
An extended abstract of this paper appears at ACNS 2017.

Forward-Secure Searchable Encryption
on Labeled Bipartite Graphs?

(Full Version)

Russell W. F. Lai and Sherman S. M. Chow??

Department of Information Engineering,
The Chinese University of Hong Kong,

Shatin, N.T., Hong Kong
{russell, sherman}@ie.cuhk.edu.hk

July 4, 2017

Abstract. Forward privacy is a trending security notion of dynamic searchable symmetric encryption
(DSSE). It guarantees the privacy of newly added data against the server who has knowledge of previous
queries. The notion was very recently formalized by Bost (CCS ’16) independently, yet the definition
given is imprecise to capture how forward secure a scheme is. We further the study of forward privacy
by proposing a generalized definition parametrized by a set of updates and restrictions on them. We
then construct two forward private DSSE schemes over labeled bipartite graphs, as a generalization of
those supporting keyword search over text files. The first is a generic construction from any DSSE, and
the other is a concrete construction from scratch. For the latter, we designed a novel data structure
called cascaded triangles, in which traversals can be performed in parallel while updates only affect the
local regions around the updated nodes. Besides neighbor queries, our schemes support flexible edge
additions and intelligent node deletions: The server can delete all edges connected to a given node,
without having the client specify all the edges.

1 Introduction

In searchable symmetric encryption (SSE), an encrypted database can be queried with minimal leakage
of information about the plaintext database to the hosting server. The client is additionally allowed to
update the encrypted database in dynamic SSE (DSSE) without reencrypting from scratch. Since its in-
troduction [SWP00], many SSE schemes with different trade-offs between efficiency, security, and query
expressiveness have been proposed [BHJP14]. Most earlier schemes were not dynamic. The first sublinear
dynamic SSE scheme was proposed by Kamara et al. [KPR12], but the query and update operations are
inherently sequential. Some later schemes [KP13,SPS14,HK14] feature parallelizable algorithms for queries
and updates. Parallelism made DSSE an attractive solution for outsourcing data to cloud platform which
fully leverages the multiprocessors.

1.1 Security and Forward Privacy of SSE Schemes

Ideally, the knowledge of an encrypted database, together with a sequence of adaptively issued queries and
updates, should not reveal any information about the plaintext database and the query results to the server.
Although this can be achieved theoretically through techniques involving obfuscation [CCC+16] or oblivious
RAM [GMP16], the resulting solutions are not particularly efficient. Typically, a practical DSSE scheme
tolerates the leakage of search and access patterns during queries, and some internal structure of the encrypted

? Sherman Chow is supported in part by General Research Fund (Grant No. 14201914) and the Early Career Award
from Research Grants Council, Hong Kong; and Huawei Innovation Research Program (HIRP) 2015 (Project No.
YB2015110147).

?? Corresponding Author

database during updates. Formally, the security is parametrized by a set of leakage functions describing these
leakages. While some leakages seem to pose no harm, some have been exploited in attacks [IKK12,ZKP16].

Forward privacy, advocated by Stefanov et al. [SPS14], requires that newly added data remains private
against the server, who has knowledge about previous queries. The property is arguably essential to all
DSSE schemes, for otherwise, the ability to update in DSSE is somewhat useless as future data are less
protected. Indeed, one of the recent attacks by Zhang et al. [ZKP16] exploits the leakage during updates in
non-forward-private schemes.

Only a limited number of solutions [SPS14,RG15,GMP16,Bos16] in the literature claimed to have forward
privacy. The notion is not well understood in the earlier works [SPS14,RG15,GMP16], and is only formally
defined recently by Bost [Bos16]. However, we argue that this definition cannot precisely describe in what
sense a DSSE scheme is forward private. (See discussion in Section 3.2 for details.)

1.2 Our Formulation

We consider DSSE over labeled bipartite graphs, where nodes can be partitioned into two disjoint subsets X
and Y , such that edges never connect two nodes from the same partition, and each edge is labeled with data
from the set W . A neighbor query on node x ∈ X (or y ∈ Y), returns a sequence of (x, y, w) ∈ X × Y ×W
tuples if (x, y) is an edge on the graph labeled with w.

This abstract setting captures typical DSSE queries such as keyword searches over files (considering X
and Y as the sets of keywords and files respectively), and labeled subgraphs queries over general graphs
(considering X and Y as sets of nodes with outgoing and incoming edges respectively, and W as the set
of edge labels). To generalize, we also consider neighbor queries over the entire bipartite graphs, i.e., both
X and Y , which enables interesting bi-directional searching applications. Bi-directional search is useful to
efficiently support update in DSSE [KPR12] (since deleting a file in a DSSE supporting keyword searches
implicitly requires finding all keywords the file contains). It also opens possibilities of interesting new queries
such as related keyword search (which first searches for documents containing the queried keyword, then
collects other keywords which are also contained in many of the matching documents).

1.3 Update Functionalities of DSSE Schemes

While the query functionality of SSE for keyword search is somewhat standard, the supported update types
have large variations. Updates include additions and deletions, and can be edge-based or node-based. Schemes
supporting only node additions are reasonable for some data type: e.g., x as keywords and y as text files.
Yet, edge updates allow fine-grained modification of existing data. In particular, schemes supporting edge
additions are superior to those supporting only node additions, as the latter can be simulated by the former.

The benefits of supporting only edge deletions are however questionable, as they require the client to
know about the edge to be deleted. It is unrealistic for the motivating application of SSE for keyword search:
The client needs to know all keywords of a given file to completely remove the file from the server. It is
desirable for a DSSE scheme to support node deletions: upon provided a node y from the client, the server
can intelligently remove all edges connecting y.

To the best of our knowledge, most existing schemes only support either edge-based updates or node-
based updates1. Supporting edge additions and node deletions simultaneously, while confining leakage, poses
some technical challenges.

1.4 SSE as a Data Structure Problem

With edge additions and node deletions in mind, it is not an easy task to devise a parallel and dynamic (let
alone forward private) SSE scheme. Intuitively, for data structures supporting parallel traversal, maintaining
the traversal efficiency after an update often requires some global adjustment of the data structure. Consider

1 A few exceptions include Lai-Chow [LC16] and a modified version of the one by Kamara et al. [KPR12]. However,
these schemes leak substantial information during updates.

2

a balanced binary search tree. A series of deletions can degenerate the tree into a linked list which requires
sequential access; and balancing the tree may require the rotation of multiple tree nodes. (That may explain
why the first parallel DSSE [KP13] utilizing a red-black tree which only stores all the files in the leaf level,
resulting in an efficiency loss when compared with storing some of them in internal nodes.) In the context
of DSSE, delegating the maintenance work to the server often implies excessive leakage of the internal data
structure.

A notable approach for (non-dynamic) SSE schemes is the invert-index used by Curtmola et al. [CGKO06,
CGKO11], in which the encrypted database consists of an index mapping hashed keywords to sets of files
containing the keywords. This inverted-index allows the server to search in time linear in the number of
matching files, which is optimal. Many subsequent works follow this framework (explicitly or implicitly),
which utilize some data structure to represent the sets of data, pointed by the (hashed) queries in the
index. The efficiency of queries and updates correspond to the efficiency of traversing and updating the
sets respectively. On the other hand, the leakage of the internal structure of the encrypted database during
updates corresponds to the amount of information required or changed to update the data structure storing
the sets. Most efforts for designing (D)SSE schemes is dedicated to choosing or designing this data structure.

1.5 Our Results

This work furthers the study of forward privacy of DSSE schemes over labeled bipartite graphs. We present
three technical results. First, we give another formal, generalized definition of forward privacy. Specifically,
our definition is parametrized by a set of updates and a restriction function on these updates. It generalizes
the only existing one by Bost [Bos16], by increasing the number of classes of leakage functions allowed, yet
making each class more specific. Our definition still captures the essence of forward privacy even though the
leakage in different classes might vary substantially. Since different existing SSE schemes implicitly assumed
different flavors of forward privacy, we believe that our generalized, parameterized definition of forward
privacy is of particular interest.

Second, we propose a simple generic construction of forward private DSSE from any DSSE, which pre-
serves the efficiency of the base scheme. The forward privacy obtained is for edge additions, such that the
addition of an edge (x, y) does not leak both x and y, hence hiding the edge. This generic transformation
provides insights of what constitutes forward privacy in DSSE. Since the result applies on any DSSE, again
we believe it is of independent interest.

Lastly, we construct a DSSE scheme from scratch which achieves a stronger forward privacy for edge
additions, such that the addition of an edge (x, y) does not leak either x or y. Our construction utilizes a
specially crafted data structure named cascaded triangles2, which supports parallel queries and updates, and
has the property that adding or deleting data only affects a constant amount of existing data. Thanks to
cascaded triangles, our construction features minimal leakage, and optimal query and update complexity in
terms of both computation and communication up to a constant factor.

Both of our constructions support flexible edge additions and intelligent node deletions: The server can
delete all edges connected to a given node, without having the client specify all the edges. It is one of a few
in the literature1.

2 Definitions

We present the necessary definitions for data representation and DSSE. For more detailed explanations, we
refer the readers to Appendix A.

2 While the design of cascaded triangles is original, we do not rule out the possibility that there are similar data
structures outside the literature of SSE. To the best of our knowledge, we are unaware of any common similar data
structure. There are false relatives such as fractional cascading which solves totally different problems.

3

2.1 Notations

Let λ be the security parameter. We use poly (λ) and negl(λ) to denote any polynomial and negligible
functions respectively. [n] denotes the set of positive integers not larger than n. ∗ denotes the wildcard
character. {0, 1}n denotes the set of n-bit strings while {0, 1}∗ denotes the set of arbitrarily long bit strings.
φ denotes the empty set. If X is a set, x← X samples an element x uniformly from X. If A is an algorithm,
x← A means that x is the output of A. ⊕ denotes the bit-wise XOR operation.

2.2 Data Representation

Let X , Y, and W be sets, where X and Y are disjoint, i.e., X ∩ Y = φ. We denote by G = G(X ,Y,W) a set
of labeled bipartite graphs specified by these sets. For a labeled bipartite graph G ∈ G, its edges are labeled
with w ∈ W ⊆ W, and are running across X ⊆ X and Y ⊆ Y. Each edge can be uniquely represented by
the tuple (x, y, w) ∈ X × Y × W. The neighbor query function Qry maps a node q = x (or q = y) and a
graph G to a set of all edges connecting node x, denoted by (x, ∗, ∗) (or a set of all edges connecting node
y, denoted by (∗, y, ∗)). Similarly, we use (x, y, ∗) to denote the set of edges in the form of (x, y, ·), which
should be a singleton. The update function Udt maps an update u and a graph G to a new graph G′. The
update u = (Op, ·, ·, ·) where Op = Add or Op = Del takes one of the following forms:

1. Edge Addition: u = (Add, x, y, w) adds the edge (x, y, w) to G.
2. Node Deletion: u = (Del, q) deletes the set of edges (q, ∗, ∗) (or (∗, q, ∗)) from G. Since X and Y are

disjoint, there is no ambiguity.

2.3 Dynamic Searchable Symmetric Encryption (DSSE)

We present a definition of DSSE for the labeled bipartite graphs defined above, and its security against
adaptive chosen query attack (CQA2).

Definition 1. A dynamic symmetric searchable encryption (DSSE) scheme for the space of labeled bipartite
graphs specified by G is a tuple of algorithms and interactive protocols DSSE.(Setup,Qrye,Udte) such that:

- (K,EDB)← Setup(1λ): In the setup algorithm, the user inputs the security parameter λ. It outputs a secret
key K, and an (initially empty) encrypted database EDB to be outsourced to the server. Alternatively, one
can define a setup algorithm which takes as input the security parameter λ, and a graph G. In this case, the
algorithm outputs a key K and an encrypted database EDB encrypting G.

- ((K ′, R), (EDB′, R)← Qrye((K, q),EDB): In the query protocol, the user inputs a secret key K and a query
q ∈ X ∪Y. The server inputs the encrypted database EDB. The user outputs a possibly updated key K ′, while
the server outputs a possibly updated encrypted database EDB′. Both the user and the server output a sequence
of responses R. For non-interactive schemes, the user first runs (K ′, τq)← QryTkn(K, q) to generate a query
token τq. The server then runs (EDB′, R)← Qrye(τq,EDB) and outputs the query results R.

- (K ′,EDB′)← Udte((K,u),EDB): In the update protocol, the user inputs a secret key K and an update u ∈
{Add,Del} × (X ∪ Y). The server inputs the encrypted database EDB. The user outputs a possibly updated
key K ′. The server outputs an updated encrypted database EDB′. For non-interactive schemes, the user first
runs (K ′, τu)← UdtTkn(K,u) to generate an update token τu. The server then runs EDB′ ← Udte(τu,EDB)
and outputs the updated database EDB′.

A DSSE scheme for the space G is said to be correct if, for all λ ∈ N, all K and EDB output by Setup(1λ),
and all sequences of queries and updates, the responses to the plaintext queries equal those to the corresponding
encrypted queries.

Definition 2 (CQA2-security). Let E be a DSSE scheme as defined in Definition 1. Consider the fol-
lowing probabilistic experiments, where A is a stateful adversary, S is a stateful simulator, Z denotes the
environment, and Le, Lq and Lu are stateful leakage algorithms:

4

RealE,A,Z(1λ): The adversary A acts as the server. The environment Z sends a message “setup” to the
client, who executes the setup algorithm Setup and sends the encrypted database EDB to A. At each time
step, the environment Z chooses either a query q or an update u. For the former, the client with input q
engages in the query protocol Qrye with A. For the latter, the client with input u engages in the update
protocol Udte with A. The environment Z observes the output of the client, i.e., either “abort”, “update
success”, or the query results. The environment Z returns a bit b that is output by the experiment.
IdealF,S,Z(1λ): The simulator S, i.e., the ideal-world adversary, acts as the server. The environment Z
sends a message “setup” to the client, who forwards this message to the ideal functionality F , who notifies
S of Le(G). At each time step, the environment Z chooses either a query q or an update u. For the former,
the client sends the query q to F , who notifies S of Lq(q). For the latter, the client sends the update u to F ,
who notifies S of Lu(u). S sends F either the message “abort” or “continue”. As a result, F sends the client
“abort”, “update success”, or the query results. The environment Z observes these messages, and returns a
bit b that is output by the experiment.

We say that DSSE is (Le,Lq,Lu)-secure against adaptive dynamic chosen-query attacks (CQA2) if for
all honest-but-curious PPT adversaries A, there exists a PPT simulator S such that for all non-uniform
polynomial time environment Z

|Pr[RealE,A,Z(1λ) = 1]− Pr[IdealF,S,Z(1λ) = 1]| ≤ negl(λ) .

3 Forward Privacy in DSSE

Intuitively, forward privacy ensures that newly added data remains hidden to the server who might have
learned some secrets during previous queries, until it must be revealed by a later query. To formalize, instead
of tinkering with the CQA2-security definition of DSSE, we define forward privacy based on the property
of the leakage function Lu. This is more convenient since the information leaked by Lu is sufficient for
the simulator in the CQA2-security definition to simulate the updates. Similar to the semantic security of
encryption schemes, we require that the leakages Lu on a pair of updates are indistinguishable, capturing
the idea that not even a single bit about the update is leaked to the server. Note that the definition does
not limit the types of the update u. Indeed, we can consider forward privacy for not only additions, but also
deletions. In layman terms, suppose that the server learns during the query protocol about the association of
q with some data, which is then deleted by the client. The server should not notice that the data are deleted
until q is queried again: By that time the server can compare the query results and discover the deletion.

3.1 Our Definition

We first give a general definition of forward privacy parametrized by a set of updates and a restriction
function, then discuss useful ways to parameterize it.

Definition 3 (Forward Privacy). Let DSSE be a (Le,Lq,Lu)-CQA2 secure DSSE scheme for labeled
bipartite graphs specified by G. Let U be a set of updates and restriction p : U2 → {0, 1} be a predicate function.
We say that DSSE is: (U , p)-forward private, if for any ub ∈ U where b ∈ {0, 1} such that p(u0, u1) = 1, and
any PPT distinguisher D, it holds that

|Pr[D(Lu(u0)) = 1]− Pr[D(Lu(u1)) = 1]| ≤ negl(λ) .

Table 1 lists some useful combinations of U and p, denoted by Ui and pi respectively for i ∈ [6]. One
may also consider a set U which is a union of some of the (disjoint) Ui’s, and a restriction p which is a
composition of the corresponding pi’s: For pi : U2

i → {0, 1}, define p = pi + pj : (Ui ∪ Uj)2 → {0, 1} such
that (pi + pj)(u) = 1 if u ∈ Ui and pi(u) = 1, or u ∈ Uj and pj(u) = 1.

Note that there might exist schemes which are (Ui, pi)- and (Uj , pj)-forward private but not (Ui∪Uj , pi+
pj)-forward private. For example, if Ui and Uj are sets of additions and deletions respectively, while the
distinguisher cannot tell which addition or deletion is chosen, it can separate additions from deletions.

5

Table 1. Useful combinations of U and p as parameters for forward privacy. (See Section 2.2 and Appendix A.2 for
details about the update operations.)

i Type Sets of updates Ui
Updates ub ∈ Ui
b ∈ {0, 1}

Possible conditions such that pi = 1
(If there are no restrictions, pi ≡ 1)

1 edge {(Add, x, y, w)} (Add, xb, yb, wb) x0 = x1 or y0 = y1
2 node {(Add,x, y,w)} (Add,xb, yb,wb) y0 = y1
3 node {(Add, x,y,w)} (Add, xb,yb,wb) x0 = x1
4 edge {(Del, x, y)} (Del, xb, yb) x0 = x1 or y0 = y1
5 node {(Del, x)} (Del, xb) |(x0, ∗, ∗)| = |(x1, ∗, ∗)|
6 node {(Del, y)} (Del, yb) |(∗, y0, ∗)| = |(∗, y1, ∗)|

3.2 Bost’s Definition

The forward privacy definition of Bost [Bos16] requires that the leakage function of u = (Op, x, y, w) can
be written as a function of the operation Op and the node y, where Op can be addition or deletion. We
argue that the range of leakage functions which satisfy this requirement is so wide, such that the definition
does not precisely describe in what sense a DSSE scheme is forward secure. At one extreme, consider a
scheme of which the leakage function is given by Lu(Op, x, y, w) = (Op, y). If Lu accurately (not overly)
captures the leakage, then adding or removing edges to or from a node y leaks the identity of the node y
itself. Such a scheme is vulnerable to frequency attacks: The attacker keeps a table mapping each y to the
number of times y is updated. With the aid of external information, it can possibly extract information
about y, such as its importance. Similar attacks have been demonstrated using search patterns [LZWT14].
At another extreme, Bost’s construction [Bos16] leaks nothing during updates, i.e., Lu(Op, x, y, w) = φ. On
the other hand, Bost’s definition is also not general enough. There are other types of leakage functions, e.g.,
Lu(Op, x, y, w) = (Op, x), which intuitively capture forward privacy, but are not covered by this definition.
In contrast, our definition of (U , p)-forward privacy classified different types of update in a more fine-grained
manner.

In the perspective of our model, Bost’s definition can be regarded as special cases of (U1, p1)- (achieved
by our generic construction in Section 4) and (U4, p4)-forward privacy. Intuitively, the restrictions p1 and p4
mean that an update u = (Op, x, y, w) is protected by hiding one end of the connection between x and y.
Therefore, similar to the above, it might be the case that the updates u0 and u1, where ub = (Add, xb, y, w)
for b ∈ {0, 1}, are linkable as they correspond to the same node y, making the scheme vulnerable to the
same frequency attack. On the other hand, (U1, 1)- (achieved by our concrete construction in Section 5) and
(U4, 1)-forward privacy completely hides the relation (x, y), making the addition and deletion of an edge
(x, y, w) oblivious respectively (since w can be hidden simply by symmetric key encryption). Whether or not
the stronger forward privacy is needed depends on the specific application scenarios.

3.3 Forward Privacy for Deletions

In the rest of this work, we focus on U = U1 = {(Add, x, y, w)}, with and without restrictions, i.e., p = p1
and p ≡ 1, respectively. In other words, we do not consider forward privacy for deletions. To argue for this
design decision, we observe that while the scheme of Bost [Bos16] performs “lazy edge deletion” (adding
“deleted” edges rather than actually deleting), ours perform actual node deletion. The former increases the
size of the encrypted database (by one edge), hence it is possible to make (edge) additions and deletions
indistinguishable. The latter allows immediate space reclamation. This makes edge additions (which usually
increase the size of the encrypted database) and node deletions easily distinguishable. Furthermore, since
actual deletions of different nodes may result in a shrink of the database size in varying degrees, they are
also easily distinguishable. In effect, we trade “forward privacy for (lazy) deletions” for efficiency. If forward
privacy for deletions is a concern and lazy deletions are acceptable, using a similar technique of maintaining
another instance of encrypted database for lazy deletions [Bos16], schemes which are forward private for
edge additions can be generically transformed to provide forward privacy for both edge additions and node

6

(K,EDB)← Setup(1λ)

(K̃, ˜EDB)← E.Setup(1λ)

γ = φ, Ĝ = φ

return K = (K̃, γ), EDB = (˜EDB, Ĝ)

(K′, τq)← QryTkn(K, q)

if q = x ∈ X ∧ γ[x] 6= ⊥ then

(Kx, cx)← γ[x]

γ[x]← ⊥
for i = 1, . . . , cx do

τ̃i ← E.QryTkn(K̃, F (Kx, i))

τ̃
−
i ← E.UdtTkn(K̃, (Del, F (Kx, i)))

endfor

τq ← (x, {τ̃i, τ̃−i }
cx
i=1)

else

(q = x ∈ X) ? τq ← x : τq ← ⊥
endif

return (K, τq)

(EDB, R)← Qrye(τq,EDB)

Parse τq as (x, {τ̃i, τ̃−i }
cx
i=1)

R← Qry(x, Ĝ)

for i = 1, . . . , cx do

R̃← E.Qrye(τ̃i,
˜EDB)

˜EDB← E.Udte(τ̃−i , ˜EDB)

R← R ∪ R̃
endfor

foreach (x̃, y, w) ∈ R do

R← R \ {(x̃, y, w)} ∪ {(x, y, w)}

Ĝ← Udt((Add, x, y, w), Ĝ)

endfor

return (EDB, R)

EDB′ ← Udte(τ
+
u ,EDB), u = (Add, . . .)

˜EDB← E.Udt(τ̃+
u ,

˜EDB)

return EDB

Fig. 1. Algorithms of generic construction for forward privacy

deletions (simultaneously): To delete a node y ∈ Y , the client adds an edge connecting y to a special “deleted”
node in X. We leave the details to the full version of this paper. In this sense, forward privacy for additions
is a key property. We also believe that it is sufficient for practical applications by itself.

4 Forward Privacy from any DSSE

In this section, we will show that a DSSE scheme with (U1, p1)-forward privacy can be constructed from
any DSSE scheme E , where U1 and p1 are defined in Table 1. For simplicity of our description below, we
assume the base scheme to be non-interactive, so that the resulting scheme is also non-interactive3. Our
transformation can be easily adapted to interactive schemes.

Our construction is inspired by that of Rizomiliotis and Gritzalis [RG15] which uses fresh keys for newly
added data. The main idea is to locally maintain a table γ of pseudorandom function (PRF) keys Kx and
counters cx for each query q = x, so that adding an edge (x, y, w) is translated to adding another edge
(F (Kx, cx), y, w). Our scheme also adopts the technique of Hahn and Kerschbaum [HK14], who observe that
when the set (x, ∗, ∗) is leaked upon querying on x, there is no need to protect the set by encryption any
longer. To speed up subsequent queries, the server should thus transfer the set encrypted in the scheme
to a plaintext bipartite graph Ĝ. We assume an efficient data structure for representing the graph Ĝ, so
that neighbor queries, edge additions, and node deletions in Ĝ are parallelizable and have time complexity
linear in the number of affected nodes only. There might be many ways to construct such a data structure.
Cascaded triangles introduced in Section 5 is one example.

4.1 Our Construction

Let E be a DSSE scheme for G = G({0, 1}λ,Y,W), and F : {0, 1}λ×X → {0, 1}λ be a pseudorandom function
(PRF). We construct a DSSE scheme for G′ = G′(X ,Y,W). The resulting scheme supports queries over X ,
assuming the base scheme supports queries over {0, 1}λ. Figures 1 and 2 formally describe the construction.

3 Candidate base schemes include [LC16] and a modified version of [KPR12].

7

(K′, τ+u)← UdtTkn(K,u = (Add, . . .))

parse u as (Add, x, y, w)

if γ[x] = ⊥ then

Kx ← {0, 1}λ, cx ← 1

else

(Kx, cx)← γ[x], cx ← cx + 1

endif

γ[x]← (Kx, cx)

τ
+
u ← E.UdtTkn(K̃, (Add, F (Kx, cx), y, w))

return (K, τ
+
u)

EDB′ ← Udte(τ
−
u ,EDB), u = (Del, ·)

if τ
−
u = (x ∈ X , {τ̃−i }

cx
i=1) then

Ĝ← Udt((Del, x), Ĝ)

for i = 1, . . . , cx do

˜EDB← E.Udte(τ−i , ˜EDB)

endfor

elseif τ
−
u = (y ∈ Y, τ̃−) then

Ĝ← Udt((Del, y), Ĝ)

˜EDB← E.Udte(τ−, ˜EDB)

endif

return EDB

(K′, τ−u)← UdtTkn(K,u = (Del, ·))

if u = (Del, x) then

if γ[x] 6= ⊥ then

(Kx, cx)← γ[x]

γ[x]← ⊥
for i = 1, . . . , cx do

ri ← F (Kx, i)

τ̃
−
i ← E.UdtTkn(K̃, (Del, ri))

endfor

τ
−
u ← (x, {τ̃−i }

cx
i=1)

else

τ
−
u ← x

endif

elseif u = (Del, y) then

τ̃
− ← E.UdtTkn(K̃, (Del, y))

τ
−
u ← (y, τ̃

−
)

else

τ
−
u ← ⊥

endif

return τ
−
u

Fig. 2. Algorithms of generic construction for forward privacy (cont.)

The setup algorithm initializes the base scheme E , which yields a secret key K̃ and encrypted database
˜EDB. It also initializes an empty dictionary γ and an empty bipartite graph Ĝ ∈ G′. The new secret key

K consists of K̃ and γ, while ˜EDB and Ĝ are outsourced to the server. The dictionary γ maps a query
q = x ∈ X to a PRF key Kx and a counter cx.

To perform an update u = (Add, x, y, w), the client increments cx ← cx + 1, and transforms the update
into ũ = (Add, F (Kx, cx), y, w) of the base scheme. To perform an update u = (Del, x), the client removes
the x-th row of γ, and sends to the server the update tokens for (Del, F (Kx, i)) for i ∈ [cx]. The update
u = (Del, y) is processed as in the base scheme.

Finally, to query q = x ∈ X , the client removes the x-th row of γ, and sends to the server the query
tokens of F (Kx, i) for i ∈ [cx]. Given these tokens, the server retrieves the intended response R. Additionally,
the client also sends the update tokens for (Del, F (Kx, i)) for i ∈ [cx]. The server uses these tokens to collect
and remove the set of edges R = (x, ∗, ∗) from the base scheme, and merge R to the plaintext graph Ĝ.

The correctness follows directly from that of the base scheme E .

4.2 Analysis

Efficiency. Our generic transformation almost preserves the efficiency of the underlying DSSE scheme. For
most algorithms, the preservation is apparent. We highlight the slightly more complicated cases, namely,
the query on x and the update (Del, x). In the former, cx queries on F (Kx, i) for i ∈ [cx] are executed,
while in both cases cx deletions (Del, F (Kx, i)) for i ∈ [cx] are required. We analyze their efficiency assuming
the following operations of the underlying DSSE scheme each takes constant time: the computation of
the query token for each F (Kx, i); the server computation for querying on each F (Kx, i) (since by the
pseudorandomness of F , the query should only return a single edge); the computation of each delete token;
and the server computation for deleting each set (F (Kx, i), ∗, ∗) (since each set is actually a singleton).
Overall, the resulting scheme incurs O(cx) computation and communication costs for both the client and

8

the server where cx is the number of newly matched data item. These are extra costs on top of the costs for
retrieving the previously matched data (in plaintext), i.e., constant computation cost of the client, sublinear
computation cost of the server, and sublinear communication cost of both. Since cx is reset to zero whenever
x is queried, the amortized extra costs of both the client and the server are low.

Security. Let E be an (L̃e, L̃q, L̃u)-CQA2 secure DSSE scheme for labeled bipartite graphs specified by G;
and F : {0, 1}λ×N→ {0, 1}λ be a pseudorandom function. We construct a simulator which, when given the
leakage defined by the leakage functions (Le,Lq,Lu), simulates the ideal functionality of the base scheme.

These leakage functions are defined based on those (L̃e, L̃q, L̃u) of the base scheme. Concretely, we define
the leakage functions as follows:

– Le(G′) = L̃e(G),

– Lu(Add, x, y, w) = (x̃, L̃u(Add, x̃, y, w)) for dummy node x̃← {0, 1}λ,

– Lu(Del, x) = (x, {L̃u(Del, x̃i)}cxi=1),

– Lu(Del, y) = (y, L̃u(Del, y)),

– Lq(x) = (x,APt(x), {L̃q(x̃i), L̃u(Del, x̃i)}cxi=1), for dummy nodes x̃i defined by Lu(Add, x, y, ·) for updates
after the previous query on x.

Theorem 1. Assume that E is (L̃e, L̃q, L̃u)-CQA2 secure, and F is pseudorandom, then the above construc-
tion is (Le,Lq,Lu)-CQA2 secure. Furthermore, let p′1 be a function such that p′1(u0, u1) = 1 if and only if
y0 = y1 and w0 = w1

4. Then the construction is (U1, p′1)-forward private, where U1 is defined in Table 1.

Appendix B.1 shows the proof of Theorem 1.

Extension with ORAM. In the above construction, the size of the local storage is linear in the size of X , in
the worst case. To avoid such local storage, the client can outsource the table γ to a remote oblivious RAM
(ORAM), similar to the solution of Rizomiliotis and Gritzalis [RG15]. Given a sequence of access operations
to a RAM, an ORAM compiler can generate a (longer) sequence of access operations to the ORAM. The
new sequence preserves the functionality of the original access sequence, while the oblivious access sequences
generated from any two original access sequences of the same length are computationally indistinguishable.
State-of-the-art ORAM schemes only incur a polylogarithmic bandwidth overhead in the size of the memory.
Therefore, by substituting the local storage of γ by ORAM, the client can avoid a local storage at the cost
of extra communication whenever the dictionary γ is accessed.

5 Forward Privacy from Scratch

We next construct (interactive) DSSE which achieves forward privacy directly. First, a new data structure,
named cascaded triangles, is designed to represent labeled bipartite graphs which supports neighbor queries,
edge additions, and node deletions efficiently. We then transform it into its encrypted version.

The construction of cascaded triangles is motivated by the following. Since the neighbor queries and node
deletions require traversing the sets (x, ∗, ∗) and (∗, y, ∗), their data structure representations are critical for
the efficiency, and later the security of the resulting DSSE scheme. In particular, they determine whether
the desired operations can be executed in parallel, and how much information has to be leaked to the
server for performing such operations. For example, linked list [KPR12] traversal and updates are inherently
sequential, yet updating only has a local effect (on the previous and next nodes). However, random binary
search tree [LC15] exhibits parallel traversal and updates, yet updating affects (or leaks) the subtree rooted
from the altered node. Thus, cascaded triangles is designed to support parallel traversal and local updates
simultaneously.

4 We can drop the restriction w0 = w1 by simply encrypting w during additions.

9

5.1 Warm Up: Plaintext Cascaded Triangles

Overview. Our goal is to store the bipartite graph G so that neighbor queries and deletions over X or
Y can be executed in sublinear time. We can do so by pre-computing the set of edges connected to each x
(and y), and storing the set by a data structure which allows efficient traversal. For any x, consider the set
of edges connecting x. We pack this set into multiple perfect binary trees, called triangles, by first forming
the largest triangle possible, subtracting the edges which are already packed, then continuing to form the
next largest triangle. The resulting triangles thus have strictly decreasing (cascading) heights, except for the
last two which may have equal heights. This invariant is to be maintained in any later updates. To add an
edge connecting x, we check if the two shortest triangles have the same height. If so, we add a new node
representing the new edge on top of the two triangles, merging them into one larger triangle. Otherwise, the
new node is added as a new triangle of height 1. To delete an edge, we delete the node representing this edge
by replacing it with the root of the shortest triangle, splitting the latter into two smaller triangles. We can
see that the invariant is still maintained after each addition and each deletion. Finally, to traverse the data
structure, one may use any (parallel) tree traversal algorithms.

Setup. Concretely, cascaded triangles consists of dictionaries γ, δ, and η. We can think of γ as local states
stored at the client side, while δ and η are outsourced to the server. The dictionary η is the one to store the
actual data. It maps an address addr to a tuple (a, b), where b = (chd0, chd1) specifies the addresses of the
left and right child respectively. b is maintained so that nodes in η form perfect binary trees (triangles). This
means either both addresses (chd0, chd1) are empty (⊥) or both are valid addresses occupied in η. To store
an edge (x, y, w) into η, the edge is copied twice into aM = aO = (x, y, w). The tuples (aM, bM) and (aO, bO)
are stored at random addresses addrM and addrO in η respectively. The addresses addrM and addrO are said
to be duals of each other, and are registered in δ, i.e., δ[addrM] = addrO and δ[addrO] = addrM.

Globally, we describe how the nodes in η are connected to each other via the addresses stored in b. We
collect all η[addr] = (a, b) corresponding to the edges in (q, ∗, ∗) (or (∗, q, ∗)). Let nq = |(q, ∗, ∗)| (or |(∗, q, ∗)|).
We pack these tuples into triangles of cascading heights h1 ≤ h2 < h3 < . . . < hk, where k ≤ dlg nqe+1. Note
the possible equality between h1 and h2 but not the others. The ordering of the nodes is implicitly determined
by the update algorithms, but does not matter here. Using the procedures described in the overview, given
the size nq, the heights h1, . . . , hk are uniquely determined. It is possible to represent the heights compactly
by a trinary string h ∈ {0, 1, 2}dlgnqe, such that the i-th trit (trinary digit) is set to t, if there are t triangles
of height i. Due to the constraints on the heights, only the least significant non-zero trit can be set to 2.
Finally, the addresses of the roots and the heights of these triangles are stored in γ[q] = (addr1, . . . , addrk, h).

Queries and Traversal. Traversing the sets (q, ∗, ∗) and (∗, q, ∗) are straightforward with the above struc-
ture: First, retrieve the roots of the triangles from γ[q] = (addr1, . . . , addrk, h). Then, use parallel tree-
traversal algorithms to traverse the trees from the root starting at each of these addresses. Notice that the
neighbor query function Qry on x and y are supported by traversing the sets γ[x] = (x, ∗, ∗) and γ[y] = (∗, y, ∗)
respectively.

Add. To add a new edge (x, y, w), we first retrieve γ[x] = (addrM1 , . . . , addr
M
k , h

M) and check whether the
triangles rooted at addrM1 and addrM2 have the same height.

To do so, we take a detour to describe the +1 operation in h + 1. Recall that only the least significant
non-zero trit, say the i-th trit, in h can be set to 2. The operation h + 1 adds 1 to the i-th trit (instead of
the least significant trit as in normal addition), which sets the i-th trit to 0 and carries 1 to the (i+ 1)-trit.
Denote this event by Carry(h + 1) = 1. Otherwise, h + 1 simply adds 1 to the least significant trit as in
normal addition, denoted by Carry(h+ 1) = 0. Later, for deletion, we would need the −1 operation which is
the “reverse” of +1. Concretely, h − 1 subtracts 1 from the least significant non-zero trit, say the i-th trit,
and set the (i− 1)-th trit to 2 if i > 1.

With the above procedures, checking the heights of the first two triangles can be done by simply checking
whether the least significant non-zero trit in hM equals 2, or equivalently whether Carry(hM+1) = 1. If that is

10

(K,EDB)← Setup(1λ, |X |, |Y|, |W|)

γ = φ, δ = φ, η = φ, Ĝ = φ

return K = γ, EDB = (δ, η, Ĝ)

Trav(EDB, {addrj}kj=1, ak, bk)

if k > 1 then

R = φ,D = φ

for j = 1, . . . , k do

(R
′
, D
′
)← Trav(EDB, addrj , ak, bk)

R = R ∪ R′, D = D ∪D′

endfor

else

(ca, cb)← η[addr1], η[addr1]← ⊥

addr1 ← δ[addr1], δ[addr1]← ⊥
if ak 6= ⊥ then

Trav(EDB, {addrj}kj=1, ak, bk) (cont.)

(x, y, w)← NCE.Dec(ak, ca)

else

(x, y, w)← ca

endif

(chd0, chd1)← NCE.Dec(bk, cb)

if chd0 6= ⊥ (∨ chd1 6= ⊥) then

(R
′
, D
′
)← Trav(EDB, chd0, ak, bk)

(R
′′
, D
′′
)← Trav(EDB, chd1, ak, bk)

R = R
′ ∪ R′′ ∪ {(x, y, w)}

D = D
′ ∪D′′ ∪ {addr1}

else

R = {(x, y, w)}, D = {addr1}
endif

endif

return (R,D)

Fig. 3. Setup and Traverse algorithm of encrypted cascaded triangles

the case, we add (aM, bM) where aM = (x, y, w) and bM = (addrM1 , addr
M
2) to a random address addrM in η. We

then update γ[x]← (addrM, addrM3 , . . . , addr
M
k , h

M+ 1), where the two addresses addrM1 and addrM2 are replaced
by the new addrM. Otherwise, we add (aM, bM) where aM = (x, y, w) and bM = (⊥,⊥) to a random address
addrM in η, and update γ[x]← (addrM, addrM1 , . . . , addr

M
k , h

M + 1). The difference is highlighted in red.
Similarly, we retrieve (addrO1 , . . . , addr

O
k , h

O) ← γ[y] and check whether Carry(hO + 1) = 1. If so, we add
((x, y, w), (addrO1 , addr

O
2)) to a random address addrO in η, and update γ[y]← (addrO, addrO3 , . . . , addr

O
k , h

O +
1). Otherwise, we add ((x, y, w), (⊥,⊥)) to addrO, and update γ[y]← (addrO, addrO1 , . . . , addr

O
k , h

O + 1).

Delete. To delete node x, or equivalently the set of edges (x, ∗, ∗), we first traverse the set (x, ∗, ∗) using the
above traversal algorithm. We delete all the traversed nodes in η as well as the row γ[x]. It remains to delete
the dual nodes of the traversed nodes. To do so, for each traversed address addrM with a = (x, y, w), look up
δ[addrM] = addrO and γ[y] = (addrO1 , . . . , addr

O
k , h

O). We wish to replace the content of η[addrO] = (aO, bO)
located in the middle of some triangle by the content of η[addrO1], the root of the smallest triangle, which
splits the smallest triangle into two smaller ones. In this way, the heights of the resulting triangles still satisfy
the required constraints.

Concretely, we perform the following steps. 1) Look up δ[addrO1] = addrM1 . 2) Delete δ[addrM]
and δ[addrO1]. 3) Update δ[addrM1] ← addrO and δ[addrO] ← addrM1 . 4) Look up η[addrO1] = (aO1 , b

O
1),

where bO1 = (addrH0 , addr
H
1). 5) Update η[addrO] ← (aO1 , b

O
1) and delete η[addrO1]. 6) Update γ[y] =

(addrH0 , addr
H
1 , addr

O
2 , . . . , addr

O
k , h

O − 1), where hO − 1 is the reverse of hO + 1. We omit the deletion of
(∗, y, ∗) which is similar to the above.

Efficiency. The storage cost of cascaded triangles is O(|X|+|Y |+|G|) = O(|G|). The complexity of querying
(or deleting) x and y are O(|(x, ∗, ∗)|) and O(|(∗, y, ∗)|) respectively. Addition of an edge can be computed
in constant time.

5.2 Our Construction: Encrypted Cascaded Triangles

We now transform the plaintext cascaded triangles into its encrypted version. Recall that the goal of the
client is to encrypt a labeled bipartite graph G into an encrypted database EDB which still supports neighbor
queries, edge additions, and node deletions. To do so, the client represents G using cascaded triangles, stores
γ locally, and outsources δ and the encrypted η to the server. The encryption should be non-committing,

11

((K′, R), (EDB′, R))← Qrye((K, q),EDB)

Client Server

R = φ q R̂← Qry(q, Ĝ)

if γ[q] 6= ⊥ then R̂

(ak, bk, {addrj}kj=1, h)← γ[q] ak, bk, {addrj}kj=1 (R,D)← Trav(EDB, {addrj}kj=1, ak, bk)

γ[q]← ⊥ R parse D as (addrj)j

if q = x ∈ X then

parse R as {(x, zj , wj)}j
else // q = y ∈ Y

parse R as {(zj , y, wj)}j
endif

(K, EDB)← DelDual((K, {zj}j , (EDB, {addrj}j))

endif

R← R ∪ R̂ R← R ∪ R̂

foreach (x, y, w) ∈ R̂ do

Ĝ← Udt((Add, x, y, w), Ĝ)

endfor

return (K,R) return (EDB, R)

Fig. 4. Query protocol of encrypted cascaded triangles

such that there exists a simulator which can simulate the ciphertexts for new data without any leakage.
When some data is to be returned upon queries or is deleted, the simulator is given enough leakage so that
it can “explain” the dummy ciphertexts. Furthermore, when the sets (x, ∗, ∗) and (∗, y, ∗) are leaked upon
querying x and y respectively, there is no need to protect the sets by encryption any longer [HK14]. To
speed up subsequent queries, the server should transfer the set from the encrypted η to a plaintext labeled
bipartite graph Ĝ. Thus, we can conceptually split G into two disjoint subgraphs G = G̃ ∪ Ĝ, where G̃ is
encrypted and Ĝ is in plaintext.

Encrypted cascaded triangles are similar to the plaintext counterparts. We highlight the differences and
omit the identical parts.

Setup and Overview. Let NCE.(KGen,Enc,Dec) be a symmetric-key non-committing encryption scheme5.
The correctness of our scheme will follow directly from that of NCE. For each edge (x, y, w) in the en-
crypted subgraph G̃, η[addrM] stores the tuple (cMa , c

M
b), where cMa and cMb are non-committing ciphertexts of

aM = (x, y, w) and bM = (chd0, chd1) under the keys akM and bkM respectively. The keys akM and bkM are
independently generated for each x. Similarly, η[addrO] stores the tuple (cOa , c

O
b) encrypted under akO and

bkO respectively. The keys akO and bkO are independently generated for each y. For each x, γ[x] additionally
stores secret keys akM and bkM associated to x. Similarly, for each y, γ[y] additionally stores secret keys akO

and bkO associated to y. Formally, the setup protocol in Figure 3 shows the initialization of these dictionaries.

Queries. Queries are similar to the plaintext case. Apart from the addresses, the client also sends ak and
bk retrieved from γ[q] to the server. Using bk, the server decrypts all b = (chd0, chd1) and traverses the

5 For example, a ciphertext for message m with randomness r can be computed as c = (r,PRF(K, r) ⊕m), where
PRF, modeling a random oracle, is a pseudorandom function with secret key K. In practice, one may substitute
PRF with an HMAC.

12

(K′,EDB′)← DelDual((K, {qj}j), (EDB, {addrj}j))

Client Server

for j = 1, . . . , n do

(akj , bkj , {addrj,i}
`j
i=1, hj)← γ[qj]

addrj := addrj,1 addr�j ← δ(addrj)

(chd0, chd1)← NCE.Dec(bkj , η[addrj].cb)
η[addrj].cb δ(addrj)← ⊥

if chd0 6= ⊥ (∨ chd1 6= ⊥) then δ(addr�j)← addrj

addrj,0 ← chd0, addrj,1 ← chd1 δ(addrj)← addr�j

γ[qj]← (akj , bkj , {addrj,i}
`j
i=0), hj − 1) η[addrj].ca = η[addrj].ca

else η[addrj]← ⊥

γ[qj]← (akj , bkj , {addrj,i}
`j
i=2), hj − 1)

endif

endfor

Fig. 5. Dual deletion protocol of encrypted cascaded triangles

(·,EDB′)← Udte(·,EDB)

Receive (addrM, addrO, cMa , c
M
b , c
O
a , c
O
b)

δ[addrM]← addrO, δ[addrO]← addrM

η[addrM]← (c
M
a , c
M
b), η[addr

O
]← (c

O
a , c
O
b)

return EDB

(K′, ·)← Udte((K,u = (Add, x, y, w)), ·)

addrM, addrO ← {0, 1}∗

for (q,♦) ∈ {(x,M), (y,O)} do

if γ[q] = ⊥ then

ak, bk← NCE.KGen(1λ)

addr1, addr2 ← ⊥
γ[q]← (ak, bk, {addr}, 1)

(cont.)

else

(ak, bk, {addrj}kj=1, h)← γ[q]

if Carry(h+ 1) then

γ[q]← (ak, bk, {addr, addrj}kj=3, h+ 1)

else

γ[q]← (ak, bk, {addr, addrj}kj=1, h+ 1)

endif

endif

c
♦
a ← NCE.Enc(ak, (x, y, w))

c
♦
b ← NCE.Enc(bk, (addr1, addr2))

endfor

Send (addrM, addrO, cMa , c
M
b , c
O
a , c
O
b)

return K

Fig. 6. Addition protocol of encrypted cascaded triangles

sub-trees. Using ak, it decrypts all a = (x, y, w) which are returned as query results. The server also returns
the previous query results R̂ stored in Ĝ.

As mentioned before, for the efficiency of subsequent queries, the server should remove revealed entries
from η and add them to the plaintext subgraph Ĝ. Thus, the client and the server cooperates to delete the
set (q, ∗, ∗) or (∗, q, ∗) from η. This conceptually removes the set from the encrypted subgraph G̃. Finally,
the server adds the set to Ĝ. Formally, the query protocol is shown in Figure 4, which utilizes the subroutine
Trav and subprotocol DelDual shown in Figure 3 and 5 respectively.

Add. Instead of sending (aM, bM) in the clear, the client sends their ciphertexts (cMa , c
M
b), encrypted under

akM and bkM retrieved from γ[x], to the server respectively. In the case where γ[x] = ⊥, the client generates
new secret keys akM and bkM using the key generation algorithm of the non-committing encryption scheme.
Sending (aO, bO) requires a similar treatment. Figure 6 formally describes the addition protocol.

Delete. Deletion of (x, ∗, ∗) is almost identical to querying x, except that the client does not send out
akM. Instead, the server returns all cMa so that the client can decrypt them locally. After obtaining all the

13

(K′,EDB′)← Udte((K,u = (Del, q)),EDB)

if γ[q] 6= ⊥ then q Ĝ← Udt((Del, q), Ĝ)

(ak, bk, {addri}i, h)← γ[q] bk, {addri}i (R,D)← Trav(EDB, {addri}i,⊥, bk)

γ[q]← ⊥ R parse D as (addrj)j

if q ∈ X then

{(q, zj , wj)}j ← NCE.Dec(ak, R)

else // q ∈ Y
{(zj , q, wj)}j ← NCE.Dec(ak, R)

endif

(K, EDB)← DelDual((K, {zj}j), (EDB, {addrj}j))

endif

return K return EDB

Fig. 7. Deletion protocol of encrypted cascaded triangles

edges (x, y, w), the client and the server cooperate to delete (x, ∗, ∗) from η as in the query algorithm. This
conceptually removes (x, ∗, ∗) from the encrypted subgraph G̃. Finally, the server also removes (x, ∗, ∗) from
the plaintext subgraph Ĝ. Deletion of (∗, y, ∗) is done similarly. Figure 7 shows the deletion protocol, which
also utilizes the subroutines Trav and DelDual in Figure 3 and 5 respectively.

5.3 Analysis

Storage Cost. For each x, if nx = |(x, ∗, ∗) ∩ G̃| > 0, the client stores two λ-bit keys of non-committing
encryption, one dlg nxe-trit string, and at most dlg nxe + 1 λ-bit addresses. Similar storage is required for
each y. In the extreme case where the client adds all possible data and never queries or deletes, the storage
cost is O(poly(λ) · (|X | lg |Y| + |Y| lg |X |)). However, querying and deleting x (or y) removes (x, ∗, ∗) (or
(∗, y, ∗)) from G̃, which waives the client local storage for x (or y). Thus, the storage of a reasonable client
would be much smaller.

The storage cost of the server is linear in the number of edges (x, y, w) added to the server, which is
optimal. Furthermore, if an edge (x, y, w) is revealed due to a previous query, it is stored in plaintext instead
of ciphertext, where the former is much better in terms of locality [CT14].

Computation and Communication Cost. Both the client and the server perform essentially no work during
setup: They just initialize empty dictionaries.

During a query on q, the client first looks up its dictionary γ[q], which consists of two λ-bit keys of NCE,
one dlg nqe-trit string, and at most (dlg nqe + 1) λ-bit addresses. The query q, the keys, and the addresses
are sent to the server. The server traverses the set (x, ∗, ∗) if q = x ∈ X , or the set (∗, y, ∗) if q = y ∈ Y. In
the former, the server needs to perform O(|(x, ∗, ∗)∩ G̃|) decryption, and execute Qry(q, Ĝ) which takes time
|(x, ∗, ∗)∩Ĝ|. It then returns the query result of size |(x, ∗, ∗)| = |(x, ∗, ∗)∩G̃|+|(x, ∗, ∗)∩Ĝ| to the client. The
client looks up and sends |(x, ∗, ∗)∩G̃| addresses to the server, which performs the same amount of I/O tasks,
and returns O(|(x, ∗, ∗) ∩ G̃|) ciphertexts to the client. The client finalizes by performing O(|(x, ∗, ∗) ∩ G̃|)
decryption and the same amount of I/O tasks. Overall, both computation and communication complexities
for both the client and the server are in the order of O(poly(λ) · |(x, ∗, ∗)|), which is optimal for the server.
In contrast to the presentation in the formal construction, the number of rounds can be compressed into 4.

Since deletion is almost identical to querying except for local decryption, their overall computation and
communication complexities are identical.

For addition, the client performs a constant amount of I/O tasks to update γ, while sending 2 λ-bit
addresses and 4 ciphertexts to the server. The server simply writes the ciphertexts to the specified addresses.

14

Therefore, the overall computation, round, and communication complexities for both the client and the server
are constant, which is again optimal.

Note that our scheme supports batch operations (querying, addition, and deletion) straightforwardly. In
such case, the computation and communication complexities increase linearly while the round complexity
remains unchanged.

Security. We prove that our scheme is secure against adaptive chosen query attack with very minimal
leakage. In particular, our scheme achieves (U1, 1)-forward privacy, where U1 is defined in Table 1. We begin
by defining the leakage functions. For setup, Lu only leaks the sizes of the spaces, i.e., |X |, |Y|, and |W|.
For addition, Lu only leaks the update type and the time Time(x, y) of the addition as the new addresses
are truly random and the ciphertexts can be simulated by the simulator of the non-committing encryption
scheme. For deletion of (x, ∗, ∗), Lu leaks the update type, x, and the time Time(x, y) when each of the edges
(x, y, w) ∈ (x, ∗, ∗) is added. It also leaks, for each y such that (x, y, w) ∈ (x, ∗, ∗), the time Time(∗, y) when
the last edge in (∗, y, ∗) is added. Leakage for deleting (∗, y, ∗) is defined similarly. Finally, for queries on q,
Lq leaks all information leaked by Lu upon deletion of (x, ∗, ∗) if q = x ∈ X , or (∗, y, ∗) if q = y ∈ Y, and the
access patterns APt(q) of q, assuming it is sorted by the time each response is added. Formally, we define:

– Le(G) = (|X |, |Y|, |W|)
– Lu(Add, x, y, w) = (Add,Time(x, y))
– Lu(Del, x) = (Del, x, {(Time(x, y),Time(∗, y)) : (x, y, ·) ∈ (x, ∗, ∗)})
– Lu(Del, y) = (Del, y, {(Time(x, y),Time(x, ∗)) : (x, y, ·) ∈ (∗, y, ∗)})
– Lq(x) = (x,APt(x), {(Time(x, y),Time(∗, y)) : (x, y, ·) ∈ (x, ∗, ∗)})
– Lq(y) = (y,APt(y), {(Time(x, y),Time(x, ∗)) : (x, y, ·) ∈ (∗, y, ∗)})

The simulation is sketched as follows. The simulator first initializes empty dictionaries δ and η, and the
empty plaintext graph Ĝ. It maintains a table T mapping time t to time-address tuples ((t0, addr), (t1, addr

O).
For addition at time t, it samples random addresses addr and addrO, and registers them in δ. It sets

T [t]← ((t, addr), (t, addrO)). It simulates the ciphertexts in η[addr] and η[addrO] using the simulator of NCE.
For deletion of (x, ∗, ∗), it is given x, which allows it to delete (x, ∗, ∗) from Ĝ. It is also given the time

Time(x, y) when each of the edges (x, y, w) ∈ (x, ∗, ∗) is added, and for each y such that (x, y, w) ∈ (x, ∗, ∗)
the time Time(∗, y) when the last edge in (∗, y, ∗) is added. It recalls from the table T all addr and addrO pairs
which are created at time Time(x, y) and Time(∗, y). With the knowledge of these addresses, the simulator
can maintain δ and η as in the real scheme. It must also output simulated bk and explain the ciphertexts
cb encrypting the addresses. To achieve this, the simulator passes the ciphertexts and the corresponding
addresses to the simulator of the non-committing encryption scheme, where the latter outputs the simulated
bk. Deletion of (∗, y, ∗) is simulated similarly.

Queries are simulated almost identically as in the simulation of deletions, except that the simulator must
now also output simulated ak and explain the ciphertexts ca encrypting the query result. Similar to the
above, this can be done by calling the simulator of the non-committing encryption scheme.

Theorem 2. Assume that NCE.(KGen,Enc,Dec) is a symmetric-key non-committing encryption scheme with
message space {0, 1}max(lg |X |+lg |Y|+lg |W|,2λ), the above construction is (Le,Lq,Lu)-CQA2 secure. Further-
more, the above construction is (U1, 1)-forward private, where U1 is defined in Table 1.

Appendix B.2 gives the proof of Theorem 2.

References

[BHJP14] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. A Survey of Provably Secure Search-
able Encryption. ACM Comput. Surv., 47(2):18:1–18:51, August 2014.

[Bos16] Raphael Bost.
∑

oϕoς: Forward secure searchable encryption. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pages
1143–1154, 2016.

15

[CCC+16] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai Lin, and Hong-Sheng
Zhou. Cryptography for parallel RAM from indistinguishability obfuscation. In Madhu Sudan, editor,
ITCS 2016: 7th Innovations in Theoretical Computer Science, pages 179–190, Cambridge, MA, USA,
January 14–16, 2016. Association for Computing Machinery.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation. In
28th Annual ACM Symposium on Theory of Computing, pages 639–648, Philadephia, PA, USA, May 22–
24, 1996. ACM Press.

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption:
improved definitions and efficient constructions. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM CCS 06: 13th Conference on Computer and Communications Security, pages
79–88, Alexandria, Virginia, USA, October 30 – November 3, 2006. ACM Press.

[CGKO11] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. Journal of Computer Security, 19(5):895–934, 2011.

[CK10] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In Masayuki Abe,
editor, Advances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science,
pages 577–594, Singapore, December 5–9, 2010. Springer, Heidelberg, Germany.

[CT14] David Cash and Stefano Tessaro. The locality of searchable symmetric encryption. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes
in Computer Science, pages 351–368, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg,
Germany.

[GMP16] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. TWORAM: Efficient oblivious RAM in
two rounds with applications to searchable encryption. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016, Part III, volume 9816 of Lecture Notes in Computer Science,
pages 563–592, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[HK14] Florian Hahn and Florian Kerschbaum. Searchable encryption with secure and efficient updates. In
Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14: 21st Conference on Computer and
Communications Security, pages 310–320, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In ISOC Network and Distributed System Security
Symposium – NDSS 2012, San Diego, CA, USA, February 5–8, 2012. The Internet Society.

[KP13] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable symmetric encryption. In
Ahmad-Reza Sadeghi, editor, FC 2013: 17th International Conference on Financial Cryptography and Data
Security, volume 7859 of Lecture Notes in Computer Science, pages 258–274, Okinawa, Japan, April 1–5,
2013. Springer, Heidelberg, Germany.

[KPR12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable symmetric encryption.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12: 19th Conference on Computer
and Communications Security, pages 965–976, Raleigh, NC, USA, October 16–18, 2012. ACM Press.

[LC15] Russell W. F. Lai and Sherman S. M. Chow. Structured encryption with non-interactive updates and
parallel traversal. In 35th IEEE International Conference on Distributed Computing Systems, ICDCS
2015, Columbus, OH, USA, June 29 - July 2, 2015, pages 776–777, 2015.

[LC16] Russell W. F. Lai and Sherman S. M. Chow. Parallel and dynamic structured encryption. In SE-
CURECOMM 2016, 2016. to appear.

[LZWT14] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-an Tan. Search pattern leakage in searchable
encryption: Attacks and new construction. Inf. Sci., 265:176–188, 2014.

[RG15] Panagiotis Rizomiliotis and Stefanos Gritzalis. ORAM based forward privacy preserving dynamic search-
able symmetric encryption schemes. In Proceedings of the 2015 ACM Workshop on Cloud Computing
Security Workshop, CCSW 2015, Denver, Colorado, USA, October 16, 2015, pages 65–76, 2015.

[SPS14] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic searchable encryption with
small leakage. In ISOC Network and Distributed System Security Symposium – NDSS 2014, San Diego,
CA, USA, February 23–26, 2014. The Internet Society.

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted
data. In 2000 IEEE Symposium on Security and Privacy, pages 44–55, Oakland, CA, USA, May 2000.
IEEE Computer Society Press.

[ZKP16] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong to us: The
power of file-injection attacks on searchable encryption. In 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016., pages 707–720, 2016.

16

A Preliminary

A.1 Symmetric Key Non-Committing Encryption

Non-committing encryption schemes are originally considered in the public-key setting [CFGN96]. The litera-
ture of SSE used the following simplest symmetric key encryption of the message m, i.e., c = (F (K, r)⊕m, r),
where F is a pseudorandom function modeled as a random oracle, K is the secret key, and r is the encryp-
tion randomness. It is non-committing in the sense that, a simulator can simulate a ciphertext c by truly
random strings (s, r). It can later open the ciphertext to an arbitrary message m encrypted under key K by
programming the random oracle F such that F (K, r) = s⊕m. To keep our construction and security proof
clean, we abstract the property out as a building block.

Definition 4. A symmetric key encryption scheme NCE.(KGen,Enc,Dec) is said to be non-committing, if
there exists a simulator S such that the following properties hold:

– Efficiency: KGen, Enc, Dec, and S are all PPT algorithms.
– Correctness: For any message m ∈M,

Pr[Dec(sk, c) = m : sk← KGen(1λ); c← Enc(sk,m)] = 1.

– Simulatability: For all ` ∈ N, the following distributions defined by the simulator S = (S1,S2,S3) are
computationally indistinguishable:

{(sk, (mi)
`
i=1, (ri)

`
i=0) :tk← S1(1λ); ci ← S2(tk) ∀ i ∈ [`];

(sk, (ri)
`
i=0)← S3(tk, (mi)

`
i=1)}

and
{(sk, (mi)

`
i=1, (ri)

`
i=0) : sk← KGen(1λ; r0); ci ← Enc(sk,mi; ri) ∀ i ∈ [`]}

We remark that simulatability implies semantic security.

A.2 Discussion on Our Data Representation

Here we give a more detailed explanation of our choice of data representation. We consider labeled bipartite
graphs G defined by the spaces X , Y, and W, where X and Y are disjoint, i.e., X ∩ Y = φ. We denote by
G = G(X ,Y,W) a set of labeled bipartite graphs specified by these sets. Labeled bipartite graphs are graphs
in which nodes can be partitioned into disjoint subsets X ⊆ X and Y ⊆ Y, and edges with labels from the
subset W ⊆ W can never connect two nodes from the same partition. Let G ∈ G be such a graph. An edge
in G can be uniquely represented by the tuple (x, y, w) ∈ X × Y ×W. Thus, G can formally be defined as
the collection of all these tuples.

Consider the neighbor query function Qry which maps a node q = x (or q = y) and a graph G to a set of
all edges connecting node x, denoted by (x, ∗, ∗) (or a set of all edges connecting node y, denoted by (∗, y, ∗)).
Similarly, we also denote as (x, y, ∗) set of edges in the form of (x, y, ·), which should be a singleton. One
can also consider an edge query function Qry′ which maps a tuple (x, y) and a graph G to a bit b, such that
b = 1 if and only if (x, y, ∗) ⊆ G.

Neighbor queries over one of the partitions already naturally capture a wide range of applications such as
(conjunctive) keyword search, neighbor, and adjacency queries over graphs, any queries over binary relations.
Using techniques involving the semi-private data [CK10], compositions of these queries are also supported.
More generally, neighbor queries over the entire bipartite graph (both X and Y) enable interesting bi-
directional searches.

The update function Udt maps an update u and a graph G to a new graph G′. The update u = (Op, ·, ·, ·)
where Op = Add or Op = Del takes one of the following forms:

1. Edge Addition: u = (Add, x, y, w) adds the edge (x, y, w) to G.

17

2. Node Addition: u = (Add,x, y,w) (or u = (Add, x,y,w)) adds the edges (xi, y, wi) where xi ∈ x (or
(x, yi, wi) where yi ∈ y) and wi ∈ w to G, where node y (or x) originally does not exists in G.

3. Edge Deletion: u = (Del, x, y) deletes the edge of the form (x, y, ·) from G.

4. Node Deletion: u = (Del, q) deletes the set of edges (q, ∗, ∗) (or (∗, q, ∗)) from G. Since X and Y are
disjoint, there is no ambiguity.

In this work, we focus on DSSE constructions which support neighbor query function Qry, edge additions,
and node deletions defined above.

Remarks on the different forms of updates are in order. First, for additions, notice that edge additions
enable fine-grained modification of existing nodes x and y. Node additions are however weaker, or easier to
support, than edge additions. To see why this is the case, consider a DSSE scheme supporting edge additions:
Intuitively, the server needs to somehow link the newly added edge (x, y, w) to some previously added edge
(x, y′, w′) for the same node x. Then when the user queries node x, the server can retrieve all such linkage
and return all edges in the set (x, ∗, ∗). To provide such linkage, the user might need to reveal some secret
information (such as x itself) to the server during the addition of edges. The user can, however, prepare such
linkage locally for node additions in one shot, and thus reveal less information to the server.

Next, for the deletions, notice that edge deletions require the user to know the existence of the edge
connecting some nodes x and y in the graph. On one hand, they enable fine-grained modification similar to
edge additions. On the other hand, they are not too useful when the user wishes to delete all edges connected
to some node x (or y) while not remembering them. Recall that node deletions allow the user to delete all
edges in the set (x, ∗, ∗) (or (∗, y, ∗)), essentially removing the node x (or y) entirely from the graph. Similar
to the discussion above, this intuitively requires the user to provide sufficient secret information during the
additions, such that the server can somehow link (x, y, w) with (x, y′, w′) to intelligently delete them later.

A.3 Why Forward Privacy

The CQA2 definition itself does not say much about the actual security level of the DSSE scheme due to the
flexibility in defining the leakage functions. In particular, consider the following attack scenario of DSSE:
The client cooperates with the server for querying on x. The former later adds a new edge (x, y, w). Using
the knowledge learnt from the previous query on x, the server might be able to tell that this new edge is
connecting a previously queried node to some node y (although the server may not know the exact value of x
and y). This affects the privacy of newly added data since the client only wanted to delegate the query power
to the server at an earlier time. Indeed, there are practical attacks which exploit such information [ZKP16].
The security property which prevents the above privacy breach is known as forward privacy. Forward privacy
for DSSE was advocated by Stefanov et al. [SPS14] without an explicit formal definition. Rizomiliotis and
Gritzalis [RG15] gave another construction but still did not formally define the notion. A formal definition
was recently given by Bost [Bos16], yet it is specific to a certain type of constructions, and is weaker in
the sense that there might exist schemes which satisfy the definition, yet updates to the same file might be
linkable. (See the discussion in Section 3.2 for details.)

Earlier works [SPS14, RG15] claimed that forward privacy was captured by their respective leakage
function Lq(q) on a query q occurred at time t, which leaks only data added and deleted in the past, i.e.,
APt(q). However, capturing forward privacy in this way is problematic: The simulator is given Lq(q) when a
query q is chosen by the environment at some time t. It is sufficient for Lq(q) to leak access pattern of q up to
time t such that the simulator of a non-forward-private DSSE can simulate the query results. Indeed, most
if not all existing (both forward and non-forward-private) DSSE schemes have the leakage Lq(q) defined as
(q,APt(q)). The correct way is to capture forward privacy in Lu, which is also the case in the definition by
Bost [Bos16].

18

B Security Proofs

B.1 Proof of Theorem 1 (Security for Generic Construction)

Proof. Since E is (L̃q, L̃u)-CQA2 secure, there exists a simulator SE which simulates queries and updates of

E when given the leakage defined by L̃q and L̃u. Using SE , we construct a simulator S as follows: S first runs

SE to simulate ˜EDB. It also initiates empty dictionary γ and empty graph Ĝ.
Upon update u = (Add, x, y, w), the simulator S receives

Lu(Add, x, y, w) = (x̃, L̃u(Add, x̃, y, w))

for a uniformly random x̃, which is computationally indistinguishable from the PRF output F (Kx, i) com-
puted in the real scheme by the pseudorandomness of F . Thus, S passes L̃u(Add, x̃, y, w) to SE which outputs
a simulated τ+u .

Upon update u = (Del, x), the simulator S is given

Lu(Del, x) = (x, {L̃u(Del, x̃i)}cxi=1).

It passes L̃u(Del, x̃i) to SE which outputs a simulated τ̃−i for each i. Lastly, for update u = (Del, y), the
simulator S is given

Lu(Del, y) = (y, L̃u(Del, y)).

It then passes L̃u(Del, y) to SE which outputs a simulated τ̃−.
To simulate the query on x, the simulator S is given

Lq(x) = (x,APt(x), {L̃q(x̃i), L̃u(Del, x̃i)}cxi=1).

It passes for each i the leakages L̃q(x̃i) and L̃u(Del, x̃i) to SE , which returns the corresponding simulated
query token τ̃i and simulated update token τ̃−i .

Suppose there exists an environment Z which distinguishes the simulation from the real scheme, then we
can construct another environment which acts as S and distinguish the simulated base scheme from the real
base scheme.

Furthermore, since for any x0, x1 ∈ X , Lu(Add, x0, y, w) and Lu(Add, x1, y, w) have exactly the same
distribution, we conclude that the above construction is (U1, p′1)-forward private. ut

B.2 Proof of Theorem 2 (Security for Concrete Construction)

Proof. We prove by constructing a simulator S which simulates a real-world adversary when given leakage
functions Lq and Lu. By the simulatability of NCE, there exists a PPT simulator SNCE = (SNCE1 ,SNCE2 ,SNCE3).

At the start, S is given the size bounds |X |, |Y|, and |W|. S simulates setup by releasing empty dic-
tionaries δ and η, and empty graph Ĝ. Internally, it maintains a table T which maps time t to addresses
((t0, addr), (t1, addr

O)), and initializes the simulator SNCE of the non-committing encryption by tk← SNCE1 (λ).
At time Time(x, y), when the client submits an update u = (Add, x, y, w) to the ideal functionality F , S

is notified of
Lu(Add, x, y, w) = (Add,Time(x, y)).

It simulates ca, cOa , cb and cOb by calling SNCE
2 (tk). It samples addr, addrO ← {0, 1}λ, and set δ[addr]← addrO,

δ[addrO]← addr, η[addr] = (ca, cb), and η[addrO] = (cOa , c
O
b). Internally, it sets T [t]← ((t, addr), (t, addrO)).

When the client submits an update u = (Del, x) to F , S is notified of

Lu(Del, x) = (Del, x, {(Time(x, y),Time(∗, y)) : (x, y, ·) ∈ (x, ∗, ∗)}).

S performs the following:

– It removes (x, ∗, ∗) from Ĝ.

19

– For each t ∈ {Time(x, y) : (x, y, ·) ∈ (x, ∗, ∗)}, it retrieves from T [t] the tuples ((t0, addr), (t1, addr
O)).

Denote the set of all addr by (addrj)j .
– It arranges the addresses (addrj)j in a unique ordering of cascaded triangles according to the times t0.
– It explains the ciphertexts cb in η[addr] according to the structure of the cascaded triangles by

(bk, (rj)j)← SNCE3 (tk, (addrj)j).
– For each (t, t′) ∈ {(Time(x, y),Time(∗, y)) : (x, y, ·) ∈ (x, ∗, ∗)}, it performs the following:
• It retrieves ((t0, addr), (t1, addr

O))← T [t] and ((t′0, addr
′), (t′1, addr

H))← T [t′].
• It sets T [t]← ⊥ and T [t′]← ((t′0, addr

′), (t1, addr
O)).

• It sets δ[addr]← ⊥ and η[addr]← ⊥ (as in Trav).
• It sets δ[addrH]← ⊥, δ[addr′]← addrO, δ[addrO]← addr′, η[addrO].ca ← η[addrH].ca, and η[addrH]←
⊥ (as in DelDual).

The update u = (Del, y) is simulated similarly. When the client submits an update u = (Del, y) to F , S
is notified of

Lu(Del, y) = (Del, y, {(Time(x, y),Time(x, ∗)) : (x, y, ·) ∈ (∗, y, ∗)}).
S performs the following:

– It removes (∗, y, ∗) from Ĝ.
– For each t ∈ {Time(x, y) : (x, y, ·) ∈ (∗, y, ∗)}, it retrieves from T [t] the tuples ((t0, addr), (t1, addr

O)).
Denote the set of all addrO by (addrOi)i.

– It arranges the addresses (addrOi)i in a unique ordering of cascaded triangles according to the times t1.
– It explains the ciphertexts cb in η[addrO] according to the structure of the cascaded triangles by

(bkO, (ri)i)← SNCE3 (tk, (addrOi)i).
– For each (t, t′) ∈ {(Time(x, y),Time(∗, y)) : (x, y, ·) ∈ (∗, y, ∗)}, it performs the following:
• It retrieves ((t0, addr), (t1, addr

O))← T [t] and ((t′0, addr
′), (t′1, addr

H))← T [t′].
• It sets T [t]← ⊥ and T [t′]← ((t0, addr), (t

′
1, addr

H)).
• It sets δ[addrO]← ⊥ and η[addrO]← ⊥ (as in Trav).
• It sets δ[addr′] ← ⊥, δ[addrH] ← addr, δ[addr] ← addrH, η[addr].ca ← η[addr′].ca, and η[addr′] ← ⊥

(as in DelDual).

When the client submits a query x to F , S is notified of

Lq(x) = (x,APt(x), {(Time(x, y),Time(∗, y)) : (x, y, ·) ∈ (x, ∗, ∗)}).

S performs the following:

– It splits APt(x) into R̃ and R̂, where R̂ = APt(x) ∩ Ĝ.
– It merges R̃ to Ĝ.
– For each t ∈ {Time(x, y) : (x, y, ·) ∈ (x, ∗, ∗)}, it retrieves from T [t] the tuples ((t0, addr), (t1, addr

O)).
Denote the set of all addr by (addrj)j .

– It arranges the R̃ in a unique ordering of cascaded triangles according to the times t0.
– It arranges the addresses (addrj)j in a unique ordering of cascaded triangles according to the time t0.
– It explains the ciphertexts ca and cb in η[addr] according to the structure of the cascaded triangles by

(ak, (rj)j)← SNCE3 (tk, R̃) and (bk, (r′j)j)← SNCE3 (tk, (addrj)j).
– For each (t, t′) ∈ {(Time(x, y),Time(∗, y)) : (x, y, ·) ∈ (x, ∗, ∗)}, it performs the following:
• It retrieves ((t0, addr), (t1, addr

O))← T [t] and ((t′0, addr
′), (t′1, addr

H))← T [t′].
• It sets T [t]← ⊥ and T [t′]← ((t′0, addr

′), (t1, addr
O)).

• It sets δ[addr]← ⊥ and η[addr]← ⊥ (as in Trav).
• It sets δ[addrH]← ⊥, δ[addr′]← addrO, δ[addrO]← addr′, η[addrO].ca ← η[addrH].ca, and η[addrH]←
⊥ (as in DelDual).

Similarly, when the client submits a query y to F , S is notified of

Lq(y) = (y,APt(y), {(Time(x, y),Time(∗, y)) : (x, y, ·) ∈ (∗, y, ∗)}).

S performs the following:

20

– It splits APt(y) into R̃ and R̂, where R̂ = APt(y) ∩ Ĝ.
– It merges R̃ to Ĝ.
– For each t ∈ {Time(x, y) : (x, y, ·) ∈ (∗, y, ∗)}, it retrieves from T [t] the tuples ((t0, addr), (t1, addr

O)).
Denote the set of all addrO by (addrOj)j .

– It arranges the R̃ in a unique ordering of cascaded triangles according to the times t1.
– It arranges the addresses (addrOj)j in a unique ordering of cascaded triangles according to the time t1.

– It explains the ciphertexts cOa and cOb in η[addrO] according to the structure of the cascaded triangles by

(akO, (rj)j)← SNCE3 (tk, R̃) and (bkO, (r′j)j)← SNCE3 (tk, (addrOj)j).
– For each (t, t′) ∈ {(Time(x, y),Time(∗, y)) : (x, y, ·) ∈ (∗, y, ∗)}, it performs the following:
• It retrieves ((t0, addr), (t1, addr

O))← T [t] and ((t′0, addr
′), (t′1, addr

H))← T [t′].
• It sets T [t]← ⊥ and T [t′]← ((t0, addr), (t

′
1, addr

H)).
• It sets δ[addrO]← ⊥ and η[addrO]← ⊥ (as in Trav).
• It sets δ[addr′] ← ⊥, δ[addrH] ← addr, δ[addr] ← addrH, η[addr].ca ← η[addr′].ca, and η[addr′] ← ⊥

(as in DelDual).

By the simulatability of NCE, the simulation above is computationally indistinguishable from the real-
world scheme. Furthermore, since Lu(Add, x0, y0, w0) and Lu(Add, x1, y1, w1) have identical distributions, we
conclude that the scheme is (U1, 1)-forward privacy, where U1 is defined in Table 1. ut

C More on Related Work

The DSSE by Kamara et al. [KPR12] is non-interactive and is the first to achieve optimal sequential query
and update efficiency. Unfortunately, their scheme uses linked list as the set representation for which traversal
and update algorithms are not parallelizable. Moreover, updates in their scheme leak a considerable amount
of information.

The first parallel DSSE scheme was proposed by Kamara and Papamanthou [KP13], which uses red-black
trees as the set representation. A bit array as long as the keyword space (or the space X in our context)
is stored in each tree node to indicate whether any of its children contains a given keyword. Thus, the
actual data is only stored at the leaf node of the red-black tree, resulting in a logN overhead in the query
complexity, i.e., the query complexity is O((m logN)/p) where m and p are the number of matches and CPU
respectively.

The DSSE scheme proposed by Stefanov et al. [SPS14] uses a novel data structure, consisting of multiple
levels of hash chains. As deletion in their scheme is done by inserting dummy “delete node” instead of actually
deleting the data, amortized rebuilding are done during queries, which makes their query complexity suffers
from an overhead of order roughly log3N , i.e., the query complexity is O((m log3N)/p). The crux of their
scheme is a complicated interactive database rebuild algorithm which maintains the compactness of the
encrypted database while providing strong security. In particular, their scheme is the first providing (half-
)forward privacy.

Hahn and Kerschbaum [HK14] does not follow the inverted-index approach. Instead, they encrypt the
forward index and create an inverted index for a keyword only after the keyword is searched. This results
in a first-time search complexity linear in the size of the database (i.e., O(N/p)), while the asymptotic
search complexity of issued queries will become optimal. On the other hand, the complexities for adding and
removing a file are linear in the size of the inverted index (i.e., O(|I|/p) where I is the inverted index). Thus,
as times goes by and as the inverted index grows larger, the efficiency of updates decreases.

Rizomiliotis and Gritzalis [RG15] used ORAM to give the second solution to (half-)forward private DSSE.
Their main idea is to refresh the pseudorandom function key for the keyword w each time after it is being
queried on.

Bost [Bos16] recently gave the first formal definition of forward security, and proposed a simple construc-
tion to achieve it. The main idea is to use a trapdoor permutation to invert the pseudonym of a keyword
to give a new pseudonym for each addition. The proposed scheme was constructed in two phases. First,
he constructed a scheme which supports only additions but not deletions. Support for deletions is then

21

added by letting the server maintain two copies of the base scheme: To delete, similar to the scheme by
Stefanov et al. [SPS14], a dummy “delete node” is added. The query efficiency thus decreases as the number
of deletions increases. Moreover, due to the use of trapdoor permutation, the query algorithm is inherently
sequential.

Lastly, we note that while the schemes by Stefanov et al. [SPS14] and Bost [Bos16] support edge additions
and deletions, others [KPR12,KP13,HK14,RG15] support node additions and deletions.

22

