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Abstract—In the past two decades, targeted online advertising
has led to massive data collection, aggregation, and exchange.
This infrastructure raises significant privacy concerns. While
several prominent theories of data privacy have been proposed
over the same period of time, these notions have limited appli-
cation to advertising ecosystems. Differential privacy, the most
robust of them, is inherently inapplicable to queries about
particular individuals in the dataset. We therefore formulate
a new definition of privacy for accessing information about
unknown individuals identified by some form of token that is
chosen randomly but correlated with web interaction. Unlike
most current privacy definitions, our’s takes probabilistic prior
information into account and is intended to reflect the use of
aggregated web information for targeted advertising.

We explain how our theory captures the natural expectation
of privacy in the advertising setting and avoids the limitations
of existing alternatives. However, although we can construct
artificial databases which satisfy our notion of privacy together
with reasonable utility, we do not have evidence that real
world databases can be sanitized to preserve reasonable utility.
In fact we offer real world evidence that adherence to our
notion of privacy almost completely destroys utility. Our results
suggest that a significant theoretical advance or a change in
infrastructure is needed in order to obtain rigorous privacy
guarantees in the digital advertising ecosystem.

Index Terms—Privacy, Utility, Data sharing, Targeted adver-
tisements

I. INTRODUCTION

Targeted online advertising is a massive ongoing business.
In this market, which has become increasingly sophisticated
over the last two decades, data aggregators collect information
on user behavior. This data is then used by advertisers to
participate in auctions for web impressions. The infrastructure
allows advertisers to pay for ad placement at prices that reflect
their estimate of the value of showing the ad to a user with
certain characteristics. Data on user web behavior is used to
bid on ad placement. The user profile data used in targeted
advertising can include attributes such as an individual’s web
browsing and search history, age, gender, geolocation, and
other characteristics and preferences. Vendors can develop user
models that significantly characterize the user’s propensity to
buy a vendor’s products and use their advertising budget to
reach the most likely receptive audience.

The increasingly voluminous and personal nature of data
collected for targeted advertising has led to a host of privacy
concerns. Although individual attributes are disclosed with-
out personal identifiers, a significant body of research has
established that when combined with publicly available data,

purportedly ‘anonymized’ attributes can lead to significant
privacy risks for individuals [22] [7] [21] [23].

Let’s consider a concrete example. A vendor such as Wal-
mart may use an ad network such as Rubicon, which handles
ad campaigns. Ad networks bid on ad placements which are
managed by ad exchanges, such as AdNexus. Ad exchanges
manage ad placements offered by content providers, such
as CNN. When a user Alice browses a page on CNN, her
attributes are shared with AdNexus. AdNexus strips off blatant
linkage information like persistent tracking IDs and shares
the user attributes with Rubicon. Rubicon then matches the
attributes with the preferential model given by Walmart and
bids for placement of Walmart’s ad on Alice’s browser. The
correspondence between anonymized user attributes and an
actual user is managed using identifiers or profile information
that, for simplicity, we will refer to as a super-cookie.

There has been quite a bit of research done on changing
the fundamental model of the online advertising ecosystem.
Some works, such as Adnostic [33], have proposed alternative
models for ad networks. In Adnostic, the user’s browser
is provisioned with an extension which keeps track of her
behavior. No user attributes are sent to a third party. The ad
networks propose a certain number of ads to the browser along
with a preference model, and the browser chooses which ads to
display based on the user attributes and the preference model
attached to each ad. Which ad is shown is oblivious to the ad
network. The billing problem which needs to know how many
times an ad was shown is solved cryptographically.

There are several problems with this alternative model
which are undesirable to the vendors. Blocking the transmis-
sion of user attributes from the ad exchange to the ad network
prevents the ad networks from adaptively applying vendor
preference models that may update and may potentially be
more complex than those supported by an a priori framework.
In addition, the models may be the ‘secret sauce’ of the
vendors - highly proprietary in nature and thus undesirable
to send to the ad exchanges.

Perhaps sophisticated cryptographic constructions building
on program obfuscation and functional encryption can solve
the dual privacy problem - protecting the user’s data and the
vendor’s model - but secure efficient solutions look years away.
Additionally, allowing vendors to work adaptively on user data
to build their models would be horrendously complicated using
cryptography.

There are compelling reasons for the stakeholders to con-



tinue with the existing model, and unless someone can develop
a model without many of the drawbacks mentioned above, we
must ask the following question:

In the targeted ad ecosystem that tracks user behav-
ior to increase economic efficiency, what form of
user privacy is possible?

As a premise of our work in this model, we assume that ad
exchanges are trusted because they possess and are gathering
user data anyway (so we cannot assume anything if we do
not trust them) and are interested in guaranteeing user privacy
while transmitting anonymized data to the ad networks. The ad
networks, on the other hand, can be adversarial and potentially
attempt to uncover user data, possibly in conjunction with
publicly available data about users.

Existing Privacy Notions. We argue that natural adaptations
of existing privacy notions have limitations in this setting. We
specifically discuss the notions of k-anonymity, `-diversity, t-
closeness, differential privacy, and pufferfish.

k-anonymity: The notion of k-anonymity [28], [27], [26],
[31] says that an anonymized data set is k-anonymous when
an adversary that is attempting to deanonymize the database
cannot match any user to a set of less than k rows. However,
it says nothing about the contents of those rows or what can
be learned about the user. Sensitive information about users
might be leaked, and in the worst case all the rows might be
exactly the same, revealing all information about the user.

`-diversity: `-diversity [19] addresses the previously mentioned
drawback of k-anonymity and ensures each equivalence class
has diverse entries. However, if we have different prior distri-
butions for different users, `-diversity does not readily imply
sufficient residual privacy for all users.

t-closeness: In some scenarios the users do not mind if the
leaked information is the same as the majority of the crowd. In
those cases, `-diversity might become prohibitively expensive.
t-closeness [17] addresses this issue by giving the guarantee
that the distribution of sensitive attributes looks more or
less the same in every equivalence class. This approach has
the drawback that the distinction between sensitive and non-
sensitive attributes is highly domain dependent and often
user and data dependent as well (for instance, a person with
no criminal record might not mind having that information
released, but a person with a previous felony might desire
privacy).

Differential Privacy: Differential privacy [11] allows leakage
of information which does not depend on individual user
preferences. In our setting we actually want to release data that
corresponds to an individual user, but in a way that prevents
learning about other attributes linked to the given real user.
Queries of a database that depend solely on single rows are
inherently not differentially private. Synthetic databases [4]
allow release of “informative enough” data at record level, but
the rows do not have any correspondence with the original
rows. Thus the ad network setting fundamentally disallows
differentially private release.

Pufferfish: Pufferfish [15] is a generalized framework for
privacy. Pufferfish also contains notions of priors, and privacy
is measured with respect to some secret variables. The authors
show that, for some choice of parameters and queries, their
notion implies differential privacy. Pufferfish is broad enough
to encompass virtually all definitions of privacy, so the primary
issue in designing a pufferfish based system is that people
would need help from privacy domain experts in order to set
up a privacy-preserving ecosystem.

Our contributions. In this paper we formalize the online
advertising ecosystem setting and define a notion of privacy
for the targeted ad ecosystem which we justify to be the
correct notion of privacy for this setting. We reason that
this notion avoids the limitations of existing notions and
closely corresponds to what we expect a privacy preserving
mechanism to deliver.

We begin with the observation that without any prior
knowledge about an individual existing in the public it does not
make sense to quantify her privacy - a de-identified record is
essentially unlinkable to any existing identity. It is also realistic
to model prior knowledge and public knowledge. So in our
model, we assume that a prior distribution on the attributes on
the universe of users is already given. A release mechanism
is privacy preserving if the uncertainty on the attributes of a
given user decreases very little conditioned on the released
data.

However attractive this notion may seem, we mostly have
dismal conclusions to offer. Although we can construct artifi-
cial databases which satisfy our notion of privacy together
with reasonable utility, we do not have evidence that real
world databases can be sanitized to preserve reasonable utility
when our notion of privacy is enforced. We also offer some
theoretical results that suggest proving privacy in our setting
is difficult or impossible. This potentially disappointing news
may be intrinsic to targeted advertising. If so, we must either
accept this or change the model to allow rigorous privacy
assurance.

Organization. The rest of the paper is organized as follows.
In Section II, we formalize the ad ecosystem setting and define
our privacy notion. In Section III, we compare this notion to
existing privacy notions and justify how it is better suited to the
ad ecosystem setting than these notions. Section IV discusses
cases where it seems difficult or impossible to achieve our
notion of privacy without significantly compromising utility.
Section V discusses experimental results with real world data
and also gives quantitative intuition of how our privacy notion
behaves with respect to some generic scenarios. Finally we
conclude with discussion points in Section VI.

II. DEFINITIONS

In this section we formalize the entities and processes of
interest in an ad ecosystem and define a notion of privacy
which essentially captures the intuition that data release re-
duces uncertainty about the attributes of a given user.



Essentially the ad exchanges are abstracted as data col-
lectors which have an interest in protecting user privacy
outside their perimeter. In the model they are assumed to be
trusted since they have all of the user’s attributes to begin
with. We are interested to quantify the privacy loss that any
release mechanism that the ad exchanges employ leads to.
The ad networks which cater to the vendors act as the privacy
adversary. The aim is to protect the privacy of the users, while
providing adequate utility to the vendors.

A. Model and Assumptions

We assume a fixed set of users in the universe, of which
we have publicly known identifiers. In a given model, we
have a secret database. We view information on the users
as a sequence of column values. Let’s call the domain of this
sequence X .

For each user, there is an a priori distribution on X . Aggre-
gated over all users, let’s call this distribution P . Essentially
the prior is defined as a distribution over the database which
is intended to be sanitized and released. The construction of
such a prior may be a highly subjective matter. It may be the
case that actually some other attributes, possibly overlapping,
are known publicly about the users. From these attributes and
possibly with the aid of statistical inferences or machine learn-
ing, a distribution on the database of interest may be computed.
Such processes can vary from adversary to adversary and are
arguably orthogonal to the notion of privacy. We delineate
the subjective process of construction of the prior from the
semantics independent definition of privacy that we develop
in this section by assuming it to be given to us.

We will measure privacy as the decrease in uncertainty of
the adversary, with the database being drawn according to the
distribution P .

The operational concept is that there is a mechanism M
which takes P and the real database D and produces a ‘san-
itized’ database D′. After this point, there is a ‘supercookie’
table, which we model as a random bijective function τ from
the domain of users U to a set of indices, which can simply
be Z|U|. The ad network, whom we model as an adversary
in this setting, is finally given the anonymized and sanitized
table τ(M(D,P)). Once the adversary makes a decision based
on this information regarding which indices si to target, the
provider reverse looks up users τ−1(si) and proxy routes the
ads to the indicated users.

For example, given no other information about a user of
a retail site, we can assume that the user is female with
50% probability. If we get the additional information that the
user usually buys women’s jackets, the probability goes up
significantly. Each additional piece of information leads to a
possibly higher certainty about the X value of that user. In
other words, the entropy of X should decrease.

B. Formalization

Let’s first define all the domains in the model. There is a
set of individuals or ‘users’ u1, u2, · · · in the universe, that
we will denote by U . We will denote by X the domain of

the set of columns, which are the attributes of interest of a
user. A database is traditionally a sequence of rows, one for a
user and its set of attributes. We will formally look at it as a
mapping from the set of users to the set of attributes X . Thus
the domain D of all such databases is the set of functions from
U to X . For a user u, let Du denote the column values for u.

We summarize the above formally in the following defini-
tion:

Definition 2.1 (Domains):

Set of users U def
= {u1, u2, · · · }

Set of databases D def
= U → X, D ∈ D, Du

def
= D(u)

Distribution on databases P : D → [0, 1]

Mechanism M : D → D′

Mapping function τ : U → U ′

and naturally extended as τ : D → D′

1) Privacy Definition: Now we are in a position to de-
fine privacy. In the next definition, we take entropy as the
measurement of uncertainty. However, any other measurement,
like min-entropy and so on, can also be appropriate in certain
situations. We can also use computational entropy when it
might be appropriate. What is more important is the notion of
taking the difference in uncertainty of the linkage between a
user and her data, in case of privacy, before and after getting
the transformed database.

Definition 2.2:

Privacyu = HD←P(u,Du)−HD←P(u,Du | τ(M(D,P)))
Privacy = max

u∈U
[Privacyu]

Informally, privacy is defined to be just the decrease in
uncertainty consisting of the user and their data. Thus, privacy
loss is almost literally defined as the quantity of information
learned about a user, which is exactly what it should be
intuitively. Note that we need to define privacy as a whole to
be global over all users, as the loss of any one user’s privacy
means the database is not privacy-preserving.

We also note that the users in the database may be a subset
U of all users in the universe U∗. This may lead to a potentially
better privacy given the uncertainty over which users may be in
the database. Our definitions could be adapted to that setting,
but we avoid it in this paper for simplicity.

2) Information Learned: It is also useful for us to define
a quantity that we will call ‘Information Learned’. Intuitively,
this is exactly the information contained in the released
anonymized database that cannot be inferred from the prior
distribution. We formally define information learned as fol-
lows:

Definition 2.3:

InfoLearnedu = HD←P(τ(u), Du | τ(u))−
HD←P(τ(u), Du | τ(M(D,P)), τ(u))

InfoLearned = Expu←U [InfoLearnedu]



Note that the definitions of privacy and information learned
are very similar and the difference is rather subtle. Privacy
is essentially defined as the decrease in uncertainty of the
pair consisting of the user and her data, whereas information
learned is defined as the decrease in uncertainty of just the
data, with just its index identified by the supercookie mapping.
For the global definition of information learned, we use the
average instead of maximum, because for most applications
that concern us, we will not be too upset if there are a few
outliers where we learn too little information.

Useful Simplification. In most real world cases, the mecha-
nisms we apply to the database in order to preserve privacy
will be independent of the real identifier of the users. In other
words, the mechanism M commutes with τ , i.e., τ(M(D,P))
is identical as a distribution to M(τ(D), τ(P)), where τ(P)
is the prior over the databases permuted with the supercookie
mapping. For such mechanisms, the following expression is
equivalent to InfoLearnedu:

HD←P(u,Du)−HD←P(u,Du | M(D,P))

Functional Information Learned. In many scenarios, infor-
mation learned may be defined with respect to a function f on
the domain X . In that case, the above definition of Information
Learned is modified to:

Definition 2.4:

InfoLearnedu,f = HD←P(τ(u), f(Du) | τ(u))−
HD←P(τ(u), f(Du) | τ(M(D,P)), τ(u))

‘Functional Information Learned’ allows us to specify a utility
function for more practical purposes. In many databases, some
of the information is just irrelevant, and users may not care
about certain values. For instance, sexual orientation may
not be correlated with beer preference, and giving sexual
orientation to an advertiser may be both a privacy risk and offer
no benefit to the advertiser in practice. Defining functional
information learned allows us to escape the conundrum of
learning useless information.

III. RELATION TO EXISTING PRIVACY NOTIONS

In this section we discuss how the previously known privacy
notions such as k-anonymity, `-diversity, t-closeness, differen-
tial privacy and pufferfish relate to our notion of privacy.

k-anonymity: k-anonymity [28], [27], [26], [31] is the most
popular notion for privacy preserving data release. It guar-
antees that the row corresponding to any user can not be
deanonymized to less than k many rows. However, in the worst
case all the rows might be exactly the same revealing all of the
information about the user. On the other hand if the released
dataset is not k-anonymous, there exists at least one user who
suffers a privacy loss with left over privacy at most log2(k−1)
bits in our definition.

`-diversity: `-diversity [19] addresses the above mentioned
drawback of k-anonymity. It prevents attribute leakage by
ensuring each equivalence class has diverse entries.

The basic principle of `-diversity is as follows:
Definition 3.1: An equivalence class is `-diverse if there

are at least ` “well-represented” values for the sensitive
attribute. A release dataset follows ` diversity principle if every
equivalence class in the dataset is `-diverse.
The term “well-represented” can have different meanings:

1) Distinct `-diversity: This is the simplest and most
straight forward notion, which guarantees there are at
least ` distinct sensitive values in each equivalence class.
However, this does not rule out probabilistic interference
attacks, when some sensitive values are more common
than the rest.

2) Entropy `-diversity: Entropy of an equivalence class E
is defined as,

H(E) = −
∑
s∈S

p(E, s) log p(E, s).

Here, S is the domain of sensitive values and p(E, s)
denotes fraction of records in equivalence class E with
sensitive value s. The release dataset has `-diversity if
for every equivalence class E, H(E) ≥ log `. In order
to have entropic `-diversity, the entropy of the sensitive
attribute in the entire dataset must be at least log `.
Sometimes this is too restrictive [19].

3) Recursive (c, `)-diversity: Recursive (c, `)-diversity en-
sures that in any equivalence class the most frequent
value does not appear too many times and the least
frequent values do not appear too rarely. Let m be the
number of sensitive values in any equivalence class and
ri (for i ∈ {1, · · · ,m}) be the number of times ith

most frequent sensitive value appears in the equivalence
class E. Then the equivalence class E is recursive (c, `)-
diverse if r1 < c(r` + r`+1 + · · · + rm). The released
dataset has recursive (c, `)-diversity, if all equivalence
classes are recursive (c, `)-diverse.

The notion of ‘entropy `-diversity’ closely matches with
our entropy based privacy definition. In fact we can argue that
if the released anonymized dataset is not entropy `-diverse
then there exists one user who suffers a privacy loss with left
over privacy at most log2 ` bits. In the special case where the
prior distribution for all users are exactly the same, entropy
`-diversity indeed implies that the left over entropy for any
user is at least log2 ` bits. However, if we have different prior
distributions for different users, `-diversity does not readily
imply log2 ` left over privacy for all users.

t-closeness: t-closeness [17] addresses these issues by giving
the guarantee that the distribution of sensitive attribute looks
more or less the same in every equivalence class. In our setting,
we do not really address this concern. Even if the leaked
attribute is exactly the same for all users, we consider that
as legitimate privacy loss. We chose to keep our framework
semantics oblivious for simplicity.

The basic principle of t-closeness is as follows:
Definition 3.2: [17] An equivalence class is said to have t-

closeness if the “distance” between a sensitive attribute in this



class and the distribution of the attribute in the whole table is
no more than a threshold t. A release dataset has t-closeness
if all equivalence classes have t-closeness.

To prevent similarity attacks which depend on the semantics
of sensitive attributes, [17] ruled out the usual statistical
distance or the entropic Kullback-Leibler (KL) distance [16].
Instead they proposed usage of Earth Mover’s distance (EMD)
[25] (a variation of Monge-Kantorovich transportation distance
[13]) which takes semantic distances into account.

Differential Privacy: Differential privacy [9], [2], [10] only
allows leakage of aggregate information. In an online ad-
vertising ecosystem, we want to enable advertisers to reach
individuals, which requires releasing sanitized individual user
preferences. This inherently violates differential privacy, as
an attacker immediately learns of the existence of a user in
the database. This makes it impossible to apply differential
privacy.

It is also worth pointing out that differential privacy has a
much more stringent security requirement than our definition
of privacy: privacy must hold for all possible choices of priors.
Our notion of privacy allows for privacy for some particular
choices of priors, which theoretically inspires hope that our
notion would allow more useful data release than would have
been possible with the prior restrictions of differential privacy.

Pufferfish: One issue of the t-closeness privacy notion is that
it does not consider the attacker’s prior knowledge about the
secret attributes. Kifer and Machanavajjhala [14], [15] intro-
duced a privacy framework called pufferfish which handles
adversarial knowledge in its privacy definition. Pufferfish can
also be seen as extension of differential privacy. In the puffer-
fish framework one needs to specify a set of potential secrets.
Privacy in pufferfish guarantees that even with access to the
released dataset, potential secrets do not get revealed. The real
hardness of deploying a pufferfish based system is that we
require the help of domain experts who would define privacy
sensitive variables. We can think of our privacy notion as a
simpler, practical and intuitive pufferfish instantiation where
all the bits of information are equally privacy sensitive. On
the other hand, it is also possible to modify our privacy goals
by providing more weights to sensitive bits of information.

Related Works in Anonymity: Anonymity is a related notion
which describes how individuals are hard to identify within a
set of a priori defined individuals, given some event data. Sev-
eral works [8], [29], [32], [6] provide an information-theoretic
framework for measuring anonymity with applications geared
towards mixing networks. Our work is mainly focused on
privacy and information revealed about a particular user rather
than purely anonymity. As mentioned in [34], anonymity and
privacy are in some sense dual of each other (anonymity is
the hardness of linking a record to a person, privacy is the
hardness of linking a user to pieces of a record). So some
results mentioned in these papers for the entropic anonymity
setting might carry over to our entropic privacy settings as
well. For instance, in some scenarios Renyi entropy or min-

entropy might be a better choice compared to the plain entropy
measure.

Further Reading: [30] studies the problem of linkability of
records, which is not directly addressed by our framework,
because our analysis assumes every user’s data is independent.

[3] takes ideas from stochastic analysis techniques used
in the financial industry for determining the future risks of
data release. However this also focuses on anonymity and
linkability, not privacy.

[12] presents a negative result which shows any optimal
(with respect to some utility) `-diverse data release provides
more information to the attackerthe optimality of the released
data can break the privacy guarantee. Our negative result is
not directly related to this–we show for reasonable utility gain
we cannot provably show privacy for many reasonable priors.

[18] formalizes the notion of membership privacy which is
very similar to differential privacy while taking into account
prior beliefs.

[24] defines the meaning of various privacy terms such as
anonymity, unlinkabilty, and unobservability, and [5] intro-
duces an application-agnostic unifying framework to accomo-
date all such notions.

It is also useful to note that our lower bounds may apply to
some of these alternate definitions of privacy and anonymity
as well.

IV. LOWER BOUNDS

We next discuss cases where it seems difficult or impossible
to achieve notions of privacy under our definition of privacy.
We believe that these instances are scenarios where it is
difficult to have ‘privacy’ in any sort of real-world sense of
the word, so we think that they are useful to show that our
definition of privacy mirrors that of what real-world people
expect it to mean. We briefly outline our main points before
delving into the details.

Graph Isomorphism Lower Bound: We first show that,
in some circumstances, it can be computationally hard to
determine whether or not releasing a given database is privacy-
preserving or not. To do this, we show how to construct a (very
artificial-looking) database in a way that, if the database can be
deanonymized, an arbitrary graph isomorphism problem can
be solved. We then fit the database into our privacy paradigm,
and show that, since it is hard to tell whether a given graph
isomorphism problem will be easy or hard to solve [1] (we
can embed easy problem instances, hard problem instances,
or problem instances somewhere in between in terms of
difficulty), it will be hard to tell whether or not a database
is privacy preserving. This mimics our real-world intuition in
that we find it difficult to tell whether or not given databases
are privacy preserving or not, even with close inspection.

Netflix-Inspired Database: In one of the most well known
and impactful works regarding privacy, Narayanan et al [22]
deanonymized data given out during the Netflix challenge
using the IMDb database. Here, we aim to show that, under
our definition of privacy, databases that resemble the Netflix



challenge data are extremely difficult to make private in
the presense of outside data, even when techniques such as
adding noise are used. To do this, we will approximate real-
world database instances mathematically, and show that our
approximations of these database distributions do not lend
themselves to privacy preserving applications. We note that
the fact that these sorts of databases do not preserve privacy
under our definition of privacy mirrors the privacy loss that
happened in the real world.

Databases Amenable to Privacy: We finally discuss the
implications of our above analysis, and examine what sort
of databases we can actually give positive results for privacy.
Unfortunately, these databases seem very limited, as, generally
speaking, the number of columns in the database must be
much, much smaller than the number of rows.

A. Graph Isomorphism Lower Bound

In this section, we–very roughly speaking–show that any
adversary that can deanonymize an abitrary database can solve
the graph isomorphism problem, which is not known to have
worst-case polynomial-time algorithms [1]. We can extend
this argument to apply to our definition of privacy as well.
Our approach consists of the following: we construct two
databases, one ‘public’ and one ‘private’, using a given graph
isomorphism problem to help generate the problem instance.
Roughly speaking, each user in the databases corresponds to a
node on the graph, and the edges of the graph are encoded as
data in the rows. We add the users’ names to the appropriate
rows in the public database, and add valuable ‘personal data’
to the rows in the private database as well in order to make
the information loss due to deanonymization catastrophic.

In this way, an adversary that is given both the ‘private’
and ‘public’ databases is forced to solve an arbitrary graph
isomorphism problem in order to match rows in the two given
databases and learn private information about the users. The
public database will have public user names, and will contain a
graph representation. The private database will be anonymized,
but contain both an alternative graph representation and lots of
private user data. Thus, deanonymization (and privacy) come
down exactly to how well an adversary can solve a given
graph isomorphism problem. Obviously the ‘databases’ in this
instance are highly unusual and unlikely to look like anything
in the real world, but we think that this does illustrate an
important lower bound on arbitrary databases.

Details: While we attempt to avoid spending too much space
with traditional formalization, we explain our lower bound
in more detail now. Let G1 = {V1, E1} and G2 = {V2, E2}
be the definition of two graphs G1 and G2 with vertices and
edges Vi and Ei, respectively. Let n = ||V1|| = ||V2|| and
m = ||E1|| = ||E2||. Let v1,i be the ith vertex under some
ordering of the vertices in G1, and let E1,i be the set of vertices
adjacent to v1,i (i.e., the edge set) in G1. We define v2,i and
E2,i analagously. We do not explicitly make a choice for how
to represent the edge set, but note that it can be done for
arbitrary graphs with less than n bits for each node/user.

Suppose we let ui denote user i’s real-world identifying
information. Next, suppose we construct two databases D and
D′ in the following ways: first, let m : Z→ Z be a map that
maps vertex indices in G1 to their isomorphic vertex indices
in G2. Let the string Pi denote an (arbitrarily large) string of
private information about user i. Next, let the row i of the
database D be defined as Di and let Di = ui||v1,i||E1,i and
similarly define D′i = v2,m(i)||E2,m(i)||Pm(i).

Note that the information that an adversary learns about a
user in the above setup is entirely determined by the degree to
which they can solve the graph isomorphism problem. Every
row in D that the adversary can successfully match to a row
in D′ completely leaks the information of one of the users in
the database. Probabilistic analysis works too: if an adversary
can determine that a row in D matches up to one of k rows in
D′, for instance, then the adversary gains information as well.

Finally, we also note that we can use the decisional version
of the graph isomorphism problem (deciding if two graphs
are isomorphic or not) to create an even stronger (but more
artificial) lower bound. This follows by appropriately random-
izing the database D′ with probability one half and asking the
adversary to determine which version of D′ they got–the one
with real user data or the one with random user data. This
stronger bound only is applicable when an adversary does not
know an isomorphism exists, which may not be the correct
analogy for certain settings in this paper. We omit explaining
this result in more detail due to space constraints.

What This Means: This lower bound essentially shows that
it can be very hard to determine whether or not a released
database is privacy-preserving. While our instance is artificial,
it does show that it will be fruitless trying to prove privacy
for arbitrary databases. We also note that our public database
uses fixed data, rather than distributions. If we only had
distributions on users rather than fixed data, the problem would
potentially become even harder (since fixed data can just be
interpreted as point distributions).

Additionally, note that graph isomorphism is not a problem
that has average-case hardness, and it is not known how, in
general, to test whether particular cases of graph isomorphism
are easy or hard to solve [1]. Thus, suppose some data provider
wants to run some basic data privacy checks. Speaking in
relative (and asymptotic) terms, there are worst-case databases
that will pass any such checks but fail on slightly more
complicated checks, which can be utilized by an adversary
to gain sensitive information.

We want to conclude this section by pointing out that the
databases we use in this lower bound are highly arbitrary
and unlikely to resemble any sort of real-world database.
However, it does mean that it will be impossible to find any
sort of privacy-testing algorithms that work on all databases.
This does not rule out algorithms for specific classes of
databases, however, that do not admit this graph isomorphism
representation. We will focus on these sorts of databases later
in the paper.



B. Sparse Datasets
In one of the most well known and impactful works regard-

ing privacy, Narayanan et al [22] deanonymized data given out
during the Netflix challenge using the IMDb database. There
have been several follow-up works [7], [21], [23] expanding
on this deanonymization process, adding both more theory and
broader classes of deanonymizable databases to the literature.
In this section, we don’t really aim to directly improve this
line of work. Instead, we focus on the following problem:
is there any way to fix these databases so that they are both
not deanonymizable (or, ideally, offer privacy according to our
definition) and also still useful? Here, we aim to show that,
under our definition of privacy, databases that resemble the
Netflix challenge data or other similar sparse databases are
extremely difficult to make private in the presence of outside
data, even when techniques such as adding noise are used,
while still providing some utility.

To do this, we show that there exist a large class of databases
which resemble the now well-known Netflix/ IMDb databases.
We show that basic mitigation techniques on these databases,
like adding noise or eliminating columns, only slowly de-
crease privacy loss, and that, when using these techniques,
we eventually reach a point where we have neither privacy nor
utility. This implies that these databases are inherently difficult
to make private, and either much more sophisticated privacy
mechanisms are needed or the databases are just impossible
to make private in a useful manner.

1) Database Model: Our model for the Netflix database is
going to be a generic sparse database D. Suppose we let n
denote the number of rows of D (the number of users) and
m denote the number of columns (the list of movies watched
in the real-world example). We will select each entry of this
database from a Bernoulli distribution Bδ for some δ ∈ (0, 1).
This will be the start of our ‘anonymized’ database.

To create our ‘public’ database (example: the IMDb database),
we will start with an empty database D′. For the sake of
simplicity, we will assume D′ also has n rows and m columns,
although our analysis is essentially the same if this is not the
case as long as the number of columns and rows (and their
ratio) is large enough. Then, for each nonzero entry in D, we
will set the corresponding entry in D′ to be one by sampling
from some Bernoulli distribution Bδ′ for some δ′ ∈ [0, 1].

To give some margin for error, we can also do another pass
and, for each entry in D, set it to one (if it is not already one) if
a random sample from some from some Bernoulli distribution
Bδ′′ for some δ′′ ∈ [0, 1] outputs one. This will allow us to
simulate noise, among other things.

Next we introduce some formalism to make the (slight amount
of) math easier to follow. Let the set of users U be defined
such that U def

= {u1, u2, · · · , un}. Let X ∈ Zn×m2 and, for all
i ∈ [1, n], xi ∈ Zm2 . We define D to be row-wise constructed
as Dui

= xi.

We circuitously define the prior P using the following proce-
dure: we set Xi,j = 1 if the output of a fresh, independent

sample from Bδ is one, and set Xi,j = 0 otherwise. For our
second, transformed database D′, which maps users to Zm2
according to a matrix Y, where Y ∈ Zn×m2 , we initially set
Y to all zeroes, and, for each nonzero Xi,j , set Yi,j = 1 if a
sample from Bδ′ results in an output of one. Then we apply a
random row permutation to Y, resulting in the public dataset.

Finally, in order to account for real-world effects like noise
and database inaccuracy, we modify X again in the following
way: we create a matrix Z ∈ Zn×m2 where, for each nonzero
entry in X, we set Zi,j = 1 if a sample from Bδ′ results in an
output of one. While, for certain choices of parameters, X may
represent a ‘true’ database, we let Z represent a potentially
noisy, more realistic one.

Thus, our question is the following: given Y, Z, and the
mapping of users to Y, what can we learn about the mapping
of users to Z? In other words, under our definition of privacy,
what is the privacy loss? We assume that the rows in these
matrices have been randomly permuted, so the order reveals
nothing about the user. Note that in some cases (i.e. the case
where multiple users’ records are identical) it may not be
possible to exactly reconstruct the mapping, but it still may
be the case that lots of additional information about users
(information in Z but not Y) might be leaked.

2) Basic Calculations: Let’s begin by doing a relatively
basic calculation. Suppose some user ui has a k-tuple of
nonzero entries in X. This corresponds to a user having three
true (i.e. before noise is added) entries in a sparse database.
We calculate the probability of the event that the k-tuple exists
for the same user and is also unique in Y. If such an event
occurs, then clearly the user in question can be deanonymized.

So, while the actual probability is slightly complicated to
compute, we can use union bounds and find an upper bound on
the probability that interest us (and still derive a meaningful
result). The probability that no other user has the same k-

tuple of ones in Y is ≥
(
1− (δ + δ′′)

k
)n−1

. This is only
an upper bound on the probability–again, we are using union
bounds here to keep things simple. The probability that the
tuple does exist (for the proper user) in Y is at least (1− δ′)k.
Thus, our overall probability of this event occurring is at least(
1− (δ + δ′′)

k
)m−1

(1− δ′)k.

This basic calculation will be sufficient for most of our
arguments. While it’s not remotely close to the best or most
efficient deanonymization attacks, it will be illustrative for our
purposes.

3) Parameter Comments: In the previous paragraphs, we
did a very simple calculation and showed that the proba-
bility of a deanonymization event happening was at least(
1− (δ + δ′′)

k
)n−1

(1− δ′)k. Assuming that δ′ is not too
small (which is a reasonable assumption in practice), the

dominating term becomes
(
1− (δ + δ′′)

k
)n−1

. Note that if

(δ + δ′′)
k ≈ 1

n , then a deanonymization event occurs with a
constant probability.



More concretely, if δ + δ′′ ≈ 1
nk or less (but not too close

to zero), then this deanonymization event occurs. For sparse
enough databases, this happens with reasonable probability (it
is unlikely, for instance, that any normal user has watched

a more than
(

1
#movies

)k
-fraction of all movies on Netflix).

Like the literature suggests we can do, we have outlined how to
construct a basic deanonymization attack on a class of sparse
databases.

4) Mitigation Techniques: What most of the literature on
deanonymization does not consider is how to possibly mitigate
such deanonymization attacks. Due to the way we have set up
our model, we can explain why some of the most basic tech-
niques to mitigate the above (very simple) deanonymization
attacks do not work. We mention some of these, and why they
fail in many cases, below. Unlike most of the literature, we
include a rough estimate of database utility in our arguments,
which allows us to make more powerful statements. If a
database is privacy preserving but contains almost no useful
information, why bother? These mitigation techniques can also
sometimes result in databases which have both no privacy and
no utility, which is evidence towards impossibility of privacy
for these types of mitigation.

Adding Noise: Note that noise is incorporated in our model
in the form of the δ′′ parameter. Additionally, the δ′ parameter
can be implicitly used to simulate noise in the public database,
although typically it is not safe to assume that ‘public’
databases will be released in a noisy manner. Adding noise
in a straightforward manner still does not defeat our primitive
attack, although it does mean the database has to be sparser
(or the rows longer).

What is most interesting about this situation is that we can
actually reach situations where a database has neither privacy
nor any sort of useful utility. Suppose we set δ = δ′′ = 1

2
√
m

.
2-tuples in the anonymized database have a constant chance
of being present and unique in the public database, so the
database is clearly not privacy preserving. However, a full half
of the data in the released database is just noise, meaning that
is essentially useless for any practical applications. This means
that adding noise in a straightforward manner is not a good
mechanism to try to privatize a sparse database. There may
be more complicated ways of adding noise that work, but we
could not think of any simple ones.

Eliminating Columns: Reducing the number of the columns
of the database may work to reduce privacy loss, but this also
incurs a fairly dramatic utility penalty. In order to make the
deanonymization attack impossible, the number of columns
(m) must be chosen so that unique k-tuples are unlikely to
exist, assuming all other parameters stay the same. This means
that, in the expectation δkm must be less than one (for an
attack for a particular k to work) which is pretty ridiculous,
given the number of nonzero entries in the database would be
around kn. Thus, naively compressing the database doesn’t
seem to work.

‘Masking’ Columns: A more clever method of making the

anonymized database harder to deanonymize might include
filling in entries to make the database less sparse using some
sort of machine learning. This would obviously make the
database not sparse and defeat our stated (and most known)
deanonymization attacks. While the required amount of data
storage would go up dramatically, accuracy of predictions
(and overall utility of the database) would presumably not be
affected.

While this might seem like a good idea in theory, in practice
we expect dimensionality reduction attacks to work quite well
on this sort of data (since none of the rows, when represented
as vectors, will presumably be close to each other in the high-
dimensional vector space). Unfortunately fully exploring this
is outside of the scope of this paper, but a rigorous analysis of
these techniques would probably be useful, even if we think
it might be unlikely to succeed.

5) What It Means: Our results seem to indicate that trans-
forming sparse databases into privacy-preserving databases
while still maintaining some form of utility seems difficult.
Obviously better, more complicated techniques might provide
solutions where we have failed, but the problem seems very
difficult. We have exhausted all of the simple things that we
could think of to try to fix these sorts of databases, but it is
possible that there still could be solutions.

C. Databases Amenable to Privacy

It is useful for us to briefly consider the sorts of databases
that are not covered by our lower bounds, since arbitrary
databases with enough columns tend to either be deanonymiz-
able or impossible to classify as deanonymizable or not.
We discuss some examples of hypothetical databases where
privacy might hold in the paragraphs below. Unfortunately,
these databases do not seem to be representative of real-world
databases that might exist for online advertising.

Minimal or Nonexistent Priors: In the case where there is
no (or a very small amount of) public data or the public
data is identical for each user, privacy from our definition
follows fairly easily. An attacker only learns the values of
the anonymized rows of the database, and nothing that could
be used to link back these rows to any real-world users.
This follows from the fact that each user is equally likely
to correspond to every row in the anonymized database, so
deanonymizing the databases is impossible.

Thus, the entropy for each user remaining after the release of
the anonymized database is roughly proportional to 1

n of the
entropy in each row, and this is an upper bound on privacy
loss assuming somewhat of a uniform distribution on the rows.
The only way this results in a drastic privacy loss is if all of
the rows are unexpectedly similar, which we would expect to
happen with very low probability.

Very Small Data Release: If the anonymized database con-
tains columns with information approximately proportional
to the log of the number of users, and the distribution of
the anonymized database isn’t too pathological, then we can



also potentially prove privacy under our definition. This just
follows using rote, brute-force computation. We can compute
the likelihood of every user corresponding to each row, and
how much entropy remains for each user in every case.

Assuming that the distribution of the anonymized database
isn’t too pathological and, if an output appears once, it appears
many times, then it can be shown that a user’s privacy loss
is not large. We defer a more thorough analysis of this to the
next section.

V. EXPERIMENTAL RESULTS

In this section, we explore how we can estimate privacy
loss for simple anonymization mechanisms. We can show that
when priors are exactly same for all users we can precisely
measure the privacy loss quite easily. This is the case when
only aggregate/population statistics are known about users.

In particular we show that we can publish an anonymized
version of the training data available in the Million Songs
Dataset [20] with high information gain and low privacy loss.
However, we need to assume the only available prior is the
aggregate popularity of the songs, which is not realistic - with
social networking and readily available online data it is easy
to glean something about most users’ musical taste. We finally
discuss why estimating the privacy loss is hard in case of non-
identical priors for different users.

Suppose we have a dataset D, consisting of the listen-
ing history of t popular songs (s1, · · · , st) among n users
(u1, · · · , un). Furthermore, the listening history hij is only
a binary bit value indicating whether user ui has listened to
song j or not. Suppose our prior information is only the global
popularity of the songs, i.e., probabilities (p1 · · · , pt) where
pi is the probability whether ‘any’ user has listened to song
si or not. Now if we release the de-identified version of the
dataset D, the privacy loss for any user can be formulated as:

−
∑t
i=1(pi log pi + (1− pi) log(1− pi))

+
∑2t

j=1(
nj

n log
nj

n ).

Here ni is the frequency of the rating vector correspond-
ing to binary representation of i. Moreover, the information
learned about any user is

−
t∑
i=1

(pi log pi + (1− pi) log(1− pi)).

Million Songs Data Set: The Million Songs Dataset (MSD)
challenge was a machine learning challenge hosted in Kaggle.
The task was to suggest a set of songs to a user given
half of their listening history and the complete listening
history of another 1 million people. Here we take the training
dataset, containing the listening history of about 1 million
users (1, 019, 318 to be precise) and 385, 546 total songs. We
noticed, even though there are over quarter million songs, the
total entropy of any user is only about 540 bits given the
aggregate popularity of the songs.

Figure 1 shows information learned and privacy loss for any
user when we release the anonymized listening history of the
t most popular songs (for t ∈ {1, · · · , 20}). We can see that in
this case it is possible to safely release the anonymized dataset
with high information learned and little privacy loss. This is
not really surprising because here we have assumed our prior
information is the same for all users. Obviously this is not a
practical assumption, but if we do not make such assumptions
it is difficult or impossible for us to prove privacy.

Fig. 1: Privacy in the anonymized million songs dataset
assuming average song ratings are the only available prior

Realistic Prior - not identical for all users: Finding a
closed form expression and precise evaluation of user entropy
given a anonymized database release is a hard task in general,
especially when different users have different priors. At first
we consider a simple use case: we have n-users, who we
denote as u1, · · · , un. The released database contains a single
bit si for each user i ∈ {1, · · · , n}. Let p̃i be the probability
that the bit si is 1.

Suppose the released database contains t many 1’s, i.e. |{i ∈
{1, · · · , n} : si = 1}| = t. Now, if we have identical priors
for all users, i.e. p̃i = p the left over entropy can simply be
evaluated as

(t/n) log(t/n) + (1− t/n) log(1− t/n).

In a more complex case, where users belong to two groups (of
size k and n− k) with identical priors within each group, the
leftover entropy can be evaluated as follows. Suppose p̃i = p0
if i ∈ A ⊆ {1, · · · , n} and p̃i = p1 otherwise. We also have
|A| = k. For any user ui in the first group, i.e. i ∈ A, the
leftover entropy is q log q + (1− q) log(1− q) where

q =

p0

(∑t
t′=1

(
k

t′−1
)
pt

′−1
0 (1− p0)k−t

′+1

+
(
n−k
t−t′
)
pt−t

′

1 (1− p1)n−k−t+t
′

)
∑t
t′=0

(
k
t′

)
pt

′
0 (1− p0)k−t

′(n−k
t−t′
)
pt−t

′

1 (1− p1)n−k−t+t′



The above expression can be evaluated efficiently in poly-
nomial time. In the most general case when p̃i is different
for each user, leftover entropy for user ui is qi log qi + (1 −
qi) log qi where

qi =

p̃i

(∑
S⊆{1,··· ,n}\{i}
|S|=t−1

∏
j∈S p̃j

∏
j∈{1,...,n}\S\{i}(1− p̃j)

)
∑
S⊆{1,··· ,n}
|S|=t

∏
j∈S p̃j

∏
j∈{1,...,n}\S(1− p̃j)

The naive computation of the above term is not possible
in polynomial time. The numerator itself requires

(
n
t

)
many

term computations for arbitrary sets, although it can be done
efficiently using a recursion. Moreover, the above expression
holds only for the case when the anonymized dataset contains
a single bit.

For a more general and practical use case where we will
be releasing multiple bits, the problem quickly becomes in-
tractable. As we have discussed in Section IV, this problem is
infeasible in general. However, if the number of released bits
is small (constant or logarithmic in terms of number of users),
we might be able to prove that the privacy loss is small. An
interesting open problem is finding an efficient approximation
of the left over entropy for some realistic set of priors which
is of practical importance.

VI. CONCLUSION

We had two goals when we began writing this paper: we
wanted to first formalize the notion of privacy in a modern
online advertising ecosystem, and then we wanted to develop
provably secure privacy-preserving mechanisms for such an
environment.

For the first goal, we discussed why existing notions fall short
of what we would hope to achieve in terms of expectations
of privacy in an online ad ecosystem. We then developed our
own definition of privacy for such a model, and justified how
our notion enjoys a better alignment with our intuition about
what privacy should actually mean.

Disappointingly, we observed that real world data does not
easily render itself to sanitization mechanisms that preserve
our notion of privacy while at the same time retain useful
information. We showed some theoretical bounds that indi-
cated privacy in real world situations might be difficult or
impossible to obtain. We provided a number of characteristics
of real world data and desirable utilities that conspire to
undermine the practicality of our definition. We also described
how hypothetical datasets could be constructed which provide
a positive case.

At this point we are at a crossroads. Our approach to solving
privacy in a targeted advertising environment seems to have
bogged down, but the problem itself is important and is not
going away. Targeted ads, user data collection, and everything
else that comes with the ecosystem will not go away. If there
are no privacy-preserving techniques developed, then privacy

will be lost. As such, we think this is an important topic to
research even if it is quite difficult to find solutions.

We have several potential thoughts and conclusions that could
be drawn with more research. First, traditional privacy might
be impossible for what we perceive ‘privacy’ to be. Second,
there might be a better trust model which we have not consid-
ered. Third, perhaps our problems could be solved by using
client side computation and potentially ‘heavy’ cryptography.
Finally, it might be the case that better machine learning (or
column compression) can go a long way towards solving our
problems. We discuss these ideas in more detail in the full
version of the paper, and encourage readers to think over these
themselves and develop next steps for attacking this difficult
problem.
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