v and w) are now defined

based on M and k as described above.

1. Bob has input a ∈ Fw. He selects random r ∈ Fk, chooses e according to D(F)u+vµ and sends to Alice
the vector c = Er(a) + e.

2. Alice has input x, b. She chooses r′ ∈ Fk at random and computes d = x · c+ Er′(b).
3. Let I be an index set that contain those indices i for which ei = 0. These are called the noise free

positions in the following. The parties now execute, for each entry i in d, an OT where Alice sends di.
If i ∈ I, Bob chooses to receive di, otherwise he chooses to receive nothing.

4. Notice that, since the function E is linear, we have

d = Exr+r′(xa+ b) + xe.

Using subscript-I to denote restriction to the noise-free positions, what Bob has just received is

dI = (Es(xa+ b))I ,
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where s = xr + r′. Using the fast-decoding property of E (property 3), Bob recovers the vector xa + b
(by making O(k3) arithmetic operations) and outputs xa+ b.

We are now ready to show that the reverse vector OLE protocol works:

Lemma 1. Suppose that Assumption 2 holds. Then Construction 1 implements the Reverse Vector-OLE
functionality of width w = Θ(k) over F with semi-honest and computational security in the OT-hybrid
model. Furthermore, ignoring the cost of initialization, the arithmetic complexity of the protocol is O(w).

Proof. The running time follows easily by inspection of the protocol. We prove correctness. By Assumption 2
(property 3), except with negligible probability Bob recovers the vector s correctly. Also, by a Chernoff
bound, the v-suffix of the error vector e contains at most µ′v non-zero coordinates. Therefore, the decoding
procedure of the error-correcting code succeeds.

As for privacy, consider first the case where Alice is corrupt. We can then simulate Bob’s message with a
random vector in Fu+v which will be computationally indistinguishable by Assumption 2. If Bob is corrupt,
we can simulate what Bob receives in OTs given Bob’s output xa+ b, namely we compute f = Es(xa+ b)
for a random s and sample a set I as in the protocol (each coordinate i ∈ [k3] is chosen with probability
1− µ). Then for the OT in position i, we let Bob receive f i if i ∈ I and nothing otherwise. This simulates
Bob’s view perfectly, since in the real protocol s = xr + r′ is indeed uniformly random, and the received
values for positions in I do not depend on x or e, only on s and Bob’s output. ut

3.3 From reverse vector-OLE to vector-OLE

Finally, to get a protocol for the vector OLE Functionality, note that we can get such a protocol from the
Reverse vector OLE functionality:

Construction 2 (vector-OLE Protocol) Given an input a, b ∈ Fw for Bob, and x ∈ F for Alice, the
parties do the following:

1. Call the Reverse Vector-OLE functionality, where Bob uses input a and Alice uses input x and a randomly

chosen b′
$←Fw. As a result, Bob will receive xa+ b′.

2. Bob sends b+ (xa+ b′) to Alice. Now, Alice outputs (b+ (xa+ b′)− b′ = xa+ b.

It is trivial to show that this implements the vector-OLE functionality with perfect security. Combining
the above with Lemma 1, we derive the following theorem.

Theorem 3. Suppose that Assumption 2 holds. Then, there exists a protocol that implements the vector-
OLE functionality of width w over F with semi-honest computational security in the OT-hybrid model with
arithmetic complexity of O(w) + poly(k).

Proof. For w < k3, the theorem follows directly from Construction 2 and Lemma 1 (together with standard
composition theorem for secure computation). The more general case (where w is larger) follows by reducing
long w-vector OLE’s into t calls to w0-vector OLE for w0 = Θ(k3) and t = w/w0. Since initialization is only
performed once (with a one-time poly(k) cost) and M is re-used, the overall complexity is poly(k)+O(tw0) =
poly(k) +O(w) as claimed. ut

Remark 1 (Implementing the OTs). First, note that the OT variant we need can be implemented efficiently
for large fields as follows: Alice chooses a short seed for a PRG and to send field element f , she sends
f ⊕PRG(seed) and then does an OT where she offers Bob seed and a random value. If Bob wants to receive
f , he chooses to get seed, otherwise he choose the random value.

Our protocol employs O(w) such OTs on field elements, or equivalently, on strings of length log |F| bits.
For sufficiently long strings (i.e., w = poly(k) for sufficiently large polynomial) one can get these OT very
cheaply both practically and theoretically.

Indeed, the implementation we described (which is similar to an observation from [35]), can be done
with optimal asymptotic complexity of O(w log |F|) bit operations assuming the existence of a linear-stretch
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pseudorandom generator G : {0, 1}k → {0, 1}2k which is computable in linear-time O(k). Moreover, such a
generator can be based on the binary version of Assumption 2, as follows from [9]. In practice, we can get
the OT’s very efficiently via OT extension and perhaps (for very large fields) using a PRG based on AES
which is extremely efficient on modern Intel CPUs.

Remark 2 (On the achievable rate). Note that the full vector OLE protocol communicates u+v field elements,
does u+ v OTs and finally sends w field elements. The rate is defined as the size of the output (w) divided
by the communication complexity. Now, asymptotically, we can ignore u since it is o(v). Furthermore, v is
the length of the code Ecc, which needs to be about w/(1−µ) to allow for erasure decoding w values from a
fraction of µ random erasures. By the previous remark, an OT can be done at rate 1, so it counts as 1 field
element. So we find that the asymptotic rate approaches (1 − µ)/(3 − µ) (e.g., 3/11 ≈ 1/4 for µ = 1/4). If
Assumption 2 holds for any constant error rate µ > 0 then we can obtain rate approaching 1/3− ε for any
constant ε > 0. Furthermore, making Assumption 2 for, say, µ(k) = 1/ log2 k, gives us an asymptotic rate of
1/3 (i.e., the ratio between w and the number of communicated field elements tends to 1/3 as w and k tend
to infinity). Note that in the context of binary codes, LPN-style assumptions with sub-constant µ are quite
standard (for instance, such assumptions underly Alekhnovich’s construction of public-key encryption from
LPN [1]).

4 Batch-OLEs

In this section we implement n copies of OLE (of width 1) with constant computational overhead based
on vector-OLE with constant computational overhead and a polynomial-stretch arithmetic pseudorandom
generator of constant depth. The transformation is similar to the one described in [35] for the binary setting,
and is based on a combination Beaver’s OT extension [14] with a decomposable randomized encoding.

4.1 From vector-OLE to NC0 functionalities

We begin by observing that local functionalities can be reduced to vector-OLE with constant computational
overhead. This follows from an arithmetic variant of Yao’s protocol [55] where the garbled circuit is replaced
with fully-decomposable randomized encoding. For simplicity, we restrict our attention to functionalities in
which only the first party Alice gets the input.

Lemma 2. Let F be a finite field and let f be a two-party NC0 functionality that takes `1 field elements
from the sender, `2 field elements from the receiver, and delivers m field elements to the receiver. Then,
we can securely compute f with an information-theoretic security in the semi-honest model with arithmetic
complexity of O(m) and by making O(`2) calls to ideal O(m/`2)-width OLE.

The constant in the big-O notation depends on the circuit depth of f .

Proof. View f as a function over F` where ` = `1 + `2. By Fact 1, there exists a DARE f̂ which can be
encoded and decoded by an O(m)-size arithmetic circuit. Recall, that

f̂(x; r) = (f̂0(r), (f̂i(xi; r))i∈[`]), where f̂i(xi; r) = xiai(r) + bi(r).

Since the encoding is computable by O(m)-size circuit, it is also possible to take r and collectively compute
(ai(r), bi(r))i∈[`] by O(m) arithmetic operations. Also, the total length of these vectors is O(m).

Let us denote by A∪B the partition of [`] to the inputs given to Alice and the inputs given to Bob, and
so |A| = `1 and |B| = `2. Let w = m/`2 and assume an ideal vector OLE of width w. Given an input xA for
Alice and xB for Bob, the parties use Yao’s garbled-circuit protocol to compute f as follows:

– Bob selects randomness r
$←Fρ for the encoding and sends f̂0(r) together with (f̂i(xi; r))i∈B .
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– For every i ∈ A the parties invoke width w-OLE where Alice uses xi as her input and Bob uses
(ai(r), bi(r)) as his inputs. If the length Wi of ai(r) and bi(r) is larger than w, the vectors are par-
titioned to w-size blocks and the parties use d(Wi/w)e calls to w-width OLE. (In the j-th call Bob uses
the j-th block of (ai(r), bi(r)) as his input and Alice uses xi as her input.)

– Finally, Alice aggregates the encoding f̂(x; r), applies the decoder and recovers the output f(x).

It is not hard to verify that both parties can be implemented by making at most O(`) arithmetic operations.
(In fact, they can be implemented by O(`)-size arithmetic circuits). Moreover, the number of call to the w
vector-OLE is

∑
i∈AdWi/we = O(m/w) = O(`2). The correctness of the protocol follows from the correctness

of the DARE. Assuming perfect OLE, the protocol provides perfect security for Bob (who gets no message
during the protocol) and for Alice (whose view can be trivially simulated using the perfect simulator of the
DARE). ut

4.2 From pseudorandom-OLE to OLE

The following lemma is an arithmetic variant of Beaver’s reduction from batch-OT to OT with “pseudoran-
dom” selection bits.

Lemma 3. Let G : Fk → Fn be a pseudorandom generator. Consider the two-party functionality g that takes
a seed s ∈ Fk from Alice and n pairs of field elements (ai, bi), i ∈ [n] from Bob and delivers to Alice the value
yiai + bi where y = G(s). Then, in the g-hybrid model it is possible to securely compute n copies of OLE of
width 1 with semi-honest computational security and complexity of O(n) arithmetic operations and a single
call to g.

Proof. Let x = (xi)i∈[n] be Alice’s input and let (ai, bi), i ∈ [n] be Bob’s input.

1. Alice and Bob call the protocol for g where Alice uses a random seed s
$←Fk as an input and Bob uses the

pairs (ai, ci), i ∈ [n] where ci
$←F are chosen uniformly at random. Alice gets back the value ui = yiai+ci

for i ∈ [n].
2. Alice sends to Bob the values ∆i = xi − yi, for every i ∈ [n].
3. Bob responds with vi = ∆iai + (bi − ci) for every i ∈ [n].
4. Alice outputs zi = ui + vi for every i ∈ [n].

It is not hard to verify that correctness holds, i.e., zi = xiai+bi. To prove security, observe that Alice’s view,
which consists of (x, s,u,v), can be perfectly simulated. Indeed, given an input x and an output z: Sample

s
$←Fk together with u

$←Fn and set v = z−u. As for Bob, his view consists of a, b, c and a pseudorandom
string ∆. We can therefore simulate Bob’s view by sampling ∆ (and c) uniformly at random. ut

4.3 From NC0 PRG to batch-OLE

To get our final result, we need a polynomial-stretch NC0 arithmetic pseudorandom generator. In fact, it
suffices to have a collection of such PRG’s.

Assumption 4 (polynomial-stretch NC0 PRG (arithmetic version)) There exists a polynomial-time

algorithm that given 1k and a field representation F samples an NC0 mapping G : Fk → Fk2 (represented
by a circuit) such that with all but negligible probability G is a pseudorandom generator against poly(k)
adversaries.

Assumption 4 is discussed in Section 7. For now, let us mention that similar assumptions were made in the
binary setting and known binary candidates have natural arithmetic variants.

Combining Lemmas 2 with 3, we get the following theorem.

Theorem 5. Suppose that Assumption 4 holds. Then, it is possible to securely compute n copies of OLE over
F in the semi-honest model by making O(n/k) calls to ideal O(k)-width OLE and O(n) + poly(k) additional
arithmetic operations.
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Proof. Let t = n/k2. Implement the OLE’s using t batches each of size k2. By Lemmas 2 and 3, each such
batch can be implemented by making k calls to ideal O(k)-width OLE and O(k2) additional arithmetic
operations. Since the initialization of the pseudorandom generator has a one-time poly(k) cost, we get the
desired complexity. ut

Combining Theorems 3 and 5, together with an optimal OT implementation (which by Remark 1 follows
from standard OT), and plugging in standard composition theorem for secure computation, we derive the
following theorem.

Corollary 1 (main result). Suppose that Assumptions 2 and 4 hold, and a standard binary OT exists.
Then, there exists a protocol for securely computing n copies of OLE over F with semi-honest computational
security, and arithmetic complexity of O(n) + poly(k).

5 Applications of Vector-OLE

In the previous section we used vector-OLE only as a tool to obtain OLE. However, there are applications
where vector-OLE is precisely what we need.

First, it is easy to see that a secure multiplication of an n× n matrix by a length-n vector reduces to n
instances of width-n vector-OLE. Therefore, using our implementation of vector-OLE, it is straightforward
to multiply a matrix by a vector with with O(n2) field operations, which is asymptotically optimal, and with
a small concrete overhead. This can be used as a building block for other natural secure computation tasks,
such as matrix multiplication and other instances of secure linear algebra; see [18, 45] for other examples
and motivating applications.

Another class of applications is where a party holds some object that needs to be compared to entries
in a database held by another party. The characteristic property is that the input of party is fixed whereas
the input from the other party varies (as we run through the database). A good example is secure face
recognition, where a face has been measured in some location and we now want to securely test if the
measurement is close to an object in a database – containing, say, suspects of some kind. This reduces to
computing the Euclidean distance from one point in a space of dimension m (say) to n points in the same
space, and then comparing these distances, perhaps to some threshold. It is clearly sufficient to compute the
square distance, so this means that what we need to compute will numbers of form∑

i

(xi − yji )
2 =

∑
i

x2i + (yji )
2 − 2xiy

j
i ,

where (x1, ..., xm) is the point held by the client, and (yj1, ..., y
j
m) is the j′th point in the database. Clearly,

additive shares of x2i and (yji )
2 can be computed locally, while additive shares of 2xiy

j
i can be done using

vector-OLE, namely we fix i and compute 2xi · (y1i , ..., yni ).
Once we have additive shares of the square distances, the comparisons can be done using standard Yao-

garbling. Since this only requires small circuits whose size is independent of the dimension m, this can be
expected to add negligible overhead.

We note that the secure face recognition problem was considered in [22], where a solution based on
Paillier encryption was proposed (see [51] for optimizations). This adds a very large computational overhead
compared our solution, since an exponentiation is required for each product 2xiy

j
i .

Similar applications of vector-OLE can apply in many other contexts of securely computing on numerical
data that involve computations of low-degree polynomials. See, e.g., [17, 25] and references therein for some
recent relevant works in the context of secure machine learning.

6 Implementation

We have implemented the vector-OLE protocol. This is the most practical of our constructions and, as we
explained in the previous section, it has applications of its own, even without the conversion to OLEs of
width 1.
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6.1 Choice of the matrix M

For the vector OLE protocol, we need a fast pseudorandom matrix M (see Assumption 2). For this, we have
chosen to use a random d-sparse matrix for a suitable constant d. This means we are basing ourselves on
Assumption 6 from Section 7, which (together with Lemma 4) essentially implies that a random d-sparse
matrix is likely to satisfy some combinatorial properties (good “expansion” and “dual distance”) which leads
to pseudorandomness (i.e., satisfy Assumption 2).

Our parameters are based on the best known distinguishing attack from [56] whose complexity is expo-
nential in H2(µ)t where µ is the noise rate, H2(·) is the binary entropy function, and t is the size of the
smallest set S of rows in M that have a joint support of t(1−µ) (i.e., S is “shrinking” by a factor of (1−µ).)
Correspondingly, to get b bits of security, we select the size of M , such that, except with tiny probability,
every set S of at most b/H2(µ) rows has a support of at least (1−µ)|S|. This level of expansion is somewhat
optimistic, but still seems to defend against the best known attacks.12 The choice of noise rate is a tradeoff:
if it is too small we have to increase the security parameters, if it is too large the (communication) rate will
be bad. We chose noise rate 1/4 because it allows communication rates up to 1/5 as we shall see later and
also allows us to be secure against known attacks with reasonably small parameters for the matrix size.

In the earlier theory sections we have assumed that the number of rows in M is Θ(k3). This was because
we wanted to amortize away the O(k3) amount of work needed to do Gaussian elimination using the top
part of the matrix. However, to achieve this number of rows in the concrete security analysis we would need
to go to rather large values of k, and this would create some issues with memory management. Hence, to get
a more practical version with a relatively small footprint, we chose to settle for O(k2) rows. Then, for 80-bit
security and d = 10 it turns out that we will need approximately k = 182 columns and k2 rows, while for
100-bit security we need k = 240.

Note that once the number of rows and columns is fixed, this also fixes the parameters u, v from the
vector OLE protocol.

6.2 ECC: Using Luby Transform Codes

It remains to consider the erasure correcting code ECC. For this, we want to use Luby Transform (LT) codes
[43]. LT codes have extremely simple and efficient en- and decoding algorithms, using only field addition
and subtraction, no multiplications or inversions are needed. On the other hand, LT codes were designed for
a streaming scenario, where one continues the stream until the receiver has enough data to decode. In our
case, we must stop at some finite codeword size, and this means we will have a non-negligible probability
that decoding fails. In practice, one can think of this as a small but constant error probability, say 1%. On
the other hand, this be detected, and the event that decoding fails only depends on the concrete choice of
LT code and the choice of the noiseless positions.

Since the player A knows the LT code to be used and is also the one who chooses the noise pattern, he
can simply choose a random noise pattern subject to the condition that decoding succeeds.

The protocol will then always terminate successfully, but we need to make a slightly stronger computa-
tional assumption to show that the protocol is secure: the pseudorandomness condition for the matrix M
must hold even if we exclude, say 1% of the possible noise patterns. It turns out that, given the known
attacks, excluding any 1% of the noise patterns makes no significant difference.13

More concretely we instantiate the encoding function Ecc : Fw → Fv over the Robust Soliton distribution
also defined in [43]. One generates a output symbol by sampling a degree dec from that distribution and

12 More conservative choices lead to provable security against large families of attacks, however, we believe that the
security proofs may not be tight. See the discussion in Section 7 and in [56].

13 Indeed, since we remove a small subset of all possible noise patters, the remaining patterns cannot be linearized,
i.e., cannot be written as a low-degree function of few fresh variables, and so known attacks do not seem to apply.
Of course, one should make sure that the excluded noise patterns do not correlate somehow with the choice of
the “pseudoranodm” matrix M (say in a way that leaves few “special” coordinates of the secret random seed, r,
uncovered). However, in our case, the matrix M is chosen at random independently of the choice of the LT-code
(which determines the excluded noise patterns). See also the discussion in Section 7.
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defining the symbol as the sum of dec input symbols chosen uniformly among alle the input symbols.
This distribution is defined over two constant parameters δ and c. Here δ denotes the probability of failed
decoding, which together with c adds extra weight to the probability of smaller degree encoding symbols. The
two parameters also determine a constant β for which v = wβ, but since v and w is fixed in our construction,
β is also fixed, and we have one degree of freedom less. Thus we instantiate the distribution with parameters
w, v and δ and let those determine c such that β = v/w.

Note that δ may deviate from the actual probability of failed decoding λ depending on the concrete code.
We estimate λ by testing our code on 50, 000 random codewords. Note that we fixed the value of v earlier,
as a result of choosing M . Given this, we tested different combinations of w and δ to achieve a code decodes
w/4 errors with probability λ. Our concrete parameters are shown in Table 1. Here is presented different
choices for w and δ that shows how one may trade width for failure probability. In the implementation we
will use the codes corresponding to δ = 0.01 for both security parameters.

Table 1: Implementation parameters

k u v w δ λ

182 244 33, 124

5.000 0.001 0.0017

10,000 0.01 0.016

14,000 0.1 0.095

240 320 57, 600

10.000 0.001 0.0003

20,000 0.01 0.015

23,000 0.1 0.069

6.3 Doing Oblivious Transfers

In the vector OLE protocol we need 1 OT for each row of M . It is natural to implement this via OT extension
which can be done very efficiently in a situation like ours where we need a substantial number of OTs. For
instance, in [37, 13], an amortized time of about 0.2 µs per semi-honestly secure string OT was obtained,
when generating enough of them in one go. Note that in the protocol specification, we required a special
OT variant where one message is sent and the receiver chooses to get it or not. But this can of course be
implemented using standard 1-2 string OT where the sender offers the message in question and a dummy.

In order to not require a specific relation between the number of OTs produced by one run of an OT
extension and what our protocol requires, we have assumed that we precompute a number of random OTs,
which we then adjust to the actual values using standard techniques. The adjustment requires one message
in both directions where the first one can be sent in parallel with the message in the Vector OLE protocol,
so we get a protocol with a total of 3 messages.

We have not implemented the OT extension itself, instead we simulate the data and communication
needed when using the preprocessed OTs. The hypothesis is that that time required to create the random
OTs in the first place is insignificant compared to the rest of the computation required. We discuss below
the extent to which this turned out to be true.

6.4 Communication Overhead

Having fixed the parameter choices, we can already compute the communication we will need: we can ignore
the communication relating to the top part of the matrix M as this is responsible for less than 1% of the
communication. Then, by simple inspection of the protocol, one sees that we need to send v+w field element
and do v OTs. We implement the OTs directly from 1-2 OT which means an OT costs communication of 2
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field elements and 1 bit. So we get a total of 3v+w field elements (plus v bits, which we can ignore when the
field is large). With our choice of LT code, v is roughly 3w, so we have 10w field elements to send. Hence the
rate is indeed constant, as expected, namely 1/10. Accepting a larger failure probability for LT decoding, we
could get a rate of roughly 1/7. As explained in Remark 2, the best we can hope for asymptotically is about
1/4 when the noise rate is 1/4.

There are two reasons why we do not reach this goal: first, we chose to use LT codes for erasure correc-
tion to optimize the computational overhead, but this comes at the price of a suboptimal rate. Second we
implement the OTs at rate 1/2. As explained in Remark 1, rate (almost) 1 is possible, but only for large
fields. So for fields of size 1000 bits or more, we believe the rate of our implementation can be pushed to
about 1/5 without significantly affecting its concrete computational overhead.

6.5 Test Set-up and Results

Our set-up consists of two identical machines, each with 32GB RAM and a 64-bit i7-3770K CPU running at
3.5GHz. The machines are connected on a 1GbE network with 0.15ms delay.

A b-bit field is instantiated by chosing Fp for the largest prime p < 2b. All matrix operations are optimized
to that of sparse matrices except for the Gaussian elimination, where we construct an augmented matrix and
do standard row reduction. All parameters are loaded into memory prior to the protocol execution including
the matrix M , the LT code and a finite set of test vectors.

First a version is implemented using the GNU Multiple Precision Arithmetic Library for finite field
arithmetic. We benchmark this version with b-bit field for b ∈ {32, 64, . . . , 2048}. In this setting we allocate
2b bits for each element once, such that we never have to allocate more e.g. at multiplication operations,
which consists of a mul and mod GMP call. We further replace the mod call after addition and subtraction
with a conditional sum.

Since most computation in the protocol includes field operations, we optimized the finite field for 32-bit
and 64-bit versions. Here the 32-bit version only use half of the machine’s word size, but offers fast modulo
operation after a multiplication with the div instruction. The 64-bit version utilizes the full word size, but
relies on the compiler’s implementation of the modulo operation for uint128 t as supported in GCC-based
compilers. For random number generation, we use the Mersenne Twister SFMT variant instead of GMP.

In Table 2 and Table 3 it is shown how the GMP and the optimized version compare for respectively
k = 182 and k = 240. Here, we measure the amortized time per single OLE, or more precisely, since the
protocol securely computes the multiplication of a scalar by a vector of length w, we divide the time for
this by w to get the time per oblivious multiplication. We obtain these times by having as many threads as
possible run the protocol in a loop and counting only successful executions. These amortized timings are also
depicted in Figure 1. Afterwards we run the protocol sequentially in a single thread and measure how fast
we can execute one instance of the protocol. This indicates the latency, i.e., the time taken from the protocol
starts until data is ready. Finally, since we use much less network speed than what is available, we present
the network bandwidth we actually use, as this may become a limiting factor in low-bandwidth networks.
The reason why the optimized versions use more bandwidth than corresponding GMP versions is that they
are computationally faster, so the network is forced to handle the same amount of communication in shorter
time. Then for larger fields, bandwidth usage increases because larger field elements need to be sent, but for
the largest field size (2048 bits) we see a decrease because computation now has slowed down to the extent
that there is more than twice the time to send field elements of double size (compared to 1024 bits).

We did not list the communication complexity, but this is easily computed as n/r = 10n where n is bit
size of field elements and r = 1/10 is the rate.

We note the protocol latency for 100-bit security is about 2-3 times that of 80-bit security. But for the
amortized times the increase in security parameter comes cheaply because we double w in going from 80 to
100-bit security.

In our setup, we need to execute between 2 and 3 OTs per single OLE. Given the results from [13] which
were obtained on an architecture similar to ours, we can expect these to take an amortised time of 0.6 µs,
which as expected becomes insignificant as the field size grows, but cannot be ignored for the optimized
version on smaller fields.
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Table 2: Benchmark of the Vector-OLE protocol for k = 182 and w = 10, 000

Field size Version time per OLE Latency Consumed Bandwidth

32 bit Optimized 0.56µs 0.04s 45.53 MB/s

64 bit Optimized 1.00µs 0.14s 50.83 MB/s

32 bit GMP 3.65µs 0.26s 6.98 MB/s

64 bit GMP 3.66µs 0.27s 13.92 MB/s

128 bit GMP 4.24µs 0.31s 24.03 MB/s

256 bit GMP 6.37µs 0.47s 31.98 MB/s

512 bit GMP 9.58µs 0.64s 42.50 MB/s

1024 bit GMP 18.29µs 1.15s 44.53 MB/s

2048 bit GMP 50.85µs 2.87s 32.04 MB/s

Table 3: Benchmark of the Vector-OLE protocol for k = 240 and w = 20, 000

Field size Version time per OLE Latency Consumed Bandwidth

32 bit Optimized 0.70µs 0.12s 31.70 MB/s

64 bit Optimized 1.14µs 0.25s 38.86 MB/s

32 bit GMP 3.96µs 0.48s 5.57 MB/s

64 bit GMP 3.97µs 0.48s 11.12 MB/s

128 bit GMP 4.52µs 0.56s 19.56 MB/s

256 bit GMP 6.61µs 0.82s 26.75 MB/s

512 bit GMP 9.93µs 1.15s 35.59 MB/s

1024 bit GMP 19.48µs 2.22s 36.29 MB/s

2048 bit GMP 51.73µs 5.45s 27.34 MB/s

As computation is the bottleneck compared to network bandwidth, we identify which part of the com-
putation is the most expensive. We test the optimized 32-bit version for k = 182 and focus on the Gaussian
elimination, the Luby encoding and decoding and a matrix-vector product c = M · r. This is presented in
Table 4 as an index set. Here the Gaussian elimination acts as base value and takes 45% of the total protocol
time including communication.

Table 4: Timing of computation

Operation Index

Gaussian elimination 100

Luby decoding 22

Luby encoding (Ecc) 3

Encode c = M · r 13

Since the Gaussian elimination costs more than other parts of the protocol, this means that one would
need to increase w for the amortization to work. However one could replace this step with any algorithm for
solving linear systems, in particular algorithms taking advantage of matrix sparsity such as [54]. Finally one
may take advantage of specific constructions of finite fields allowing for even faster arithmetic operations.
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Fig. 1: Amortized time per OLE compared to field size

7 About the Assumptions

Our results rely on two types of assumptions, both of which can be viewed as natural arithmetic analogues of
assumptions that have been studied in the boolean case. We discuss our instantiations of these assumptions
below. In Section 7.1 we discuss the assumption we use for instantiating our constant-overhead vector-OLE
protocol, whereas in Section 7.2 we discuss the additional assumption used for obtaining constant-overhead
protocol for general arithmetic computations.

7.1 Instantiating Assumption 2 (Fast pseudorandom matrix)

An distribution ensembleM = {Mk} over m(k)× k matrices is pseudorandom for noise rate µ if it satisfies
property 2 of Assumption 2. It is natural to assume that, for every m = poly(k), a random m × k matrix
is pseudorandom over any finite field. (This is the arithmetic analogue of the Decisional-Learning-Parity-
with-Noise assumption [30, 15, 50]). However, Assumption 2 requires the corresponding linear map to be
computable in O(m) arithmetic operations (together with an additional linear independence condition). We
suggest two possible instantiations for this assumption.

The Druk-Ishai Ensemble. Druk and Ishai [21] constructed, for any finite field F and any code length
m ∈ poly(k), a probabilistic ensemble M of linear-time computable (m, k) error-correcting code over F
whose minimal distance is close to the Gilbert-Varshamov bound [26, 53] with overwhelming probability. It
was further conjectured that, over the binary field, the ensemble is pseudorandom for arbitrary polynomial
m(k).14 The assumption seems to hold for arbitrary finite fields as well. Moreover, the ensemble satisfies
Condition 3 of Assumption 2 since, by [21, Theorem 5], every subset of m′ = ω(k) rows of the code generates,
except with negligible probability, a code of distance 1− 1/|F| − o(1).

Alekhnovich’s Ensemble. Alekhnovich [1] conjectured that a random d-sparse binary matrices (that each
of its rows contain exactly d non-zero elements) is likely to be pseudorandom for constant noise rate. A
closer examination of this assumption [6] suggests that pseudorandomness holds for any sparse matrix with
sufficiently large dual distance, where the dual distance of a matrix M , denoted by dd(M), is the maximal
integer D for which every subset of M ’s rows of size at most D is linearly independent over F.15 We will use
the arithmetic version of this assumption.

14 The basic construction is described for codes with codeword of length m = O(k); however, one can extend it for
codes with codeword of polynomial length m(k), by independently sampling polynomially many O(k)×k generating
matrixes and placing them one on top of the other to get a poly(k)×k matrix. The pseudorandomness assumption
of [21, Section 5.1] applies to this variant for arbitrary polynomial number of samples.

15 The name “dual distance” comes from the fact that the left null space of M is a linear code of distance dd(M).
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Assumption 6 (Arithmetic version of Alekhnovich’s assumption) For every prime-order field F ev-
ery polynomial m(k), every constant d, every real µ ∈ (0, 1/2), and every d-sparse matrix M ∈ Fm×k, the
following holds. Any circuit of size T = exp(Ωµ(dd(M))) cannot distinguish with advantage better than 1/T

between the uniform distribution v
$←Fm to the distribution (Mr + e), where r

$←Fk and e
$←Dµ(Fp)`.

The assumption says that the level of security is exponential in the dual distance where the hidden
constant in the exponent may depend on the noise rate µ. As we will see below for a properly chosen d-
sparse matrix M of dimensions poly(k)×k, we can expect a dual distance of kε, and so we get sub-exponential
security.16 Assumption 6 is consistent with the best known attacks, and, can be analytically established for a
large family of algorithms including myopic algorithms, linear-tests, low-degree polynomials, constant depth
circuits and product tests (see Zichron’s Master thesis [56]). Also observe that since the matrix M is d-sparse,
the linear mapping fM : x 7→Mx can be computed by performing O(dm) = O(m) arithmetic operations.

How to sample matrices with large dual distance? We suggest to sample a d-sparse matrix M ∈ Fm×k in
two steps. First, choose the locations of the non-zero entries of the matrix (e.g., by selecting a random set
of d entries per row), and then fill them with random field elements. The outcome of the first step can be
viewed as a d-sparse m × k zero-one matrix G. To analyze the process, we relate the dual distance of the
final matrix M to the expansion properties of the matrix G which can be naturally viewed as a d-uniform
hypergraph over the vertex set [k] with m hyperedges. (Hereafter referred to as (m, k, d)-hypergraph.)

It is well known that if every set S of at most r hyperedges in G expands by a factor α > d/2 (i.e., the
hyperedges in S “touch” more than α|S| vertices) then M will have (with probability 1) a dual distance of at
least r. Interestingly, we show that, over large field F, it suffices to require a much weaker expansion factor
of (1 + ε) that is independent of the sparsity parameter d. This is essentially optimal since a shrinking set
of hyperedges (which expands by a factor smaller than 1) induce a linearly-dependent set of rows in M . By
analyzing the expansion of a random sparse hypergraphs (using standard tools) we derive estimation for the
dual distance of M (which are better than the ones available for small fields).

Formally, let us denote by M(G,F) the outcome of the second step of the process applied to some
(m, k, d)-hypergraph G, and let M(m, k, d,F) denote the distribution obtained by selecting the (m, k, d)-
hypergraph G at random and then sampling from M(G,F). In particular, the following lemma is proved
in [56].

Lemma 4. Suppose that G is a (m, k, d)-hypergraph which is (r, 1 + ε)-expanding and |F|ε > m. Then,

Pr
M←M(G,F)

[dd(M) < r] < |F|−1
r∑
t=1

(
m

|F|ε
)t
.

Consequently, a random M ← M(m, k, d,F), with |F|ε > m and m = ∆k has dual-distance of r = k

∆
1

d−2.1

with probability of at least 1−O(|F|−1)− o(1).

Remarks:

1. (Linear Independence) Recall that Assumption 2 requires that a random subset of k log2 k of the rows of
M have, except with negligible probability, full rank. In Lemma 6 we show that this condition holds as
long as G is semi-regular in the sense that each of its nodes participates in at least Ω(m/k) hyperedges.

2. (Different noise distributions) The choice of i.i.d based noise is somewhat arbitrary and it seems likely that
other noise distributions can be used. In fact, it seems plausible that one can use any noise distribution
which has high entropy and cannot be approximated by a low-degree function of few fresh variables (and
thus is not subject to linearization attacks such as the ones from [12]).

Given the above discussion, Assumption 2 now follows from Assumption 6 and the existence of an explicit
family of expanders.17 The latter point is discussed in Section 7.2.

16 An exponential level of security can be achieved only when the number of rows is linearly larger than the number
of columns.

17 Indeed, in the conference version of the paper, Assumption 6 was stated directly in terms of expansion. We believe
that the current version (which implies the previous version) is more informative.
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7.2 Instantiating Assumption 4 (NC0 polynomial-stretch PRG)

In the binary setting, the existence of locally-computable polynomial-stretch PRG was extensively studied in
the last decade. (See [4] and references therein.) Let f : Fk → Fm be a d-local function which maps a k-long
vector x into an m-long vector (P1(xS1), . . . , P (xSm)) where Si ∈ [k]d is a d-tuple and Pi is a d-variate
multi-linear polynomial. Over the binary field, it is conjectured that as long as the (k,m, d) hypergraph
G = (S1, . . . , Sm) is expanding and the Pi’s are sufficiently “non-degenerate” the function forms a good
pseudorandom generator. (This is an extension of Goldreich’s original one-wayness conjecture [29].) In fact,
this is conjectured to be the case even if all the polynomials P1, . . . , Pm are taken to be the same polynomial
P . We denote the resulting function by fG,P and make the analog arithmetic assumption. In the following
we say that a function f : Fk → Fm is T -pseudorandom if every circuit of size at most T cannot distinguish

f(x), x
$←Fk from y

$←Fm with advantage better than 1/T .

Assumption 7 For every finite field F and every polynomial m(k) there exists a constant d and a d-variate
multi-linear polynomial P : Fd → F such that for every (k,m, d) hypergraph G which is (t, 2d/3)-expanding
the function fG,P : Fk → Fm is exp(Ω(t))-pseudorandom over F.

The constant 2/3 is somewhat arbitrary and a smaller constant may suffice. (A lower-bound of 1/d can be
established.) In the binary setting, security was reduced to one-wayness assumption [3] and was analytically
established for a large family of algorithms including myopic algorithms, linear tests, statistical algorithms,
semi-definite programs and algebraic attacks [6, 7, 24, 48, 11, 39]. Some of these results can be extended to
the arithmetic setting as well.

In particular, in [56] it is shown that security against myopic algorithms, linear tests, and low-degree
annihilating polynomials holds when the polynomial P is taken to be the sum-product polynomial that, for
parameters a, b (and arity d = a+ b), is defined by

SPa,b(w1, . . . , wa+b) = (w1 + · · ·+ wa) + (wa+1 · · · · · wa+b).

We note that in the binary case there are linear attacks against this polynomial for quadratic output
lengths [11]. Nevertheless, it is shown in [56] that the distinguishing advantage of such attacks is O(1/ |F|),
and therefore they do not apply for sufficiently large fields (e.g., whose size is super-polynomial in the security
parameter).

On explicit unbalanced constant-degree expanders. In order to employ Assumption 6 and 7 one
needs an explicit family of (k,m = k1+δ, d = O(1)) hypergraphs which are (kε, (1 + Ω(1))d)-expanding.18

This assumption is known to be necessary for the existence of d-local (binary) PRG that stretches k bits to
m bits [9], and so it was used (either explicitly or implicitly) in previous works that employed such a local
PRG (e.g., [35, 40, 42, 41, 2]). See Remark 5.7 in [35] for discussion.

While recent advances in the theory of pseudoranodmness have come close to generating such explicit
highly-expanding hypergraphs, in our regime of parameters (m = ω(k) and d = O(1)), an explicit provable
construction is still unknown. It is important to mention that, by a standard calculation (cf. [46]), a uniformly
chosen hypergraph G (i.e., each hyperedge contains a random d-subset of the nodes) is likely to be (r =
poly(k), 2d/3)-expanding except with some inverse polynomial failure probability ε(k) . Moreover, we can
reduce the failure probability to 1/kc for an arbitrary (predetermined) constant c at the expense of increasing
the sampling complexity to kbc , where the constant b grows with c. (This can be done by rejecting hypergraphs
which fail to expand for sets of size at most bc, and re-sampling the hypergraph if needed.) As a result one gets
a protocol that fails with “tunable” inverse polynomial probability which is independent of the running-time

18 One can always increase the number of hyperedges to arbitrary polynomial m = ka at the expense of a minor
loss in the other parameters. This can be done by taking a sequence of hypergraphs G1, . . . , Gc where Gi is a

(k(1+δ)
i−1

, k(1+δ)
i

, d)-hypergraphs which is (r, bd)-expanding and compose them together (by treating the hyper-

edges of the i-th graph as the nodes of the (i+ 1)-th hypergraph) and get a (k, k(1+δ)
i

, D = dc)-hypergraph which
is (r/(bd)c−1, bD)-expanding. Taking c to be a sufficiently large constant (i.e., log1+δ a), yields the required result.
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of the adversary. Moreover, the failure event is restricted to a one-time setup phase and its probability does
not increase with the number of times the protocol is executed. Such a guarantee seems to be satisfactory
in most practical scenarios. Finally, we mention that there are several heuristic approaches for constructing
unbalanced constant-degree expanding hypergraphs. For example, by using some fixed sequence of bits (e.g.,
the binary expansion of π) and interpreting it as an (k,m, d)-hypergraph via some fixed translation. Assuming
such a heuristic to give an explicit construction can be viewed as being a conservative “combinatorial”
assumption, in the spirit of standard cryptographic assumptions.
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A The Rank of Sparse Matrices

In this section we analyze the rank of matrices which are sampled from the distribution M(G,Fp) where G
is a hypergraph with m hyperedges and k. We begin with the following key observation.

Lemma 5. Let F be a field of cardinality p > 2 and let G be a hypergraph over k nodes and ` hyperedges with
the property that every set of nodes S appears in at least t|S| hyperedges for t = ω(log k). Then, a random

matrix M
$←M(G,Fp) will have full rank except with probability exp(−Ω(t)).

Proof. To prove the claim it suffices to show that

Pr
M

[∃v 6= 0k s.t Mv = 0`] = exp(−Ω(t))

For a non-empty subset S ⊆ [k], let VS be the set of all vectors v ∈ Fk whose support (set of non-zero
coordinates) equals to S. By a union-bound, it suffices to upper-bound∑

S 6=∅

qS , where qS = Pr[∃v ∈ VS s.t Mv = 0`]. (3)

We will later show that
qS ≤ 2−|S|(t−1) log(p−1) = 2−Ω(|S|t) (4)

Hence we can upper-bound (3) by

k∑
w=1

∑
S:|S|=w

qS ≤
k∑

w=1

kw2−Ω(wt) ≤
k∑

w=1

2−Ω(wt) ≤ 2−Ω(t).

23

http://www.eng.tau.ac.il/~bennyap/pubs/Zichron.pdf


It is left to prove (4). Fix a set S of cardinality w, and let us assume without loss of generality that the
first t hyperedges of G touch S. Fix some vector v ∈ VS and recall that the vector ri, i ∈ [t] is sampled by
assigning a random non-zero field element to every j ∈ [k] that participates in the i-th hyperedges. Therefore,
every such row is orthogonal to v independently with probability at most 1/(p − 1). We conclude that, for
every v ∈ VS , we have that

Pr
M

[Mv = 0`] ≤ (p− 1)−tw.

By a union-bound, we conclude that

qS ≤
∑
v∈VS

Pr[Mv = 0`] ≤ (p− 1)−w(t−1),

as required. ut

Lemma 6. Let G be a (k,m, d) hypergraph with m = ω(kr) where d = O(1) and r = ω(k log k). Assume
that each node of G participates in at least Ω(m/k) hyperedges. Then, for any field F of size larger than 2,

if we sample M
$←M(G,F) and sub-sample r rows from M , then the resulting matrix M ′ will have full rank

except with negligible probability. Moreover, the above is true even if the rows of M ′ are sampled from M
with replacement.

For m = k3 and r = k log2 k, we conclude that the distribution M(G,F) satisfies the linear-independence
condition from Assumption 2.

Proof. Let us describe the sampling procedure in an equivalent way: First sample a hypergraph G′ by sub-
sampling r hyperedges from G, and then sample M ′ from M(G′,F). By Lemma 5, it suffices to show that,
except with negligible probability, every set S of nodes in G′ participates in at least ω(log k)|S| hyperedges.
Below, we will show that each fixed subset S participates in at least ω(log k)|S| hyperedges except with
probability exp(−ω(k)). The theorem therefore follows by a union bound over all 2k possible subsets.

Fix some non-empty set of nodes S. By assumption, the number of “good” hyperedges in G that touch S
is at least m0 = |S|Ω(m/(dk)). Observe that whenever we sample an hyperedge from M the probability of
hitting a good hyperedge is at least q = (m0−r)/m, regardless of the “history” of the previous samples. (This
is true for both sampling with or without replacement.) Therefore, the probability of “failure”, i.e., hitting less
than qr/2 good hyperedges, is upper-bounded by the probability of failure in a binomial experiment where
we sample r hyperedges where is good independently with probability q. By a multiplicative Chernoff bound,

the probability of seeing less that qr/2 successes is at most exp(−Ω(qr)). Noting that qr = Ω( r|S|dk )− r2

m =

|S|Ω(r/k) = |S|ω(log2 k), concludes the proof. ut

By taking G to be the complete (k,m =
(
k
d

)
, d) hypergraph, we derive the following lemma.

Lemma 7. Let F be a field of cardinality p > 2, and let d be a constant. Then, except with negligible
probability in k, a random d-sparse k log2 k × k matrix M over F has full rank.

Proof. Let G the complete (k,m =
(
k
d

)
, d) hypergraph and note that the distribution of M can be obtained

by sampling T
$←M(G,F) and then sub-sampling k log2 k rows from T . The lemma follows from Lemma 6.

ut
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